
ORIGINAL RESEARCH PAPER

Compressed dynamic mode decomposition for background
modeling

N. Benjamin Erichson1 • Steven L. Brunton2 • J. Nathan Kutz3

Received: 26 December 2015 / Accepted: 15 November 2016 / Published online: 29 November 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We introduce the method of compressed

dynamic mode decomposition (cDMD) for background

modeling. The dynamic mode decomposition is a regres-

sion technique that integrates two of the leading data

analysis methods in use today: Fourier transforms and

singular value decomposition. Borrowing ideas from

compressed sensing and matrix sketching, cDMD eases the

computational workload of high-resolution video process-

ing. The key principal of cDMD is to obtain the decom-

position on a (small) compressed matrix representation of

the video feed. Hence, the cDMD algorithm scales with the

intrinsic rank of the matrix, rather than the size of the

actual video (data) matrix. Selection of the optimal modes

characterizing the background is formulated as a sparsity-

constrained sparse coding problem. Our results show that

the quality of the resulting background model is competi-

tive, quantified by the F-measure, recall and precision. A

graphics processing unit accelerated implementation is also

presented which further boosts the computational perfor-

mance of the algorithm.

Keywords Dynamic mode decomposition � Background
modeling � Matrix sketching � Sparse coding �
GPU-accelerated computing

1 Introduction

One of the fundamental computer vision objectives is to

detect moving objects in a given video stream. At the most

basic level, moving objects can be found in a video by

removing the background. However, this is a challenging

task in practice, since the true background is often

unknown. Algorithms for background modeling are

required to be both robust and adaptive. Indeed, the list of

challenges is significant and includes camera jitter, illu-

mination changes, shadows and dynamic backgrounds.

There is no single method currently available that is cap-

able of handling all the challenges in real time without

suffering performance failures. Moreover, one of the great

challenges in this field is to efficiently process high-reso-

lution video streams, a task that is at the edge of perfor-

mance limits for state-of-the-art algorithms. Given the

importance of background modeling, a variety of mathe-

matical methods and algorithms have been developed over

the past decade. Comprehensive overviews of traditional

and state-of-the-art methods are provided by Bouwmans

[1], and Sobral and Vacavant [2].

Motivation This work advocates the method of dynamic

mode decomposition (DMD), which enables the decom-

position of spatiotemporal grid data in both space and time.

The DMD has been successfully applied to videos [3–5];

however, the computational costs are dominated by the

singular value decomposition (SVD). Even with the aid of

recent innovations around randomized algorithms for

computing the SVD [6], the computational costs remain

expensive for high-resolution videos. Importantly, we build

on the recently introduced compressed dynamic mode

decomposition (cDMD) algorithm, which integrates DMD

with ideas from compressed sensing and matrix sketching

[7]. Hence, instead of computing the DMD on the full-

& N. Benjamin Erichson

nbe@st-andrews.ac.uk

1 School of Mathematics and Statistics, University of St

Andrews, St Andrews, United Kingdom

2 Department of Mechanical Engineering, University of

Washington, Seattle, WA 98195, USA

3 Department of Applied Mathematics, University of

Washington, Seattle, WA 98195-2420, USA

123

J Real-Time Image Proc (2019) 16:1479–1492

DOI 10.1007/s11554-016-0655-2

http://orcid.org/0000-0003-0667-3516
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-016-0655-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-016-0655-2&domain=pdf

resolution video data, we show that an accurate decom-

position can be obtained from a compressed representation

of the video in a fraction of the time. The optimal mode

selection for background modeling is formulated as a

sparsity-constrained sparse coding problem, which can be

efficiently approximated using the greedy orthogonal

matching pursuit method. The performance gains in com-

putation time are significant, even competitive with

Gaussian mixture models [8–11]. Moreover, the perfor-

mance evaluation on real videos shows that the detection

accuracy is competitive compared to leading robust prin-

cipal component analysis (RPCA) algorithms.

Organization The rest of this paper is organized as fol-

lows. Section 2 presents a brief introduction to the dynamic

mode decomposition and its application to video and back-

ground modeling. Section 3 presents the compressed DMD

algorithm and different measurement matrices to construct

the compressed video matrix. A GPU-accelerated imple-

mentation is also outlined. Finally a detailed evaluation

of the algorithm is presented in Sect. 4. Concluding

remarks and further research directions are given in Sect. 5.

‘‘Appendix’’ gives an overview of notation.

2 DMD for video processing

2.1 The dynamic mode decomposition

The dynamic mode decomposition is an equation-free, data-

driven matrix decomposition that is capable of providing

accurate reconstructions of spatiotemporal coherent struc-

tures arising in nonlinear dynamical systems, or short-time

future estimates of such systems. DMD was originally

introduced in the fluid mechanics community by Schmid

[12] and Rowley et al. [13]. A surveillance video sequence

offers an appropriate application for DMD because the

frames of the video are, by nature, equally spaced in time,

and the pixel data, collected in every snapshot, can readily be

vectorized. The dynamic mode decomposition is illustrated

for videos in Fig. 1. For computational convenience, the

flattened grayscale video frames (snapshots) of a given video

stream are stored, ordered in time, as column vectors

x1; x2; . . .; xm of a matrix. Hence, we obtain a 2-dimensional

Rn�m spatiotemporal grid, where n denotes the number of

pixels per frame,m is the number of video frames taken, and

the matrix elements xit correspond to a pixel intensity in

space and time. The video frames can be thought of as

snapshots of some underlying dynamics. Each video frame

(snapshot) xtþ1 at time t þ 1 is assumed to be connected to

the previous frame xt by a linear map A : Rn ! Rn. Math-

ematically, the linear map A is a time-independent operator

which constructs the approximate linear evolution

xtþ1 ¼ Axt: ð1Þ

The objective of dynamic mode decomposition is to find an

estimate for the matrix A and its eigenvalue decomposition

that characterizes the system dynamics. At its core, dynamic

mode decomposition is a regression algorithm. First, the

spatiotemporal grid is separated into two overlapping sets of

data, called the left and right snapshot sequences

X=

⎡
⎣x1 x2 · · · xm−1

⎤
⎦ , X′=

⎡
⎣x2 x3 · · · xm

⎤
⎦ . ð2Þ

Equation (1) is reformulated in matrix notation

X0 ¼ AX: ð3Þ

In order to find an estimate for the matrix A we face the

following least-squares problem

Â ¼ argmin
A

kX0 � AXk2F; ð4Þ

where k � kF denotes the Frobenius norm. This is a well-

studied problem, and an estimate of the linear operator A is

given by

Fig. 1 Illustration of the

dynamic mode decomposition

for video applications. Given a

video stream, the first step

involves reshaping the grayscale

video frames into a

2-dimensional spatiotemporal

grid. The DMD then creates a

decomposition in space and

time in which DMD modes

contain spatial structure

1480 J Real-Time Image Proc (2019) 16:1479–1492

123

Â ¼ X0Xy; ð5Þ

where y denotes the Moore-Penrose pseudoinverse, which

produces a regression that is optimal in a least-square

sense. The DMD modes U ¼ W, containing the spatial

information, are then obtained as eigenvectors of the

matrix Â

ÂW ¼ WK; ð6Þ

where columns of W are eigenvectors /j and K is a

diagonal matrix containing the corresponding eigenvalues

kj. In practice, when the dimension n is large, the matrix

Â 2 Rn�n may be intractable to estimate and to analyze

directly. DMD circumvents the computation of Â by con-

sidering a rank-reduced representation ~A 2 Rk�k. This is

achieved by using the similarity transform, i.e., projecting

Â on the left singular vectors. Moreover, DMD typically

makes use of the low-rank structure so that the total

number of modes, k�minðn;mÞ, allows for dimensionality

reduction of the video stream. Hence, only the relatively

small ~A 2 Rk�k matrix needs to be estimated and analyzed

(see Sect. 3 for more details). The dynamic mode decom-

position yields the following low-rank factorization of a

given spatiotemporal grid (video stream)

