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Abstract
Purpose In the context of aviation and automotive navigation technology, assistance functions are associated with predictive
planning and wayfinding tasks. In endoscopic minimally invasive surgery, however, assistance so far relies primarily on
image-based localization and classification. We show that navigation workflows can be described and used for the prediction
of navigation steps.
Methods A natural description vocabulary for observable anatomical landmarks in endoscopic images was defined to create
3850 navigation workflow sentences from 22 annotated functional endoscopic sinus surgery (FESS) recordings. Resulting
FESS navigation workflows showed an imbalanced data distribution with over-represented landmarks in the ethmoidal sinus.
A transformer model was trained to predict navigation sentences in sequence-to-sequence tasks. The training was performed
with the Adam optimizer and label smoothing in a leave-one-out cross-validation study. The sentences were generated using
an adapted beam search algorithmwith exponential decay beam rescoring. The transformer model was compared to a standard
encoder-decoder-model, as well as HMM and LSTM baseline models.
Results The transformer model reached the highest prediction accuracy for navigation steps at 0.53, followed by 0.35 of the
LSTM and 0.32 for the standard encoder-decoder-network. With an accuracy of sentence generation of 0.83, the prediction
of navigation steps at sentence-level benefits from the additional semantic information. While standard class representation
predictions suffer from an imbalanced data distribution, the attention mechanism also considered underrepresented classes
reasonably well.
Conclusion We implemented a natural language-based prediction method for sentence-level navigation steps in endoscopic
surgery. The sentence-level prediction method showed a potential that word relations to navigation tasks can be learned and
used for predicting future steps. Further studies are needed to investigate the functionality of path prediction. The prediction
approach is a first step in the field of visuo-linguistic navigation assistance for endoscopic minimally invasive surgery.

Keywords Natural language processing · Endoscopic navigation ·Machine translation ·Workflow prediction ·Deep learning ·
Attention networks · FESS

Introduction

Minimally invasive endoscopic surgery is valued as a stan-
dard in surgical practice, because with this method patient’s
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trauma and blood loss are reduced, recovery rates are faster
compared to open surgery. These advantages of endoscopy,
however, come at the expense of a higher surgical work-
load for orientation. The increased navigational demand is
met with assistance systems that provide information on
the in situ position of the endoscope. This is achieved by
introducing additional tracking hardware, e.g., infrared or
electromagnetic sensors, into the operating room (OR) [1].
Since, the hardware configuration and system usability con-
straint the surgical workflow, efforts are made to virtualize
tracking functions by computational means [1].
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Newnavigation systems employ an image-based approach
for the registration of images and detection of objects to iden-
tify and use the image content of the endoscopic view for
computer-assisted guidance in interventions [2]. Concerning
the performance, the applied image processing algorithms
are highly automatable and considerably reduce the need for
tracking hardware and additional imaging information in the
OR [3–5]. The virtualization trend has recently been intensi-
fied with deep learning applications that use neural networks
to classify the observed anatomy and, thereby, the position
of the endoscope [6, 7].

We consider image-based deep learning models for endo-
scope tracking tasks an essential function of future intelligent
navigation systems and aim to extend their applicability to
future wayfinding tasks. Compared to automotive and air-
craft navigation assistance system [8, 9], a critical function
that deep learning approaches in endoscopic applications
currently lack is the ability to predict the operator’s future
actions and potential pathways. The applications mentioned
demonstrate that proactive knowledge of the navigation pro-
cess improves the responsiveness of an assistance system to
the operator’s behavior. In endoscopic procedures,where fac-
tors specific to the individual surgeon and patient influence
the navigation process, a predictive component is equally
important.

