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Abstract In this paper, we study the existence of positive solution to boundary value
problem for fractional differential system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα
0+u(t) + a1(t) f1(t, u(t), v(t)) = 0, t ∈ (0, 1),

Dα
0+v(t) + a2(t) f2(t, u(t), v(t)) = 0, t ∈ (0, 1), 2 < α < 3,

u(0) = u′(0) = 0, u′(1) − μ1u′(η1) = 0,

v(0) = v′(0) = 0, v′(1) − μ2v
′(η2) = 0,

where Dα
0+ is the Riemann-Liouville fractional derivative of order α. By using the

Leggett-Williams fixed point theorem in a cone, the existence of three positive solutions
for nonlinear singular boundary value problems is obtained.

Keywords Cone · Multi point boundary value problem · Fixed point theorem ·
Riemann-Liouville fractional derivative
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1 Introduction

The purpose of this paper is to study the existence of positive solutions for the following
boundary value problem for fractional differential system
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dα
0+u(t) + a1(t) f1(t, u(t), v(t)) = 0, t ∈ (0, 1),

Dα
0+v(t) + a2(t) f2(t, u(t), v(t)) = 0, t ∈ (0, 1), 2 < α < 3,

u(0) = u′(0) = 0, u′(1) − μ1u′(η2) = 0,

v(0) = v′(0) = 0, v′(1) − μ2v
′(η2) = 0,

(1)

where Dα
0+ is the Riemann-Liouville fractional derivative of order α, ηi ∈ (0, 1), μi ∈

[
0, 1

ηα−2
i

)
are two arbitrary constants, ai ∈ C((0, 1); [0,+∞)), fi : [0, 1] ×

[0,+∞) → [0,+∞) and a1(t), f1(t, 0, 0) or a2(t), f2(t, 0, 0) does not vanish iden-
tically on any subinterval of (0, 1), i = 1, 2.

Fractional differential equations have been of great interest recently. This is because
of both the intensive development of the theory of fractional calculus itself and the
applications of such constructions in various scientific fields such as physics, mechan-
ics, chemistry, engineering, etc. For details, see [1–3] and the references therein.

The existence of solutions of initial value problems for fractional order differential
equations have been studied in the literature [4–8] and the references therein. Saadi
and Benbachir [9] considered the following boundary value problem

{
Dα

0+u(t) + a(t) f (u(t)) = 0, t ∈ (0, 1), 2 < α < 3,

u(0) = u′(0) = 0, u′(1) − μu′(η) = λ,
(2)

where η ∈ (0, 1), μ ∈
[
0, 1

ηα−2

)
are two arbitrary constants. They applied the Guo-

Krasnosel’skii fixed point theorem and Schauder’s fixed point theorem to establish
some results on the existence, nonexistence and uniqueness of positive solutions (2).

Motivated by the work mentioned above, our purpose in this paper is to show
the existence and multiplicity of positive solutions to the problem (1) by using the
Leggett-Williams fixed point theorem.

The rest of the article is organized as follows: in Sect. 2, we present some prelimi-
naries that will be used in Sect. 3. The main result and proof will be given in Sect. 3.
Finally, in Sect. 4, an example is given to demonstrate the application of our main
result.

2 Preliminaries

In this section, we present some notations and preliminary lemmas that will be used
in the proofs of the main results.

Definition 2.1 Let X be a real Banach space. A non-empty closed set P ⊂ X is called
a cone of X if it satisfies the following conditions:

(1) x ∈ P, μ ≥ 0 implies μx ∈ P ,
(2) x ∈ P,−x ∈ P implies x = 0.

123



Ann Univ Ferrara (2012) 58:359–369 361

Definition 2.2 The Riemann-Liouville fractional integral operator of order α > 0, of
function f ∈ L1(R+) is defined as

I α
0+ f (t) = 1

�(α)

t∫

0

(t − s)α−1 f (s)ds,

where �(·) is the Euler gamma function.

Definition 2.3 The Riemann-Liouville fractional derivative of order α > 0, n − 1 <

α < n, n ∈ N is defined as

Dα
0+ f (t) = 1

�(n − α)

( d

dt

)n
t∫

0

(t − s)n−α−1 f (s)ds,

where the function f (t) have absolutely continuous derivatives up to order (n − 1).

Lemma 1 ([10]). The equality Dγ

0+ I γ

0+ f (t) = f (t), γ > 0 holds for f ∈ L(0, 1).