UBV ¼

/11 /1p � � � /1k

..

. ..
. . .

. ..
.

/i1 /ip � � � /ik

..

. ..
. . .

. ..
.

/n1 /np � � � /nk

0
BBBBBBBB@

1
CCCCCCCCA

b1

. .
.

bp

. .
.

bk

0
BBBBBBBB@

1
CCCCCCCCA

�

1 k1 � � � km�1
1

..

. ..
. . .

. ..
.

1 kp � � � km�1
p

..

. ..
. . .

. ..
.

1 kk � � � km�1
k

0
BBBBBBBB@

1
CCCCCCCCA
; ð7Þ

where the diagonal matrix B 2 Ck�k has the amplitudes as

entries and V 2 Ck�m is the Vandermonde matrix describing

the temporal evolution of the DMD modes U 2 Cn�k.

2.2 DMD for foreground/background separation

The DMD method can attempt to reconstruct any given

frame, or even possibly future frames. The validity of the

reconstruction thereby depends on how well the specific

video sequence meets the assumptions and criteria of the

DMD method. Specifically, a video frame xt at time points

t 2 1; . . .;m is approximately reconstructed as follows

~xt ¼
Xk
j¼1

bj/jk
t�1
j : ð8Þ

Notice that the DMD mode /j is a n� 1 vector containing

the spatial structure of the decomposition, while the

eigenvalue kt�1
j describes the temporal evolution. The

scalar bj is the amplitude of the corresponding DMD mode.

At time t ¼ 1, Eq. (8) reduces to ~x1 ¼
Pk

j¼1 bj/j. Since the

amplitude is time-independent, bj can be obtained by

solving the following least-square problem using the video

frame x1 as initial condition

b̂ ¼ argmin
b

kx1 �Ubk2F : ð9Þ

It becomes apparent that any portion of the first video

frame that does not change in time, or changes very slowly

in time, must have an associated continuous-time

eigenvalue

xj ¼
logðkjÞ
Dt

ð10Þ

that is located near the origin in complex space: jxjj � 0 or

equivalent jkjj � 1. This fact becomes the key principle to

separate foreground elements (approximate sparse) from

background (approximate low-rank) information. Figure 2

shows the dominant continuous-time eigenvalues for a

video sequence. Subplot (a) shows three sample frames

from this video sequence that includes a canoe. Here the

foreground object (canoe) is not present at the beginning

and the end for the video sequence. The dynamic mode

decomposition factorizes this sequence into modes

describing the different dynamics present. The analysis of

the continuous-time eigenvalue xj and the amplitudes over

time BV (the amplitudes multiplied by the Vandermonde

matrix) can provide interesting insights, shown in subplot

(b) and (c). First, the amplitude for the prominent zero

mode (background) is constant over time, indicating that

this mode is capturing the dominant (static) content of the

video sequence, i.e., the background. The next pair of

modes corresponds to the canoe, a foreground object

slowly moving over time. The amplitude reveals the

presence of this object. Specifically, the amplitude reaches

its maximum at about the frame index 150, when the canoe

is in the center of the video frame. At the beginning and

end of the video, the canoe is not present, indicated by the

negative values of the amplitude. The subsequent modes

describe other dynamics in the video sequence, e.g., the

movements of the canoeist and the waves. For instance, the

modes describing the waves have high frequency and small

amplitudes (not shown here). Hence, a theoretical view-

point we will build upon with the DMD methodology

centers around the recent idea of low-rank and sparse

J Real-Time Image Proc (2019) 16:1479–1492 1481

123

matrix decompositions. Following this approach, back-

ground modeling can be formulated as a matrix separation

problem into low-rank (background) and sparse (fore-

ground) components. This viewpoint has been advocated,

for instance, by Candès et al. [14] in the framework of

robust principal component analysis (RPCA). For a thor-

ough discussion of such methods used for background

modeling, we refer to Bouwmans et al. [15, 16]. The

connection between DMD and RPCA was first established

by Grosek and Kutz [3]. Assume the set of background

modes fxpg satisfies jxpj � 0. The DMD expansion of

Eq. (8) then yields

XDMD ¼Lþ S

¼
X
p

bp/pk
t�1
p

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
BackgroundVideo

þ
X
j 6¼p

bj/jk
t�1
j

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ForegroundVideo

; ð11Þ

where t ¼ ½1; . . .;m� is a 1� m time vector and

XDMD 2 Cn�m.1 Specifically, DMD provides a matrix

decomposition of the form XDMD ¼ Lþ S, where the low-

rank matrix L will render the video of just the background,

and the sparse matrix S will render the complementary

video of the moving foreground objects. We can interpret

these DMD results as follows: Stationary background

objects translate into highly correlated pixel regions from

one frame to the next, which suggests a low-rank structure

within the video data. Thus, the DMD algorithm can be

thought of as an RPCA method. The advantage of the

DMD method and its sparse/low-rank separation is the

computational efficiency of achieving Eq. (11), especially

when compared to the optimization methods of RPCA. The

analysis of the time evolving amplitudes provides inter-

esting opportunities. Specifically, learning the amplitudes’

profiles for different foreground objects allows automatic

separation of video feeds into different components. For

instance, it could be of interest to discriminate between

cars and pedestrians in a given video sequence.

2.3 DMD for real-time background modeling

When dealing with high-resolution videos, the standard

DMD approach is expensive in terms of computational

time and memory, because the whole video sequence is

reconstructed. Instead a ‘good’ static background model is

often sufficient for background subtraction. This is because

background dynamics can be filtered out or thresholded.

(a)

(b) (c)

Fig. 2 Results of the dynamic mode decomposition for the

ChangeDetection.net video sequence ‘canoe’. Subplot a shows three

samples frames of the video sequence. Subplots b and c show the

continuous-time eigenvalues and the temporal evolution of the

amplitudes. The modes corresponding to the amplitudes with the

highest variance are capturing the dominant foreground object

(canoe), while the zero mode is capturing the dominant structure of

the background. Modes corresponding to high-frequency amplitudes

capturing other dynamics in the video sequence, e.g., waves. a Sample

frames (t ¼ 0; 150; 300) of video sequence. b Dominant continuous-

time eigenvalues xj. c Amplitudes over time

1 Note that by construction XDMD is complex, while pixel intensities

of the original video stream are real-valued. Hence, only the the real

part is considered in the following.