This paper, therefore, extends the research on deep
learning-based endoscopic tracking by investigating a pre-
diction method for endoscope positions along the navigation
process. Our main objective is the ability to estimate future
endoscope positions, similar to route predictions in car nav-
igation. In this way, surgical goals and needed instruments
could be known beforehand to allow allocation of resources
in the OR. The predictive information on the navigation pro-
cess may also improve the ability to estimate the remaining
procedure time. Although the advantages of predicting sur-
gical actions for context detection and resource management
have already been demonstrated in the OR [10–13], there
are currently no prediction models for surgical activities
from the perspective of the endoscopic navigation process.
More specifically, a machine-interpretable representation of
an endoscopic navigation process is missing that could be
facilitated in applications for prediction and image classifi-
cation. The purpose of this paper is, therefore, threefold:

1. We introduce a machine-interpretable representation of
the endoscopic navigation process using workflow anno-
tations based on natural language.

2. We establish a method based on natural language pro-
cessing to predict endoscope positions at a sentence level
and

3. We show that—compared to baseline class level predic-
tors—an attention-based sequence-to-sequence model

can predict future endoscope positions with reasonable
accuracy at sentence level.

Our approach is tested on recordings of functional endo-
scopic sinus surgery (FESS) with high anatomical complex-
ity but constrains on endoscopic pathways.

Related work

Currently, image-based deep learningmethods determine the
endoscope’s position from the classification of endoscopic
images using inherent visual features [6, 7]. When image
labeling is provided [14], a topological scene association
can be formed. A primary benefit of this step is the simpli-
fied view of the anatomical environment since only semantic
image content is addressed in the labeling of training data.
Similar to [6], our approach uses the description of anatom-
ical landmarks for the labeling of image data to simplify the
task of predicting navigation steps to an association of subse-
quent scenes observed with content of landmarks. However,
rather than focusing on spatial properties, we want to use
the inherent temporal information between labeled images to
extract a representation of states between images that show
particular endoscope positions.

The usage of temporal features between endoscopic image
has been validated in [13] to estimate procedure durations
accurately. Furthermore, in [15], the advantage of combining
spatio-temporal features for classification tasks was shown,
suggesting that latent temporal information between labeled
images exists. Alternatively to conventionally training mod-
els directly on image features, our approach is oriented on
the prediction of time series using statistical models [12, 16].
We consider the prediction of endoscope positions as a time
series classification task on workflow data. In [17], the capa-
bilities of using neural models for time series classification
tasks have been shown. However, by focusing on class rep-
resentations, we lose the semantic information described in
workflowactivities. The fact that this information can be used
for prediction scenarios has been shown in hybrid navigation
applications featuring rule-based semantic methods [18, 19].

Our approach, therefore, directly trains a neural language
model which represents workflow descriptions of navigation
steps to consider both semantic workflows and neural time
series classification models. The argument of using natural
language processing in computer vision tasks is not new. In
autonomous and instructed navigation of robotic agents, a
form of language commentary offers a higher-level control
of path planning actions, while being visually grounded at the
same time [20]. We assume that our research may contribute
to a formof visual dialog as a newhybrid navigation approach
in the future.
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Methods andmaterials

Initially, we describe our approach for a machine-
interpretable description of an endoscopic navigation pro-
cess. The vocabulary for the description of endoscope
positions from endoscopic images was defined first and then
used to annotate a sequence of descriptions for each recorded
FESS procedure. In this way, individual workflows of the
observed endoscope positions across a procedure were gen-
erated. Workflow records were then parsed into class- and
sentence-level representations as part of the pre-processing
steps for training our prediction models. Subsequently, the
training parameters and performance metrics were intro-
duced for prediction tasks of neural language and baseline
prediction models. Throughout this paper, we use the term
“sentence translation” for sentence-level data in analogy to
the term “prediction” for class-level data.

Process description and representation
of endoscopic navigation

The main objective of our prediction model is the ability
to estimate future endoscope positions from a current posi-
tion (Fig. 1a). From an imaging perspective, the predicted
endoscope position could be understood as the most-likely
state where a specific anatomical landmark would be visi-
ble in an endoscopic view (Fig. 1b). As a requirement for
this representation, we established a machine-interpretable
description of states for the endoscopic navigation process
from research on surgical process analysis in the OR [21].
The strategy assumes that the surgical navigation process
is modeled in a bottom-up fashion through the observation
of individual workflows during a procedure. Conventionally,
surgical workflows would be recorded through observers in
the OR. However, our prediction models were to be trained
on the label information of images analogous to image-based
classifiers and were therefore annotated on recorded endo-
scopic videos.An annotated endoscopic navigationworkflow
can thus be understood as a sequence of timed intervals that
depict specific endoscopic states. For the descriptions of such
states, we established a first description vocabulary based on
the FESS use case.

