
Bulletin of Mathematical Biology (2021) 83:36
https://doi.org/10.1007/s11538-021-00865-9

ORIG INAL ART ICLE

AModel to Investigate the Impact of Farm Practice on
Antimicrobial Resistance in UK Dairy Farms

Christopher W. Lanyon1 · John R. King1 · Dov J. Stekel2 · Rachel L. Gomes3

Received: 3 June 2020 / Accepted: 3 February 2021 / Published online: 1 March 2021
© The Author(s) 2021

Abstract
The ecological and human health impact of antibiotic use and the related antimicro-
bial resistance (AMR) in animal husbandry is poorly understood. In many countries,
there has been considerable pressure to reduce overall antibiotic use in agriculture
or to cease or minimise use of human critical antibiotics. However, a more nuanced
approach would consider the differential impact of use of different antibiotic classes;
for example, it is not known whether reduced use of bacteriostatic or bacteriolytic
classes of antibiotics would be of greater value. We have developed an ordinary dif-
ferential equation model to investigate the effects of farm practice on the spread and
persistence of AMR in the dairy slurry tank environment. We model the chemical
fate of bacteriolytic and bacteriostatic antibiotics within the slurry and their effect on
a population of bacteria, which are capable of resistance to both types of antibiotic.
Through our analysis, we find that changing the rate at which a slurry tank is emptied
may delay the proliferation of multidrug-resistant bacteria by up to five years depend-
ing on conditions. This finding has implications for farming practice and the policies
that influence waste management practices. We also find that, within our model, the
development of multidrug resistance is particularly sensitive to the use of bacteriolytic
antibiotics, rather than bacteriostatic antibiotics, and this may be cause for controlling
the usage of bacteriolytic antibiotics in agriculture.
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1 Introduction

Antimicrobial resistance (AMR) has long been recognised as a threat to environmen-
tal, animal and human health. Recent analysis predicts that by 2050 our inability to
treat previously curable diseases will lead to more deaths than cancer (O’Neill 2015).
Beyond healthcare, human use of antibiotics means that AMR is now highly prevalent
in agriculture and the environment. Though AMR persists at low levels in nature, it
is particularly prevalent in circumstances where large quantities of antimicrobials or
antibiotics are present, for example in antibiotic manufacturing effluent (Lateef 2004;
Cardoso et al. 2014) municipal sewage (Li et al. 2009, 2010) and agricultural runoff
(Kümmerer 2004), all of which are sources of AMR to the environment (Berendonk
et al. 2015; Thanner et al. 2016).

The human health impact of antimicrobial use in agriculture is poorly understood
(Thanner et al. 2016), despite agricultural usage accounting for around 44% of antibi-
otics by weight in the UK and an estimated 70% in the USA (Department of Health
2014; O’Neill 2015). It has also been shown that the use of antimicrobial agents in
agriculture affects the human resistome (Witte 1998; Smith et al. 2002). Furthermore,
there is evidence that animal husbandry can directly impact the commensal flora of
farmers (Aubry-Damon et al. 2004). In the case of colistin, a so-called last-line or
last-resort antibiotic (Nation and Li 2009; Chaudhary 2016), there is evidence that
the resistance gene mcr-1 has been transferred to human populations as a result of
agricultural use (Liu et al. 2016). This prompts the need for more in-depth research
into the effects of farm practice and antibiotic usage on the development of AMR in
the farming and recipient environments.

In this paper, we focus on the dairy farm slurry tank, a repository for dairy farm
wastewater including bovine faeces and urine, parlour washings, waste milk and waste
footbath contents. Antimicrobial resistance genes (ARGs), antimicrobial resistant
microbes (ARBs) and antibiotics are discharged by cows (Zhou et al. 2013; Chambers
et al. 2015); combining this with the natural presence of bacteria means that the slurry
tank is potentially a site for the development and proliferation of AMR. Slurry from
the tank is spread onto soils used to grow human and livestock crops.

Cows are treated by vets for illnesses such as mastitis with antibiotics which are
often not fully metabolised by the body and are then passed in urine and faeces either
unaltered or as active metabolites (Hillerton and Berry 2003; Massé et al. 2014).
For example the antibiotic oxytetracycline, used to treat mastitis (MacDiarmid 1978;
Erskine et al. 1994; Pyörälä 2009), has been found in concentrations between 0.5 and
200 mg l−1 in cow manure (Massé et al. 2014). Dairy manure has also been found
to host ARGs related to tetracycline, beta-lactam, kanamycin and chloramphenicol
resistance (Wichmann et al. 2014). Contaminated urine, faeces and any milk produced
during the treatment period are added to the slurry tank. Additionally, footbaths, once
used, are added to the tank (Williams et al. 2019) along with any run-off from parlour
washings (AHDB Dairy 2019). These footbaths may contain heavy metals such as
copper and zinc and bacteriocides such as formalin (Cornelisse et al. 1982). In nitrate-
vulnerable zones (NVZ) slurry (and other organic manures) can be used as a fertiliser
and spread on soils used to grow both human and livestock food crops between 1st
February and 31st October each year, potentially creating a transmission vector for
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AMR into the human population (Singer et al. 2016). NVZs make up around 55% of
land in the UK (European Community 2001; Department for Environment, Food and
Rural Affairs 2018; Department of Agriculture, Environment and Rural Affairs 2019;
Department of Health 2017). Agricultural land not deemed to be in an NVZ may have
more lenient spreading restrictions.

As farm slurry spread on agricultural land may be a route for pathogens into the
human food chain (Nicholson et al. 2005), the extent to which the slurry tank envi-
ronment drives the development and spread of AMR is of particular interest from a
human health perspective. A greater understanding of on-farm dynamics is also impor-
tant for effecting policy change to better protect against the risks of AMR developing
within agriculture. Though there is government policy in place intended to combat
the development of agricultural AMR, it is mostly concerned with the reduction of
antibiotic use, which is a high priority (Post Report 588 2018). For example, in the
UK (and EU), antibiotics cannot be used as growth promoters (Castanon Jan 2007;
Maron et al. 2013; Hao et al. 2014). Furthermore, in 2018 the EU approved legislation
banning the use of antibiotics as prophylactics in farming, to come into force in 2022
(FarmingMonthly 2018). The existing UK policy around slurry storage and spreading
is generally intended to manage soil nutrient levels (Department of Agriculture, Envi-
ronment and Rural Affairs 2019) and not AMR, despite the fact that there is evidence
that run-off from farms and manure-fertilised fields may result in the contamination
of the local environment (Swift et al. 2019). The Food Standards Agency (FSA) pro-
vides guidance for slurry storage and management with the aim of reducing pathogen
transfer to ready to eat foods, though there is no mention of AMR and farmers are
not obligated to follow the guidance (Food Standards Agency 2009). Though the FSA
advises storing slurry for longer to reduce the number of pathogens in the tank, it is
not known what the effects of long storage times are on the prevalence and spread of
AMR. As policy influences farm practice, if there are slurry storage processes, such
as tank filling and emptying, which are increasing the risk of agricultural AMR, it is
important that they are understood so that policy can be put into place appropriately.

