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Abstract
Purpose Efficient image-based catheter localization in 3DUSduring cardiac interventions is highly desired, since it facilitates
the operation procedure, reduces the patient risk and improves the outcome. Current image-based catheter localizationmethods
are not efficient or accurate enough for real clinical use.
Methods We propose a catheter localization method for 3D cardiac ultrasound (US). The catheter candidate voxels are first
pre-selected by the Frangi vesselness filter with adaptive thresholding, after which a triplanar-based ConvNet is applied to
classify the remaining voxels as catheter or not. We propose a Share-ConvNet for 3D US, which reduces the computation
complexity by sharing a single ConvNet for all orthogonal slices. To boost the performance of ConvNet, we also employ
two-stage training with weighted cross-entropy. Using the classified voxels, the catheter is localized by a model fitting
algorithm.
Results Tovalidate ourmethod,we have collected challenging ex vivo datasets. Extensive experiments show that the proposed
method outperforms state-of-the-art methods and can localize the catheter with an average error of 2.1 mm in around 10 s per
volume.
Conclusion Our method can automatically localize the cardiac catheter in challenging 3D cardiac US images. The efficiency
and accuracy localization of the proposed method are considered promising for catheter detection and localization during
clinical interventions.

Keywords Catheter localization · 3D ultrasound · Frangi pre-filtering · Convolutional neural network

Introduction

Intervention therapies have been broadly applied to achieve
a lower risk and shorter recovery period for patients, such as
with cardiac catheterization for structural heart diseases. To
clearly visualize and guide the catheter inside the body during
the intervention, X-ray is typically used with a contrast agent
to enhance the contrast. However, radiation, invisible tissue
and lack of 3D information are key problems of X-ray imag-
ing. Alternatively, 3D ultrasound imaging (US) offers richer
spatial information on tissue and avoids radiation exposure,
which makes it an attractive option for image-guided inter-
vention. Nevertheless, localizing the catheter in US is often

B Hongxu Yang
h.yang@tue.nl

1 Eindhoven University of Technology, Eindhoven,
The Netherlands

2 Philips Research, Eindhoven, The Netherlands

difficult because of the low-resolution and low-contrast US
imaging. Therefore, automatic catheter localization in 3DUS
is highly desired for clinical practice.

Related work

Medical instrument localization in the US image is achieved
by classifying the US voxels. Uherčík et al. combined the
image intensity with the Frangi filter response as a discrim-
inating feature for voxel classification in needle localization
[1,2]. A recent study combined the Gabor features with
Frangi features to localize the catheter in a phantom heart [3].
We previously used extended discriminating features within
a multi-definition and multi-scale approach for catheter seg-
mentation on ex vivo datasets [4]. However, these methods
are less robust and less efficient when the US image has large
variations in a complex anatomical environment. Recently,
deep learning, e.g., convolutional neural networks (Con-
vNets), has shown significant performance improvement in
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medical image analysis [5]. ForUS imaging, theConvNet has
been commonly used to classify voxels into different cate-
gories. Two different approaches exist for this: voxel-based
ConvNet and semantic-based ConvNet. The first approach
classifies individual voxels onebyone through the local infor-
mation [6–9],while the semantic segmentation approach, i.e.,
fully convolutional networks (FCNs), predicts segmentation
masks directly [10]. Although it has shown promising results
by making use of the contextual information, the semantic
segmentation approach requires a large number of training
data and has high computational complexity.

Proposed approach

In this paper, we propose a catheter localization method for
3D cardiac ultrasound imaging. As depicted in Fig. 1, our
method consists of three main steps. (1) Candidate voxel
selection: a Frangi vesselness filter [1] first processes the
input US image to coarsely select most of the candidate
catheter voxels. The purpose of a voxel-of-interest (VOI)
pre-selection procedure is to reduce the number of voxels
to be processed by the ConvNet. To address the unstable
response distribution in the Frangi-filtered image, resulting
from variations in imaging conditions and catheter appear-
ance [4], we introduce an adaptive thresholding method for
the VOI selection, which allows to preserve the catheter
voxels while omitting most non-catheter voxels. (2) Voxel
classification through ConvNet: for each candidate voxel, a
3D neighborhood patch is extracted, and three orthogonal
planes are extracted and processed by the ConvNet for voxel
classification. In particular,we propose a simplified triplanar-
based ConvNet, called Share-ConvNet, which reduces the
computation complexity by sharing a single ConvNet for all
orthogonal slices. We also combine two-stage training with
a weighted loss function to improve the performance of the
ConvNet. (3) Catheter localization: for the classified voxels,
a cubic spline-based catheter model is fitted to localize the
catheter.