FESS navigation workflow

FESS aims to restore the ventilation and drainage function of
the paranasal sinuses. The chronically inflammatory tissue is
removed, and healthy tissue retained to a large extent. The
procedure is surgically demanding due to complex nasal and
paranasal structures, aswell as adjacent anatomical risk areas
such as the orbita and the central nervous system. The navi-
gation process through the nasal cavities is characterized by
a distinct recurring movement past salient anatomical struc-

tures. A preliminary questionnaire with ENT surgeons (n �
10, 1–25 years of experience) revealed the importance of
information as these guidance landmarks are approached.

The description of endoscopic states for the FESS use case
includes the components: (1) step count, (2) main cavity, (3)
landmark group, (4) landmark and (5) direction ofmovement
(Fig. 2c). With (1), we kept track of the actual number of
observed landmarks in a FESS. The components (2), (3) and
(4) have a structural relation and are included to havedifferent
levels of semantic granularity in each state description. The
vocabulary for these entities was chosen from the Foundation
Model of Anatomy Ontology (FMA)1 to have a consistent
naming convention. Due to narrow anatomical pathways,
landmarks regularly occur in combination and are associated
together in landmark groups. This stepwas required as a basis
for the introduction of an ontology of the surgical situation
that considers temporal and spatial relations at a landmark
level [22]. Through this ontology, component (5) was added
to include directional information, two adjacent landmarks.
An “inwards” endoscope movement direction occurs, when
the currently observed landmark “spatially follows” the one
observed before it. Intuitively, a “spatially follows” relation
can be seen as the state of a landmark being closer to a defined
anatomical center than another one. In response, a ”spa-
tially precedes” condition causes the description “outwards”
movement (Fig. 1a red). When two landmarks are spatially
equivalent, a “dwell” direction is used. The described vocab-
ulary was then used to annotate FESS recordings (Fig. 2b).

Data acquisition and annotation

For 22 patients with similar indications, recordings of a
FESSwere acquired. Consent was obtained from the patients
at a pre-operation discussion, and six different surgeons
performed operations. Endoscopic video data were then
annotated postoperatively by three surgeons with 2-15 years
of surgical experience (mean � 7.2 y) using the SWAN
Scientific Workflow Analysis Tool.2 In the annotation step,
descriptions of the endoscope state were generated using
the vocabulary (Fig. 2b and c). Lastly, for each anno-
tated workflow, state sequences were parsed into class-
and sentence-level representations. A navigation description
parsed into a sentence had between 6 and 10 words. For the
training of neural translation models, every two consecutive
sentences were paired to create sequence-to-sequence train-
ing data (Fig. 2d).

1 https://bioportal.bioontology.org/ontologies/FMA.
2 http://www.scientific-analysis.com/.
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Fig. 1 Definitions for the establishment of navigation prediction in
functional endoscopic sinus surgery: b Example for our natural lan-
guage processing-based prediction function during a FESS procedure.
a Possible transitions between endoscopic states that relate to an

observed anatomical landmark with examples of an occurring land-
mark combination (blue) and semantic relations used (red), transitions
are bi-directional due to the possible movement between landmarks at
any moment in time throughout the procedure

Sentence-level predictionmodels

Sequence-to-sequence neural networks

For the prediction of navigation steps at sentence-level,
neural translation models were chosen that use an encoder-
decoder-network structure. In general, the encoder network
maps a symbol representation, e.g., a sentence of the source
language x � (x0, . . . , xn), to a continuous intermediate
representation z � (z0, . . . , zn). The decoder network then
generates an output sentence in the target language y �
(y0, . . . , yn)oneword at a time.Thesemodels are autoregres-
sive, using the last output word as input for the generation of
the subsequent word to maximize the conditional probability

y � argmaxp
(
ŷ|x) with p

(
ŷ|x) �

n∏

i�0

p(yi |x)

For all possible output words ŷ. Since, word representa-
tions are not distributed independently and they follow the
rules for word selection, the network maximizes the likeli-
hood of conditional word probabilities.

