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Abstract
In this work a mathematical model is built in order to validate on theoretical grounds
field study results on a three-species system made of two prey, of which one is native
and another one invasive, together with a native predator. Specifically, our results
mathematically describe the negative effect on the native European hare after the intro-
duction of the invasive Eastern cottontail, mediated by an increased predation rate by
foxes. Two nonexclusive assumptions can bemade: an increase in cottontail abundance
would lead to a larger fox population, magnifying their predatory impact (“hyperpre-
dation”) on hares; alternatively, cottontails attract foxes in patches where they live,
which are also important resting sites for hares and consequently the increased pres-
ence of foxes results in a higher predation rates on hares. The model results support
hyperpredation of increasing fox populations on native hares.
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1 Introduction

Biological invasions—i.e. the human-mediated introduction of species outside their
native range—represent one of the main drives of global change. Introduced species
change ecosystems composition and species interaction, threatening native biodiver-
sity and representing a major source of extinction (Clavero and García-Berthou 2005;
Kumschick et al. 2015). Introduced species may interact negatively with native ones,
through numerous, such as competition, predation, hybridization, the transmission of
disease, see IUCN 2020 for a complete list of impact mechanisms (IUCN EICAT
Categories and Criteria 2020). Competition is the interaction between species of the
same trophic level, which leads to negative consequences for one of the two. It can
be regarded as the direct or indirect interaction of organism that leads to a change in
fitness when they share the same resources, such as food or nesting sites (Holomuzki
et al. 2010). The reduction in the fitness of individuals translates at the population level
into a change in demography which could determine the decline or the extinction of
one of the two species. There are three major mechanisms of competition. Interference
competition and exploitation competition are categorized as real competition. Inter-
ference competition involves direct interactions between individuals. For example, in
Ferretti et al. (2011) it is reported the negative effects of behavioural interference by
fallowdeer (Damadama) on the foraging behaviour of roe deer (Capreolus capreolus).
Exploitation competition implies indirect negative interactions between two species
arising from the use of a common resource (Schoener 1983). A classic example is the
competition between the introduced Eastern grey squirrel (Sciurus carolinesis) and
the native Eurasian red squirrel (Sciurus vulgaris). The replacement is mainly due to
exploitation competition for food resources, with the introduced species more efficient
in their use (Wauters et al. 2002a, b). The third form of competition is more complex
and concerns species that do not interact directly and do not exploit the same resources,
but still influence each other through shared enemies, such as predators, parasites, or
pathogens (Holt and Bonsall 2017). In this case, the competition is mediated by the
action of a third species of another trophic level. This species might be a pathogen:
in Great Britain, grey squirrels carry a squirrel pox virus which is lethal for the red
squirrel (Tompkins et al. 2003; Romeo et al. 2019). The virus carried by the introduced
species has a detrimental effect on the native one, increasing the replacement speed
between the two species. However, the common enemy might also be a predator: in
New Zealand, introduced rabbits (Oryctolagus cuniculus) created large populations
of mammal predators, which also prey upon native lizards (Oligosoma spp. (Norbury
2001).

TheEastern cottontail (Sylvilagus floridanus) is a lagomorph native to theAmerican
continent that was introduced in Italy in the 1960s for hunting purposes (Bertolino
et al. 2011a). The species is now widespread in Central and Northern Italy (Bertolino
et al. 2011a; Loy et al. 2019) where it competes with the native European hare (Lepus
europaeus). The two species select different macro- andmicrohabitats, both for resting
and during feeding activity (Bertolino et al. 2011a, 2013). Cottontails carry several
viruses and parasites, which can potentially affect hares (Bertolino et al. 2010; Tizzani
et al. 2014); however, competitive interactions mediated by parasites have not yet
been highlighted. Recently, in Cerri et al. (2017) an apparent competition between
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Eastern cottontail and European haremediated by the fox (Vulpes vulpes) as a common
predator is shown. Introduced cottontails affect prey–predator dynamics of native
hares and foxes: the abundance of foxes is positively associated with the one of hares,
when cottontails are scarce, suggesting the main influence of external factors, such as
habitat quality. However, this association becomes increasingly negative as cottontails
increase in their abundance.When cottontails are abundant, increases in the abundance
of foxes are negatively correlated with the abundance of European hares (see Fig. 2
in Cerri et al. (2017)). This pattern is suggestive of an indirect competition between
cottontails and hares mediated by fox predation.

Starting from the work of Cerri et al. (2017), we introduce here a mathematical
model to simulate this three-species system and investigate it, to possibly validate on
theoretical grounds the results of the field study (Cerri et al. 2017).

The paper is organized as follows. After the model formulation in the next section,
its equilibria are assessed in Sect. 3. The three-species system behaviour is analysed
in detail in Sect. 4, numerical simulations are reported in Sect. 5, and a biological
discussion sets these results in the ecological perspective, in Sect. 6.

2 Model Formulation

The dynamical system that we propose can be described by the following equations,
where all the parameters are nonnegative and where the parameter r generally inter-
preted as the traditional growth rate of the logistic equation, represents instead the foxes
reproduction. This important difference should be remarked throughout the paper.

V̇ = V (r − cVV V − m + eaS + ebL)

Ṡ = S (s − cSS S − n − aV )

L̇ = L (u − cLL L − p − bV )

(1)

The reason for separating the reproduction r and the mortality m rates for the
foxes, and more in general for the various model populations, and not using the stan-
dard logistic equation, lies in the fact that we are going to use field data, for which, in
principle, the condition of the positivity of the net reproduction rate may not be satis-
fied, and furthermore, that wewould like to contemplate the possibility of disappearing
populations.

We also use the Holling type (HT) I response function for hunting because the
density of the foxes is very low, while hares and cottontails do not attain very large
numbers. Indeed, although not much is known about the foxes density in Italy, a rea-
sonable range per square kilometre is usually taken as [1.0, 2.5], (Boitani and Prigioni
2003). Themaximal observed cottontail density is 110 per km2 (Bertolino et al. 2011a),
while for hares it ranges in the interval [26, 40], (Pandini et al. 1998). Therefore, a
feeding saturation phenomenon for foxes does not arise, and a simple bilinear term
is sufficient to describe the interactions, as it represents a linear approximation in the
meaningful range of the HTII response function describing satiation.
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The first equation in (1) describes the dynamics of the red fox Vulpes vulpes V
that grows logistically with reproduction rate r , death rate m, intraspecific competi-
tion rate cVV and gets a benefit from the capture of its prey scaled by a conversion
coefficient e, related to the digestibility of the prey, which, for foxes, lies in the range
[0.8958, 0.9190], when predating on rabbits (Maurya et al. 2012), while hunting hares,
it is 0.910 (Ruehe et al. 2008). As these figures are similar, we take the conversion
factor e to be the same for the two kinds of prey.