Lemma 2 ([10]). Let α > 0. Then the differential equation

Dα
0+u = 0

has a unique solution u(t) = c1tα−1 + c2tα−2 + · · · + cntα−n, ci ∈ R, i = 1, . . . , n,
where n − 1 < α ≤ n.

Lemma 3 ([10]). Let α > 0. Then the following equality holds for u ∈ L(0, 1),

Dα
0+u ∈ L(0, 1);

I α
0+ Dα

0+u(t) = u(t) + c1tα−1 + c2tα−2 + · · · + cntα−n,

ci ∈ R, i = 1, . . . , n, where n − 1 < α ≤ n.

In the following, we present the Green function of fractional differential equation
boundary value problem.

Lemma 4 Let y(t) ∈ C[0, 1], for i = 1 or i = 2, then the boundary value problem
{

Dα
0+u(t) + y(t) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) − μi u′(ηi ) = 0,
(3)

has a unique solution

u(t) =
1∫

0

G(t, s)y(s)ds + μi tα−1

(1 − μiη
α−2
i )

1∫

0

G1i (ηi , s)y(s)ds, (4)

where

G(t, s) =
⎧
⎨

⎩

tα−1(1−s)α−2−(t−s)α−1

�(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1−s)α−2

�(α)
, 0 ≤ t ≤ s ≤ 1

(5)
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and

G1i (ηi , s) =
⎧
⎨

⎩

ηα−2
i (1−s)α−2−(ηi −s)α−2

�(α)
, 0 ≤ s ≤ ηi ≤ 1,

ηα−2
i (1−s)α−2

�(α)
, 0 ≤ ηi ≤ s ≤ 1.

(6)

Proof The proof is similar to that of Lemma 5 in [9], so we omit it here. 	

Lemma 5 ([9]). For all (t, s) ∈ [0, 1] × [0, 1], we have

(i) 0 ≤ G1i (ηi , s) ≤ 1
�(α)

ηα−2
i (1 − s)α−2, G(t, s) ≥ 0;

(ii) γ G(1, s) ≤ G(t, s) ≤ G(1, s), (t, s) ∈ [τ, 1] × [0, 1],
where G(1, s) = 1

�(α)
s(1 − s)α−2, γ = τα−1, and τ satisfies

1∫

0

s(1 − s)α−2ai (s)ds > 0, (7)

for i = 1, 2.

Now, we consider the system (1). Obviously, (u, v) ∈ C2(0, 1)×C2(0, 1) is a solution
of the system (1) if and only if (u, v) ∈ C[0, 1]×C[0, 1] is a solution of the following
nonlinear integral system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(t) = ∫ 1
0 G(t, s)a1(s) f1(s, u(s), v(s))ds

+ μ1tα−1

(1−μ1η
α−2
1 )

∫ 1
0 G11(η1, s)a1(s) f1(s, u(s), v(s))ds

v(t) = ∫ 1
0 G(t, s)a2(s) f2(s, u(s), v(s))ds

+ μ2tα−1

(1−μ2η
α−2
2 )

∫ 1
0 G12(η2, s)a2(s) f2(s, u(s), v(s))ds.

(8)

To establish the existence three positive solutions of system (1), we will employ
the following Leggett-Williams fixed point theorem.

For the convenience of the reader, we present here the Leggett-Williams fixed point
theorem [11].
Given a cone K in a real Banach space E , a map α is said to be a nonnegative con-
tinuous concave (resp. convex) functional on K provided that α : K → [0. + ∞) is
continuous and

α(t x + (1 − t)y) ≥ tα(x) + (1 − t)α(y),

(resp.α(t x + (1 − t)y) ≤ tα(x) + (1 − t)α(y)),

for all x, y ∈ K and t ∈ [0, 1].
Let 0 < a < b be given and let α be a nonnegative continuous concave functional on
K . Define the convex sets Pr and P(α, a, b) by

Pr = {x ∈ K |‖x‖ < r},
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and

P(α, a, b) = {x ∈ K |a ≤ α(x), ‖x‖ ≤ b}.

Theorem 1 (Leggett-Williams fixed point theorem). Let A : Pc → Pc be a com-
pletely continuous operator and let α be a nonnegative continuous concave functional
on K such that α(x) ≤ ‖x‖ for all x ∈ Pc. Suppose there exist 0 < a < b < d ≤ c
such that
(A1) {x ∈ P(α, b, d)|α(x) > b} �= ∅, and α(Ax) > b for x ∈ P(α, b, d),
(A2) ‖Ax‖ < a for ‖x‖ ≤ a, and
(A3) α(Ax) > b for x ∈ P(α, b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2, and x3 and such that ‖x1‖ < a, b < α(x2)

and ‖x3‖ > a, with α(x3) < b.