Our contributions are threefoldwhen compared to our pre-
liminary work [9]. First, we employ a vesselness-based filter
to coarsely select the candidate voxels to reduce the compu-
tation load for the ConvNet. With an adaptive thresholding
strategy, most catheter voxels are preserved for further pro-
cessing. Second, we proposed a Share-ConvNet for voxel
classification in 3DUS, which is in-depth compared with the
existing methods. Third, we collect ex vivo datasets within
challenging conditions, to thoroughly test the proposed
method for catheter localization. The paper is structured as
follows.Our approach is described in “Methods” section.The
datasets and experimental results are presented in “Datasets
and experimental results” section. Finally, “Conclusion” sec-
tion concludes the paper with discussions.

Algorithm 1Candidate voxel selection with adaptive thresh-
olding
Require: filtered volume V , required voxel Num. N and initial thresh-
old T
Apply threshold to V by the initial threshold value T . Find the
remained voxels, which is larger than T , with amount of K .
if K < N then

while K < N do
T = T −0.01. Apply thresholding toV by T , find No. of voxels
K larger than T .

end while
else if K > N then

while K > N do
T = T + 0.01. Do thresholding on V by T , find No. of voxels
K larger than T .

end while
end if
return The voxels with response larger than adapted threshold T .

Methods

Pre-selection of candidate voxels

In our method, we use Frangi vesselness filtering to select
the candidate catheter voxels from 3D US, which enables to
dramatically reduce the number of samples to be classified
by the ConvNet (typically a reduction from∼ 106 to∼ 104).
From our previous study [4], this simple selection resulted
into a high false positive rate because of the weak voxel dis-
crimination in noisy and low-quality cardiac 3D images. To
address this, we introduce an adaptive thresholding method
for the VOI selection. 3D US images are first filtered by a
Frangi filter with a pre-defined scale and rescaled to the unit
interval [0, 1], so-called V . After the filtering, we apply an
adaptive thresholding method to V to coarsely select N vox-
els with the highest vesselness response. The thresholding
method is trying to find out the top N possible voxels in V .
Because the filter response has a large variance in different
images, the adaptive tuning of the threshold can gradually
select N voxels, by iteratively increasing or decreasing the
threshold T based on the image itself. The pseudocode is
described by Algorithm 1. Based on the pre-selected vox-
els in 3D US with remaining voxels being around N , the
3D patches are extracted and processed to generate the three
orthogonal slices of each voxel for theConvNet. In our exper-
iment, the initial threshold is empirically set to be T = 0.3.
Value N is empirically selected to balance the efficiency of
ConvNet classification and classification performance. More
details are shown in “Voxel-of-interest selection” section.

Voxel classification by ConvNet

For voxel-wise classification of volumetric data, the 3D local
information is processed by ConvNet to classify the voxels.

123



International Journal of Computer Assisted Radiology and Surgery (2019) 14:1069–1077 1071

Fig. 1 Diagram of catheter localization

The straightforward way is to classify the voxel based on
its 3D neighborhoods. For each candidate voxel located at
the center of a 3D cube, the cube is processed by a 3D-
ConvNet [6], as shown in Fig. 2a. However, when using
a 3D data cube as input, this approach includes too many
parameters in the network, which hampers the efficiency
of the voxel-wise classification in 3D US volumes. To pre-
serve the 3D information and yet reduce the convolution
operations, especially going from 3D operation to 2D opera-
tion, the multi-slice-based method was proposed in [11]. To
keep the 3D structure information, [11] employed a multi-
view cross-section method, which extracts slices from the
3D cube through different angles. Then, each slice will be
processed by an individual ConvNet. An example of this
method is shown in Fig. 2b, which is called IND-ConvNet.
The extracted feature vectors from the slices are concatenated
to feed them into fully connected layers (FCs). As for 3D-
ConvNet, it processes the information using 3D operations,

Fig. 2 The configurations of commonly used ConvNets. a 3D-
ConvNet, b IND-ConvNet (Note: IND can have branches more than
three)

which leads to too many computations and large execution
times. As for IND-ConvNet, although it keeps 3D infor-
mation by a slicing approach, multiple individual ConvNet
branches lead to redundancy, which comes from using aCon-
vNet for each slice. Because of these redundancies in the
networks, 3D-ConvNet and IND-ConvNet are sub-optimal
choices in terms of application and computation time.