For the sentence-level prediction, we chose a standard
encoder-decoder model (S2S) as well as a transformer model

(TRF) (Fig. 3a). The S2S model uses two-layered gated-
recurrent units (GRU) with 512 neurons in both encoder and
decoder. For the TRF, standard parameters from [23] were
applied. Both models use word embeddings to encode word
relations. We compared both models to investigate if recur-
rent units or attention-based mechanisms offer significant
benefits for sentence prediction (Fig. 3b).

Attention-based neural networks

The TRF implementation is adapted from [24] with an
additional label smoothing step. A TRF operates using a
non-directional approach called attention, where stacks of
encoder and decoder layers consider each word simultane-
ously. We briefly cover the aspects of attention and relate to
[25] for the reference architecture. The attention mechanism
is defined through the following function:

Attn(Q, K , V ) � so f tmax

(
QKT

√
dK

)
V

The key-value pairs K , V , a positional query Q, and a
scaling factor

√
dK produce a weighted sum output of V ,

using a softmax-function on the dot-product of Q and K .
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Fig. 2 Explanation for the extraction process of annotating endoscopic
images with landmark content and parsing into sentence-level descrip-
tions: a image frames, where an anatomical landmark was visible in a

FESS recording, b navigation activity c navigation vocabulary, d pair-
wise sentence-level representation of consecutive navigation activities
and e class representations of consecutive navigation activities

In the TRF network, key-value pairs and query inputs are
provided by hidden layer weights. In this way, the TRF
aligns its network outputs based on previous weight updates
from attention. This mechanism is applied to different sen-
tence sections of the input and output sentences by adding a
sinusoid-wave-based positional encoding to sentence embed-
dings before feeding them to the network.

Model training and baseline

For the neural translation models training, navigation sen-
tence pairs were tokenized and transformed into standard
word embeddings to encode latent semantic information. The
training was performed in a leave-one-out cross-validation
setup. Left-in datasets were merged and randomly split again
into training and validation batches in a 9:1- ratio, resulting
in~3300 and 300 sentence pairs, respectively. The source
sentences were augmented with random swap and random
deletion operations, as described by [26] to improve model
generalization further.As baselinemodels for predicting nav-
igation steps at class-level (Fig. 2e), a first-order hidden
Markov model (HMM) with 12 hidden states and expected
Gaussian distribution, as well as a 2-layered long-short term

memory model (LSTM) with 200 neurons, were chosen
(Fig. 3a and b). The S2S and LSTM models converged rea-
sonably fast on this dataset. Bothwere trained over ten epochs
with randomly assembled and shuffled data batches of size
b � 20 and a cross-entropy loss criterion. The LSTM input
sequence length was set to n � 6 steps. Batch assembly and
shuffling were re-initialized for each epoch to avoid the exhi-
bition of repetitive step-like input behavior. The TRF model
converges comparably slower and was trained with the same
batch preparation over 40 epochs with the Kullback–Leibler-
divergence

DKL(PTruth || PPred) �
∑

PTruth(y) log

⎛

⎝ PTruth(y)

PPred
( ′
y
)