The second equation describes the dynamics of the Eastern cottontail Silvilagus
floridanus, S, that also grows logistically with reproduction rate s, mortality rate n,
has the intraspecific competition rate cSS and is hunted by the foxes at rate a.

The last equation describes the dynamics of the European hare Lepus europaeus,
L . The logistic growth occurs with reproduction rate u, mortality rate p, intraspecific
competition rate cLL . Hares are captured by foxes at rate b. In Table 1 we summarize
the meaning of each model parameter.

Note that no direct competition between the invasive cottontails and the native
hares is here considered, as on biological grounds the two species occupy different
ecological niches and thus do not directly interfere with each other (Bertolino et al.
2011a, b, 2013). Rather, it is hypothesized that their interaction occurs through indirect
competition mediated by the red fox.

The model (1) contains the predators’ interference on the two types of prey, but the
latter occupy different ecological niches (Bertolino et al. 2011a, b, 2013), for which, in
the absence of the foxes, each one individually or both together settle to their respective
carrying capacities, that are explicitly given by the nonvanishing population values
contained in the equilibria E1, E2, E4 and E6 below. When foxes are present and
one prey is absent, the population levels attained are clearly modified by their mutual
interactions, see equilibria E3, E5.

For the later study of the equilibria stability, we will need the Jacobian of the system
(1):

J =
⎡
⎣
r − 2cVV V − m + eaS + ebL eaV ebV

−aS s − 2cSS S − n − aV 0
−bL 0 u − 2cLL L − p − bV

⎤
⎦ .

3 Model Analysis

3.1 Boundedness

In this subsection we show that the system trajectories are confined in a compact set in
the first quadrant of the phase space. This result is relevant from the ecological point
of view, because it says that in the presence of finite resources, no population can grow
without limit.

The result is obtained by considering all the living individuals in the model. Let us
define the total environmental population A = V + S + L . Because each population
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Table 1 Model parameters
r Foxes reproduction rate

s Cottontails reproduction rate

u Hares reproduction rate

m Foxes mortality rate

n Cottontails mortality rate

p Hares mortality rate

cV V Foxes intraspecific competition rate

cSS Cottontails intraspecific competition rate

cLL Hares intraspecific competition rate

e Captured prey conversion coefficient

a Foxes hunting rate on cottontails

b Foxes hunting rate on hares

is nonnegative, if A is bounded, then also V , S and L are bounded. The details for
which boundedness of A holds are reported in “Appendix”.

3.2 Equilibria

System (1) has the following eight possible equilibria Ei = (Vi , Si , Li ), for i =
0, . . . , 7. The origin, E0 = (0, 0, 0), corresponds to extinction of the whole three-
species system. The three points in which only one population thrives:

E1 =
(
r − m

cVV
, 0, 0

)
, E2 =

(
0,

s − n

cSS
, 0

)
, E4 =

(
0, 0,

u − p

cLL

)
.

The equilibria with only one vanishing population:

E3 =
(
ae(s − n) + cSS(r − m)

a2e + cVV cSS
,
a(m − r) + cVV (s − n)

a2e + cVV cSS
, 0

)
,

E5 =
(
be(u − p) + cLL(r − m)

b2e + cVV cLL
, 0,

b(m − r) + cVV (u − p)

b2e + cVV cLL

)
,

E6 =
(
0,

s − n

cSS
,
u − p

cLL

)

and coexistence E7 = (V7, S7, L7) whose population levels can explicitly be evalu-
ated:
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V7 = becSS(u − p) + aecLL(s − n) + cSScLL(r − m)

b2ecSS + a2ecLL + cVV cSScLL

S7 = abe(p − u) + b2e(s − n) + acLL(m − r) + cVV cLL(s − n)

b2ecSS + a2ecLL + cVV cSScLL

L7 = a2e(u − p) + abe(n − s) + bcSS(m − r) + cVV cSS(u − p)

b2ecSS + a2ecLL + cVV cSScLL

While the origin is always feasible, it turns out to be conditionally stable, in view
of the fact that the Jacobian reduces to a diagonal matrix from which the eigenvalues
are immediate and provide the following stability conditions:

r < m, s < n, u < p. (2)

Note that these conditions imply indeed that mortalities exceed the reproduction rates,
entailing the extinction of each and every species.

For Ei , i = 1, 2, 4, the feasibility conditions are, respectively,

r ≥ m; s ≥ n; u ≥ p. (3)

For E1 stability hinges on the following inequalities, m < r , which is implied by
feasibility and is therefore redundant, and:

s < n + aV1, u < p + bV1. (4)

For E2 we find instead the stability conditions

r + eaS2 < m, u < p, (5)

and n < s, which follows from feasibility.
For E4,which is feasible if the hares population is nonnegative, i.e. the last condition

in (3) that ensures also the negativity of the last eigenvalue, the stability conditions
come from the other two explicit eigenvalues and give:

r + ebL4 < m, s < n. (6)

For the equilibria with two nonvanishing populations, the results are as follows.
E3 is feasible for

aes + cSSr ≥ aen + cSSm, am + cVV s ≥ ar + cVV n. (7)

Here one eigenvalue factorizes, namely J33(E3) = u− p−V3. The remaining subma-
trix has negative trace and positive determinant; hence, the Routh–Hurwitz conditions
are satisfied and thus, its eigenvalues are negative. Stability reduces to requiring

u < p + bV3. (8)
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At E5 two populations need to be nonnegative, giving for feasibility

beu + cLLr ≥ bep + cLLm, bm + cVV u ≥ br + cVV p. (9)

As for E3, here one eigenvalue canbe factorized, J22(E5) = s−n−aV5. The remaining
minor has negative trace and positive determinant, and therefore, its eigenvalues are
negative. The only stability condition is:

s < n + aV5. (10)