In this work, we attempt to propose a simplified method
to classify the voxels. We follow the slice-based strategy.
Instead of trainingConvNet for each slice,wepropose to train
one sharedConvNet for all slices.All feature vectors from the
shared ConvNets are concatenated to form a longer feature
vector for classification. We call it Share-ConvNet, which is
shown in Fig. 3b. There is a similar structure called RGB-
ConvNet [7], as shown in Fig. 3a. It extracts three orthogonal
slices from the principal directions of the 3D cube, which
are then reorganized into RGB channels. However, this intro-
duces a limitation: the spatial information between each slice
is processed rigidly by convolutional filters at the first stage
of the network. With shallow processing by ConvNet, only
low-level features are processed and this simple strategy can-

Fig. 3 Simplified ConvNets. a RGB-ConvNet, b Share-ConvNet
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not fully exploit the spatial relationships. Alternatively, our
proposed Share-ConvNet can exploit the spatial correlation
in high-level feature space. Based on the binary selection
of candidate voxels during the pre-selection, a 3D cube is
obtained for each candidate voxel located at the center of the
cube. We extract a cube of size 25 × 25 × 25 voxels, which
is larger than a typical catheter diameter of 4–6 voxels in 3D
cardiac US. Then, three orthogonal planes passing through
the center point of the cube are sliced as the input for the
ConvNet (Fig. 3b).

For training with medical images, the class imbalance is
the most challenging issue. In our case, the ratio of catheter
voxels vs. non-catheter voxels is commonly less than 1/1000.
As a consequence and to fully exploit image information,
we perform a two-step training when training the ConvNets.
First, the number of imbalanced voxels in training images
are re-sampled on non-catheter voxels to obtain the same
amount as catheter voxels. These balanced samples train the
ConvNets. Then, the training images are validated on the
trained models to select the falsely classified voxels, which
are used to update the networks for finer optimization [8,9].
Specifically, unlike the diagram in Fig. 1, the training pro-
cess is applied in the whole US image rather than the VOI
processed one. This update step reduces the class imbalance
by dropping out the easiest sample points (so-called two-
stage training). The parameters of networks are learned by
minimizing the cross-entropy, using the Adam optimizer for
faster convergence. During the two-step training, the cross-
entropy is characterized into a different form to balance the
class distribution. In the first training stage, the cross-entropy
is characterized in a standard format. However, during the
updating, the function is redefined asweighted cross-entropy.
These different entropies avoid the bias in the updating stage,
which occurs due to the number of false positives being usu-
ally 5 to 10 times larger than the positive training samples in
the second stage. As a result of the weighted cross-entropy,
the networks tend to preserve more catheter voxels than
discarding them after the classification. The weighted cross-
entropy is formulated in Eq. (1), where the y indicates the
label of the sample, while p̂ is the class probability of the
sample, and parameterw is the sample class ratio among the
training samples. During the training, the dropout is used to
avoid overfitting with 50% probability in FCs together with
an L2 regularization with 10−5 strength. The initial learning

rate is set to be 0.001 and rescaled by a factor 0.2 after every
5 epochs.Meanwhile, to generalize the network in orientation
and image intensity variation, data augmentation techniques
like rotation, mirroring, contrast and brightness transforma-
tions are additionally applied. The mini-batch size is 128,
and the total training epoch is 20 which are around 25k in
the first training, while iterations in the second training are
around 100k.

Loss(y, p̂) = −(1 − w)ylog( p̂) − w(1 − y)log(1 − p̂).