⎞

⎠

≡ H(PTruth, PPred) − H(PTruth)

for discrete probability functions as the loss criterion. PTruth
(y) and PPred

( ′
y
)
are the ground truth and predicted prob-

ability distributions of the labels y and
′
y used in the target

navigation sentences. The criterionmeasures the inefficiency

of approximating PTruth(y) with the PPred
( ′
y
)
and forces
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Fig. 3 Overview of the prediction models employed: a Two-layer long short term memory network, b first-order hidden Markov model, c standard
encoder-decoder-network with gated recurrent units (GRU) and d transformer architecture with encoder and decoder stacks and attention blocks

the latent variables during training to resemble PTruth(y).
Additionally, for the longer transformer training process,
a label smoothing regularization (smoothing factor � 0.1)
was applied to prediction outputs as described by [25]. The
regularization step penalizes predicted labels with high con-
fidence, by assigning reduced confidence to the target label
scores. The intention is to prevent themodel from over-fitting
and to improve generalization effects. In all neural network
training cases, model weights were updated using an Adam
optimizer (β1,2 � (0.9, 0.98), ε � 1e − 9) with warm-up
phase and the learning rate

lr � √
dmodel ∗ min

(
n−0.5
step , nstep ∗ n−1.5

warmup

)

lr has linear growth until a warmup step size nwarmup �
200 is reached and decreases proportionally to n−0.5

step after
that. All training and prediction tasks were performed using
Pytorch V.1.3.1 [27]. The S2S and TRF model training were
finished after 0.5 h and 8.2 h, respectively, with an average
processing speed of ∼ 500 tokens per second. The LSTM
model training was finished after 0.4 h. Computations were
performed with CUDA 10.1 on an NVIDIA GeForce RTX
2070S graphics card. After training,models exhibited amean
loss of l̄GRU � 0.282, l̄T RF � 0.319 and l̄LST M � 0.262.
The HMM was fitted over 500 iterations using the Baum-
Welch-algorithm and reached the convergence threshold of
ε � 0.01 in computation time of less than 60 s.
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Sentence translation and prediction tasks

The trainedmodelswere then used to predict navigation steps
from the left-out navigation workflows. 3827 sentence pair
translations and class predictions were performed. The target
navigation sentences were generated one word at a time. For
the word candidate search, we implemented an adapted beam
search algorithmoutlined in [28], and for the context function
we used a decaying factor, proposed by [29], to penalize
specific beam scores as follows:

s (y) � log p (y|x) ∗ (1 − d (y)) and d (y)

�
(
1 − e

−
(

ry
ry,mean

))

Here, the score s(y) of the next word candidate y in the
target sentence is calculated as the word candidates’ log-
likelihood degraded by a decaying factor d(y). This factor
is defined as an exponential decay function where ry is the
current number of subsequent recurrences of the word can-
didate over the series of navigation sentences and, ry,mean is
the mean number of subsequent recurrences of the word can-
didate overall sentences in the training dataset. The intuition
behind this rescoring is that a word candidates’ likelihood is
penalized as it is recurringmore than the expectedmean num-
ber of times. This ratio induces a delayed termination of the
likelihood of specific word candidates and, thereby, enables
other word candidates to be preferred for sentence decoding.
Due to our smaller vocabulary size, we used a beam size of
4 instead of typical 16 or 32 beams in more complex text
processing tasks.

Predicted and ground truth sentences were then analyzed
using similarity metrics BLEU-1 and ROUGE-L (Recall), as
proposed in [30], to reflect translation precision and sentence-
level structure recall. Based on the scores, we adopted an
intermediate F1-score:

F1,BR � 2 ∗ BLEU_1 ∗ ROUGE_L

BLEU_1 + ROUGE_L

Since both scores are based on n-gram matching, the
F1,BR approximates a translation accuracy to produce cor-
rect stepwise n-grams. For the sequence-to-sequencemodels,
the predictive power was assessed using a positional-specific
accuracy for the classification of the correct words from clas-
sification confusions. The word-level Jaccard distance was
included to assess dissimilarity. For the baseline model pre-
dictions, precision and recall values were calculated.

Results

Workflow annotation

A total of 3850 navigation activities was annotated with
a mean step number and duration of 167.39 and 2133 s.
Between 6 and 16 unique landmark combinations (LMCs)
were observed for a mean duration of 9.35 s (LMV). A
detailed overview of the workflow properties, as well as
the landmark distribution, is provided (Tables 1 and 2). The
observed landmarks show an imbalanced distribution toward
middle nasal concha and meatus.