For E6 feasibility follows by satisfying

s ≥ n, u ≥ p (11)

and all the Jacobian eigenvalues are explicitly known, r−m+eaS6+ebL6,−scSS < 0,
−ucLL < 0. Thus, just the first one ensures stability, namely:

r + eaS6 + ebL6 < m. (12)

Feasibility for E7 entails the following inequalities:

becSSu + aecLLs + cSScLLr ≥ becSS p + aecLLn + cSScLLmabep

+b2es + acLLm + cVV cLLs ≥ abeu + b2en + acLLr + cVV cLLna
2eu

+aben + bcSSm + cVV cSSu ≥ a2ep + abes + bcSSr + cVV cSS p (13)

This equilibrium, when feasible, turns out to be unconditionally stable. Indeed, using
the Routh–Hurwitz criterion, for the trace we find:

−tr(J (E7)) = cVV V7 + cSS S7 + cLL L7 > 0

and for the determinant:

− det(J (E7)) =
(
cVV cSScLL + b2ecSS + ea2cLL

)
V7S7L7 > 0.

Further, we need to assess the sum M (E7)
2 of the principal minors of order 2:

M (E7)
2 = cVV cSSV7S7 + cVV cLLV7L7

+cSScLL S7L7 + eb2L7V7 + ea2S7V7.

The final Routh–Hurwitz condition for stability is then:

− tr(J (E7))M2 > − det(J (E7)). (14)
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Table 2 Equilibria feasibility and stability

Equilibrium Feasibility Stability

E0 − r < m, s < n, u < p

E1 m ≤ r m < r , s < n + aV1, u < p + bV1
E2 n ≤ s r + eaS2 < m, n < s, u < p

E3 aes + cSSr ≥ aen + cSSm, u < p + bV3
am + cV V s ≥ ar + cV V n

E4 p ≤ u r + ebL4 < m, s < n, p < u

E5 beu + cLLr ≥ bep + cLLm, s < n + aV5
bm + cV V u ≥ br + cV V p

E6 n ≤ s, p ≤ u r + eaS6 + ebL6 < m

E7 (13) Stable

This condition is always satisfied, as it reduces to

(cVV V7 + cSS S7)(cVV cSS + ea2)V7S7 + eb2L7V7(cVV V7 + cLL L7)

+ (cVV V7 + cSS S7 + cLL L7)(cVV cLLV7L7 + cSScLL S7L7) > 0

4 The Interactions Behaviour

4.1 Equilibria Global Stability

The conditions summarized in Table 2 suggest that there are pairs of equilibria that
cannot occur simultaneously. This will be better investigated in the next subsection,
but since bi- or multistability among some subsets of equilibria is prevented by these
conditions, it is worth to investigate their possible global stability. To this end, we
construct suitable Lyapunov function candidates Li (V , S, L) for each equilibrium,
such that

dLi

dt
= PT Ai P + αi (V , S, L),

where αi (V , S, L) < 0 for equilibrium Ei , P = (V − Vi , S − Si , L − Li )
T and A is

negative definite, so that finally theLyapunov conditions:L(V , S, L) ≥ 0, (V , S, L) ∈
R3+, i.e. nonnegativity, in the first orthant, as well as

Li (Ei ) = 0,
dLi

dt
< 0

are satisfied.
It turns out that all equilibria are globally asymptotically stable, whenever they are

locally asymptotically stable. In fact it turns out that the matrix Ai is independent of
the equilibrium that is considered, i = 1, . . . , 7; it has namely the following structure:
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Ai = A =
⎡
⎣

−ccV V a ce−g
2 b ce− f

2
a ce−g

2 −scSS 0
b ce− f

2 0 − f cLL

⎤
⎦ . (15)

The mathematical details are deferred to “Appendix”.

4.2 Bifurcations

In view of the results of the previous subsection, Hopf bifurcations are forbidden, a
fact that prevents the onset of persistent oscillations in the model solution trajectories.
Indeed, at every equilibrium, either the eigenvalues are all explicitly known and real,
or, when the Routh–Hurwitz conditions are used, in case of equilibria E3 and E5,
the trace can never vanish, and this prevents the possibility of having pure imaginary
eigenvalues. In case of E7 instead, it is the condition (14) that cannot vanish. In
saying so, we of course exclude, as biologically unrealistic, the very particular cases
in which some or all the reproduction rates of the three species vanish. Therefore,
only transcritical bifurcations could then relate the various system’s equilibria to each
other. We will now rigorously explore this issue. The mathematical tool is represented
by Sotomayor’s theorem, (Perko 2001).

Denoting by F = (F1, F2, F3)T the right-hand side of (1), with Fi = Fi (V , S, L),
we first evaluate its partial derivatives with respect to the model parameters:

Fa = (eSV ,−SV , 0)T , Fb = (eLV , 0,−LV )T , Fr = (V , 0, 0)T , Fs = (0, S, 0)T ,

Fu = (0, 0, L)T , FcVV = (−V 2, 0, 0
)T

, FcSS = (
0,−S2, 0

)T
, FcLL = (

0, 0,−L2)T .

We then need the Jacobians of the above vector-valued functions:

DFa =
⎡
⎣
eS eV 0
−S −V 0
0 0 0

⎤
⎦ , DFb =

⎡
⎣
eL 0 eV
0 0 0

−L 0 −V

⎤
⎦ , DFr =

⎡
⎣
1 0 0
0 0 0
0 0 0

⎤
⎦ , DFs =

⎡
⎣
0 0 0
0 1 0
0 0 0

⎤
⎦ ,

DFu =
⎡
⎣
0 0 0
0 0 0
0 0 1

⎤
⎦ , DFcVV =

⎡
⎣

−2V 0 0
0 0 0
0 0 0

⎤
⎦ , DFcSS =

⎡
⎣
0 0 0
0 −2S 0
0 0 0

⎤
⎦ , DFcLL =

⎡
⎣
0 0 0
0 0 0
0 0 −2L

⎤
⎦ .

Then, in order to evaluate D2F we need:

F1
VV = −2cVV , F1

V S = ea, F1
V L = eb, F1

SS = 0, F1
SL = 0, F1

LL = 0,

F2
VV = 0, F2

V S = −a, F2
V L = 0, F2

SS = −2cSS, F2
SL = 0, F2

LL = 0,

F3
VV = 0, F3

V S = 0, F3
V L = −b, F3

SS = 0, F3
SL = 0, F3

LL = −2cLL .