(1)

Catheter localization

The classified volume may include some outliers, which are
generated from the blurry tissue boundaries or catheter-like
anatomical structures. To robustly localize the catheter, we
employour previously designedSPD-RANSACmethod tofit
a pre-defined catheter model [12]. A curved cylinder models
the catheter with a fixed radius, which is set to be three voxels
in this paper. To robustly localize the catheter, the classified
volume, so-called dense volume, is processed by connectivity
analysis to generate clusters. Then, the cluster skeletons are
extracted to generate the sparse volume. During the fitting
stage, three control points are automatically and randomly
selected from the sparse domain and ordered in orientation by
principal components analysis. The reordered points ensure
the cubic spline fitting passes the points in sequential order,
which generates the catheter-model skeleton which is shown
in Fig. 4. The localized skeleton with the highest number of
inliers in the dense volume is adopted as the fitted catheter.
The inliers are determined by its Euclidean distances to the
skeleton.

Datasets and experimental results

Datasets

In this study, we have collected 4 ex vivo datasets on 4 iso-
lated pig hearts, which resemble the human heart (1 heart for
1 dataset). Table 1 summarizes these datasets. Dataset 1 was
collected with a Philips CX-50 machine, while the rest was

Fig. 4 Steps of SPD-RANSAC
model fitting
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Fig. 5 Appearance of different
dataset. a Phantom US, b Pig
Heart US, c Human Heart. US
arrays are pointing to the
catheters

Table 1 Characterization of 3D ultrasound volumes for experiments

Dataset Catheter
diameter (mm)

Volume
number

Probe type and
frequency range (MHz)

Spatial size
per voxel (mm)

Volume size (lat.×az.×ax.)

Ex vivo 1 2.3† 10 TEE 2-7 0.4 179 × 175 × 92

Ex vivo 2 2.3‡ 33 TEE 2-7 0.4 174 × 174 × 178 to 197 × 197 × 202

Ex vivo 3 2.3‡ 10 TEE 2-7 0.6 120 × 69 × 92 to 193 × 284 × 190

Ex vivo 4 2.3§ 12 TTE 1-5 0.7 137 × 130 × 122

†Available from Chilli II, ‡Available from Biosense, §Available from OSYPKA

collected by a Philips EPIQ-7 US machine. Dataset 4 was
recorded by TTE (Transthoracic Echocardiogram), which
explains the larger voxel size, while other datasets were
recorded byTEE (Transesophageal Echocardiography).Dur-
ing the recording, all the images were tuned to have the best
visual perception. However, due to equipment variations, the
US parameters were different for each dataset. Moreover, to
make sure the images in each dataset are independent from
each other,we changed the relative position between the heart
and US probe to obtain a different appearance of the heart in
each captured image. Furthermore, we extracted the catheter
and re-inserted it into the heart chambers to make the images
independent, i.e., 1 session for 1 image. All datasets were
re-sampled to obtain an isotropic spatial resolution and were
annotated manually by experts. Examples of three cases are
shown in Fig. 5, which compares the recordings on phantom
heart, pig heart and human heart. Compared to the phantom
heart andhumanheart, the capturedpig heart images aremore
complex. Compared to the phantom data, real pig tissue has
more complex anatomical structures, which makes it hard to
distinguish between the catheter and tissue. When compared
to the real human heart, the chambers of the pig heart are
collapsed due to the dead tissue, which leads to a small free
space within the heart. Moreover, the human heart image,
which is shown here, has a larger field-of-view than the pig
heart recordings, as the data were collected for Transcatheter
Aortic Valve Implantation (TAVI) operation. To fully make
use of the limited datasets for deep learning, we performed
threefold cross-validation on all collected images.

Voxel-of-interest selection

To reduce the number of voxels for classification, we applied
the Frangi vesselness filter to select the candidate voxels.

However, it cannot filter out the catheter voxels from tissue
and background with a pre-defined scale due to too many
false positives [4]. In our method, we first apply the Frangi
filter with scale size equal to 2.5 to filter out the most tubular-
like structures. Then, Frangi responses are rescaled to the
unity interval, which maps response into a probability-like
range.

