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Abstract
This review will summarize artificial intelligence developments in acute ischemic stroke in recent years and forecasts for the 
future. Stroke is a major healthcare concern due to its effects on the patient’s quality of life and its dependence on the tim-
ing of the identification as well as the treatment. In recent years, attention increased on the use of artificial intelligence (AI) 
systems to help categorize, prognosis, and to channel these patients toward the right therapeutic procedure. Machine learn-
ing (ML) and in particular deep learning (DL) systems using convoluted neural networks (CNN) are becoming increasingly 
popular. Various studies over the years evaluated the use of these methods of analysis and prediction in the assessment of 
stroke patients, and at the same time, several applications and software have been developed to support the neuroradiologists 
and the stroke team to improve patient outcomes.
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Introduction

Stroke is a common cause of morbidity and mortality 
around the world. Between 1990 and 2019, the burden 
(measured in terms of the total number of cases) increased 
significantly (incident strokes increased by 70.0% and 
stroke deaths increased by 43.0%). One in four people 
over the age of 25 will experience a stroke in their life-
time, and there are over 12.2 million new cases of stroke 
each year worldwide. The most prevalent type of stroke, 
the ischemic subtype (AIS), accounts for more than 62% 
of all occurrences worldwide [1]. The first diagnostic test 

performed when a stroke is suspected is a CT scan with-
out contrast medium (NCCT), which enables us to detect 
intracerebral hemorrhage (ICH) and assess parenchymal 
ischemia symptoms like decreased differentiation between 
white and gray matter [2]. Quantifying ischemic damage 
and determining whether a patient is a candidate for treat-
ment are made possible by the Alberta stroke program 
early CT score (ASPECTS) [3]. The detection of a large 
vessel occlusion (LVO) and evaluation of collateral vessels 
are both possible with CT angiography (CTA). We can 
create time density curves for each voxel in perfusion CT 
by measuring the density change brought on by the arrival 
of contrast medium over time. From these curves, we can 
derive parameters like cerebral blood volume (CBV), cer-
ebral blood flow (CBF), and time to peak (TTP). We can 
evaluate the mismatch between the penumbra and necrotic 
core using these parameters [2]. Diffusion-weighted imag-
ing (DWI) and apparent diffusion coefficient (ADC) on 
MRI are the imaging modalities with the highest sensitiv-
ity for detecting cerebral ischemia, with 73–92% sensi-
tivity in the first 3 h and 95–100% sensitivity in the first 
6 h, respectively. In situations where the time of stroke 
onset is unknown, such as in wake-up strokes, FLAIR/T2 
weighted imaging can also offer crucial information, such 
as the time of occlusion. Similar to CTA, MR angiography 
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(MRA) can detect the presence of vessel occlusion; MRA 
has a sensitivity of 87% and a specificity of 98% compared 
to CTA’s maximum sensitivity and specificity of 98% [4].

Artificial intelligence (AI) describes the creation of 
computer systems that can carry out tasks that would 
typically require human intelligence. In machine learning 
(ML), a branch of artificial intelligence, computer systems 
get smarter over time. ML algorithms can be categorized 
into three groups: reinforcement learning, unsupervised 
learning, and both. A subtype of machine learning (ML) 
known as neural networks imitates neurons by having lay-
ers made up of nodes. The first layer in a neural network 
is the input layer, followed by a variable number of hidden 
layers and one output layer. An artificial neural network 
(ANN) uses a set of parameters called weights that rep-
resent the connections between the neurons to determine 
how strong the connections are [5]. Backpropagation, a 
technique used in training, involves adjusting the weights 
to reduce the discrepancy between the output and the pre-
dicted output [6]. The weights are calibrated to minimize 
the cost function during backpropagation, which compares 
the output with the “ground truth” in order to determine 
how far off the model is. In an ANN, which can be con-
structed as a CNN or a recurrent neural network pattern 
(RNN), DL is composed of numerous hidden layers. 
Because it is computationally expensive to have weights 
connecting every neuron, CNN applies a small “kernel” 
or “filter” of weights at each position in the image, sliding 
through the image to determine the value of the neuron of 
the next layer.