In the UK, the Responsible Use of Medicines in Agriculture Alliance (RUMA) set
a series of targets for reducing the use of antibiotics in eight sectors of agriculture
in 2017, including the dairy sector (RUMA 2017). These targets aim to both reduce
the total quantity of antibiotics used, and limit the use of antibiotics that are of a high
priority for human health. By the end of 2018, the dairy sector reported a 35% reduction
in total antibiotics used, bringing it under the proposed target of a 20% reduction by
2020. RUMA refer to this as “significant progress” (RUMA 2018) and also note that
both the beef and dairy networks formed stewardship groups that are working together
to efficiently manage antibiotic usage in cattle. Other sectors, such as pig farming, did
not meet their overall targets, but did limit the use of high-priority antibiotics (RUMA
2018). The recommended reductions are across the board. However, it may be that
reducing the use of certain classes of antibiotic has more effect on controlling the
development of AMR.

The antibiotics used in agriculture can be broadly defined as either bacteriolytic
(those that kill bacteria) and bacteriostatic (those that inhibit the reproduction of bac-
teria); it is possible that reducing one of these types may be an effective way of
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controlling AMR. This possibility has never been investigated before, and it is a key
part of this work to try and predict the differential impact of such potential reductions.

Mathematical modelling can be used to quickly and efficiently identify important
process factors using computer simulation. This is of particular relevance in agricul-
ture, since altering farming practice on working farms is often untenable. Particularly
in the case of slurry storage, where practical experiments may conflict with a farmer’s
needs, models can be used to simulate changes in farm practice over a number of years
without having to enact those changes. Furthermore, there is a lot of variability from
farm to farm, which makes easily adaptable models especially useful.

Existingmathematical models of AMR in agriculture oftenmodel the emergence of
a single resistant pathogen (or treat all pathogens as a homogenous group). The single
pathogen is often considered only in the context of a single antibiotic and does not take
into account the use of other antimicrobials or the wider environmental context which
is widely ignored, despite the fact that variables such as temperature and seasonality
affect the development of AMR (Dolliver et al. 2008; Sui et al. 2015). Existing agricul-
tural models can be split into two categories: those that model the effect of antibiotic
use in agriculture on humans and those that model the spread and prevalence of AMR
in agricultural systems. Epidemiological models have also been employed to mod-
elling the spread of agricultural AMR bacteria between humans (Smith et al. 2002;
VanBunnik andWoolhouse 2017). These conclude that the quantity of antibiotics used
in agriculture has little effect on the prevalence of AMR in humans. Smith et al. (2002)
also posit that agricultural antibiotic usage may hasten the development of AMR in
humans, despite having little effect on the prevalence of AMR in the human popula-
tion (Smith et al. 2002), while the reduction of human-animal AMR transmission has
been posited as a potential method for reducing AMR in humans (Van Bunnik and
Woolhouse 2017). The work of Volkova et al. (2012) and Baker et al. (2016) models
the spread and prevalence of AMR in cow stomachs and dairy slurry tanks, respec-
tively. In these models the variable of interest is the level of resistant bacteria within
the system; both conclude that one of the biggest factors for AMR prevalence is the
rate of transfer of resistance genes between microbes.

Dairy slurry tanks are replete with many different bacterial strains and various
different antibiotics. These antibiotics are generally either bacteriolytic or bacterio-
static and bacteria can acquire separate resistance methods for different antibiotics
via resistance plasmids (Bennett 2008). Multidrug resistance (MDR) is known to be
common in dairy slurry (Ibrahim et al. 2016). Little is currently known about whether
either type of antibiotic contributes more to the development of MDR. This prompts
the development of a mathematical model intended to predict the evolution of E. coli
within a slurry tank that are capable of both bacteriolytic and bacteriostatic resistance
and can be resistant to one or the other type of antibiotic, or resistant to both.

2 Materials andMethods

The ordinary differential equation (ODE)model detailed herewas designed to examine
the conditions under whichMDR bacteria are present, absent or dominant in the slurry
tank environment and, through sensitivity analysis, to identify process factors that
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contribute to the development of AMR and the relative importance of different classes
of antibiotics to the prevalence and spread of MDR.

Themodel draws on those developed byVolkova et al. (2012) andBaker et al. (2016)
but differs significantly in that it encompasses twice as many antibiotics and bacte-
rial strains, incorporates a mechanism for antibiotic-induced cell lysis, and explicitly
incorporates a tank filling and emptying regime, thus providing a more detailed model
of the dairy slurry tank system.

2.1 Model Assumptions

Our assumptions when designing this model aim to mimic the real-world scenario
while providing an appropriate level of simplification. We base our model on a farm
with a herd of approximately 200 dairy cows, with each cow producing approximately
63kg of waste per day (AHDB Dairy 2019).

We assume that the slurry in the tank is well mixed by a rotor mixer and operating
as a completely stirred tank reactor, meaning that bacteria, nutrients and antibiotics
are evenly distributed throughout the tank, as described by Baker et al. (2016). This
assumption eliminates any spatial element from the model, simplifying the equations
required to describe the dynamics. We also assume that the tank in the model is
uncovered (AHDB Dairy 2019) but that dilution by rainfall is negligible given the
volume of the reactor, so that the entirety of inflow to the tank is slurry from the farm
combined with other farm wastewater (parlour washings, waste footbath contents and
waste milk (AHDB Dairy 2019)) and that the inflow of slurry occurs at a constant
rate. For simplicity, the quantity of antibiotics, bacteria and the relative proportions
of resistant and susceptible bacteria in the inflow also remain constant. Antibiotic
inflow is assumed to occur at a constant rate due to regular veterinary prescriptions,
as in Baker et al. (2016). This is assumed true for both bacteriostatic and bacteriolytic
antibiotics.

We assume that both bacteriostatic and bacteriolytic antibiotics are deposited into
the tank (Economou and Gousia 2015). By combining certain veterinary antibiotics
their mode of action can be changed. For example, though trimethoprim is bacterio-
static, when combined with sulphonamides it becomes bacteriolytic (Masters 2016).
However, for simplicity, we assume that there is no interaction between the two antibi-
otics. For both antibiotics we assume that the rate of change of the concentration is
determined by three factors, inflow of antibiotic into the slurry tank, antibiotic degra-
dation and the changing volume of the tank.