3 Main result

For convenience, we introduce the following notations. Let

Mi = max
0≤t≤1

[
1∫

0

G(t, s)ai (s)ds + μi tα−1

(1 − μiη
α−2
i )

1∫

0

G1i (ηi , s)ai (s)ds
]
,

mi = min
τ≤t≤1

[
1∫

τ

G(t, s)ai (s)ds+ μiτ
α−1

(1 − μiη
α−2
i )

1∫

τ

G1i (ηi , s)ai (s)ds
]
, i =1, 2.

Then 0 < mi < Mi , i = 1, 2.
The basic space used in this paper is a real Banach space E = C([0, 1], R) ×

C([0, 1], R) with the norm ||(u, v)|| := ||u|| + ||v||, where ‖u‖ = maxt∈[0,1] |u(t)|.
Then, choose a cone K ⊂ E , by

K = {(u, v) ∈ E | u(t) ≥ 0, v(t) ≥ 0, min
τ≤t≤1

(u(t) + v(t)) ≥ γ ‖(u, v)‖}.

It is obvious that K is a cone.
Define an operator T by

T (u, v)(t) = (A(u, v)(t), B(u, v)(t)), ∀ t ∈ (0, 1), (9)

where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(u, v)(t) = ∫ 1
0 G(t, s)a1(s) f1(s, u(s), v(s))ds

+ μ1tα−1

(1−μ1η
α−2
1 )

∫ 1
0 G11(η1, s)a1(s) f1(s, u(s), v(s))ds

B(u, v)(t) = ∫ 1
0 G(t, s)a2(s) f2(s, u(s), v(s))ds

+ μ2tα−1

(1−μ2η
α−2
2 )

∫ 1
0 G12(η2, s)a2(s) f2(s, u(s), v(s))ds.

(10)
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Lemma 6 The operator defined in (9) is completely continuous and T : K → K .

Proof For any (u, v) ∈ K , then from properties of G(t, s), G11(t, s) and G12(t, s),
A(u, v)(t) ≥ 0, B(u, v)(t) ≥ 0, t ∈ [0, 1], and it follows from (10) that

||A(u, v)|| =
1∫

0

G(1, s)a1(s) f1(s, u(s), v(s))ds

+ μ1

(1 − μ1η
α−2
1 )

1∫

0

G11(η1, s)a1(s) f1(s, u(s), v(s))ds

||B(u, v)|| =
1∫

0

G(1, s)a2(s) f2(s, u(s), v(s))ds

+ μ2

(1 − μ2η
α−2
2 )

1∫

0

G12(η2, s)a2(s) f2(s, u(s), v(s))ds. (11)

Thus, for any (u, v) ∈ K , it follows from Lemma 5 and (11) that

min
τ≤t≤1

A(u, v)(t) = min
τ≤t≤1

⎡

⎣

1∫

0

G(t, s)a1(s) f1(s, u(s), v(s))ds

+ μ1tα−1

(1 − μ1η
α−2
1 )

1∫

0

G11(η1, s)a1(s) f1(s, u(s), v(s))ds

⎤

⎦

≥ γ

1∫

0

G(1, s)a1(s) f1(s, u(s), v(s))ds

+ μ1τ
α−1

(1 − μ1η
α−2
1 )

1∫

0

G11(η1, s)a1(s) f1(s, u(s), v(s))ds

≥ γ ||A(u, v)||.

In the same way, for any (u, v) ∈ K , we have

min
τ≤t≤1

B(u, v)(t) ≥ γ ||B(u, v)||.
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Therefore

min
τ≤t≤1

(A(u, v)(t) + B(u, v)(t)) ≥ γ ||A(u, v)|| + γ ||B(u, v)||
= γ ||(A(u, v), B(u, v))||.

From the above, we conclude that T (u, v)(t) = (A(u, v)(t), B(u, v)(t)) ∈ K , that is,
T (K ) ⊂ K . This completes the proof. 	

It is clear that the existence of a positive solution for the system (1) is equivalent to
the existence of a nontrivial fixed point of T in K . Finally, we define the nonnegative
continuous concave functional on K by

α(u, v) = min
τ≤t≤1

(u(t) + v(t)).