To evaluate the performance of thresholding, we employ
three metrics: Recall (the remaining catheter voxels versus
ground-truth catheter voxels), Ratio (thresholded voxels ver-
sus all voxels, to evaluate the voxel preserving ability) and
their fusion score (mimic F1 score by replacing Precision
by Ratio to evaluate a joint threshold performance), which
enables to show the preservation performance of catheter
voxels and removes non-catheter voxels. The metrics are
defined in Eq. (2), where TP is true positive, FN is false
negative, TV is remaining voxels after the threshold, while
AV is all voxels, giving the specification:

Recall = TP

TP + FN
,

Ratio = TV

AV
,

Score = 2 · Recall · (1 − Ratio)

Recall + (1 − Ratio)
. (2)

The performances of adaptive thresholding are shown in
Fig. 6, where the voxel threshold N ranges from 10k to
190k voxels with step size 10k. The values are obtained
by averaging of all the testing volumes through threefold
cross-validation. It can be observed that the adaptive thresh-
olding method provides a more stable voxel distribution, i.e.,
a smaller fraction of the whole pyramid area while keeping a
higher recall. As a result, the proposed thresholding method
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Fig. 6 Performance of adaptive thresholding

provides a better selection for Voxel-of-Interest. However,
this pre-selection leads to a drop in Recall. As a consequence,
in the following step, a ConvNet with high Recall for voxel
classification is needed.

Voxel classification

Comparison with existing methods

In the following experiments, threemetrics, Recall, Precision
and F2 score, are used for voxel classification at image level
and defined in Eq. (3) (FP is false positive). We first com-
pare Share-ConvNet with the start-of-the-art methods. Two
methods usinghandcrafted features,Gabor featurewithSVM
(GF-SVM) [3] and multi-scale and multi-definition features
with Adaboosting (MF-AdaB) [4] are considered as base-
line. We also consider the semantic segmentation method
3D-UNet [10]. The performances are shown in Table 2. We
can see that the Share-ConvNet outperforms conventional
methods with handcrafted features. The standard 3D UNet
also produces theworst performance on our challenging data.
This might be due to 3D UNet being much more complex,
resulting in overfitting. Figure 7 shows some example results
of 3D UNet.

Recall = TP

TP + FN
,

Table 2 Average performance of voxel-based classification (mean ±
std.)

Method Recall (%) Precision (%) F2 score (%)

GF-SVM [3] 29.9 ± 25.4 9.2 ± 8.8 19.0 ± 15.5

MF-AdaB [4] 61.2 ± 17.6 28.4 ± 16.6 45.5 ± 15.6

3D-UNet [10] 30.3 ± 26.3 11.9 ± 12.7 21.4 ± 19.5

Share-ConvNet 72.3 ± 19.6 46.4 ± 8.5 63.8 ± 14.3

Precision = TP

TP + FP
,

F2 = 5 · Recall · Precision
4 · Precision + Recall

. (3)

Comparison with different ConvNet methods

We further compare the Share-ConvNet with 3D-ConvNet,
IND-ConvNet, and RGB-ConvNet. The training strategy of
these ConvNets is the same as Share-ConvNet. The perfor-
mance comparison is shown in Fig. 8.

– When compared to 3D-ConvNet, our Share-ConvNet has
better Recall and higher F2 score, while 3D-ConvNet
achieves better precision. However, taking 3D data cubes
as input, 3D-ConvNet has too many parameters in the
network, requiring a large amount of training data. In
contrast, the Share-ConvNet is much simpler. In terms
of efficiency, 3D-ConvNet executes in about 10 min. per
volume on average, which is almost 5× more than the
orthogonal slice approaches.

– The IND-ConvNet, which is designed to have multi-
ple branches, delivers comparable performance as the
proposed Share-ConvNet, since both networks fuse the
high-level information in a similar intuition. However,
the IND-ConvNet trains an individual ConvNet for each
slice, which is computationally complex and leads to
redundancy.