We assume that the rate of change of concentration of each strain of E. coli depends
on population growth, following a logistic growth model (Edelstein-Keshet 2005);
acquisition of resistance genes via HGT (Davies and Davies 2010); natural cell death
(Ayscue et al. 2009); and antibiotic induced cell death (Spalding et al. 2018).
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2.2 Model Design and Parameterisation

2.2.1 The Slurry Tank

The volume of slurry within the tank (V (t)) is modelled with the equation

V (t) = V1 + Λ(t) − ω(t). (1)

where V1 is the initial volume of slurry in the tank,Λ(t) is the quantity of slurry flowing
into the tank and ω(t) is the quantity of slurry flowing out of the tank. For our initial
simulations we assume that the tank fills at a constant rate, has infinite capacity and is
never emptied, as a simple first case and following the Bakermodel Baker et al. (2016).
This gives Λ(t)=λt where λ is the rate of inflow and ω(t) = 0. We set λ = 613lh−1,
from a 200 cow herd. When slurry tanks are emptied, there is often a small amount
of slurry left in the tank, for consistency with Baker et al. (2016) we assume that the
minimum quantity of slurry in the tank is 150,000 l, so V (t) = 150, 000 + λt . Later
in our analysis alternative filling and emptying regimes are considered.

As slurry flows into the tank, the concentration of antibiotics and bacteria changes,
along with the volume of slurry within the tank. This is accounted for in the model by
a so-called volume change term:

− C(t)
Λ′(t)
V (t)

, (2)

whereC(t) is the concentration of some substance Q(t). This term can be derived from
an ODE for the quantity of Q(t) in the tank, where the change in Q(t) is determined
by some reaction term G(t), the influent rate of Q(t), I , and the effluent rate of Q(t),
given by ω′(t)Q(t)/V (t). The ODE for Q(t) is then given by

dQ

dt
= G(t)Q(t) + I − ω′(t)Q(t)

V (t)
. (3)

This is analogous to the ODE models used by Baker et al. (2016) and Volkova et al.
(2012). As C(t) is the concentration of Q(t), C(t) = Q(t)/V (t) and

dC

dt
= d

dt

(
Q(t)

V (t)

)
= Q′(t)V (t) − Q(t)V ′(t)

V 2(t)
= Q′(t)

V (t)
− C(t)

V ′(t)
V (t)

. (4)

Then, substituting in the known value of Q′(t) from Eq. 3 and the derivative of Eq. 1,

dC

dt
= G(t)Q(t) + I

V (t)
− C(t)

ω′(t)
V (t)

− C(t)
Λ′(t) − ω′(t)

V (t)
= G(t)C(t) + I

V (t)

−C(t)
Λ′(t)
V (t)

. (5)

The last term of Eq. 5 is the volume change term.
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2.2.2 Antibiotics

Though the modes of action of bacteriostatic and bacteriolytic antibiotics vary within
their respective classes, the resultant effects of each class remain the same. In the case
of bacteriostatic antibiotics, reproduction is inhibited, slowing population growth.
This is modelled by modifying a logistic growth term using a Hill function, following
Volkova et al. (2012) andBaker et al. (2016). Bacteriolytic antibiotics on the other hand
lead to cell death, which is modelled by incorporating a death term into the equations,
based on Michaelis–Menten kinetics (Spalding et al. 2018). We chose to include both
dynamics into our model, in order to analyse whether reproduction inhibition or cell
death had a greater effect on the development and survival of resistant bacteria.

We assume a total antibiotic inflow rate of 3422μgh−1 followingBaker et al. (2016).
For simplicity we assume that the total rate of antibiotic inflow is split evenly between
bacteriolytic and bacteriostatic antibiotics so that θs = θl = 1711μgh−1. We assume
that both bacteriostatic and bacteriolytic antibiotics undergo first order degradation
at constant rates (γs, γl , respectively) as described by Volkova et al. (2012); Baker
et al. (2016) and Spalding et al. (2018). Van Epps and Blaney (2016) found that the
half-life of the bacteriostatic antibiotic Oxytetracycline varied between 3 and 31 days
in beef and dairy cattle manure compost, specifically 9.8 and 17.7 days in the two
dairy manure samples. The antibiotic trimethoprim, which is bacteriostatic on its own
but becomes bacteriolytic in the presence of sulphonamides, with which it is often
combined, has a half-life in manure-amended soils varying between 2.3 and 197 days,
depending on soil type and whether the system was anaerobic or aerobic, in general
the half-life was shorter in the anaerobic case (Wu et al. 2012). Though the half-life of
cephalosporins (a widely used bacteriolytic antibiotic) has not been recorded in dairy
slurry, Jiang et al. (2010) found that cephalosporins have half-lives varying between
2.7 and 18.7 days in lake surface water. For simplicity we assume that both antibiotics
decay at the same rate and have a half-life of 10 days, equating to a rate of decay of
γs = γl = 0.0029 h−1. These parameters were allowed to vary independently during
sensitivity analysis.

2.2.3 Bacteria

For ourmodel we choseEscherichia coli (E. coli) as amodel organism.E. coli is found
in dairy cowmanure (Sawant et al. 2007), is a common cause of mastitis in dairy cows
(AHDBDairy 2020) and is often regarded as a sentinel organism for monitoring AMR
(Tadesse et al. 2012). However, there are likely high levels of microbial diversity in the
slurry tank and this model can easily be adjusted to simulate the growth of bacteria.

The growth of bacterial communities is classically modelled using logistic growth
(Edelstein-Keshet 2005). For our model, following Volkova et al. (2012); Baker et al.
(2016), we model microbial growth using a logistic growth term modified by a Hill
function, which accounts for the effects of bacteriostatic antibiotics. Cutler (2016)
found that the growth-rate of E. coli in manure-amended soils varied between 0.05
and 0.6 h−1; Kim et al. (2009) found that rifampin-resistant E. coli had a growth rate
of 0.33 h−1 in a 2:1 compost and water growth media; and Baker et al. (2016) note
that faster growth rates have been recorded in laboratory conditions (up to 0.9 h−1)
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by Godwin and Slater (1979) and Levin et al. (1979), and a value of 0.5 h−1 has
previously been used to model the growth of E. coli in activated sludge (Curds 1971).
Using this information and following Baker et al. (2016) we chose a value of r = 0.5
h−1 for the specific growth rate.