It is obvious that, for each (u, v) ∈ K , α(u, v) ≤ ‖(u, v)‖.
Throughout this section, we assume that pi , i = 1, 2, are two positive numbers

satisfying 1
p1

+ 1
p2

≤ 1.

To state our main result, we will assume that the following conditions are satisfied:
(H1) ai (t) do not vanish identically on any subinterval of (0, 1), and there exists
t0 ∈ (0, 1) such that ai (t0) > 0 and 0 <

∫ 1
0 ai (s)G(t, s)ds < +∞, 0 <

∫ 1
0 ai (s)

G1i (t, s)ds < +∞, i = 1, 2.
Now, we can state our main result.

Theorem 2 Assume that (H1) holds. In addition, assume there exist nonnegative num-
bers a, b, c such that 0 < a < b ≤ min{τ, m1

p1 M1
, m2

p2 M2
}c, and fi (t, u, v) satisfy the

following conditions:

(H2) fi (t, u, v) < 1
pi

· c
Mi

,∀t ∈ [0, 1], u + v ∈ [0, c], i = 1, 2,

(H3) fi (t, u, v) < 1
pi

· a
Mi

,∀t ∈ [0, 1], u + v ∈ [0, a], i = 1, 2,

(H4) (i) f1(t, u, v) > b
m1

∀t ∈ [τ, 1], u + v ∈ [b, b
γ
], or

(ii) f2(t, u, v) > b
m2

∀t ∈ [τ, 1], u + v ∈ [b, b
γ
].

Then, the system (1) has at least three positive solutions (u1, v1), (u2, v2), (u3, v3)

such that ‖(u1, v1)‖ < a, b < minτ≤t≤1(u2(t) + v2(t)), and ‖(u3, v3)‖ > a, with
minτ≤t≤1(u3(t) + v3(t)) < b.

Proof First, we show that T : Pc → Pc is a completely continuous operator. If
(u, v) ∈ Pc, then by condition (H2), we have

‖T (u, y)‖ = max
0≤t≤1

|A(u, v)(t)| + max
0≤t≤1

|B(u, v)(t)|

= max
0≤t≤1

⎧
⎨

⎩

1∫

0

G(t, s)a1(s) f1(s, u(s), v(s))ds + μ1tα−1

(1 − μ1η
α−2
1 )
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×
1∫

0

G11(η1, s)a1(s) f1(s, u(s), v(s))ds

⎫
⎬

⎭

+ max
0≤t≤1

⎧
⎨

⎩

1∫

0

G(t, s)a2(s) f2(s, u(s), v(s))ds + μ2tα−1

(1 − μ2η
α−2
2 )

×
1∫

0

G12(η2, s)a2(s) f2(s, u(s), v(s))ds

⎫
⎬

⎭

≤ 1

p1
· c

M1
max

0≤t≤1

⎧
⎨

⎩

1∫

0

G(t, s)a1(s)ds + μ1tα−1

(1 − μ1η
α−2
1 )

×
1∫

0

G11(η1, s)a1(s)ds

⎫
⎬

⎭

+ 1

p2
· c

M2
max

0≤t≤1

⎧
⎨

⎩

1∫

0

G(t, s)a2(s)ds + μ2tα−1

(1 − μ2η
α−2
2 )

×
1∫

0

G12(η2, s)a2(s)ds

⎫
⎬

⎭

≤ 1

p1
· c + 1

p2
· c + 1

q1
· c + 1

q2
· c ≤ c.

Therefore, ‖T (u, y)‖ ≤ c, that is, T : Pc → Pc. The operator T is completely
continuous by an application of the Ascoli-Arzela theorem.

In the same way, the condition (H3) implies that the condition (A2) of Theorem
1 is satisfied. We now show that condition (A1) of Theorem 1 is satisfied. Clearly,
{(u, v) ∈ P(α, b, b

γ
)|α(u, v) > b} �= ∅. If (u, v) ∈ P(α, b, b

γ
), then b ≤ u(s) +

v(s) ≤ b
γ
, s ∈ [τ, 1].