Different kernels can be used for each layer, resulting in 
multiple “channels” in each layer and assisting the model 
in detecting features like edges and textures in our datasets. 
Before the output layer, the CNN layers can be connected 
to “fully connected” neurons, and the various kernels and 
weights can be adjusted using backpropagation [7].

Over the years, maximum likelihood estimation and 
the Bayesian method have become popular statistical tools 
applied to machine learning for output validation. The 
asymptotic properties of both statistical methods are one 
of the main reasons that have increased their popularity in 
recent years. The difference between these two approaches 
is that the parameters for maximum likelihood estimation are 
fixed but unknown, while the parameters for the Bayesian 
method act as random variables with known priority distri-
butions. Usually the Bayesian method performs better than 
maximum likelihood estimation in machine learning [8].

In comparison to visual inspection by human experts, 
these models may offer a number of advantages, including 
speed, large-scale deployment, objective and quantitative 
evaluation, and the ability to spot minute voxel-level pat-
terns. Considerations like feature selection, classifier type, 
and DL are crucial when using these methods for imaging.

Stroke classification

A major concern is determining the subtype of stroke. 
Even though AIS is the most prevalent subtype, identi-
fying intracranial hemorrhage (ICH) is crucial. Several 
studies emphasized the ICH identifications [9, 10] but we 
would like to bring the focus of this article to AIS. Dis-
tinguishing the subtype of AIS turns out to be particularly 
challenging, in contrast to hemorrhagic stroke. Garg et al. 
analyzed a group of cases and established stroke subtype 
categorization at admission using the Trial of Org 10,172 
in acute stroke treatment (TOAST) classification system 
using electronic health records (EHRs) and ML algorithms 
for natural language processing. This classification sepa-
rates ischemic stroke into five different subtypes: great 
artery atherosclerosis, cardio-embolic small vessel occlu-
sion, other determined etiology stroke, and stroke with 
unknown etiology [11]. The concordance index kappa was 
the highest for the cardio-embolic subtype and lowest for 
the cryptogenic subtype [6, 12, 13].

Perinatal and pediatric stroke

Perinatal stroke comprises a specific group of cerebrovas-
cular diseases that occur between 20 weeks of fetal life 
and 28 days postnatal life [14]. The estimated incidence 
is between 1:1600 and 1:3000 live births [15]. Stroke 
etiology is frequently poorly understood. By identifying 
specific prenatal stroke disease states, neuroimaging devel-
opments have aided clinical care and research growth. 
Neonatal periventricular venous infarction (PVI), neonatal 
arterial ischemia, neonatal cerebral sinus-venous thrombo-
sis, neonatal hemorrhagic stroke, arterial presumed peri-
natal stroke, and presumed perinatal hemorrhagic stroke 
are the six distinct neonatal stroke disorders that can be 
distinguished based on clinical signs and neuroimaging. 
Hemiparetic cerebral palsy, also known as periventricu-
lar venous infarction, is primarily characterized by motor 
impairment. Large lesions, along with both motor and 
non-motor morbidities, are frequently brought on by arte-
rial ischemic strokes in the near future [16]. About 90% 
of published cases are arterial ischemic variety [17]. Dif-
fusion MRI is the gold standard for diagnosis [18]. The 
treatment is still debated and in most cases off-label. Anti-
coagulation is considered safe in pediatric patients [19], 
but studies focused on anticoagulation for neonatal arterial 
ischemic stroke are scarce. The use of steroids remains 
controversial but should be considered when there is evi-
dence of arteriopathy. Acute therapy focuses on neuropro-
tection. Emergency recanalization strategies are precluded, 
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because precise timing can never be known, the infarct is 
typically well established, and the affected artery is often 
open [20]. Supportive care is provided along with anti-sei-
zure medication [21]. Stroke also affects infants (as previ-
ously described) and children. The incidence of childhood 
stroke has varied widely in the literature. The incidence of 
strokes in children ranges between 2.5 and 13:100,000 per 
year [22]. Stroke has a high rate of morbidity and mortal-
ity, even among children. Since it occurs at a young age 
and the duration of disability is longer, even lasting a life-
time. Additionally, there are significant diagnostic delays 
in children [23]. Pediatric strokes are linked to many dis-
eases [24]. The most significant risk factors for stroke in 
children are coagulopathies, infections, vascular diseases, 
and cardiac causes. Head injury, autoimmune diseases, 
metabolic issues, child maltreatment, renal diseases, and 
hematological illnesses are additional risk factors [25]. 
Treatment for pediatric acute strokes is time-sensitive. 
Immediate mechanical thrombectomy or intravenous tissue 
plasminogen activator (tPA) therapy for children resulted 
in better functional and mortality outcomes. The earlier 
treatment begins, the greater the chance of maintaining 
the penumbra, restoring cerebral blood flow, and perhaps 
even curing the symptoms, which lessens disability. Early 
detection is essential for better patient care due to the 
narrow treatment window. It improves hospital care and 
lessens the chance of a stroke recurrence before recovery. 
Despite the lack of data and extensive randomized clinical 
trials, mechanical thrombectomy and intravenous tPA have 
both been used successfully in pediatrics [26–28].