– Compared to RGB-ConvNet, we can observe that the
Share-ConvNet achieves consistently better performance.
It can be explained by that the spatial correlation among
different slices in RGB-ConvNet is combined in a lower
feature space.
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Fig. 7 Segmentation results from 3D-UNet. a, b Successful segmentation and its original image, c, d failed segmentation and its original image

Fig. 8 Boxplots of the performance comparison under different metrics. 3D-ConvNet, IND-ConvNet, and RGB-ConvNet are shown at the left side
of the dashed line, while Share-ConvNet is shown at right side of the dashed line

Paired t test betweenmethods

We take the F2 score of each image as a measure and con-
duct paired t tests between our Share-ConvNet with other
voxel-based classification methods, i.e., MS-AdaB, RGB-
ConvNet, IND-ConvNet, and 3D-ConvNet. In our paired t
tests, the significance level is set to 0.05. The detailed p val-
ues for the paired t tests are shown in Table 3. All p values are
smaller than 0.05 except with IND-ConvNet, which shows
the Share-ConvNet performs significantly better than MF-
AdaB, RGB-ConvNet and 3D-ConvNet methods. Although
IND-ConvNet showed little difference with Share-ConvNet,
it has parameter redundancy that leads to overfitting and com-
putational inefficiency.

Ablation study of ConvNets

The Share-ConvNet includes two-stage training and a
weighted loss function in the network. To better understand
their influence on the classification performance, we per-
formed ablation studies in three different cases: (1) ConvNet
without two-stage training (No Boost), i.e., only trained on
re-sampled images, (2) ConvNet with two-stage training but
without weighted loss function (No Weight), (3) the pro-
posedConvNet (Combine). The results of ablation studies are
shown in Table 4. As for Share-ConvNet-NoBoost, although
it receives relatively high Recall performance, the simple
sampling strategy leads to worse Precision results which
makes the model fitting more challenging. Furthermore, the
weighted loss function can re-balance the information dis-
tribution during second-stage training and can maintain a

Table 3 Paired t test (p value)
between different methods

Method MS-AdaB RGB-ConvNet IND-ConvNet 3D-ConvNet

Share-ConvNet 3.2e−14 3.2e−6 0.26 4.4e−3

Table 4 Ablation studies on
proposed Share-ConvNet
(mean ± std.)

Method Recall (%) Precision (%) F2 score (%)

Share-ConvNet-NoBoost 92.4 ± 8.6 12.0 ± 8.5 35.2 ± 17.2

Share-ConvNet-NoWeight 45.5 ± 20.9 71.3 ± 13.7 47.6 ± 20.4

Share-ConvNet-Combine 72.3 ± 19.6 46.4 ± 8.5 63.8 ± 14.3
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Table 5 Comparison of
ConvNets with/without VOI
(mean ± std.)

Method Recall (%) Precision (%) F2score (%) Time (s)

VOI-90k-IND-ConvNet 53.3 ± 17.7 58.8 ± 11.7 53.4 ± 15.3 6.9 ± 0.4

VOI-190k-IND-ConvNet 62.6 ± 19.2 52.6 ± 10.7 59.2 ± 15.9 15.1 ± 1.3

IND-ConvNet 69.8 ± 20.1 47.7 ± 11.0 62.8 ± 16.1 110.5 ± 59.0

VOI-90k-Share-ConvNet 53.7 ± 16.4 59.1 ± 11.0 53.9 ± 13.9 6.5 ± 0.4

VOI-190k-Share-ConvNet 63.1 ± 17.8 53.0 ± 10.0 59.8 ± 14.1 14.1 ± 1.2

Share-ConvNet 72.3 ± 19.6 46.4 ± 8.5 63.8 ± 14.3 103.4 ± 55.7

Table 6 Performance
comparison on catheter
localization

Method EE (mm) SE (mm) VS (%) AHD (voxel)

MF-AdaB 3.33 ± 2.76 2.91 ± 2.55 67.3 ± 20.7 6.71 ± 7.72

Share-ConvNet 2.25 ± 1.91 1.83 ± 1.28 76.7 ± 13.5 1.72 ± 1.85

VOI-90k-Share-ConvNet 2.07 ± 1.22 1.71 ± 1.00 77.3 ± 11.6 1.56 ± 2.32

VOI-190k-Share-ConvNet 2.08 ± 1.22 1.73 ± 0.99 77.8 ± 11.6 1.64 ± 1.82

EE End-point error, SE Skeleton-point error, V S Volumetric similarity, AHD Average Hausdorff distance

high recall while omitting the non-catheter voxels. When
compared with the no-weighted case, the weighted function
provides less variance in false positive voxels and F2 scores.
In the following experiments, we will consider ConvNet-
Combine as the standard network architecture.