In themodel, bacteria can become resistant to either or both antibiotics, allowing for
the emergence of MDR (Davies and Davies 2010). Rather than considering stochastic
transfer events, we homogenise these into a constant rate of horizontal gene transfer
(HGT), after Baker et al. (2016). We assume that the strains of bacteria can acquire
new genetic elementswhich confer resistance throughHGT (Davies andDavies 2010).
We have simplified the plasmid and gene dynamics here, assuming that the relevant
genes for resistance to both antibiotics have become associated on a single mobile
genetic element (in the case of susceptible bacteria becoming multidrug resistant with
no intermediate resistances being acquired). We have also assumed that plasmids
carrying individual resistance genes are compatible (Novick 1987).

HGT is described in the model by adapting an approach from chemical reaction
kinetics. For a reaction of the type

A + B
k−→ B + C, (6)

where A and B are chemical reactants and C is the reaction product, the reaction
kinetics for the C can be described mathematically by employing the law of mass
action, which results in the differential equation

d[C]
dt

= k[A][B] (7)

where square brackets indicates the concentration of each chemical (Murray 2002).
Under the assumption that the conversion of susceptible bacteria to resistant bacteria
is irreversible, the interaction between the two microbial strains can be considered as
a reaction equation:

St + Rt
kβ−→ 2Rt , (8)

where St and Rt are the quantities in colony forming units (CFU) of susceptible and
resistant strains of bacteria, respectively, and kβ is the rate of HGT. Positing that this
applies to all three strains of resistant bacteria, using (7) implies a gene transfer term:

S(βs Rs + βl Rl + βu Ru) (9)

where S is the concentration of susceptible bacteria; Rs , Rl and Ru are the concen-
trations of bacteriostatic, bacteriolytic and multidrug-resistant bacteria, respectively;
and βs , βl and βu are the HGT rates for bacteriostatic, bacteriolytic and multidrug-
resistant bacteria, respectively, each with dimensions of l CFU−1 h−1. The three rates
of HGT, βs , βl and βu are all initially set to 10−14, based on the mass-action rates
of transfer given in Zhong et al. (2010), which are equivalent to between 10−12 and
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10−16 lCFU−1h−1. In Volkova et al. (2012); Baker et al. (2016), the HGT process is
modelled using a “force of transfer” term: βRN−1, where β is the rate of transfer,
R is the number of resistant bacteria, and N is the total number of bacteria. As in
Baker et al. (2016) the bacterial population quickly grows to reach carrying capacity,
βRN−1 ∼ βRμ−1. Our mass-action rate of transfer leads to the equivalent of an order
of magnitude smaller than the rates of HGT used by Volkova et al. (2012) and Baker
et al. (2016) (0.001 and 0.004, respectively) but well within the range of possible
values described in Baker et al. (2016). During sensitivity testing βu , βl and βs were
allowed to vary to investigate the impact of faster and slower genetic transfer.

Minimum inhibitory concentrations (MIC) vary greatly between antibiotics. For our
model we chose theMIC of bacteriostatic antibiotics, (MICs), to be 8μg l−1, based on
the size-adjusted MIC for trimethoprim, a bacteriostatic antibiotic used in agriculture
(Economou and Gousia 2015), reported by Bengtsson-Palme and Larsson (2016) and
slightly higher than the adjusted MIC for oxytetracycline, another commonly used
veterinary antibiotic. The MIC of bacteriolytic antibiotics (MICl ) is set to 4 μg l−1,
the size-adjusted MIC of bacteriolytic veterinary antibiotic ampicillin (Bengtsson-
Palme and Larsson 2016; Economou and Gousia 2015). This MIC is also a similar
order ofmagnitude to several cephalosporin antibiotics, bacteriolytic antibioticswhich
frequently used in agriculture (Bengtsson-Palme and Larsson 2016; Economou and
Gousia 2015).

We assume that bacteria incur a relative fitness cost for resistance to each type of
antibiotic (Melnyk et al. 2015).We assume that these costs, αs , αl and αu , are all equal,
i.e. no extra cost is incurred by multidrug-resistant bacteria, due either to selective
pressure reducing the cost of MDR, or the presence of a compensatory mutation.
Furthermore, the resistance fitness costs are all constant and within the range for E.
coli described in Melnyk et al. (2015) at αs = αl = αu = 0.1.

We assume that bacteria can die from both natural causes and from exposure to bac-
teriolytic antibiotics (Norcia et al. 1999). Following Ayscue et al. (2009), we assume
that natural death occurs at a constant rate and the natural death rate for susceptible and
resistant bacteria are denoted by δS/R , the proportional death rate per hour. Following
Jiang et al. (2002); McGee et al. (2001); Maule (2000) and (Ayscue et al. 2009), the
natural death rates for susceptible and resistant bacteria, δS and δR , are set to 0.001h−1.
For bacteria susceptible to bacteriolytic antibiotic, following Spalding et al. (2018),
the antibiotic induced death rate is described using Michaelis–Menten kinetics:

ΔA = δl
Al

MICl + Al
, (10)

where δl is the rate at which antibiotic kills bacteria at MIC, Al is the concentration
of bacteriolytic antibiotic and MICl is the minimum inhibitory concentration of the
bacteriolytic antibiotic. Initially the antibiotic induced death rate, δl , was set to 0.01 (at
the same order of magnitude as Spalding et al. (2018)’s initial parameter estimate of
0.06 h−1), corresponding to a lowdeath rate due to bacteriolytic antibiotic. However, as
enrofloxacin and penicillin are both used in dairy agriculture (Economou and Gousia
2015) and have δl ≈ 3 at eight times MIC in vitro (Norcia et al. 1999), δl was
subsequently varied between 0 and 3 during sensitivity analysis.

123



36 Page 10 of 31 C. W. Lanyon et al.

Baker et al. (2016) report E. coli concentrations between 2 and 6×104 CFU ml−1

in dairy slurry, consistently within the same range reported by Reinthaler et al. (2003).
Furthermore, the proportion of drug-resistant strains of E. coli in healthy lactating
dairy cows is estimated to be approximately 40% (Sawant et al. 2007). Using these
values, assuming there are no MDR bacteria present in the cows and once again
following Baker et al. (2016), we choose the concentration of bacteria in the inflow
to be ν = 6× 107CFUl−1 and and the proportions of bacteriostatic, bacteriolytic and
multidrug-resistant bacteria in the inflow, respectively, ρs = ρl = 0.2 and ρu = 0, so
that the total proportion of resistant bacteria in the inflow is 0.4.