1482 J Real-Time Image Proc (2019) 16:1479–1492

123

The challenge remains to automatically select the modes

best describing the background. This is essentially a bias-

variance trade-off. Using just the zero mode (background)

leads to an under-fitted background model, while a large

set of modes tends to overfit. Motivated, by the sparsity-

promoting variant of the standard DMD algorithm intro-

duced by Jovanović et al. [17], we formulate a sparsity-

constrained sparse coding problem for mode selection. The

idea is to augment Eq. (9) by an additional term that

penalizes the number of nonzero elements in the vector b

b̂ ¼ argmin
b

kx1 �Ubk2F such that kbk0\K; ð12Þ

where b is the sparse representation of b, and k � k0 is ‘0
pseudo-norm which counts the nonzero elements in b.

Solving this sparsity problem exactly is NP-hard. However,

the problem in Eq. (12) can be efficiently solved using

greedy approximation methods. Specifically, we utilize

orthogonal matching pursuit (OMP) [18, 19]. A highly

computationally efficient algorithm is proposed by Rubin-

stein et al. [20] and is implemented in the scikit-learn

software package [21]. The greedy OMP algorithm works

iteratively, selecting at each step the mode with the highest

correlation to the current residual. Once a mode is selected,

the initial condition x1 is orthogonally projected on the

span of the previously selected set of modes. Then the

residual is recomputed and the process is repeated until K

nonzero entries are obtained. If no priors are available, the

optimal number of modes K can be determined using cross-

validation. Finally, the background model is computed as

x̂BG ¼ Ub̂: ð13Þ

3 Compressed DMD (cDMD)

Compressed DMD provides a computationally efficient

framework to compute the dynamic mode decomposition

on massively under-sampled or compressed data [7]. The

method was originally devised to reconstruct high-dimen-

sional, full-resolution DMD modes from sparse, spatially

under-resolved measurements by leveraging compressed

sensing. However, it was quickly realized that if full-state

measurements are available, many of the computationally

expensive steps in DMD may be computed on a com-

pressed representation of the data, providing dramatic

computational savings. The first approach, where DMD is

computed on sparse measurements without access to full

data, is referred to as compressed sensing DMD. The sec-

ond approach, where DMD is accelerated using a combi-

nation of calculations on compressed data and full data, is

referred to as compressed DMD (cDMD); this is depicted

schematically in Fig. 3. For the applications explored in

this work, we use compressed DMD, since full image data

are available and reducing algorithm runtime is critical for

real-time performance.

3.1 Compressed sensing and matrix sketching

Compression algorithms are at the core of modern video,

image and audio processing software such as MPEG, JPEG

and MP3. In our mathematical infrastructure of compressed

DMD, we consider the theory of compressed sensing and

matrix sketching.

Compressed sensing demonstrates that instead of mea-

suring the high-dimensional signal, or pixel space repre-

sentation of a single frame x, we can measure instead a

low-dimensional subsample y and approximate/reconstruct

the full-state space x with this significantly smaller mea-

surement [22–24]. Specifically, compressed sensing

assumes the data being measured are compressible in some

basis, which is certainly the case for video. Thus, the video

can be represented in a small number of elements of that

basis, i.e., we only need to solve for the few nonzero

coefficients in the transform basis. For instance, consider

the measurements y 2 Rp, with k\p � n:

y ¼ Cx: ð14Þ

If x is sparse in W, then we may solve the underdetermined

system of equations

y ¼ CWs ð15Þ

for s and then reconstruct x. Since there are infinitely many

solutions to this system of equations, we seek the sparsest

solution ŝ. However, it is well known from the compressed

sensing literature that solving for the sparsest solution

X,X′ Φ,Λ

Y,Y′ ΦY,ΛY

DMD

cDMD

C Eq. (24)

Data Dynamic Modes

F
u
ll

C
om

p
re

ss
ed

Fig. 3 Schematic of the compressed dynamic mode decomposition

architecture. The data (video stream) are first compressed via left

multiplication by a measurement matrix C. DMD is then performed

on the compressed representation of the data. Finally, the full DMD

modes U are reconstructed from the compressed modes UY by the

expression in Eq. (24)

J Real-Time Image Proc (2019) 16:1479–1492 1483

123

formally involves an ‘0 optimization that is NP-hard. The

success of compressed sensing is that it ultimately engi-

neered a solution around this issue by showing that one can

instead, under certain conditions on the measurement

matrix C, trade the infeasible ‘0 optimization for a convex

‘1-minimization [22]:

ŝ ¼ argmin
s0

ks0k1; such that y ¼ CWs0: ð16Þ

Thus, ‘1-norm acts as a proxy for sparsity-promoting

solutions of ŝ. To guarantee that the compressed sensing

architecture will almost certainly work in a probabilistic

sense, the measurement matrix C and sparse basis W must

be incoherent, meaning that the rows of C are uncorrelated

with the columns of W. This is discussed in more detail in

[7]. Given that we are considering video frames, it is easy

to suggest the use of generic basis functions such as Fourier

or wavelets in order to represent the sparse signal s. Indeed,

wavelets are already the standard for image compression

architectures such as JPEG-2000. As for the Fourier

transform basis, it is particularly attractive for many

engineering purposes since single-pixel measurements are

clearly incoherent given that it excites broadband fre-

quency content.

Matrix sketching is another prominent framework in

order to obtain a similar compressed representation of a

massive data matrix [25, 26]. The advantage of this

approach is the less restrictive assumptions and the straight

forward generalization from vectors to matrices. Hence,

Eq. (14) can be reformulated in matrix notation

Y ¼ CX; ð17Þ

where again C denotes a suitable measurement matrix.

Matrix sketching comes with interesting error bounds and

is applicable whenever the data matrix X has low-rank

structure. For instance, it has been successfully demon-

strated that the singular values and right singular vectors

can be approximated from such a compressed matrix rep-

resentation [27].