Further, to evaluate D3F we need the partial derivatives of order three, but it can
easily be assessed that they all vanish. As a consequence, system (1) is therefore not
satisfying the necessary condition for a pitchfork bifurcation:

123



51 Page 10 of 28 E. Caudera et al.

wT
[
D3F(x0, μ0)(v, v, v)

]
�= 0.

Therefore, all pitchfork bifurcations are ruled out and so possibly only saddle-node or
transcritical bifurcations can arise.

The mathematical details for this analysis are reported in the “Appendix”, and as
we will see, only the latter are indeed found. A picture of the structure of all the
analytically found bifurcations is reported in Fig. 1.

4.3 Biological Interpretation

We now provide some insights on the situation, based on all the previous findings, in
terms of some relevant biological quantities. In particular, we will focus on the net
reproduction rates of each species

r − m, s − n, u − p,

and some additional quantities, namely:

k1 := a
r − m

s − n
, k2 := b

r − m

u − p
, h2 := ae

s − n

m − r
, g2 := be

u − p

m − r
.

In addition, recall that bistability is forbidden. Thus, in the following discussion, as
always the equilibria with some of the vanishing populations appear, coexistence is
impossible for all the listed situations.

– When all the net reproduction rates are negative

r < m, s < n, u < p

only E0 is feasible and stable; therefore, as intuition suggests, all the species are
driven to extinction.

– For the foxes reproducing effectively only E1 is feasible and stable:

m < r , s < n, u < p.

This makes sense, as foxes are supposed to have other feeding resources.
– When

r < m, n < s, u < p

E2 is feasible, but stable only if cSS < h2, while in the opposite case cSS > h2,
E3 is feasible and stable. In this situation, the cottontails thrive alone if their
intraspecific competition is low enough, quite intuitively; otherwise, they would
support also the foxes and the two species survive together.
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– Instead, if

m < r , n < s, u < p

we find only the equilibria E1 and E3. The former is feasible and stable only if
cVV < k1, the latter for feasibility needs cVV > k1. Thus, here either the foxes
survive alone, if their intraspecific competition is low enough; otherwise, they
coexist with the cottontails.

– For

r < m, s < n, p < u

the possible equilibria are E4 and E5. E4 is unconditionally feasible, but it is
stable only if cLL < g2. Conversely, for cLL > g2, E5 becomes feasible and
in such case it is stable. Thus, here either the hares survive alone, provided their
intraspecific competition falls below a threshold; otherwise, they thrive together
with the generalist predators, the foxes.

– When

m < r , s < n, p < u

E1 is feasible but stable only if cVV < k2, while for the opposite condition, E5 is
feasible and always stable. Here for a small enough intraspecific competition, the
foxes thrive alone, wiping out both hares and cottontails, but in the opposite case
the hares also survive.

– Whenever

r < m, n < s, p < u

foxes and cottontails coexist at E3, or the foxes thrive with the hares at E5 or
else foxes disappear and only cottontails and hares share the environment. More
precisely, E3 is feasible if cSS < h2 and stable if u < p + bV3, E5 is feasible if
cLL < g2 and stable for s < n + aV5, E6 is unconditionally feasible but stable
only if r + eaS6 + ebL6 < m.

– Finally, for

m < r , n < s, p < u

only one population survives unconditionally in the environment, the foxes; here
all possible alternative equilibria are feasible, and only their stability determines
the three-species interaction outcome. More precisely, the foxes wipe out the other
two populations, equilibrium E1, if cVV < k1 and cVV < k2, they thrive with the
cottontails at E3 if cSS > h2, cVV < k1 and u < p + bV3, these conditions,
respectively, arising for feasibility and stability, or finally, they survive together
with the hares, equilibrium E5 which is feasible for cVV < k2 and cLL < g2,
while stable in case s < n + aV5.
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Fig. 1 (Color Figure Online) The equilibria of the system (1). The nodes in the graph denoted the equilibria
in which the letter subscripts denote the nonvanishing populations; the arcs denote the possible transcritical
bifurcations that connect them

To better illustrate how the species at steady state are related to each other, we
provide Fig. 1, where the graph contains as nodes the equilibria, whose nonvanish-
ing populations are denoted by subscripts, and the arcs their connecting transcritical
bifurcations.

5 Numerical Simulations

Although the demography of three-species system has been completely characterized
analytically, it is worth to see also some simulations with realistic parameter values,
in order to compare their results with the field findings of the biologists.

5.1 Parameter Values

Some of the parameter values are taken from as well as from (Amori et al. 2008;
Barbara et al. 2018; La Morgia and Venturino 2017).

Formortalities, the average lifetimes are taken from (Amori et al. 2008), and give for
Lepus europaeus a range of 5–6years, for Sylvilagus floridanus it is about 15months,
with individuals living up to 5years, and forVulpes vulpes it seldom exceeds 3–4years.
We therefore take the following averages

m = 1

3.5
= 0.28571, n = 1

1.25
= 0.80000, p = 1

5.5
= 0.18182. (16)

For the conversion coefficient e, i.e. the benefit that foxes obtain hunting their prey,
as mentioned in Introduction, we set e = 0.91.
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To assess the reproduction rate rP for a generic population P , we consider the
following equation:

Ṗ = rP P

whose solution is:

P(t) = erP t P(0).

Now, each female foxgives to life an averageof 4 offsprings so that the foxes population
will triplicate in 1year: P(1) = 3P(0). The foxes population growth is thus obtained
solving 3P(0) = er P(0) for r and obtaining r = log 3. Data on the densities of fox
populations in Italy are scanty. They probably range between 1.0-2.5 foxes per km2

(Boitani and Prigioni 2003). Here we use a conservative value of 1.0 fox per km2.
Using (16) and solving for the intraspecific competition term from the equilibrium
E1, we find

cVV = log 3 − 1

3.5
= 0.81290.

For the cottontails, the biologist data indicate that the cottontails population in
Northern Italy after the reproductive period increases 4.5 times; this of course already
discounts mortality, so that we can take P(1) = 4.5P(0), giving s = log 4.5. The
maximum density recorded in lowland in Piedmont, the same region where the study
of Cerri et al. (2017)was performed, is 110 cottontails per km2 (Bertolino et al. 2011a).
Since this value was only from an area, we use instead 100 cottontails per km2. We
then find the intraspecific competition coefficient from the equilibrium E2 and (16),

cSS = 1

100

[
log 4.5 − 1

1.25

]
= 0.0070408.