To our knowledge, few authors have investigated the 
application of ML in the context of pediatric stroke; how-
ever, Carlson et al. [29]’s interesting work, which used an 
RF model to identify which factors might be more predictive 
of motor outcome in a group of 49 patients with a history of 
perinatal stroke (AIS and PVI), is worth mentioning. Their 
model included demographic information along with vari-
ables from neuroimaging using conventional MRI sequences 
and cutting-edge research like white matter tractography 
and functional MRI. A validated bimanual test known as 
the Assisting Hand Assessment (AHA) and a bimanual 
test known as the Box and Blocks Test (BBT), which was 
divided into two scores: one for the stroke-affected hand 
(BBTA) and one for the other side (BBTU), were used to 
assess the motor function. Twenty-seven volunteers who 
were roughly the same age as the comparison group made 
up the control group. The RRELIEFF algorithm was used 
to rank the features, and the RF model was then applied to 
model the regression for each motor outcome score.

Their research indicated that many features, including 
connectivity between bilateral primary motor, sensory, 
and supplementary areas, inter-hemispheric connectivity 
within the deep nuclei, and connectivity within the lesioned 

corticospinal tract, had lower functional and structural con-
nectivity in children with a history of AIS. With differences 
in the lesioned CST and inter-hemispheric connection within 
the basal ganglia, it was discovered that children with a his-
tory of PVI were more similar to the control group. Enhanc-
ing our knowledge of neuroplasticity and brain remodeling 
after an event like a stroke may be fascinating in the future 
in order to create rehabilitation programs with even better 
results.

The use of AI software in pediatric stroke management 
would be desirable to optimize the management of perinatal 
and pediatric stroke. Even today, it seems off-label to use 
such software. In addition, given the pathologic variations, 
it would be preferable to support studies that advance knowl-
edge of the appropriate diagnostic-therapeutic management 
of perinatal and pediatric stroke. To this end, it would be 
appropriate to start machine learning processes in order to 
get outcomes for adult stroke similar to those we describe 
below.

Early diagnose

ASPECTS, LVOs detection, segmentation of the necrotic 
core and the penumbra, and diagnosis timing all play signifi-
cant roles in AIS. Numerous AI programs have been created 
to aid in diagnosis, and numerous studies have examined 
how they affect ASPECTS scoring. In the event of a mid-
dle cerebral artery (MCA) occlusion, ASPECTS is a quick 
method to evaluate the severity of the AIS. ASPECTS has 
high sensitivity and specificity for both functional outcome 
and intracerebral hemorrhage in thrombolytic therapy, 
deducting one point from a value of 10 for each MCA terri-
tory involved [3]. Correct scoring is crucial when determin-
ing thrombectomy eligibility. Using RAPID software, Mae-
gerlein et al. assessed the agreement between the ASPECTS 
of two seasoned neuroradiologists. Consensus readings were 
determined using imaging data from the baseline and fol-
low-up CT scans conducted after six weeks. The software 
analysis revealed optimal agreement (κ ≈ 0.9), whereas the 
neuroradiologists’ consensus agreement was only moder-
ate (κ ≈ 0.56); the neuroradiologists’ consensus agreement 
became comparable to the software after the 4 h time period 
from onset [30].