3.2 Algorithm

The compressed DMD algorithm proceeds similarly to the

standard DMD algorithm [28] at nearly every step until the

computation of the DMD modes. The key difference is that

we first compute a compressed representation of the video

sequence, as illustrated in Fig. 4. Hence the algorithm starts

by generating the measurement matrix C 2 Rp�n in order to

compresses or sketch the data matrices as in Eq. (2):

Y ¼ CX; Y0 ¼ CX0: ð18Þ

Where p is denoting the number of samples or measure-

ments. There is a fundamental assumption that the input

data are low-rank. This is satisfied for video data, because

each of the columns of X and X0 2 Rn�m�1 is sparse in

some transform basis W. Thus, for sufficiently many

incoherent measurements, the compressed matrices Y and

Y0 2 Rp�m�1 have similar correlation structures to their

high-dimensional counterparts. Then compressed DMD

approximates the eigenvalues and eigenvectors of the lin-

ear map AY, where the estimator is defined as:

ÂY ¼ Y0Yy ð19aÞ

¼ Y0VYS
�1
Y U	

Y; ð19bÞ

where 	 denotes the conjugate transpose. The pseudo-

inverse Yy is computed using the SVD:

Y ¼ UYSYV
	
Y; ð20Þ

where the matrices U 2 Rp�k, and V 2 Rm�1�k are the

truncated left and right singular vectors. The diagonal

matrix S 2 Rk�k has the corresponding singular values as

entries. Here k is the target-rank of the truncated SVD

approximation to Y. Note that the subscript Y is included

to explicitly denote computations involving the com-

pressed data Y. As in the standard DMD algorithm, we

typically do not compute the large matrix ÂY, but instead

compute the low-dimensional model projected onto the left

singular vectors:

~AY ¼ U	
YÂYUY ð21aÞ

¼ U	
YY

0VYS
�1
Y : ð21bÞ

Since this is a similarity transform, the eigenvectors and

eigenvalues can beobtained from the eigendecomposition of ~AY

~AYWY ¼ WYKY; ð22Þ

where columns of WY are eigenvectors /j and KY is a

diagonal matrix containing the corresponding eigenvalues

kj. The similarity transform implies that K � KY . The

compressed DMD modes are consequently given by

Fig. 4 Video compression using a sparse measurement matrix. The

compressed matrix faithfully captures the essential spectral informa-

tion of the video

1484 J Real-Time Image Proc (2019) 16:1479–1492

123

UY ¼ Y0VYS
�1
Y WY: ð23Þ

Finally, the full DMD modes are recovered using

U ¼ X0VYS
�1
Y WY: ð24Þ

Note that the compressed DMD modes in Eq. (24) make

use of the full data X0 as well as the linear transformations

obtained using the compressed data Y and Y0. The

expensive SVD on X is bypassed, and it is instead per-

formed on Y. Depending on the compression ratio, this

may provide significant computational savings. The com-

putational steps are summarized in Algorithm 1, and fur-

ther numerical details are presented in [7].

Remark 1 The computational performance heavily

depends on the measurement matrix used to construct the

compressed matrix, as described in the next section. For a

practical implementation sparse or single-pixel measure-

ments (random row selection) are favored.

Remark 2 One alternative to the predefined target-rank

k is the recent hard-thresholding algorithm of Gavish and

Donoho [29]. This method can be combined with step 4 to

automatically determine the optimal target-rank.

Remark 3 As described in Sect. 2.3, step 9 can be replaced

by the orthogonal matching pursuit algorithm, in order to

obtain a sparsity-constrained solution: b ¼ ompðU; x1Þ.
Computing the OMP solution is in general extremely fast,

but if it comes to high-resolution video streams this step can

become computationally expensive. However, instead of

computing the amplitudes based on the full-state dynamic

modes U the compressed DMD modes UY can be used.

Hence, Eq. (12) can be reformulated as

b̂ ¼ argmin
b

ky1 �UYbk2F such that kbk0\K; ð25Þ

where y1 is the first compressed video frame. Then step 9

can be replaced by: b ¼ ompðUY; y1Þ.

3.3 Measurement matrices

A basic measurement matrix C can be constructed by

drawing p� n independent random samples from a Gaus-

sian, Uniform or a sub Gaussian, e.g., Bernoulli distribu-

tion. It can be shown that these measurement matrices have

optimal theoretical properties; however, for practical large-

scale applications they are often not feasible. This is

because generating a large number of random numbers can

be expensive and computing Eq. (18) using unstructured

dense matrices has a time complexity of O(pnm). From a

computational perspective, it is favorable to build a struc-

tured random sensing matrix which is memory efficient and

enables the execution of fast matrix-matrix multiplications.

For instance, Woolfe et al. [30] showed that the costs can

be reduced to O(log(p)nm) using a subsampled random

Fourier transform (SRFT) sensing matrix

C ¼ RFD; ð26Þ

where R 2 Cp�n draws p random rows (without replace-

ment) from the identity matrix I 2 Cn�n. F 2 Cn�n is the

unnormalized discrete Fourier transform with the following

entries Fðj; kÞ ¼ expð�2piðj� 1Þðk � 1Þ=mÞ, and D 2
Cn�n is a diagonal matrix with independent random diag-

onal elements uniformly distributed on the complex unit

circle. While the SRFT sensing matrix has nice theoretical

properties, the improvement from O(pnm) to O(log(p)nm)

Algorithm 1 Compressed Dynamic Mode Decomposition. Given a matrix D ∈ R
n×m containing the flattened

video frames, this procedure computes the approximate dynamic mode decomposition, where Φ ∈ C
n×k are the

DMD modes, b ∈ C
k are the amplitudes, and V ∈ C

k×m is the Vandermonde matrix describing the temporal
evolution. The procedure can be controlled by the two parameters k and p, the target rank and the number of
samples respectively. It is required that n ≥ m, integer k, p ≥ 1 and k � m and p ≥ k.

function [Φ,b,V] = cdmd(D, k, p)

(1) X,X′ = D Left/right snapshot sequence.
(2) C = rand(p,m) Draw p × m sensing matrix.
(3) Y,Y′ = C ∗ D Compress input matrix.
(4) U,S,V = svd(Y, k) Truncated SVD.

(6) Ã = U∗ ∗ Y′ ∗ V ∗ S−1 Least squares fit.

(7) W,Λ = eig(Ã) Eigenvalue decomposition.
(8) Φ ← X′ ∗ V ∗ S−1 ∗ W Compute full-state modes Φ.
(9) b = lstsq(Φ,x1) Compute amplitudes using x1 as intial condition.
(10) V = vander(diag(Λ)) Vandermonde matrix (optional).

J Real-Time Image Proc (2019) 16:1479–1492 1485

123

is not necessarily significant. In practice, it is often suffi-

cient to construct even simpler sensing matrices. An

interesting approach making the matrix-matrix multiplica-

tion in Eq. (18) redundant is to use single-pixel measure-

ments (random row selection)

C ¼ R: ð27Þ

In a practical implementation, this allows construction of

the compressed matrix Y from choosing p random rows

without replacement from X. Hence, only p random num-

bers need to be generated and no memory is required for

storing a sensing matrix C. A different approach is the

method of sparse random projections [31]. The idea is to

construct a sensing matrix C with identical independent

distributed entries as follows

cij ¼

1 with prob.
1

2s

0 with prob. 1� 1

s
;

�1 with prob.
1

2s

8>>>>><
>>>>>:

ð28Þ

where the parameter s controls the sparsity. While Ach-

lioptas [31] has proposed the values s ¼ 1; 2, Li et al. [32]

showed that also very sparse (aggressive) sampling rates

like s ¼ n=logðnÞ achieve accurate results. Modern sparse

matrix packages allow rapid execution of (18).