The hares reproduction is highly variable; each female can give birth to 1–4 (with
a mean of 2.6) juveniles and reproduces 2–5 times a year. We considered a mean of
2.6 juveniles with 3 reproductions and an annual output of 8 young ones. Hence, the
population quintuplicates in 1year, P(1) = 5P(0); we thus set the reproduction as
u = log 5. The carrying capacity for the European hare is 26–40 hares per km2 in
territories with a good suitability (Pandini et al. 1998), i.e. mixed crops with wheat,
meadows and other cultures. Taking 30 hares per km2 and combining E4 with (16),
we thus find the intraspecific competition rate

cLL = 1

30

[
log 5 − 1

5.5

]
= 0.047587.
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Table 3 The fixed parameter
values used in all the simulations

Species Parameters Values

r log 3

Foxes m 2
7

cV V log(3) − 2
7

e 0.91

s log 4.5

Cottontails n 4
5

cSS
log(4,5)
100 − 4

500

u log 5

Hares p 2
11

cLL
log(5)
30 − 2

330

5.2 The Bifurcations Chains

We provide now a few figures that relate some of the transcritical bifurcations to each
other, where the transitions between one equilibrium and the next one depend on one
specific model parameter. The parameter reference values are those of Table 3. For
each case instead we provide the remaining parameters.

The transition E7 − E3 − E7 − E5
Taking as bifurcation parameter a, the hunting rate on cottontails, for its increasing

values we find three bifurcations, located at

a13,7 = 1.0078, a23,7 = 2.0762, a5,7 = 4.8392.

The remaining parameter values are here

b = 3.3, V (0) = 0.1, S(0) = 10, L(0) = 3. (17)

In turn, the three-species interaction moves from coexistence, to the point where hares
vanish, to coexistence again, and finally to the foxes–hares subsystem, see Fig. 2.

The transition E5 − E1
Here the bifurcation parameter is b, the hunting rate on hares, in the range [16, 22].

For its increasing values, the three-species system moves from coexistence of both
foxes and hares to the situation in which only foxes thrive, in view of the possibility
of using other food supplies, Fig. 3. The specific parameter values are:

a = 29, V (0) = 0.1, S(0) = 10, L(0) = 3. (18)

The transition E3 − E1
Taking again a as an increasing bifurcation parameter, the three-species system

moves from foxes–cottontails coexistence, to the point at which only foxes thrive,
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Fig. 2 (Color Figure Online) For
small values of a, we find
coexistence, equilibrium E7,
then at a13,7 = 1.0078 the hares
vanish giving equilibrium E3,
subsequently in the interval
[a23,7 = 2.0762, a5,7 = 4.8392]
hares reappear, and coexistence
is re-established. Finally, for
values of a exceeding
a5,7 = 4.8392, cottontails are
wiped out and the system attains
equilibrium E5 (Color Figure
Online)
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0
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12
Foxes
Cottontails
Hares

Fig. 3 (Color Figure Online)
Initially for b ≈ 16, we find
equilibrium E5 where both
foxes and hares coexist. Past the
critical value b1,5 = 19.1891,
hares are wiped out, and only
foxes survive at equilibrium E1
(Color Figure Online)
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Fig. 4 (Color Figure Online)
Low values of a give
equilibrium E3 where both
foxes and cottontails coexist. At
the threshold a1,3 = 17.9329,
cottontails vanish and only foxes
remain, at equilibrium E1 (Color
Figure Online)
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Fig. 4. Parameter values used:

b = 40, V (0) = 0.1, S(0) = 10, L(0) = 3. (19)

The transition E7 − E5 − E7 − E3
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Fig. 5 (Color Figure Online) For
b small, coexistence is obtained,
equilibrium E7. At
b15,7 = 1.6581 cottontails
disappear, leaving hares and
foxes in the environment, then at
b25,7 = 3.6921 they reappear, so
that coexistence of the three
species is re-established, finally
at b7,3 = 5.7296 the hares are
wiped out, and cottontails thrive
together with foxes (Color
Figure Online)
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Here we take once more the hunting rate on hares b as varying parameter, Fig. 5.
There are three critical values,

b15,7 = 1.6581, b25,7 = 3.6921, b3,7 = 5.7296

for which the three-species system moves from coexistence to the hares–foxes sub-
system, to coexistence again, and finally to the cottontails–foxes subsystem. The
remaining parameters here are:

a = 5, V (0) = 0.1, S(0) = 10, L(0) = 3. (20)

The transition E5 − E7 − E3
The bifurcation parameter b, the predation rate on hares, in the interval [3, 7]

generates the bifurcations for which the system undergoes a transition from E5, the
cottontails-free equilibrium, to E7, coexistence, and finally to E3, the hares-free point,
Fig. 6. The other parameters are:

a = 5, V (0) = 0.1, S(0) = 10, L(0) = 3. (21)

Note that this trend is biologically interesting, because it reflects a possible
behaviour observed in the field studies. Indeed, in the areas under observation, the
cottontails are an invasive species that modified the natural predator–prey dynam-
ics. The results of the field study (Cerri et al. 2017) indicate that a larger cottontails
population drives hares to extinction. As it can be seen from Fig. 6, increasing the
predation rate on hares, the cottontails population increases and finally replaces the
hares, because the latter are subject to an increasing hunting rate by the foxes, and are
therefore driven to extinction.

6 Discussion

The question raised in Introduction has therefore an answer.
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Fig. 6 (Color Figure Online)
Small values of b deprive the
three-species system from the
cottontails, equilibrium E5. At
about b5,7 = 3.6921, cottontails
invade the system and
coexistence is established,
equilibrium E7. For higher
values of the hunting rate on
hares, namely b3,7 = 5.7296
approximately, hares are wiped
out (Color Figure Online)
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Fig. 7 (Color Figure Online) As the cottontails invade, the hares are progressively wiped out by the foxes.
Left: the long-range behaviour; Right: zoom for the initial stages of the invasion (Color Figure Online)

Note that with the parameter values

a = 0.2, b = 3.0, V (0) = 0.1, S(0) = 2, L(0) = 1 (22)

the invasion mechanism becomes apparent. The cottontail population increases
steadily, and following it, also the foxes attain higher population values. In turn, their
damage to the hares increases, with the latter dropping and finally becoming extinct,
see Fig. 7. In particular in the figure one can observe that while the cottontail popula-
tion invades, growing from low values at the early times to a larger population around
time t = 0.4, the foxes population also raises up. Thus, their pressure on their prey
increases, but the hares suffer more, their numbers decrease and eventually they are
wiped out. Note that this happens even though the predation rate on cottontails exceeds
the one on hares, b = 3.5 > a = 1.5.