Sundaram et al. conducted a comparative analysis of 
concurrent CBV ASPECTS based on CTP and evaluated 
ASPECTS by Brainomix against a neuroradiologist assess-
ment. Automated scores were comparable to consensus read-
ings and CTP-CBV ASPECTS when they were grouped by 
the time from symptom onset (> 6 or 6 h); automated scores 
agreed with consensus readings and CTP-CBV ASPECTS 
(κ ≈ 0.84) [31]. Albers et al. compared the ASPECTS and 
RAPID scores of four expert readers with diffusion-weighted 
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imaging (DWI) results obtained following baseline CT; 
RAPID outperformed physicians in spotting early signs of 
cerebral ischemia identified by subsequent DWI [32].

Seker et al. investigated the consistency of the brainomix 
e-Aspects and the ASPECTS of two residents and two con-
sultants. In contrast to the software, the residents displayed 
significant variation and lower internal concordance. How-
ever, the consultant and software scores were comparable 
[33].

In 214 patients undergoing EVT, Olive-Gadea et  al. 
looked at the relationship between radiologist and 
e-ASPECTS scores and the infarct core CBV and infarct 
end-tidal volume as well as the long-term functional out-
come. ASPECTS score was determined by a radiologist (Rx-
ASPECTS) during acute stroke assessment and by Braino-
mix software (e-Aspects), while images were sent to RAPID 
software to quantify the ischemic core. The distribution of 
ASPECTS scores was similar according to their study. A 
mild and time-dependent correlation between ASPECTS 
and e-ASPECTS and CBV was found, with the best correla-
tion occurring 180 min after the onset of symptoms. Only 
Rx-ASPECTS and e-ASPECTS were predictors of a good 
functional outcome, but CBV and e-ASPECTS predicted 
infarct volume after thrombectomy in a similar manner [34].

Chriashkova et  al. looked at how well e-ASPECTS 
improved concordance with the ASPECTS reference stand-
ard and sped up the time it took to evaluate CT scans. 
Twenty-six clinicians with various levels of experience par-
ticipated in the study. When using e-Aspects, the average 
time to score was reduced by 34%. All groups of clinicians 
who used e-ASPECTS assistance saw a twofold increase in 
their sensitivity to early ischemic changes, with the effects 
being more pronounced for less experienced clinicians [35]. 
The detection of LVOs has been the subject of other studies. 
In a cohort of 223 patients, Chung et al.’s CNN model for 
detecting the “hyperdense vessel sign” in the middle cerebral 
artery on NCCT, which is typically associated with an LVO, 
achieved 96% specificity [6, 36].

In a cohort of adult AIS patients with and without LVO, 
Barreira et al. compared the findings of a skilled neuroradi-
ologist using CTA scans to those from Viz.ai software. The 
performance of Viz.ai for proximal intracranial LVOs was 
remarkably good [37]. For the purpose of detecting LVO 
in the acute setting, You et al. combined structured clini-
cal data with unstructured CT imaging data; the evaluation 
system in their study contained three hierarchical models. 
Structured demographic and clinical data were used in the 
modeling’s first two levels, and a DL model’s additional 
CT imaging features were used in the third level. The third 
level of evaluation with the clinical and imaging features 
produced the best model performance on the test group; the 
accuracy, sensitivity, and area under the curve (AUC) were 
greater than 0.80 [38].

Tissue outcome

To decide which patients would benefit from thrombolysis 
or another attempt in the event of partial recanalization, it 
is essential to predict final infarct volumes. To predict final 
infarct volume directly from native CTP images and meta-
data like time parameters and treatment, Robben et al. used 
a deep neural network. They forecasted the hypothetical 
final infarct volume for each test subject in the scenarios 
of early complete recanalization (mTICI 3 at 60 min) and 
in the absence of recanalization. With a mean volume error 
of 2.8 ml and a mean absolute volume error of 36.7 ml, the 
results were satisfactory [39].

By using pseudo-continuous arterial spin labeling 
(pCASL), Wang et al. created and assessed a DL-based 
algorithm to help identify AIS patients who would benefit 
from endovascular therapy. The outcomes showed that the 
algorithm had a 92% accuracy rate and a 0.94 AUC [40].