Sentence-level prediction

The neural translation models both learned associations
between two consecutive navigation sentences. The approx-
imated translation accuracy of 0.75 and 0.83 for the S2S and
TRF models indicate that the overall sentence structure was
generated correctly (Table 3). In contrast, the accuracy for
position-wise predictions was lower, with 0.57 and 0.70 for
the S2S and TRF models (Table 4). Accuracy was highest
for the step count and lowest for the landmark combinations.
Examples for good and bad sentence generations, as well
as weight distributions for the TRF attention layer of a low-
accuracy sentence generation, are provided (Fig. 4). The TRF
displayed lower scoresmainly for sentenceswhereword rela-
tions between the maxillary sinus and the nose entry area
should be predicted.

Class-level baseline prediction

Comparing the landmark prediction quality of both base-
line and translation models, the TRF model performs best
with an accuracy of 0.53, followed by the LSTM model for
class-based predictions with 0.35 (Table 5). With a preci-
sion of 0.94, the HMM scored highest for landmark-specific
predictions, but failed to predict four out of the seven other
landmarks, entirely. The S2S performed slightly better with
0.32 accuracy. However, the S2S showed an evenly dis-
tributed prediction accuracy across all landmarks. Most of
the correct predictions were made for the middle nasal mea-
tus, followed by the middle nasal concha and the maxillary
sinus orifice.

Discussion

Sentence-level prediction

We successfully introduced a workflow representation of
the endoscopic navigation process based on the description
of anatomical landmarks found in endoscopic images. The
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Table 1 Overview of the results for the annotated surgical navigation workflows. (LMC—number of unique landmark combinations in a workflow,
mLMV—mean landmark visibility duration in a workflow)

Wf Steps in n Duration in s LMC in n mLMV in s Wf Steps in n Duration in s LMC in n mLMV in s

0 81 864 8 13.95 12 238 1896 9 6.97

1 62 876 9 12.35 13 110 1107 9 7.31

2 45 717 6 11.47 14 174 1364 12 5.41

3 19 308 6 10.11 15 453 6775 12 7.33

4 66 600 9 8.44 16 184 2477 10 8.03

5 30 1766 6 13.77 17 200 2233 12 7.25

6 304 3602 9 23.24 18 83 836 9 7.94

7 83 1895 9 37.29 19 208 2439 9 6.90

8 358 5334 11 6.59 20 287 3177 8 7.25

9 248 2996 16 8.38 21 133 1219 8 6.50

10 46 1877 6 4.09 22 123 1282 8 6.71

11 315 3425 14 8.97 ∅ 167.39 2133.26 9.35 10.27

Table 2 Overview of the data
distribution landmarks observed
individually and in combination
in absolute values and as
observation fractions of the
overall dataset

Landmark Observations,
individual

Observations, in
combination

Observations,
accumulated

Middle_nasal_concha 885 0.23 1081 0.82 1966 0.51

Middle_nasal_meatus 539 0.14 500 0.13 1039 0.27

Maxillary_sinus_orifice 425 0.11 278 0.07 703 0.18

Out_of_patient 492 0.13 0 0.13 492 0.13

Uncinate_process_of_ethmoid 60 0.01 158 0.04 218 0.06

Ethmoidal_bulla 67 0.01 82 0.02 149 0.04

Spheno_ethmoidal_recess 31 <0.01 9 <0.01 40 0.01

Table 3 Comparison of sentence translation results for the sequence-
to-sequence (S2S) and transformer models (TRF). (BL-1—BLEU-
1 metric, JD—Jaccard Distance, R-L—ROUGE-L Recall Metric,
F1—Approximated Accuracy, higher means better, except for JD, val-
ues are averaged)

Model BL-1 JD R-L F1

S2S 0.73 0.29 0.77 0.75

Transformer 0.81 0.24 0.87 0.83

comparison of baseline and neural models showed that our
proposed natural language-based prediction method at a sen-
tence level performed best for these anatomical landmark
sequences. With an accuracy of 0.53, our model outper-
forms the provided reference models by up to 15%. The
attention-based sequence-to-sequence model uses sentence
level descriptions of navigation steps and generates sentences
with a translation accuracy of 0.83 and a mean word predic-
tion accuracy of 0.70.