Though temperature has been shown to affect the survival of pathogens in slurry,
Kearney et al. (1993) recorded no difference in E. coli population decimation time
between samples stored in 4◦C and 17◦C cattle slurry. Similarly Biswas et al. (2016)
showed that E. coli populations in slurry (which ranged between 30◦C and 50◦C)
had increased survivability at varying temperatures compared to Salmonella spp. and
Listeria monocyogenes, with E. coli populations only declining slightly over the incu-
bation period. Due to this we omit temperature dependence from our model, though
it may be important to have a temperature dependent death rate when modelling other
bacteria.

All parameter definitions and typical values are shown in Table 1.

2.3 Mathematical Model

The model is made up of six coupled differential equations, two of which describe the
concentrations of bacteriostatic and bacteriolytic antibiotics (As and Al ), respectively,
and four that describe susceptible (S), bacteriostatic-resistant (Rs), bacteriolytic-
resistant (Rl ) and multidrug-resistant (Ru) bacteria.

2.3.1 Model Equations

The equations for the antibiotics are as follows:

dAs

dt
= θs

V (t)︸ ︷︷ ︸
Inflow

−As

⎛
⎜⎜⎜⎝ γs︸︷︷︸

Degradation

+ Λ′(t)
V (t)︸ ︷︷ ︸

Volume change

⎞
⎟⎟⎟⎠ (11)

and, similarly,

dAl

dt
= θl

V (t)
− Al

(
γl + Λ′(t)

V (t)

)
. (12)

The ODEs for the four strains of bacteria are
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dS

dt
= r

(
1 − N

μ

)
ESS

︸ ︷︷ ︸
Modified logistic growth

−
Gene transfer︷ ︸︸ ︷

S(βs Rs + βl Rl + βu Ru) + Λ′(t)(1 − ρ)
ν

V (t)︸ ︷︷ ︸
Inflow

−

Volume︷ ︸︸ ︷
Λ′(t)S
V (t)

−

δS S︸︷︷︸
Natural death

−

Antibacterial death︷ ︸︸ ︷
δl S

Al

MICl + Al

(13)

dRs

dt
= r(1 − αs)

(
1 − N

μ

)
ER Rs + Rs(βs S − βl Rl − βu Ru)

+ Λ′(t)ρs
ν

V (t)
− Λ′(t)Rs

V (t)
−

δR Rs − δl Rs
Al

MICl + Al

(14)

dRl

dt
= r(1 − αl )

(
1 − N

μ

)
ES Rl + Rl (−βs Rs + βl S − βu Ru)

+Λ′(t)ρl
ν

V (t)
− Λ′(t)Rl

V (t)
− δR Rl (15)

and

dRu

dt
= r(1 − αu)

(
1 − N

μ

)
ERRu + Rs Rl(βs + βl)

+βu Ru(S + Rs + Rl) + Λ′(t)ρu
ν

V (t)
− Λ′(t)Ru

V (t)
− δR Ru . (16)

Here N , V (t), ES , ER , ρ and Λ are given by

N = S + Rs + Rl + Ru (17)

V (t) = V1 + Λ(t) − ω(t) (18)

ES = 1 − EmaxAH
s

MICH
s + AH

s

(19)

ER = 1 − EmaxAH
s

MICH
R + AH

s

(20)

ρ = ρs + ρl + ρu (21)

Λ(t) = λt . (22)

The initial conditions for bacteriolytic and bacteriostatic antibiotic are As(0) =
Al(0) = 0, respectively. Similarly, the initial conditions for the four strains of bacteria
are S(0) = Rs(0) = Rl(0) = Ru(0) = 0. The ODE45 MATLAB solver was used to
solve the equations in MATLAB_R2019a.
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Fig. 1 The model simulated
using standard parameter values,
as in Table 1
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Fig. 2 Plot of bacterial
concentration when the rate of
MDR transfer, βu , is zero
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3 Results and Discussion

Figure 1 shows a simulation of the model under standard parameter values as in
Table 1.After ten years, the proportion ofmultidrug-resistant bacteria is approximately
one and the number of bacteria in the tank has reached the carrying capacity. After
approximately one year, the tank is dominated by bacteriolytic-resistant bacteria and
the community of susceptible bacteria makes up around 5% of the total bacteria in
the tank. This is similar to the timescales in Baker et al. (2016), where susceptible
bacteria’s presence in the tank is negligible after 300 days. For completeness it should
be noted that the apparent steady state shown in Fig. 1 is unstable, but degrades slowly.
The stable steady state (susceptible bacteria dominating the tank) is not reached until
after 200 years. Furthermore, the addition of a regular emptying regime stabilises the
multidrug-resistant dominant state.

Certain scenarios using alternative parameter values have also been considered to
ensure the model behaves as expected. Figure 2 shows the bacterial concentrations
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Fig. 3 Plot of bacterial
concentration when the relative
cost of MDR, αu , is 0.2
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when the rate of multidrug-resistant gene transfer, βu , is equal to zero and the other
parameters are as in Table 1. Here we assume there is no mobile genetic element that
can directly transfer MDR to a bacterium, instead MDR can only be acquired through
the acquisition of the two separate genetic elements which confer bacteriostatic and
bacteriolytic resistance. This results in bacteriolytic-resistant bacteria dominating the
tank, while less than twenty percent of the bacterial population aremultidrug-resistant.
In this case a small proportion of the tank acquires MDR, while bacteriolytic bacteria
make up the greatest proportion in the tank. This simulation acts as a sense-check
for the model, as we would expect to see that MDR is less prevalent under these
conditions. However, it may not be particularly true to life. As we know that ARGs
accumulate on plasmids (Bennett 2008; Van Hoek et al. 2011) and that in the presence
of both types of antibiotic there is a biological advantage to acquiring both resistance
genes, it is very unlikely that βu would be zero.