To forecast the tissue result Nielsen et al. trained a 
deep CNN (CNNdeep) that outperformed competing 
approaches and was remarkably consistent with the final 
result as determined by T2-FLAIR measurements. They 
also developed CNNdeep,rtpa, which was used to assess 
patients who had received intravenous rtPA. The AUC for 
patients who had received intravenous rtPA evaluated with 
CNNdeep,rtPA was 0.85 ± 0.15 [41].

Without knowing the status of reperfusion, Yu et al. 
used a DL model trained with acute and follow-up image 
collection to predict the size and location of infarct lesions 
at 3–to 7 days after baseline. Three to seven days after the 
baseline, infarct lesions could be accurately predicted by 
their model. Comparable performance was shown by the 
model in patients with and without reperfusion [42].

Clinical outcome

Several studies looked into the use of AI to forecast stroke 
patients’ outcomes. Extreme gradient boosting and gra-
dient boosting machine, which are decision tree-based 
algorithms, were used by Xie et al. to predict the 90 day 
modified Rankin scale (mRS) > 2 with AUCs greater than 
0.745; performance improved when the National Institutes 
of health stroke scale (NIHSS) at 24 h and recanalization 
outcomes were taken into account [43, 44].

Bacchi et al. investigated the use of DL algorithms in 
predicting outcomes in patients who received r-TPA; a 
positive outcome was defined as the outcome of mRS 0–1 
at 90 days (vs ≥ 2) (“mRS90”), or NIHSS improvement 
by ≥ 4 points at 24-h (NIHSS24). An AUC of 0.75 for 
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the prediction of mRS90 and 0.70 for the prediction of 
NIHSS24 were obtained using CNN + ANN [45].

To identify patients who would benefit from thrombec-
tomy and forecast both immediate and long-term clinical/
functional outcomes, Tang et al. built ML logistic regression 
models. The mRS was used to evaluate clinical outcomes at 
7 and 90 days, respectively. They combined early clinical 
data with the initial preprocedural diffusion and perfusion-
weighted MRI datasets to create a combined model. This 
model was contrasted with two others that utilized clini-
cal data alone and clinical data along with penumbra (mis-
match) data. Their combined model was the most accurate 
at forecasting both short- and long-term clinical outcomes, 
with an AUC of 0.863 [6, 46].

In order to predict outcome measures (mRS ≤ 2 at 
90 days) and good reperfusion (mTICI ≥ 2b), Hilbert et al. 
used DL techniques trained on CTA data. For this purpose, 
a number of artificial intelligence techniques were evaluated. 
The findings revealed that automated radiological image 
analysis using data-efficient DL methods outperformed the 
combination of multiple radiological image biomarkers for 
the prediction of a favorable stroke outcome. For functional 
outcome and reperfusion, DL models outperformed models 
using conventional radiological image biomarkers [47].

The accuracy of an algorithm based on functional imag-
ing to predict deficits in various areas, including attention, 
visual memory, verbal memory, language, motor, and visual, 
was tested by Siegel et al. Lesion location performed better 
than functional connectivity in predicting verbal and visual 
memory deficits, while functional connectivity performed 
better than lesion location in predicting visual and motor 
deficits [48, 49].

A regression tree model was created by Alawieh et al. 
to predict mRS scores after 90 days in patients receiving 
ET. With a 0.952 AUC, the model successfully predicted 
the functional independence rates at 90 days with 89.36% 
sensitivity and 89.66% specificity. The outcomes far outper-
formed those of the NIHSS and the ASPECTS [50].

Hofmeister et  al. demonstrated that a small subset 
of nine radiomic features was predictive of the success 
of first-attempt recanalization with thromboaspiration 
(AUC = 0.88); 4/9 radiomic features were positively 
associated with first-attempt recanalization after throm-
boaspiration (P < 0.05), including large area low gray level 
emphasis, gray level variance, large dependence empha-
sis, and short run emphasis; the other 5 were negatively 
associated (P < 0.05): entropy, maximum, run percent-
age, coarseness, and gray level nonuniformity normal-
ized; additionally, it was demonstrated in their study that 
characteristics like higher HU values, texture randomness, 
coarseness, and clot heterogeneity were associated nega-
tively with rapid recanalization [51]. The effectiveness 
of Diffusion Tensor Imaging (DTI) in predicting clinical 

outcomes has been examined in some studies. The func-
tional outcome was evaluated at 3 months and was divided 
into two categories: good outcome (mRS ≤ 2) and poor 
outcome (mRS > 2). Moulton et al. retrospectively evalu-
ated patients with AIS who received thrombolysis within 
4.5 h of stroke onset and who underwent a DTI sequence 
at 24 h after stroke. The second and third branches of the 
superior longitudinal fasciculus (SLF), the corpus callo-
sum, the corticospinal tract, the long, anterior, and pos-
terior segments of the arcuate fasciculus (AF), and the 
frontal aslant tract were the regions that had the greatest 
influence on functional outcome [52, 53].