Compared to the lower performanceof a standard encoder-
decoder model, the results suggest that the prediction of
sentences benefits from the attention mechanisms of word
relations. The achieved landmark and word prediction accu-

Table 4 Prediction results for the position-specific accuracy of sen-
tencewords for the sequence-to-sequence (S2S) and transformermodels
(TRF). (Pr—precision, Re—recall, higher means better, highest and
lowest scores are highlighted)

Sentence Term TRF S2S

Pr Re Pr Re

Step Count 0.96 0.96 0.96 0.96

Sinus 0.74 0.73 0.57 0.51

Landmark Group 0.53 0.73 0.40 0.38

Landmark Combination 0.53 0.60 0.32 0.29

Direction 0.58 0.74 0.55 0.75

Overall 0.67 0.75 0.56 0.57

F1-Score (Accuracy) 0.70 0.57

Bold numbers were chosen to highlight important numbers and relevant
scores

racies are relatable to prediction tasks in the literature, e.g.,
for procedure state transitions in [18], surgical events by
instrument usage in [19] as well as individual phase iden-
tification rates in [31]. Furthermore, all of the prediction
tasks mentioned above focused on high-level transient pro-
cesses with minimal or no reoccurring states. Depending
on the environmental complexity and type of procedure, a
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Fig. 4 Examples for a good and b bad sentence translation results gen-
erated with the TRF model through decaying beam search decoding
(SRC—source sentence, PRD—predicted sentences, TRG—target sen-
tence) as well as c examples of the TRF where the training of word

relations failed between a current and a future sentence. Red markings
show the theoretically ideal weight distribution in the TRF’s decoder
when sentence structures are effectively learned

Table 5 Prediction results for
the position-specific accuracy of
specific landmarks accumulated
for individual and
in-combination observations
using leave-one-out
cross-validation. (Pr—precision,
Re—recall, higher means better,
highest and lowest scores are
highlighted)

Landmark Transformer LSTM HMM S2S

Pr Re Pr Re Pr Re Pr Re

Middle_nasal_concha 0.62 0.65 0.67 0.70 0.83 0.62 0.42 0.45

Middle_nasal_meatus 0.81 0.71 0.69 0.65 0.94 0.67 0.36 0.41

Maxillary_sinus_orifice 0.52 0.59 0.36 0.39 0.35 0.58 0.27 0.35

Out_of_patient 0.50 0.43 0.31 0.20 0.00 0.00 0.24 0.34

Uncinate_process_of_ethmoid 0.38 0.34 0.19 0.22 0.00 0.00 0.22 0.20

Ethmoidal_bulla 0.42 0.49 0.22 0.31 0.00 0.00 0.20 0.24

Spheno_ethmoidal_recess 0.50 0.54 0.00 0.00 0.00 0.00 0.50 0.23

Overall 0.53 0.53 0.34 0.35 0.30 0.27 0.31 0.32

F1-Score (Accuracy) 0.53 0.35 0.28 0.32

Bold numbers were chosen to highlight important numbers and relevant scores

navigation workflow may have multiple recurring activities.
Looking at the FESS navigation, sudden changes in move-
ment, e.g., due to exiting the sinus to clean the endoscope
lens, were especially hard to learn. Regarding the attention
output, bad prediction results always corresponded to miss-
ingweight relations between a landmark group and landmark
combination words (Fig. 4). This suggests that certain words

hold more meaning in our sentence structure than others.
The attention-based training of word relations still seems to
result in better sentence comprehension than a sequence-to-
sequence model using GRU encoders and decoders.
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The representation of navigation processes model
restrictions

All trained models show signs of over-fitting (Table 5).
Despite the use of an adapted beam search method with
decay scoring as well as data augmentation and label
smoothing, the TRF model is also mainly constrained
by the training data distribution. Noticeably, the LSTM
baseline model could map latent temporal properties of
navigation workflows even at the class representation
level. Both the LSTM and HMM models show a strong
bias toward the frequent landmarks. The HMM outputs
emissions with more observations in training set using
a greedy decoding approach to find the next state. As
expected, the HMM switches between the most-likely states
and, thus, never reach states associated with other emis-
sions.