3.4 GPU-accelerated implementation

While most current desktop computers allow multi-

threading and also multiprocessing, using a graphics

processing unit (GPU) enables massive parallel pro-

cessing. The paradigm of parallel computing becomes

more important as larger amounts of data stagnate CPU

clock speeds. The architecture of a modern CPU and

GPU is illustrated in Fig. 5. The key difference between

these architectures is that the CPU consists of few

arithmetic logic units (ALU) and is highly optimized for

low-latency access to cached data sets, while the GPU is

optimized for data-parallel, throughput computations.

This is achieved by the large number of small arithmetic

logic units (ALU). Traditionally, this architecture was

designed for the real-time creation of high-definition 2D/

3D graphics. However, NVIDIA’s programming model

for parallel computing CUDA opens up the GPU as a

general parallel computing device [33]. Using high-per-

formance linear algebra libraries, e.g., CULA [34], can

help to accelerate comparable CPU implementations

substantially. Take for instance the matrix multiplication

of two n� n square matrices, illustrated in Fig. 6. The

computation involves the evaluation of n2 dot products.2

The data parallelism therein is that each dot-product can

be computed independently. With enough ALUs the

computational time can be substantially accelerated. This

parallelism applies readily to the generation of random

numbers and many other linear algebra routines.

Relatively, few GPU-accelerated background subtrac-

tion methods have been proposed [11, 35, 36]. The authors

achieve considerable speedups compared to the corre-

sponding CPU implementations. However, the proposed

methods barely exceed 25 frames per second for high-

(a) (b)

Fig. 5 Illustration of the CPU and GPU architecture. a CPU. b GPU

Fig. 6 Illustration of the data parallelism in matrix-matrix

multiplications

2 Modern efficient matrix-matrix multiplications are based on block

matrix decomposition or other computational tricks, and do not

actually compute n2 dot products. However, the concept of paral-

lelism remains the same.

1486 J Real-Time Image Proc (2019) 16:1479–1492

123

definition videos. This is mainly due to the fact that many

statistical methods do not fully benefit from the GPU

architecture. In contrast, linear algebra-based methods can

substantially benefit from parallel computing. An analysis

of Algorithm 1 reveals that generating random numbers in

line 2 and the dot products in lines 3, 6 and 8 is particularly

suitable for parallel processing. But also the computation of

the deterministic SVD, the eigenvalue decomposition and

the least-square solver can benefit from the GPU archi-

tecture. Overall, the GPU-accelerated DMD implementa-

tion is substantially faster than the MKL (Intel Math Kernel

Library) accelerated routine. The disadvantage of current

GPUs is the rather limited bandwidth, i.e., the amount of

data which can be exchanged per unit of time, between

CPU and GPU memory. However, this overhead can be

mitigated using asynchronous memory operations.

4 Results

In this section, we evaluate the computational performance

and the suitability of compressed DMD for background

modeling. To evaluate the detection performance, a fore-

ground mask X is computed by thresholding the difference

between the true frame and the reconstructed background.

A standard method is to use the Euclidean distance, leading

to the following binary classification problem

X tðjÞ ¼
1 if kxjt � x̂jk[s;

0 otherwise

�
ð29Þ

where xjt denotes the jth pixel of the tth video frame and x̂j
denotes the corresponding pixel of the modeled background.

Pixels belonging to foreground objects are set to 1 and 0

otherwise. Access to the true foreground mask allows the

computation of several statistical measures. For instance,

common evaluation measures in the background subtraction

literature are recall, precision and the F-measure. While

recall measures the ability to correctly detect pixels

belonging to moving objects, precision measures how many

predicted foreground pixels are actually correct, i.e., false

alarm rate. The F-measure combines both measures by their

harmonic mean. A workstation (Intel Xeon CPU E5-2620

2.4GHz, 32GB DDR3 memory and NVIDIA GeForce GTX

970) was used for all following computations.

4.1 Evaluation on real videos

We have evaluated the performance of compressed DMD

for background modeling using the CD (ChangeDetec-

tion.net) and BMC (Background Models Challenge)

benchmark dataset [37, 38]. Figure 7 illustrates the nine

real videos of the latter dataset, posing many common

challenges faced in outdoor video surveillance scenarios.

Mainly, the following complex situations are encountered:

– Illumination changes: Gradual illumination changes

caused by fog or sun.

– Low illumination: Bad light conditions, e.g., night

videos.

– Bad weather: Introduced noise (small objects) by

weather conditions, e.g., snow or rain.

– Dynamic backgrounds: Moving objects belonging to

the background, e.g., waving trees or clouds.

– Sleeping foreground objects: Former foreground

objects that becoming motionless and moving again

at a later point in time.

Evaluation settings In order to obtain reproducible

results the following settings have been used. For a given

video sequence, the low-rank dynamic mode decomposi-

tion is computed using a very sparse measurement matrix

with a sparsity factor s ¼ n=logðnÞ and p ¼ 1000 mea-

surements. While, we use here a fixed number of samples,

the choice can be guided by the formula p[k � logðn=kÞ.
The target-rank k is automatically determined via the

optimal hard-threshold for singular values [29]. Once the

dynamic mode decomposition is obtained, the optimal set

of modes is selected using the orthogonal matching pursuit

method. In general the use of K ¼ 10 nonzero entries

achieves good results. Instead of using a predefined value

for K, cross-validation can be used to determine the

(001)
Boring
parking

(002) Big
trucks

(003)
Wandering
students

(004)
Rabbit in
the night

(005) Snowy
Christmas

(006)
Beware of
the trains

(007) Train
in the
tunnel

(008) Traffic
during

windy day

(009) One
rainy hour

Fig. 7 BMC dataset: example frames of the nine real videos

J Real-Time Image Proc (2019) 16:1479–1492 1487

123

optimal number of nonzero entries. Further, the dynamic

mode decomposition as presented here is formulated as a

batch algorithm, in which a given long video sequence is

split into batches of 200 consecutive frames. The decom-

position is then computed for each batch independently.

The CD dataset First, six CD video sequences are used

to contextualize the background modeling quality using the

sparse coding approach. This is compared to using the zero

(static background) mode only. Figure 8 shows the evalu-

ation results of one batch by plotting the F-measure against

the threshold for background classification. In five out of

six examples, the sparse coding approach (cDMD k=opt)

dominates. In particular, significant improvements are

achieved for the dynamic background video sequences

‘Canoe’ and ‘Fountain02’. Only in case of the ‘Park’ video

sequence, the method tends to overfit. Interestingly, the

performance of the compressed algorithm is slightly better

than the exact DMD algorithm, overall. This is due to the

implicit regularization of randomized algorithms [39, 40].

The BMC dataset In order to compare the cDMD

algorithm with other RPCA algorithms, the BMC dataset

has been used. Table 1 shows the evaluation results com-

puted with the BMC wizard for all ninevideos. An indi-

vidual threshold value has been selected for each video to

compute the foreground mask. For comparison, the eval-

uation results of three other RPCA methods are shown

[16]. Overall, cDMD achieves an average F-value of about

0.648. This is slightly better than the performance of

GoDec [41] and nearly as good as LSADM [42]. However,

it is lower than the F-measure achieved with the RSL

method [43]. Figure 9 presents visual results for example

frames across five videos. The last row shows the smoothed

(median filtered) foreground mask.