Figure 3 shows the bacterial concentrations in the tank when the physiological cost
of maintaining MDR, αu , is increased from 0.1 to 0.2 to simulate stacking resistance
costs (i.e.αu = αl+αs).We have assumed up until this point that the physiological cost
of being resistant to a single antibiotic is the same as the physiological cost of being
resistant to both from a microbial growth perspective, as if MDR was accompanied
with a compensatory mutation which mitigated the cost of being resistant to both
antibiotics (Handel et al. 2006; Melnyk et al. 2015). It is also likely that there would
be selective pressure to keep the cost of resistance low. In this new scenario we assume
there is no compensatory mutation, so that being resistant to both strains of antibiotic
causes the relative fitness cost to the microbial population to double. In this scenario,
multidrug-resistant bacteria never become the dominant microbial strain the tank and
we see similar dynamics to those in Fig. 2 as bacteriolytic-resistant bacteria become
the dominant strain within the tank.
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3.1 Effects of Altering the Tank Emptying Regime

An aspect that differentiates the current model from previous ones is the inclusion of a
tank emptying. Thus far, the volume function, V (t) = V1 +λt , has been used (setting
the emptying term ω(t) = 0), following Baker et al. (2016), in effect simulating
an infinite capacity slurry tank. Instead consider a regular, instantaneous emptying
regime, whereby the tank fills for a set number of hours, τe, then is emptied to its
original volume (and not cleaned). If the tank is emptied completely and cleaned, this
is the equivalent of running the model up to time τe and then restarting it completely.
In this case it is possible to specify an acceptable resistant proportion within the
tank and choose τe such that the concentration of resistant E. coli never exceeds
that proportion. However, this is typically an unrealistic stewardship solution as tank
cleaning is costly, not advantageous to the role of the tank and can be a health and
safety risk. It also disregards the possible influence of resistant biofilms which could
be employing multiple resistance mechanisms (Mah and O’Toole 2001). With this in
mind we model emptying without cleaning and for simplicity assume that emptying
is instantaneous, so that

ω(t) = τefloor

(
t

τe

)
(23)

where τe is the time between tank emptyings, i.e.

V (t) = V1 + λt − ω(t) = V1 + λ(t mod (τe)) (24)

where mod is the modulo function, which finds the remainder when dividing one num-
ber by another. A range of V1 and τe values were chosen to simulate the conditions
in a farm slurry tank which has a capacity of three million litres. We simulated the
conditions for varying V1 and τe over 20 years, theminimum recommended lifespan of
a slurry store (Department for Environment, Food and Rural Affairs 2018). Changing
the emptying regime in this way leads to the final proportion of multidrug-resistant
bacteria varying between 0.976 and 0.992, so that multidrug-resistant bacteria domi-
nate the tank regardless of emptying regime.

However, implementing a seasonal emptying regime based on government guid-
ance for NVZs (every week 1st May to 31st October and every 90 days in the other
months, accounting both for the muck spreading closed period between October and
February and for those times when the land is more likely to be flooded or frozen
(European Community 2001; Department for Environment, Food and Rural Affairs
2018; Department of Agriculture, Environment and Rural Affairs 2019)) leads to
multidrug-resistant bacteria dominating the tank within 5 years, as shown in Fig. 4.
In the no-emptying case, it took 10 years for multidrug-resistant bacteria to dominate
the tank. Figure 5a shows the antibiotic concentration in the no-emptying case, and
Fig. 5b shows the antibiotic concentration in the seasonal emptying case. By emptying
the tank regularly, a higher concentration of antibiotic is maintained, driving up resis-
tance through environmental pressure. This indicates that implementing an emptying
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Fig. 4 Plot of bacterial
concentration when there is a
seasonal emptying regime
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regime has an effect on the speed at which MDR develops, despite having little effect
on the eventual proportion of multidrug-resistant bacteria in the tank.

By plotting the time at which multidrug-resistant bacteria make up 95% of the total
population it was possible to visualise the individual effects of the initial volume V1
and of the time to empty, τe. Figure 6 shows that as τe and V1 increase so does the
time to reach 95% MDR. This indicates that farm practice can have an influence on
the way in which AMR persists and spreads within the slurry tank. The time at which
multidrug-resistant bacteria make up 95% of the population under an NVZ seasonal
emptying regime is marked in Fig. 6a. Figure 6b shows the relationship between the
initial tank volume and the time to 95%MDR. The higher the initial volume, the longer
it takes for multidrug-resistant bacteria to dominate the tank.

Current legislation dictates that slurry can only be spread between 1st February
and 31st October, and only during times at which the ground is not frozen or at risk
of flooding during the other months (European Community 2001) meaning that the
slurry store is emptied more frequently during the summer months. According to our
simulations, if the tank is emptied to 150,000 litres and a seasonal emptying regime
is used, then it takes just over three years for multidrug-resistant bacteria to make up
95% of the population in the tank, as shown in Fig. 6a. Alternatively, if the minimum
volume of slurry in the tank is maintained at around 1.5 million litres, the time toMDR
dominance could be increased to seven years without having to alter the rate at which
the tank is emptied, see Fig. 6b.

3.2 Sensitivity Analysis

In order to provide a more precise analysis of how model parameters affect the output
of the model, one-at-a-time sensitivity analysis has been conducted. This is a process
that allows the investigation of the sensitivity of a model’s output to its individual
input parameters (Pianosi et al. 2016). Sensitivity scores, SX where X is the parameter
being changed, were calculated for fifteen model parameters as shown in Table 2; the
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Fig. 5 Plots of the total
antibiotic concentration in slurry
(Al + As ) under no-emptying
and seasonal emptying regimes.
a Total antibiotic concentration
under a no-emptying regime. b
Total antibiotic concentration
under a seasonal emptying
regime
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model output being measured was the proportion of multidrug-resistant bacteria in the
tank. Here the sensitivity measure SX is defined by

SX = ΔPSR/PSR
ΔX/X

(25)

where PSR is the proportion of multidrug-resistant bacteria in the tank at the end of
a standard parameter value simulation, X is the parameter being changed and ΔX
and ΔPSR represent the change in the parameter value and the resulting change in the
model output, respectively (Saltelli et al. 2008;Baker et al. 2016). SX was calculated for
each parameter at 100 points evenly spaced across the parameter space. Two regimes
were considered for sensitivity analysis: a simulation with no tank emptying and a
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Fig. 6 Effects of varying the
time between tank emptying, τe ,
and the initial tank volume, V1,
on the time to reach 95%
multidrug-resistant bacteria
within the tank. The dot in 6a
indicates the time to 95% MDR
using the seasonal emptying
frequency. A seasonal emptying
regime is being used in 6b. a
Varying the time between tank
emptying, τe . b Varying the
initial tank volume, V1
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simulation with tank emptying every week between 1st May and 31st October and
every 90 days in the other months. Both simulations ran for an in-model time of 20
years.

Figure 7 shows boxplots of the sensitivities for all thirteen parameters in the no
emptying regime.