In other studies, the prognostic value of functional mag-
netic resonance imaging (fMRI) was examined to predict 
clinical outcomes in stroke patients at 4–6 months; 86% of 
patients had outcomes that their model correctly predicted 
[53, 54].

Stroke complications

The ability to predict complications can have a big clinical 
impact. To predict cerebral edema, changes in cerebrospinal 
fluid (CSF) dynamics were taken advantage of. 155 stroke 
patients’ CSF volumes, as determined by serial CT imaging, 
were examined using a random forest model. They proposed 
that variations in CSF volume over time might serve as a 
quantitative indicator of edema development. In addition, a 
correlation between infarct volume and the decrease in CSF 
volume between baseline and final CT was found (R = 0.715) 
[55].

Hemorrhagic transformation should also be taken into 
account or predicted as a complication. Yu et al. used a vari-
ety of DL and ML models, using follow-up gradient echo 
MRI performed at 24 h in comparison to diffusion- and 
perfusion-weighted MRI as the ground truth for the hemor-
rhage. The most accurate (84%) model was their kernel spec-
tral regression model [56]. With the aid of a surface neural 
network, Wang et al. were able to predict intracranial hem-
orrhage (ICH) in AIS patients receiving thrombolysis with 
an AUC of 0.82. Age, sex, baseline NIHSS data, admission 
blood pressure and glucose, prior medical history, and smok-
ing status were all taken into account; about 50% of patients 
were categorized as low-risk, and none of them experienced 
ICH in the prospective cohort [57, 58].

Main available software

In this Table 1, the main available software and their appli-
cation were summarized.
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Comparison between software

It is demonstrated that the performance of Brainomix’s 
e-ASPECTS is superior to or on par with that of humans 
(Fig. 1). Rapid similarly scores the ASPECTS, identifies 
LVOs, and assesses collaterals by examining the asymmetry 
of the contrasted vessels. e-CTA software provides a quick 
assessment of LVOs and performs a collaterals estimation. 
Additionally, RAPID automates the assessment of stroke 
patients’ suitability for thrombectomy (Fig. 2). Each pro-
gram has the capacity to produce data, including CT and 
MR perfusion maps [59].

Hoelter et al. found high correlation between Brainomix 
and RAPID median ASPECTS: r = 0.835 (0.512, 0.923), 
P < 0.001. While there are some differences, such as auto-
matic motion correction capabilities and the automatic acti-
vation of the stroke team, Viz.ai shares some characteristics 
with the software mentioned above (Fig. 3) [59, 60].

Table 1  A summary of the main available AI software and their application in stroke

Software Application Imaging

Brainomix e-Aspect: automatically assess ASPECTS score
e-CTA : assessment of collaterals and LVOs
e-CTP: automatically estimates core and penumbra volumes, in addition to mismatch ratio and HIR

NCCT, CTA, CTP

Rapid Rapid ICH: identifies and classifies ICH
Rapid ASPECTS: automatically assess ASPECTS
Rapid CTA : assessment of blood density asymmetry
Rapid CTP: automatically delivers quantified and color-coded CT perfusion maps
Rapid MRI: automatically delivers advanced MR diffusion and perfusion image analysis

NCCT, CTA, CTP, MRI

Viz.ai Viz LVO: automatically detect and alert emergency stroke team
Viz CTP: automatically analyze CTP images of brain, calculating CT perfusion parameters
Viz ICH: detection of ICH

NCCT, CTA, CTP

Fig. 1  An illustration of artificial neural networks, a branch of ML. The input layer is the first layer, followed by a configurable number of hid-
den layers, and an output layer. Each layer is made up of nodes or neurons
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Potential and limits