Discussion The results reveal some of the strengths

and limitations of the compressed DMD algorithm.

First, because cDMD is presented here as a batch

algorithm, detecting sleeping foreground objects as

they occur in video 001 is difficult. Another weakness

is the limited capability of dealing with non-periodic

dynamic backgrounds, e.g., big waving trees and

moving clouds as occurring in the videos 001, 005, 008

and 009. On the other hand, good results are achieved

for the videos 002, 003, 004 and 007, showing that

DMD can deal with large moving objects and low

illumination conditions. The integration of compressed

DMD into a video system can overcome some of these

initial issues. Hence, instead of discarding the previous

modeled background frames, a background mainte-

nance framework can be used to incrementally update

the model. In particular, this allows to deal better with

sleeping foreground objects. Further, simple post-pro-

cessing techniques (e.g., median filter or morphology

transformations) can substantially reduce the false

positive rate.

(a) (b) (c)

(d) (e) (f)

Fig. 8 The F-measure for varying thresholds is indicating the

dominant background modeling performance of the sparsity-promot-

ing compressed DMD algorithm. In particular, the performance gain

(over using the zero mode only) is substantial for the dynamic

background scenes ‘Canoe’ and ‘Fountain02’. a Highway. b Blizzard.

c Canoe. d Fountain02. e Park. f Library

1488 J Real-Time Image Proc (2019) 16:1479–1492

123

4.2 Computational performance

Figure 10 shows the fps rate and the F-measure for a varying

number of samples p and different measurement matrices.

Gaussian measurements achieve the best accuracy in terms

of the F-measure, but the computational costs become

increasingly expensive. Single-pixel measurements (sPixel)

are the most computationally efficient method. The primary

advantages of single-pixel measurements are the memory

efficiency and the simple implementation. Sparse sensing

matrices offer the best trade-off between computational time

and accuracy, but require access to sparse matrix packages.

It is important to stress that randomized sensing matrices

cause random fluctuations influencing the background

model quality, illustrated in Fig. 11. The bootstrap

confidence intervals show that sparse measurements have

lower dispersion than single-pixel measurements. This is,

because single-pixel measurements discard more informa-

tion than sparse and Gaussian sensing matrices.

Figure 12 shows the average frames per seconds (fps)

rate required to obtain the foreground mask for varying

video resolutions. The results illustrate the substantial

Table 1 Evaluation results of nine real videos from the BMC dataset

Measure BMC real videos Average

001 002 003 004 005 006 007 008 009

RSL De La Torre et al. [43] Recall 0.800 0.689 0.840 0.872 0.861 0.823 0.658 0.589 0.690 –

Precision 0.732 0.808 0.804 0.585 0.598 0.713 0.636 0.526 0.625 –

F-Measure 0.765 0.744 0.821 0.700 0.706 0.764 0.647 0.556 0.656 0.707

LSADM Goldfarb et al. [42] Recall 0.693 0.535 0.784 0.721 0.643 0.656 0.449 0.621 0.701 –

Precision 0.511 0.724 0.802 0.729 0.475 0.655 0.693 0.633 0.809 –

F-Measure 0.591 0.618 0.793 0.725 0.549 0.656 0.551 0.627 0.752 0.650

GoDec Zhou and Tao [41] Recall 0.684 0.552 0.761 0.709 0.621 0.670 0.465 0.598 0.700 –

Precision 0.444 0.682 0.808 0.728 0.462 0.636 0.626 0.601 0.747 –

F-Measure 0.544 0.611 0.784 0.718 0.533 0.653 0.536 0.600 0.723 0.632

cDMD Recall 0.552 0.697 0.778 0.693 0.611 0.700 0.720 0.515 0.566 –

Precision 0.581 0.675 0.773 0.770 0.541 0.602 0.823 0.510 0.574 –

F-Measure 0.566 0.686 0.776 0.730 0.574 0.647 0.768 0.512 0.570 0.648

For comparison, the results of three other leading robust PCA algorihtms are presented, adapted from [16]. The best performing algorithm for

each video has its table entries highlighted in bold

Fig. 9 Visual evaluation results for five example frames correspond-

ing to the BMC videos: 002, 003, 006, 007 and 009. The top row

shows the original grayscale images (moving objects are highlighted).

The second row shows the differencing between the reconstructed

cDMD background and the original frame. Row three shows the

thresholded and row four the in addition median filtered foreground

mask

Fig. 10 Algorithms runtime (excluding computation of the fore-

ground mask) and accuracy for a varying number of samples p. Here a

720� 480 video sequence with 200 frames is used

J Real-Time Image Proc (2019) 16:1479–1492 1489

123

computational advantage of the cDMD algorithm over the

standard DMD. The computational savings are mainly

achieved by avoiding the expensive computation of the

singular value decomposition. Specifically, the compres-

sion step reduces the time complexity from O(knm) to

O(kpm). The computation of the full modes U in Eq. 24

remains the only computational expensive step of the

algorithm. However, this step is embarrassingly parallel

and the computational time can be further reduced using a

GPU-accelerated implementation. The decomposition of a

HD 1280� 720 videos feed using the GPU-accelerated

implementation achieves a speedup of about 4 and 21

compared to the corresponding CPU cDMD and (exact)

DMD implementations. The speedup of the GPU imple-

mentation can even further be increased using sparse or

single-pixel (sPixel) measurement matrices.

5 Conclusion and outlook

We have introduced the compressed dynamic mode

decomposition as a novel algorithm for video background

modeling. Although many techniques have been developed

in the last decade and a half to accomplish this task, sig-

nificant challenges remain for the computer vision com-

munity when fast processing of high-definition video is

required. Indeed, real-time HD video analysis remains one

of the grand challenges of the field. Our cDMD method

provides compelling evidence that it is a viable candidate

for meeting this grand challenge, even on standard CPU

computing platforms. The frame rate per second is highly

competitive compared to other stat-of-the-art algorithms,

e.g., Gaussian mixture-based algorithms [9–11]. Compared

to current robust principal component analysis-based

algorithm, the increase in speed is even more substantial. In

particular, the GPU-accelerated implementation substan-

tially improves the computational time.

Despite the significant computational savings, the

cDMD remains competitive with other leading algorithms

in the quality of the decomposition itself. Our results show

that for both standard and challenging environments, the

cDMD’s background subtraction accuracy in terms of the

F-measure is competitive to leading RPCA-based algo-

rithms [16]. Though, the algorithm cannot compete, in

terms of the F-measure, with highly specialized algorithms,

e.g., optimized Gaussian mixture-based algorithms for

background modeling [2]. The main difficulties arise when

video feeds are heavily crowded or dominated by non-

periodic dynamic background objects. Overall, the trade-

off between speed and accuracy of compressed DMD is

compelling.