In this model the most sensitive parameters are the relative cost of MDR (αu), the
relative cost of bacteriolytic resistance (αl ) and the inflow rate of bacteriolytic antibi-
otic (θl ). The model is also sensitive to the bacteriolytic MIC (MICl ) and the decay
rate of bacteriolytic antibiotic (γl ), indicating that it is the parameters relating to bac-
teriolytic antibiotics that most affect the development of multidrug-resistant bacteria.
Figure 8 shows how changing each parameter affects the proportion of multidrug-
resistant bacteria. It is clear that the most sensitive parameters have the largest affect
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Fig. 7 Sensitivity analysis of the model parameters where the proportion of multidrug-resistant bacteria is
the output of interest under the no emptying regime. See Table 1 for parameter definitions. The system is
particularly sensitive to αu , the relative cost of multidrug resistance and θl the inflow rate of bacteriolytic
antibiotic. It is also sensitive to other parameters relating to bacteriolytic antibiotics

Table 2 The parameters considered for sensitivity testing and the ranges used

Parameter Range References

βs 0–10−12 lCFU−1h−1 Baker et al. (2016), Zhong et al. (2010)

βl 0–10−12 lCFU−1h−1 Baker et al. (2016), Zhong et al. (2010)

βu 0–10−12 lCFU−1h−1 Baker et al. (2016), Zhong et al. (2010)

αs 0–1 Full mathematically plausible range

αl 0–1 Full mathematically plausible range

αu 0–1 Full mathematically plausible range

δS 0–1 h−1 Ayscue et al. (2009)

δR 0–1 h−1 Ayscue et al. (2009)

δl 0–3 h−1 Norcia et al. (1999)

γl 0–0.029 h−1 Dolliver et al. (2008)

γs 0–0.029 h−1 Dolliver et al. (2008)

θl 0–3422 μg h−1 Baker et al. (2016)

θs 0–3422 μg h−1 Baker et al. (2016)

MICl 0–250 μg l−1 Bengtsson-Palme and Larsson (2016)

MICs 0–250 μg l−1 Bengtsson-Palme and Larsson (2016)

on the proportion of Ru bacteria. Increasing the costs of bacteriolytic resistance or
MDR (αl and αu , respectively) decreases the total multidrug-resistant community. In
the case of αu this occurs very drastically at around αu=0.2, indicating that within
the model this is a maximum tolerable cost of MDR. Similarly increasing the death
rate of resistant bacteria (δR) causes a complete removal of multidrug-resistant bac-
teria. Increasing the inflow of bacteriolytic antibiotic (θl ) increases the population of
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Fig. 8 The quantity of multidrug-resistant bacteria, Ru , after 20 years as each of the parameters in Table 2
varies

multidrug-resistant bacteria, due to increased selective pressure, whereas increasing
theMIC of bacteriolytic antibiotic (MICl ) decreases the number ofmultidrug-resistant
bacteria. The MIC increases the effect of the antibiotic on the susceptible bacteria
decreases, allowing them to live for longer in the tank.

Figure 9 shows the relative sensitivities of the fifteen parameters under a seasonal
emptying regime (every week 1st May to 31st October and every 90 days in the other
months). In this scenario the system’s sensitivity toαl , θl ,MICl and γl decreases, while
the system remains similarly sensitive to the natural death rate of resistant bacteria,
δR .

Sensitivity analysis of this model indicates that the mechanisms that most affect the
proportion of multidrug-resistant bacteria in the slurry tank are the concentration of
bacteriolytic antibiotic and the relative cost of resistance to bacteria. This indicates that
the ramifications of the use of bacteriolytic antibiotics in farming, such as penicillins
and cephalosporins, should be investigated.
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Fig. 9 Sensitivity analysis of the model parameters where the proportion of multidrug-resistant bacteria
is the output of interest and a seasonal emptying regime is used. See Table 1 for parameter definitions.
Compared to the infinite tank simulations the system is much less sensitive (see Fig. 7), but αu , the relative
cost of multidrug resistance remains the most sensitive parameter. Similarly, the system is also sensitive to
θl , the inflow rate of bacteriolytic antibiotic, and αl , the cost of bacteriolytic resistance

3.3 Bacteriolytic and Bacteriostatic Antibiotics

Sensitivity analysis indicates that some of the most sensitive parameters in the system
are those related to the properties of bacteriolytic antibiotic. As one-at-a-time sensi-
tivity analysis shows the effects of changes to one parameter, we have used heatmaps
to show the effect of altering the bacteriolytic antibiotic parameters in tandemwith the
cost of bacteriolytic and multidrug resistance under a no-emptying regime, and with
a seasonal emptying regime, shown in Fig. 10.

From Fig. 10a we can see the effects of varying αl and θl simultaneously under
an no-emptying regime. For αl <0.05 the growth of bacteriolytic-resistant bacteria
is uninhibited and they dominate the tank, meaning that PSR ≈ 0. As αl increases,
higher quantities of antibiotic need to be introduced into the system to apply enough
environmental pressure to select formultidrug-resistant bacteria. Varyingαu alongside
θl under a no emptying regime shows that, as θl increases, the bacterial tolerance for
the cost of MDR increases until once αu reaches a threshold value of approximately
0.2; see Fig. 10b. When αu > 0.2 PSR ≈ 0 for all values of θl , with the increased
relative cost for the growth of multidrug-resistant bacteria counteracting the selective
pressure of the antibiotic.

When we vary αl and θl simultaneously under an seasonal emptying regime, as
shown in Fig. 10c, we see that, even for rates of bacteriolytic inflow of less than 100μg
h−1 the MDR can develop even when the relative cost of bacteriolytic resistance is
0.5. In the no-emptying case, for the same inflow rate of bacteriolytic antibiotic, the
development of MDR required the cost of bacteriolytic resistance to be around 0.05;
for αl > 0.1 multidrug-resistant bacteria did not dominate the tank. This change is
likely because under the seasonal emptying regime the long-term concentration of
antibiotic is increased and there is more selective pressure on the bacteria in the tank.
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Fig. 10 Heatmaps showing the multidrug-resistant proportion in the tank after 20 years when varying the
relative cost of bacteriolytic resistance, αl , and the relative cost of MDR, αu , against the inflow rate of bac-
teriolytic antibiotic, θl , under no-emptying and seasonal emptying regimes. a Relative cost of bacteriolytic
resistance, αl , plotted against the inflow rate of bacteriolytic antibiotic, θl , under a no-emptying regime. b
Relative cost of MDR, αu , plotted against the inflow rate of bacteriolytic antibiotic, θl , under a no-emptying
regime. c Relative cost of bacteriolytic resistance, αl , plotted against the inflow rate of bacteriolytic antibi-
otic, θl , under a seasonal emptying regime. d Relative cost of MDR, αu , plotted against the inflow rate of
bacteriolytic antibiotic, θl , under a seasonal emptying regime

Figure 10d shows the Ru proportion as αu and θl vary. The bacterial tolerance for the
cost of MDR increases as θl increases up to around θl = 250μg h−1, and then reaches
a threshold value of around αu = .18.