To further and strengthen our analysis, we try to relate our findings to the ones
coming from field observations in Cerri et al. (2017). In particular, we found a rela-
tionship between hares and foxes similar to the one described in the last three figures of
Cerri et al. (2017), by running a set of numerical simulations with randomly generated
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Fig. 8 (Color Figure Online) Logarithm of hares population versus foxes. Left to right and top to bottom,
each frame is related to higher values of cottontails densities. Specifically, top: 1 < S < 3, 3 < S < 5,
5 < S < 7; bottom: 7 < S < 9, 9 < S < 11, 11 < S < 13 (Color Figure Online)

parameter values, so as to mimic the outcome of the field data gathered over an 8year
timespan.

We thus ran 500 simulations of the model (1), taking uniform random values for all
the parameters, located in intervals of semiwidth 9% above and below the reference
values of Table 3 supplemented by the values indicated here:

a = 0.2, b = 0.5, V (0) = 0.4, S(0) = 1, L(0) = 3. (23)

The steady states were then evaluated and recorded for each simulation, together
with the respective parameter values that generated them. Finally, regression lines
were evaluated, and the results plotted again for the logarithm of the hares population
versus the foxes. Two selected such results are reported in Figs. 8, 9, corresponding
to two different random parameter choices. The various frames, left to right, report
the findings for increasing values of the cottontails density. The plots represent the
logarithm of the hares populations versus the foxes. There is a remarkable resemblance
with the analogous plot obtained by the field data and reported in Cerri et al. (2017).

The transition E7 − E3 − E7 − E5 shows a situation where the hunting rate of
foxes on cottontails is not limited and continues to increase over time. In this case,
the system moves from an initial situation where predation of foxes on the introduced
species is limited and the three species coexist to a final outcome where cottontails are
wiped out and only the two native species remain. Such a situation would be positive
for biodiversity because a native predator would thrive to extinction the introduced
lagomorph.However, the red fox is a generalist predator, (Soe et al. 2017), and although
the cottontails became an important prey of foxes in Italy (Balestrieri et al. 2006),
the availability of many other food resources (e.g. rodents, insects, fruits) probably
prevents the predator from increasing the predation rate beyond a certain limit.
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Fig. 9 (Color Figure Online) Logarithm of hares population versus foxes. Left to right and top to bottom,
each frame is related to higher values of cottontails densities. Specifically, top: 1 < S < 3, 3 < S < 5,
5 < S < 7; bottom: 7 < S < 9, 9 < S < 11, 11 < S < 13 (Color Figure Online)

Conversely with the transition E7−E5−E7−E3, the hare declines rapidly starting
from a very high and unrealistic density. The cottontail goes extinct and then recovers
when the hare is at low density. This would indicate a strong predation pressure on the
hare and a competitive effect of hares on cottontails, which can recolonize the area
only when the hare is at low density. It is known that the fox cannot limit hares so
drastically and that hares do not exclude cottontails (Bertolino et al. 2011a).

The transitions E5 − E1 and E3 − E1 indicate that the fox predation pressure on
cottontails and hares is so high as to bring the two prey species to extinction. This
situation is not supported by earlier field research. In areas where only the two native
species are present, the hare is one of the food sources for foxes. However, predation
is not considered to be a limiting factor for the lagomorph (Boitani and Prigioni 2003;
Cerri et al. 2017). Indeed, in places where the hare has disappeared and the cottontail is
the only widespread lagomorph, the American species becomes a main prey of foxes,
but populations survive due to their high reproduction rates (Balestrieri et al. 2006).

The transition E5−E7−E3 better reflects the results of previous research (Cerri et al.
2017). The system undergoes a transition from an alien species-free system to a one
invaded by the introduced cottontail; subsequently, it evolves to a coexistence regime
between the three species and finally the hare becomes extinct. For the parameter
values (22), the simulations of this model show an agreement with the invasion process
recorded on the field (Cerri et al. 2017). The simulation in Fig. 7 describes the invasion
of an area by cottontail with a rapid increase in its population and a benefit for foxes
that exploit this new prey and in turn increase their density. The predation pressure on
both the hares and the cottontails consequently increases, but the hares suffer more
and eventually go extinct. The cottontail better supports the higher foxes predation
rate, due to its higher reproductive output (Chapman et al. 1980).
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7 Conclusion

In this work we were able to simulate a three-species system composed of two prey
species, one native and one introduced, and their relations with a native predator.
Our results mathematically describe the negative effect on the native European hare
after the introduction of the invasive Eastern cottontail, mediated by an increased
predation rate by foxes (Cerri et al. 2017). In Cerri et al. (2017) two nonexclusive
hypotheses were discussed to explain the pattern observedwhen cottontail populations
increase. In the first hypothesis, an increase in cottontail abundance would lead to a
numerical response of foxes, magnifying their predatory impact on hares (a sort of
“hyperpredation”, a particular case of apparent competition). The second hypothesis
assumes that cottontails attract foxes in patches of permanent cover where they live.
Since these habitats are also important resting sites for adult and young hares (Boitani
and Prigioni 2003), an increased presence of foxes is likely to result in a higher
predation risk for hares. Our simulation describes an increase in foxes’ densities after
the invasion of cottontail, supporting the first hypothesis from Cerri et al. (2017) based
on a hyperpredation of increasing fox populations on native hares.
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Appendix

Boundedness details
For an arbitrary η > 0, using the equations in (1), we have

dA

dt
+ ηA =V (r − m + η − cVV V ) + S (s − n + η − cSS S) + aSV (e − 1)

+ L (u − p + η − cLL L) + bLV (e − 1).