Future work will aim to improve the background sub-

traction quality as well as to integrate a number of inno-

vative techniques. One technique that is particularly useful

for object tracking is the multi-resolution DMD [44]. This

algorithm has been shown to be a potential method for

target tracking applications. Thus, one can envision the

integration of multi-resolution ideas with cDMD, i.e., a

multi-resolution compressed DMD method, in order to

separate the foreground video into different dynamic tar-

gets when necessary.

Fig. 11 Bootstrap 95%-confidence intervals of the F-measure

computed using both sparse and single-pixel measurements

Fig. 12 CPU and GPU algorithms runtime (including the computation of the foreground mask) for varying video resolutions (200 frames). The

optimal target-rank is automatically determined, and p ¼ 1000 samples are used

1490 J Real-Time Image Proc (2019) 16:1479–1492

123

Acknowledgements We would like to express our gratitude to E.

R. Davies, K. Manohar and the three anonymous reviewers for many

helpful comments on an earlier version of this paper. JNK acknowl-

edges support from Air Force Office of Scientific Research (FA9500-

15-C-0039). SLB acknowledges support from the Department of

Energy under award DE-EE0006785. NBE acknowledges support

from the UK Engineering and Physical Sciences Research Council

(EP/L505079/1).

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix: Notation

Scalars

k Number of modes (target-rank)

p Number of samples (measurements)

s Number of sparse samples

K Number of nonzero amplitudes

n Number of pixels per video frame

m Number of video frames

k Eigenvalue

x Continuous-time eigenvalue

Vectors

x 2 Rn Flattened video frame

y 2 Rp Compressed video frame

/ 2 Rn DMD mode

b 2 Rk Amplitudes

b 2 Rk Sparsity-constrained amplitudes

Matrices

X;X0 2 Rn�m�1 Left and right snapshot sequence

Y;Y0 2 Rp�m�1 Compressed left/right snapshot

sequence

C 2 Rp�n Measurement matrix

A 2 Rn�n Linear map
~A 2 Rk�k Rank-reduced linear map

U 2 Rn�k DMD modes

UY 2 Rp�k Compressed DMD modes

W;WY 2 Rk�k Rank-reduced eigenvectors

K;KY 2 Rk�k Rank-reduced eigenvalues (diagonal

matrix)

B 2 Rk�k Amplitudes (diagonal matrix)

V 2 Rk�m Vandermonde matrix

UY 2 Rp�k Truncated compressed left singular

vectors

VY 2 Rk�m�1 Truncated compressed right singular

vectors

SY 2 Rk�k Truncated compressed singular values

References

1. Bouwmans, T.: Traditional and recent approaches in background

modeling for foreground detection: an overview. Comput. Sci.

Rev. 11–12, 31–66 (2014). doi:10.1016/j.cosrev.2014.04.001

2. Sobral, A., Vacavant, A.: A comprehensive review of background

subtraction algorithms evaluated with synthetic and real videos.

Comput. Vis. Image Underst. 122, 4–21 (2014). doi:10.1016/j.

cviu.2013.12.005

3. Grosek, J., Kutz, J.N.: Dynamic mode decomposition for real-

time background/foreground separation in video (2014). arXiv:

1404.7592

4. Erichson, N.B., Donovan, C.: Randomized low-rank dynamic

mode decomposition for motion detection. Comput. Vis. Image

Underst. 146, 40–50 (2016). doi:10.1016/j.cviu.2016.02.005

5. Kutz, J.N., Fu, X., Brunton, S.L., Erichson, N.B.: Multi-resolu-

tion dynamic mode decomposition for foreground/background

separation and object tracking. In: 2015 IEEE International

Conference on Computer Vision Workshop (ICCVW),

pp. 921–929 (2015). doi:10.1109/ICCVW.2015.122

6. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with

randomness: probabilistic algorithms for constructing approxi-

mate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011).

doi:10.1137/090771806

7. Brunton, S.L., Proctor, J.L., Tu, J.H., Kutz, J.N.: Compressed

sensing and dynamic mode decomposition. J. Comput. Dyn. 2(2),
165–191 (2015). doi:10.3934/jcd.2015002

8. Stauffer, C., Grimson, W.: Adaptive background mixture models

for real-time tracking. In: Proceedings IEEE Conference on

Computer Vision and Pattern Recognition (1999)

9. KaewTraKulPong, P., Bowden, R.: An improved adaptive

background mixture model for real-time tracking with shadow

detection. In: Video-Based Surveillance Systems, pp. 135–144,

Springer (2002)

10. Zivkovic, Z.: Improved adaptive Gaussian mixture model for

background subtraction. In: Proceedings of the 17th International

Conference on Pattern Recognition, 2004. ICPR 2004, Vol. 2,

pp. 28–31, IEEE (2004)

11. Pham, V., Vo, P., Hung, V.T. et al.: GPU implementation of

extended Gaussian mixture model for background subtraction. In:

IEEE International Conference on Computing and Communica-

tion Technologies, Research, Innovation, and Vision for the

Future, pp. 1–4 (2010)

12. Schmid, P.: Dynamic mode decomposition of numerical and

experimental data. J. Fluid Mech. 656, 5–28 (2010). doi:10.1017/

S0022112010001217

13. Rowley, C., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.:

Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127
(2009)

14. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal com-

ponent analysis? J. ACM 58(3), 1–37 (2011). doi:10.1145/

1970392.1970395

J Real-Time Image Proc (2019) 16:1479–1492 1491

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.cosrev.2014.04.001
http://dx.doi.org/10.1016/j.cviu.2013.12.005
http://dx.doi.org/10.1016/j.cviu.2013.12.005
http://arxiv.org/abs/1404.7592
http://arxiv.org/abs/1404.7592
http://dx.doi.org/10.1016/j.cviu.2016.02.005
http://dx.doi.org/10.1109/ICCVW.2015.122
http://dx.doi.org/10.1137/090771806
http://dx.doi.org/10.3934/jcd.2015002
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1145/1970392.1970395
http://dx.doi.org/10.1145/1970392.1970395

15. Bouwmans, T., Zahzah, E.H.: Robust PCA via principal com-

ponent pursuit: a review for a comparative evaluation in video

surveillance. Comput. Vis. Image Underst. 122, 22–34 (2014).

doi:10.1016/j.cviu.2013.11.009

16. Bouwmans, T., Sobral, A., Javed, S., Jung, S.K., Zahzah, E.-H.:

Decomposition into low-rank plus additive matrices for back-

ground/foreground separation: a review for a comparative eval-

uation with a large-scale dataset (2015). arXiv:1511.01245

17. Jovanović, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting

dynamic mode decomposition. Phys. Fluids (1994–Present)

26(2), 024103 (2014)

18. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency

dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415

(1993)

19. Tropp, J.A., Gilbert, A.C.: Signal recovery from random mea-

surements via orthogonal matching pursuit. IEEE Trans. Inf.