By condition (H4)(i), we get

α(T (u, v)(t)) = min
τ≤t≤1

(A(u, v)(t) + B(u, v)(t))

≥ min
τ≤t≤1

⎧
⎨

⎩

1∫

τ

G(t, s)a1(s) f1(s, u(s), v(s))ds

+ μ1τ
α−1

(1 − μ1η
α−2
1 )

1∫

0

G11(η1, s)a1(s) f1(s, u(s), v(s))ds

⎫
⎬

⎭
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+ min
τ≤t≤1

⎧
⎨

⎩

1∫

τ

G(t, s)a2(s) f2(s, u(s), v(s))ds

+ μ2τ
α−1

(1 − μ2η
α−2
2 )

1∫

0

G12(η2, s)a2(s) f2(s, u(s), v(s))ds

⎫
⎬

⎭

>
b

m1
min

τ≤t≤1

⎧
⎨

⎩

1∫

τ

G(t, s)a1(s)ds + μ1τ
α−1

(1 − μ1η
α−2
1 )

×
1∫

0

G11(η1, s)a1(s)ds

⎫
⎬

⎭
= b

m1
· m1 = b.

Similarly, by (H4)(ii), we get

α(T (u, v)(t)) >
b

m2
min

τ≤t≤1

⎧
⎨

⎩

1∫

τ

G(t, s)a2(s)ds + μ2τ
α−1

(1 − μ2η
α−2
2 )

×
1∫

0

G12(η1, s)a2(s)ds

⎫
⎬

⎭
= b

m2
· m2 = b.

Therefore, condition A1 of Theorem 1 is satisfied. Finally, we show that the condition
A3 of Theorem 1 is also satisfied. If (u, v) ∈ P(α, b, c), and ‖T (u, v)‖ > b

γ
, then

α(T (u, v)(t)) = min
τ≤t≤1

(A(u, v)(t) + B(u, v)(t)) ≥ γ ‖T (u, v)‖ > b.

Therefore, the condition A3 of Theorem 1 is also satisfied. By Theorem 1, there
exist three positive solutions (u1, v1), (u2, v2), (u3, v3) such that ‖(u1, v1)‖ < a, b <

minτ≤t≤1(u2(t) + v2(t)), and ‖(u3, v3)‖ > a, with minτ≤t≤1(u3(t) + v3(t)) < b. we
have the conclusion. 	


4 Application

Example 1. Consider the following singular boundary value problems

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
5
2
0+u(t) + a1(t) f1(t, u(t), v(t)) = 0, t ∈ (0, 1),

D
5
2
0+v(t) + a2(t) f2(t, u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) − 1√
2

u′( 1
2 ) = 0,

v(0) = v′(0) = 0, v′(1) − 1
2
√

2
v′( 1

2 ) = 0,

(12)
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where a1(t) = t, a2(t) = 1, μ1 = 1√
2
, μ2 = 1

2
√

2
, η1 = η2 = 1

2 and

f1(t, u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1−t2

100 + 1
200 (u + v)2, t ∈ [0, 1], 0 ≤ u + v ≤ 1,

√
1−t2

100 + 10[(u + v)2 − (u + v)] + 1
200 , t ∈ [0, 1],

1 < u + v < 2,
√

1−t2

100 + 6[log2 (u + v) + 2(u + v)] + 1
200 , t ∈ [0, 1],

2 ≤ u + v ≤ 4
√

1−t2

100 +
√

u+v
2 + 59 + 1

200 , t ∈ [0, 1], 4 < u + v < +∞,

and

f2(t, u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1−t2

1000 + 1
400 (u + v)2, t ∈ [0, 1], 0 ≤ u + v ≤ 1,

√
1−t2

1000 + 20[(u + v)2 − (u + v)] + 1
400 , t ∈ [0, 1],

1 < u + v < 2,
√

1−t2

1000 + 8[log2 (u + v) + 2(u + v)] + 1
400 , t ∈ [0, 1],

2 ≤ u + v ≤ 4
√

1−t2

1000 +
√

u+v
2 + 79 + 1

400 , t ∈ [0, 1], 4 < u + v < +∞,

It is easy to check (H1) holds. Choose τ = 1
4 , p1 = 20, p2 = 2. Then by direct

calculations, we can obtain that

M1 = 1

�( 5
2 )

0.44761904, M2 = 1

�( 5
2 )

0.4888888,

m1 = 1

�( 5
2 )

0.0465565, m2 = 1

�( 5
2 )

0.0429012.

So, we choose a = 1
2 , b = 2, c = 800. It is easy to check that f satisfy

the conditions (H2)–(H4). Thus, system (12) has at least three positive solutions
(u1, v1), (u2, v2), (u3, v3) such that ‖(u1, v1)‖ < 1

2 , 2 < min 1
4 ≤t≤1(u2(t) + v2(t)),

and ‖(u3, v3)‖ > 1
2 , with min 1

4 ≤t≤1(u3(t) + v3(t)) < 2.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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