AI has demonstrated a positive effect on stroke by mak-
ing components like ASPECTS immediate and immune to 
inter-individual variation. An intriguing aspect of clinical 
practice is that helping neuroradiologists by performing a 
preliminary image analysis has the same overall impact as 
what the residents do for the signatory physician’s medi-
cal doctor—a reduction in the time between diagnosis and 
treatment. Limitations like false positives demonstrate the 
importance of the neuroradiologist’s assessment for accu-
rate diagnosis. Other drawbacks might include the fact that 

the ML algorithm does not perform as well in patients with 
strokes who have abnormal brain features, as demonstrated 
by Gueberina et al. [61, 62].

The development of software that can automatically 
detect and/or segment the thrombus after it has been 
highlighted must take into account the possibility that in 
clinical practice the cohort of patients to whom this pro-
gram would then be applied may present some discrepant 
characteristics with respect to the study group. For exam-
ple, the developers must take into account the presence of 
calcifications, moveable thrombi, and other factors before 
considering using the programs in a commercial setting 
[63].

Fig. 2  Processing performed by RAPID—LVO software showing flow reduction (vessel density < 45% in right M1); RAPID software also calcu-
lates CBF and T max for volume and mismatch ratio, crucial for endovascular treatment planning

Fig. 3  An example of Viz.ai data processing; in this case LVO is detected and software automatically alerts the stroke team
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Ethical and legal issues

There are some medico-legal issues that cannot be disre-
garded when it comes to the use of AI in the medical and, 
in this case, radiological fields. There are numerous issues 
with deciding which AI algorithms or medical devices to 
approve for use in the U.S. and Europe, particularly for those 
that might not require human intervention. The majority of 
advancements in this area focus on developing tools that can 
support physicians rather than replace them [64]. Liability 
is still up for debate in the event that AI software causes a 
medical error. Currently, it is the physician’s responsibility 
to ensure that the algorithm’s output complies with diagnos-
tic standards [53].

Economic impact

Due to the severe impairment it causes, stroke has a signifi-
cant financial impact on the healthcare systems. Each minute 
of thrombectomy delay results in roughly a 4-day loss of 
disability-free life, according to the study Highly Effective 
Reperfusion Evaluated in Multiple Endovascular Stroke Tri-
als (HERMES) [65].

The average cost of thrombectomy delay is roughly $1059 
per minute; if 10 min could be avoided on average in the 
USA, this would result in an annual savings of $249 mil-
lion [66]. The great benefit of available software is that it 
ensures the least amount of time is spent on patient man-
agement. Hassan et al. compared transfer times before and 
after the implementation of the Viz.ai system for all LVO 
patients who were transferred from the spoke (PSC) to their 
hub center (HC). The median transfer times from the PSC 
to the HC were cut in half by 22.5 min, and from the CTA 
to the PSC to the puncture to the HC were cut in half by 
89 min [67]. Reducing time from diagnosis to treatment has 
a profound effect on the amount of money saved each year.

Current state of AI software in AIS and future 
directions

As was already mentioned, current commercial software 
focuses on the detection of AIS and estimation of the key 
characteristics that are essential to understand during the 
emergency phase, such as collaterals, ASPECT, and perfu-
sion parameters [30–35].

Future scientific research, however, is moving in a direc-
tion that includes the study of additional elements that could 
soon be used in clinical practice, such as, for example, the 
use of radiomics and advanced imaging parameters for the 

correlation with the patient’s long-term deficit; this scenario 
opens up new possibilities for the application of therapeutic 
pathways in the context of a personalized medicine [51].

Conclusion

As was already mentioned, current commercial software 
focuses on the detection of AIS and estimation of the key 
characteristics that are essential to understand during the 
emergency phase, such as collaterals, ASPECT, and per-
fusion parameters. Future scientific research, however, is 
moving in a direction that includes the study of additional 
elements that could soon be used in clinical practice, such 
as, for example, the use of radiomics and advanced imaging 
parameters for the correlation with the patient’s long-term 
deficit; this scenario opens up new possibilities for the appli-
cation of therapeutic pathways in the context of a personal-
ized medicine. AI will undoubtedly take up more and more 
space in both research and hospitals.
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