Theory 53(12), 4655–4666 (2007)

20. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementa-

tion of the K-SVD algorithm using batch orthogonal matching

pursuit. CS Tech. 40(8), 1–15 (2008)

21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,

B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,

V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,

Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in

python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

22. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory

52(4), 1289–1306 (2006). doi:10.1109/TIT.2006.871582

23. Candès, E.J., Wakin, M.B.: An introduction to compressive

sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008).

doi:10.1109/MSP.2007.914731

24. Baraniuk, R.G.: Compressive sensing. IEEE Signal Process. Mag.

24(4), 118–120 (2007)

25. Liberty, E.: Simple and deterministic matrix sketching. In: Pro-

ceedings of the 19th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM, pp. 581–588

(2013)

26. Woodruff, D.P.: Sketching as a tool for numerical linear algebra.

Found. Trends Theor. Comput. Sci. 10(1–2), 1–157 (2014).

doi:10.1561/0400000060

27. Gilbert, A.C., Park, J.Y., Wakin, M.B.: Sketched SVD: Recov-

ering spectral features from compressive measurements, pp. 1–10

(2012). arXiv preprint arXiv:1211.0361

28. Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz,

J.N.: On dynamic mode decomposition: theory and applications

(2013). arXiv:1312.0041

29. Gavish, M., Donoho, D.: The optimal hard threshold for singular

values is 4=
ffiffiffi
3

p
. IEEE Trans. Inf. Theory 60(8), 5040–5053

(2014). doi:10.1109/TIT.2014.2323359

30. Woolfe, F., Liberty, E., Rokhlin, V., Tygert, M.: A fast ran-

domized algorithm for the approximation of matrices. Appl.

Comput. Harmonic Anal. 25(3), 335–366 (2008)

31. Achlioptas, D.: Database-friendly random projections: Johnson–

Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4),
671–687 (2003)

32. Li, P., Hastie, T.J., Church, K.W.: Very sparse random projec-

tions. In: Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ACM,

pp. 287–296, (2006)

33. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel

programming with CUDA. Queue 6(2), 40–53 (2008). doi:10.

1145/1365490.1365500

34. Humphrey, J.R., Price, D.K., Spagnoli, K.E., Paolini, A.L., Kel-

melis, E.J.: CULA: Hybrid GPU-accelerated linear algebra rou-

tines (2010). doi:10.1117/12.850538

35. Carr, P.: GPU-accelerated multimodal background subtraction.
In: Digital Image Computing: Techniques and Applications,

IEEE, pp. 279–286, (2008)

36. Lixia, Q., Bin, S., Weiyao, L., Wen, W., Ruimin, S.: GPU-ac-

celerated video background subtraction using Gabor detector.

J. Vis. Commun. Image Represent. 32, 1–9 (2015). doi:10.1016/j.

jvcir.2015.07.010

37. Wang, Y., Jodoin, P.M., Porikli, F., Konrad, J., Benezeth, Y.,

Ishwar, P., CDnet 2014: an expanded change detection bench-

mark dataset. In: IEEE Workshop on Computer Vision and Pat-

tern Recognition, IEEE, pp. 393–400, (2014)

38. Vacavant, A., Chateau, T., Wilhelm, A., Lequievre, L.: A

benchmark dataset for outdoor foreground/background extrac-

tion. In: Computer Vision—ACCV 2012 Workshops,

pp. 291–300, Springer (2013)

39. Mahoney, M.W.: Randomized algorithms for matrices and data.

Found. Trends Mach. Learn. 3(2), 123–224 (2011). doi:10.1561/

2200000035

40. Erichson, N.B., Voronin, S., Brunton, S.L., Kutz, J.N.: Ran-

domized matrix decompositions using R (2016). arXiv:1608.

02148

41. Zhou, T., Tao, D.: Godec: randomized low-rank & sparse matrix

decomposition in noisy case. In: International Conference on

Machine Learning, ICML, pp. 1–8, (2011)

42. Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating lineariza-

tion methods for minimizing the sum of two convex functions.

Math. Program. 141(1–2), 349–382 (2013). doi:10.1007/s10107-

012-0530-2

43. la Torre, F.D., Black, M.: A framework for robust subspace

learning. Int. J. Comput. Vis. 54(1–3), 117–142 (2003)

44. Kutz, J.N., Fu, X., Brunton, S.L.: Multiresolution dynamic mode

decomposition. SIAM J. Appl. Dyn. Syst. 15(2), 713–735 (2016)

N. Benjamin Erichson is a Ph.D. student at the School of

Mathematics and Statistics and the School of Computer Science at

the University of St Andrews, United Kingdom. He received a M.Sc.

degree in Applied Statistics and Data Mining from the University of

St Andrews in 2013. His research interest includes randomized matrix

algorithms and dimensionality reduction techniques and its applica-

tions in machine vision and learning.

Steven L. Brunton received a B.S. in Mathematics from the

California Institute of Technology in 2006 and a Ph.D. in Mechanical

and Aerospace Engineering from Princeton University in 2012. He is

currently an Assistant Professor of Mechanical Engineering and a

Data Science Fellow of the eScience Institute at the University of

Washington. His research interests include data-driven modeling and

control, dynamical systems and sparse sensing.

J. Nathan Kutz was awarded the B.S. in Physics and Mathematics

from the University of Washington in 1990 and the Ph.D. in Applied

Mathematics from Northwestern University in 1994. Following

postdoctoral fellowships at the Institute for Mathematics and its

Applications (University of Minnesota, 1994–1995) and Princeton

University (1995–1997), he joined the faculty of applied mathematics

at the University of Washington and served as Chair from 2007–2015.

1492 J Real-Time Image Proc (2019) 16:1479–1492

123

http://dx.doi.org/10.1016/j.cviu.2013.11.009
http://arxiv.org/abs/1511.01245
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/MSP.2007.914731
http://dx.doi.org/10.1561/0400000060
http://arxiv.org/abs/1211.0361
http://arxiv.org/abs/1312.0041
http://dx.doi.org/10.1109/TIT.2014.2323359
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1117/12.850538
http://dx.doi.org/10.1016/j.jvcir.2015.07.010
http://dx.doi.org/10.1016/j.jvcir.2015.07.010
http://dx.doi.org/10.1561/2200000035
http://dx.doi.org/10.1561/2200000035
http://arxiv.org/abs/1608.02148
http://arxiv.org/abs/1608.02148
http://dx.doi.org/10.1007/s10107-012-0530-2
http://dx.doi.org/10.1007/s10107-012-0530-2

	Compressed dynamic mode decomposition for background modeling
	Abstract
	Introduction
	DMD for video processing
	The dynamic mode decomposition
	DMD for foreground/background separation
	DMD for real-time background modeling

	Compressed DMD (cDMD)
	Compressed sensing and matrix sketching
	Algorithm
	Measurement matrices
	GPU-accelerated implementation

	Results
	Evaluation on real videos
	Computational performance

	Conclusion and outlook
	Acknowledgements
	Appendix: Notation
	References