Taking e < 1 and evaluating the maxima Vm , Sm , Lm of the three parabolae on the
right, we, respectively, obtain

Vm := 1

4cVV
(r−m+η)2, Sm := 1

4cSS
(s−n+η)2, Lm := 1

4cLL
(u − p + η)2.
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Thus, the upper bound is found for which

dA

dt
+ ηA ≤ Vm + Sm + Lm = C . (24)

Upon integration of this differential inequality, the final desired bound is obtained:

A(t) ≤ max

{
C

η
, A(0)

}
.

Global stability details
Equilibrium E0 In this case we set

L0 = cV + gS + f L

where c, g and f are arbitrary positive coefficients. Differentiating L0 with respect to
time, we obtain, recalling (15),

dL0

dt
= c

dV

dt
+ g

dS

dt
+ f

dL

dt
= PT AP + cV (r − m) + gS(s − n) + f L(u − p)

≤ PT AP

where the last inequality follows on using the stability conditions (2). Now, choosing
f = g = e and c = 1, A becomes diagonal, with negative eigenvalues; hence, it is
negative definite as required.

Equilibrium E1 Here we set

L1 = cV1

(
V − V1

V1
− ln

(
1 + V − V1

V1

))
+ gS + f L.

Upon differentiation, we find

dL1

dt
= c

dV

dt
− c

V1
V

dV

dt
+ g

dS

dt
+ f

dL

dt
= PT AP + gS(s − n − aV1) + f L(u − p − bV1) ≤ PT AP,

having used the stability conditions (4) in the last step. Choosing f = g = e and
c = 1, A is seen to have negative eigenvalues, and in turn is negative definite. Global
stability of E1 therefore follows.

Equilibrium E2 The candidate function is

L2 = cV + gS2

(
S − S2
S2

− ln

(
1 + S − S2

S2

))
+ f L

123



51 Page 22 of 28 E. Caudera et al.

and its differentiation gives

dL2

dt
= c

dV

dt
+ g

dS

dt
− g

S2
S

dS

dt
+ f

dL

dt
= PT AP + cV (r − m + eaS2) + f L(u − p) ≤ PT AP,

which follows using (5). Negative definiteness is then obtained by the choice f =
g = e and c = 1.

Equilibrium E3 We now set

L3 = cV3

(
V − V3

V3
− ln

(
1 + V − V3

V3

))

+ gS3

(
S − S3
S3

− ln

(
1 + S − S3

S3

))
+ f L

Differentiating with the help of (8), we obtain

dL3

dt
= c

dV

dt
− c

V3
V

dV

dt
+ g

dS

dt

− g
S3
S

dS

dt
+ f

dL

dt
= PT AP + f L(u − p − bV3) ≤ PT AP.

Choosing f = g = e and c = 1, A turns to be negative definite.
Equilibrium E4 We now choose

L4 = cV + gS + f L4

(
L − L4

L4
− ln

(
1 + L − L4

L4

))

which, together with (6), gives

dL4

dt
= c

dV

dt
+ g

dS

dt
+ f

dL

dt

− f
L4

L

dL

dt
= PT AP + cV (r − m + ebL4) + gS(s − n) ≤ PT AP.

Global stability follows by setting f = g = e and c = 1.
Equilibrium E5 The candidate Lyapunov function here is set as follows:

L5 = cV5

(
V − V5

V5
− ln

(
1 + V − V5

V5

))

+ gS + f L5

(
L − L5

L5
− ln

(
1 + L − L5

L5

))
.
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Differentiating and using (10), we obtain

dL5

dt
= c

dV

dt
− c

V5
V

dV

dt
+ g

dS

dt

+ f
dL

dt
− f

L5

L

dL

dt
= PT AP + gS(s − n − aV5) ≤ PT AP.

Global stability now follows by setting f = g = e and c = 1.
Equilibrium E6 In this case the candidate is

L6 = cV + gS6

(
S − S6
S6

− ln

(
1 + S − S6

S6

))

+ f L6

(
L − L6

L6
− ln

(
1 + L − L6

L6

))

so that, using (12),

dL6

dt
= c

dV

dt
+ g

dS

dt
− g

S6
S

dS

dt

+ f
dL

dt
− f

L6

L

dL

dt
= PT AP + cV (r − m + eaS6 + ebL6) ≤ PT AP.

We finally choose f = g = e and c = 1 to obtain negative definiteness.
Equilibrium E7 The candidate function is here

L7 = cV7

(
V − V7

V7
− ln

(
1 + V − V7

V7

))
+ gS7

(
S − S7
S7

− ln

(
1 + S − S7

S7

))

+ f L7

(
L − L7

L7
− ln

(
1 + L − L7

L7

))

giving

dL7

dt
= c

dV

dt
− c

V7
V

dV

dt
+ g

dS

dt

− g
S7
S

dS

dt
+ f s

dL

dt
− f

L7

L

dL

dt
= PT AP.

The choice f = g = e and c = 1 renders A negative definite, and thus, global stability
is achieved.

Bifurcations
Bifurcation E0 − E1 At E0, imposing the critical value r0,1 = m, one eigenvalue

vanishes and E0 = E1. Now v = (1, 0, 0)T is the eigenvector of J (E0, r0,1),

J (E0, r0,1) =
⎡
⎣
0 0 0
0 s − n 0
0 0 u − p

⎤
⎦
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while w = (1, 0, 0)T is the one of [J (E0, r0,1)]T . A transcritical bifurcation then
exists between E0 and E1 for r0,1 = m in view of:

Fr (E0, r0,1) = (0, 0, 0)T , wT Fr (E0, r0,1) = 0,

wT (DFrv) = 1 �= 0, wT (D2F(E0, r0,1)(v, v)) = −2cVV �= 0.

Bifurcation E0 − E2 Here we impose the threshold value s0,2 = n, to get a
vanishing eigenvalue and E0 = E2. The eigenvectors of J (E0, s0,2) and its transpose
are, respectively, v = (0, 1, 0)T andw = (0, 1, 0)T . A transcritical bifurcation occurs
because of

Fs(E0, s0,2) = (0, 0, 0)T , wT Fs(E0, s0,2) = 0,

wT (DFsv) = 1 �= 0, wT (D2F(E0, s0,2)(v, v)) = −2cSS �= 0.