Furthermore, the LSTM and HMM models, as well as
the GRU-based encoder of the S2S model, fail to cap-
ture classes with minimal occurrence. For LSTM and GRU
units, this may be caused by the limited sequence length
during training and may improve in other training scenar-
ios or with increased training data size. The HMM model
may potentially address these classes, but due to the model-
fitting aspects mentioned before, the states are never reached.
The TRF model possibly alleviates the underrepresentation
of specific landmarks by forming unique word relations,
e.g., with the step number, the previous central cavity,
and the movement direction. This effect is especially criti-
cal for navigation scenarios, where specific landmarks are
over-represented due to environmental constraints. In the
case of the FESS, the landmark distribution is strongly
shifted toward the middle nasal area as a central anchor
point. This diminishes the quality of prediction of less
represented, but highly relevant landmarks. The sequence-
to-sequence translation of navigation steps may potentially
reduce the effects of imbalanced data through the integra-
tion of more semantic content and spatio-temporal relations.
Additionally, model architectures with bi-directional infor-
mation flow, a fixed vocabulary [32] as well as model
pre-training and task-specific fine-tuning with customized
encoding strategies [33] may offset limitations of the imbal-
anced annotation data. We point out the approach of [34],
where model over-fitting was countered by feeding a sam-
ple word from the model-under-training as the next decoded
word instead of the ground truth word. In this way, over-
fitting toward over-represented landmarks could be further
diminished.

Limitations of prediction

Surgeons who evaluated the predicted steps for the recorded
FESS procedures can closely predict navigation steps if

no interruptions or irregularities occur during the move-
ment. Still, certain critical events, e.g., a movement direction
change of the endoscope and leaving the sinus, are not
captured appropriately and, thus, need to be improved to
better respond to the surgical process. Overall, prediction
results indicate the limitations of the annotation resolu-
tion, both temporally and spatially. Here, the addition of a
visual-grounding mechanism, e.g., visual attention, could
potentially compensate movement recognition restrictions
[20]. At the moment, our language-based method assumes
an ideal recognition of observable landmarks, which can
only assist conventional image-based applications through
feedback of predicted steps. The assumed Markov property
for the underlying navigation process is a strong assump-
tion and forces sentence relations of short temporal range
and reduces the model’s potential for generalization. For fur-
ther studies, we expect additional assumptions, e.g., Markov
chains of higher-order and additional state-dependencies, to
improve the robustness of the model and its accuracy fur-
ther.

Conclusion

In thiswork,we validated the feasibility of predicting naviga-
tion steps based on the translation of sentences as a verbalized
form of annotated navigation workflows. We demonstrated
the capabilities of neural machine translation models to
generate subsequent navigation sentences and predict navi-
gations steps with an accuracy of 0.83 and 0.53, respectively.
Especially the attention mechanism seems to capture word
relations in sentence structures even for imbalanced anno-
tation data. However, further studies with an emphasis on
a suitable data distribution are needed to thoroughly inves-
tigate the performance in predicting navigation workflows.
Conventional similarity metrics may pose to be ineffective
in assessing model performance from a prediction stand-
point.

Our approach for natural language processing of navi-
gation steps differs from current navigation strategies. We
consider the implemented sentence-based prediction of navi-
gation steps a form of semantic workflow processing coupled
with statistical word representations. Further studies regard-
ing the annotation resolution and vocabulary size, as well
as the structure and composition of navigation sentences,
are needed to assess the suitability for more complex pre-
diction scenarios. The combination with image-grounded
labeling and label-transfer techniques should be consequen-
tial, as they are a research focus in the surgical domain. We
assume that image-based navigation applications can benefit
from the provided predictive information, as the combination
is already used in visuo-linguistic navigation tasks in other
domains [20].
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