Share-ConvNet combined with VOI selection

Table 5 compares the performance of ConvNet with or with-
out VOI, where different N values (adaptive thresholding to
control the voxel cardinality) are considered. When sacri-
ficing voxel cardinality size (fewer voxels), the benefit is a
reduced computational complexity, e.g., going from ∼100 s
processing time to ∼10 s per volume, where the VOI selec-
tion is still able to reduce the number of false positives at
the cost of a slight drop in F2 score (for larger N ). Although
the VOI selection degrades the system performance, it dra-
matically decreases the number of voxels to be classified by
ConvNet. For comparison, IND-ConvNet is also included in
the table, which shows a small performance degradation in
efficiency and accuracy (with/without VOI selection). More-
over, IND-ConvNet also has more parameters in the model
and is thereforemore complex thanShare-ConvNet. The time
was measured on a Titan 1080Ti GPU.

Catheter localization

Based on voxel classification, the model fitting is applied
to the binary images to localize the catheter (its skele-
ton and end-points) and remove the outliers. We employ
the following metrics to measure the model fitting perfor-
mance: skeleton-based metrics, Volumetric Similarity (VS)
and Average Hausdorff Distance (AHD) [13]. More specifi-
cally, skeleton-based metrics include two specific types: (1)

end-points error (EE) characterized by the average distance
between corresponding end-points on the detected catheter
and the end-points on the annotation; (2) skeleton error (SE):
the average distance between 5 equally sampled points on the
detected skeleton and the ground-truth skeleton. Skeleton
error has more robust performance than EE. This perfor-
mance difference is explained by analyzing the difficult
cases. For example, sometimes the catheter tip is attaching
to the tissue so that it is hard to distinguish the tip from the
tissue in B-mode imaging, as shown in Fig. 7a. In such case,
the EE metric will give a higher error but SE has inherently
better accuracy. However, EE would be more informative
than SE, because correctly localizing the tip of the catheter
can facilitate the success of the intervention.

We here compare the catheter localization performance
based on MF-AdaB, Share-ConvNet, VOI-90k-Share-
ConvNet, and VOI-190k-Share-ConvNet. The localization
performances are shown in Table 6, which are the average
of threefold cross-validation with five times fitting in each
volume. The table shows that our proposed Share-ConvNet
method achieves a better performance with a lower position
error, smaller than the diameter of the catheter. Furthermore,
the results show that the VOI-based ConvNet can boost the
localization precision in terms of the lowest error.When com-
paring the results in Tables 5 and 6, VOI provides lower
F2 score, but better localization accuracy. This is because
VOI provides a higher Precision performance so that a better
sparse volume can be achieved. The model fitting relies on
the SPD model fitting where fewer outliers would make ran-
domly control points selection more stable. Moreover, with
a sacrifice of F2 score through VOI selection, we achieved
10× faster voxel-based classification, which has shown the
trade-off between classification accuracy and efficiency. The
whole chain based on VOI-90k-Share-ConvNet takes around
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10 s (Frangi filtering: 1.5 s, VOI selection: 0.3 s, ConvNet:
6.8 s and SPD-RANSAC: 1.9 s).

Conclusion

Wehavepresented an automated catheter localizationmethod
using ConvNet. We propose a VOI-pre-selection to reduce
the computation load for voxel classification significantly.
Wehave compared differentConvNetmethods for voxel clas-
sification. Based on the classified voxels, our method can
localize the catheter with an average end-point error of about
2.1 mm while executing in 10 s per volume. In future work,
we will validate our method on more clinical datasets. More-
over, the speed of 10 s per volume is still far from the real-time
performance required in clinical practice, so we have to fur-
ther improve the efficiency.

Compliance with ethical standards

Conflict of interest This research was conducted in the framework
of ”Impulse-2 project for the healthcare flagship–topic ultrasound” at
Eindhoven University of Technology in collaboration with Catharina
Hospital Eindhoven and Royal Philips.

Ethical approval All procedures performed in studies involving ani-
mals were in accordance with the ethical standards of the institution or
practice at which the studies were conducted.

Informed consent This articles does not contain patient data.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Mul-
tiscale vessel enhancement filtering. In: International conference
on medical image computing and computer-assisted intervention,
Springer, Berlin, Heidelberg, pp 130–137
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