Bifurcation E0 − E3 In this case we set u0,4 = p and find E0 = E4. The
required eigenvalues of J (E0, u = p) and [J (E0, u0,4)]T are v = (0, 0, 1)T and
w = (0, 0, 1)T . The transcritical bifurcation arises in view of

Fu(E0, u0,4) = (0, 0, 0)T , wT Fu(E0, u0,4) = 0,

wT (DFuv) = 1 �= 0, wT (D2F(E0, u0,4)(v, v)) = −2cLL �= 0.

Bifurcation E1 − E3 To verify the transcritical bifurcation in this case to have
E1 = E3, we set

a1,3 = s − n

V1
= cVV

s − n

r − m
.

The required eigenvectors are then v = (e(s − n), r − m, 0)T and w = (0, 1, 0)T ,
and the following conditions hold:

Fa(E1, a1,3)=(0, 0, 0)T , wT Fa(E1, a1,3)=0, wT (DFav)=−V1(r − m) �= 0,

wT (D2F(E1, a1,3)(v, v)) = (r − m) [−2cSS(r − m) − 2ae(s − n)]|E1,a1,3=0

= −2cSS(r − m)2 �= 0,

wT (D2F(E1, a1,3)(v, v)) = −ae(s − n)(r − m) − 2cSS(r − m)2 �= 0.

Bifurcation E1 − E5 To get E1 = E5, let

b1,5 = u − p

V1
= cVV

u − p

r − m
.

The eigenvectors of the Jacobian and its transpose at this point with the parameter
choice b = b1,5 are, respectively, v = (e(u − p), 0, r −m)T and w = (0, 0, 1)T . The
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transcritical bifurcation is obtained in view of the conditions

Fb(E1, b1,5) = (0, 0, 0)T , wT Fb(E1, b1,5) = 0, wT (DFbv) = −V1(r − m) �= 0,

wT (D2F(E1, b1,5)(v, v)) = −2(r − m) [be(u − p) + cLL(r − m)]|E1,b1,5=0

= −2cLL(r − m)2 �= 0.

Bifurcation E2 − E3 Here to obtain E2 = E3 we choose a2,3 = (m − r)(eS2)−1

and find the eigenvectors v = (e(n − s), r − m, 0)T and w = (1, 0, 0)T , as well as
the conditions

Fa(E2, a2,3) = (0, 0, 0)T , wT Fa(E2, a2,3) = 0, wT (DFav) = e2S2(n − s) �= 0,

wT (D2F(E2, a2,3)(v, v)) = [−2cVV v21 + 2aev1v2]
∣∣∣
E2,a2,3=0

= [−2cVV e
2(n − s)2 + 2ae(n − s)(r − m)]

∣∣∣
E2,a2,3=0

= −2cVV e
2(n − s)2 �= 0

This indicates once more that a transcritical bifurcation indeed arises between these
points.

Bifurcation E2 − E6 Considering u2,6 = u0,4 = p, we have E2 = E6 and the
eigenvectors v = (0, 0, 1)T and w = (0, 0, 1)T , and the conditions

Fu(E2, u2,6) = (0, 0, 0)T , wT Fu(E2, u2,6) = 0,

wT (DFuv) = 1 �= 0, wT (D2F(E2, u2,6)(v, v)) = −2cLL �= 0,

thus showing the occurrence of the transcritical bifurcation.
Bifurcation E3 − E7 To have E3 = E7, set b3,7 = (u − p)V−1

3 and obtain the
following eigenvectors: v = (2cSSeb,−abe, 4cV V cSS + a2e)T and w = (0, 0, 1)T .
The conditions for a transcritical bifurcation are then satisfied:

Fb(E3, b3,7) = (0, 0, 0)T , wT Fb(E3, b3,7) = 0,

wT (DFbv) = −V3v3 = −V3[4cV V cSS + a2e] �= 0,

wT (D2F(E3, b3,7)(v, v)) = −2b3,7v1v3 − 2cLLv23 = −2cLLv23 �= 0.

Bifurcation E4 − E5 Choosing b4,5 = (m − r)(eL4)
−1 we obtain E4 = E5 and

the eigenvectors v = (cLL , 0,−b)T and w = (1, 0, 0)T , as well as the conditions for
the transcritical bifurcation:

Fb(E4, b4,5) = (0, 0, 0)T , wT Fb(E4, b4,5) = 0, wT (DFbv) = e(u − p) �= 0,

wT (D2F(E4, b4,5)(v, v)) = v1[−2cVV v1 + 2eb4,5v3] = −2cVV c
2
LL �= 0.

Bifurcation E4 − E6 Here we take s4,6 = n to have E4 = E6, with the eigenvec-
tors v = (0, 1, 0)T and w = (0, 1, 0)T . The conditions that ensure the transcritical
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bifurcation are seen to hold:

Fs(E4, s4,6) = (0, 0, 0)T , wT Fs(E4, s4,6) = 0,

wT (DFsv) = 1 �= 0, wT (D2F(E4, s4,6)(v, v)) = −2cSS �= 0.

Bifurcation E5 − E7 The choice a5,7 = (s − n)V−1
5 returns E5 = E7 and the

eigenvectors

v = (aecLL , cV V cLL + b2e,−abe)T , w = (0, 1, 0)T .

The conditions for the transcritical bifurcation are satisfied:

Fa(E5, a5,7) = (0, 0, 0)T , wT Fa(E5, a5,7) = 0,

wT (DFav) = −V5(cVV cLL + b2e) = be(u − p) + cLL(r − m) �= 0,

wT (D2F(E5, a5,7)(v, v)) = −2av1v2 − 2cSSv
2
2 = −2v2[av1 + cSSv2] �= 0.

Bifurcation E6 − E7 In this case taking

b6,7 = m − r

eL6
− aS6

L6

which gives the eigenvectors

v = (cSScLL ,−acLL ,−bcSS)
T , w = (1, 0, 0)T

the conditions for the transcritical bifurcation are satisfied

Fb(E6, b6,7) = (0, 0, 0)T , wT Fb(E6, b6,7) = 0,

wT (DFbv) = eL6v1 = ecSS(u − p) �= 0,

wT (D2F(E6, b6,7)(v, v)) = 2v1[−cVV v1 + aev2 + eb6,7v3]
= −2v1

[
cVV cSScLL + a2ecLL

]

= −2cSScLL
[
cVV cSScLL + a2ecLL

]
�= 0.
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