Figure 11 shows the Ru proportion after 20 years for varying θl and θs under no-
emptying and seasonal emptying regimes. From this figure it is very clear that the
inflow rate of bacteriostatic antibiotic has little effect on the eventual proportion of
multidrug-resistant bacteria. On the other hand, increasing the inflow rate of Al has
a marked influence on the Ru proportion. This is not to say, however, that θs has no
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Fig. 11 Heatmaps showing the
multidrug-resistant proportion in
the tank after 20 years when
varying the inflow rate of
bacteriostatic antibiotic, θs , and
the inflow rate of bacteriolytic
antibiotic, θl , under a
no-emptying regime and a
seasonal emptying regime. a
Inflow rate of bacteriostatic
antibiotic, θs , plotted against the
inflow rate of bacteriolytic
antibiotic, θl , under a
no-emptying regime. b Inflow
rate of bacteriostatic antibiotic,
θs , plotted against the inflow rate
of bacteriolytic antibiotic, θl ,
under a seasonal emptying
regime

effect on the system: as θs decreases the time it takes for Ru to dominate the tank
increases.

3.4 Discussion and Recommendations for FutureWork

This model of AMR in the dairy slurry tank predicts the emergence of widespread
MDR after a decade of use. It also predicts that changes in agricultural practice could
delay the rate at which MDR develops and shows that farm practice is an important
consideration for those modelling AMR in agricultural settings.
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We have shown that although implementing a tank emptying regime into a model
does not affect the proportion of multidrug-resistant bacteria in the long term, it does
change the speed at which model equilibrium is reached. This is interesting from a
farm practice perspective as it implies that it is safer to store slurry in higher volumes
for longer periods of time andwhen it is removed, only to remove it in small quantities.

To better understand the model behaviour, a sensitivity analysis was performed
to determine which parameters most affect the model output. Two scenarios were
considered: a simulation with no tank emptying regime, and one with seasonal tank
emptying. In both cases the system is most sensitive to the relative costs of multidrug
and bacteriolytic resistance αu and αl , and to the inflow rate of bacteriolytic antibiotic,
θl . This brings about another possible implication for farm practice, indicating that
reduced usage of bacteriolytic antibiotics would decrease the number of multidrug-
resistant bacteria much more effectively than reducing the quantity of bacteriostatic
antibiotics used on farms. Thus, the model appears to advise two possible channels
for research into the way that farm practices affect the persistence and spread of
AMR within the slurry tank; the storage and emptying regime and the administration
of bacteriolytic antibiotics such as beta-lactam antibiotics, for example penicillin, or
cephalosporins to the herd.

When considering the cost of resistance, we have generally assumed that the cost of
MDR, αu , is the same as the cost of resistance to a single type of antibiotic, either due
to a compensatory mutation (Handel et al. 2006; Melnyk et al. 2015) or the fact that
the cost of resistance is likely to be under selective pressure; a version of the resistance
gene which incurs a low fitness cost will outcompete those with higher fitness costs.

It is important that the effects of slurry storage on the spread of AMR are further
investigated. Our model has shown that both the volume of slurry left in the tank and
the frequency at which the tank it is emptied affect the rate at which MDR develops.
We recommend a longitudinal survey and analysis ofAMR in slurry at the point of land
application after various storage times. Furthermore, slurry stores vary in design, from
clay-lined lagoons to steel towers or concrete stores (AHDBDairy 2019); we currently
have little knowledge on how the storage designmight affect the development ofAMR.
In our analysis we have assumed that the slurry tank is never cleaned or disinfected.
If it is, this could delay the process of multidrug-resistant development, as, from
a modelling perspective, it would be the same as restarting the model at day zero.
However, if resistant biofilms (Mah and O’Toole 2001) develop in the tank and are
not fully cleaned away, they could potentially act as a seed for resistance in the tank,
as biofilms are known to promote HGT of ARGs (Savage et al. 2013; Balcázar et al.
2015). Another farm practice factor which requires more investigation is the effect of
heavy metal co-resistance on bacterial populations in slurry, given the widespread use
of copper and zinc footbaths in the UK (Pal et al. 2017; Williams et al. 2019). Though
it is well known that metals can contribute to the development and spread of AMR,
it has also been shown that heavy metals can impede selection for resistance, in the
case of ciprofloxacin and zinc (Vos et al. 2019). A future model could consider cases
in which heavy metals both contribute and detract from the development of AMR.

There are various environmental factors that have been shown to have an impact on
the development of AMR that were omitted in the model. The temperature and pH of
the slurry will likely affect the growth of microbes other than E. coli (Kearney et al.
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1993; Biswas et al. 2016) and there is evidence that there is seasonal variation in AMR
spread in swine agriculture (Chen et al. Jun 2010; Awad et al. 2013; Sui et al. 2015). To
model other microbial strains, temperature dependence would likely need to be added
to the natural death terms δR and δS . We have assumed that the tank is uncovered, but
that slurry dilution by rainfall is negligible. However, there is potentially significant
dilution to the slurry via rainfall whichmay affect the rate at which resistance develops.
Though our model incorporates farm practice elements we have not considered these
environmental factors, which may play a crucial role in agricultural AMR.

Though we have assumed in this model that the slurry is well mixed, given that
slurry stores are often large (potentially around three-million litres (AHDB Dairy
2019)), the tanks are not continuously stirred, and the input to the tank is changeable,
this is unlikely to be the case. Thus, we recommend an extension of this model to take
into account spatial factors, including the position of the mixing mechanism and the
inflow and outflow pipes to the tank.

We have consolidated all factors affecting HGT into a scalar rate coefficient; how-
ever, there is evidence that HGT occurs with a degree of stochasticity (Lawrence and
Ochman 2002) and therefore may be better modelled under a stochastic framework.
Furthermore, one of the mechanisms of HGT is the acquisition of extracellular DNA
released by dead bacteria (Thomas and Nielsen 2005), which is not considered in this
model.

The development of MDR in the model is particularly sensitive to the inflow rate of
bacteriolytic antibiotic (see Figs. 7, 9 and 11); however, as the half-life of bacteriolytic
antibiotic and the relative cost of bacteriolytic resistance increase, the multidrug-
resistant population in the tank decreases, see Fig. 8. This implies that the chemical
properties of the antibiotics being used also have an effect on whether or not MDR
develops.

Though there are few studies to which we can accurately compare our model, it
generates comparable results to the experimental study conducted by Mulamattathil
et al. (2000), which sampled faecal coliform bacteria from a water reticulation system
near a chicken meat processing plant. Their findings show population-wide resistance
developing over similar timescales to that of the model, alongside stable populations
of multidrug-resistant bacteria, similar to the tail end of the simulation shown in Fig. 1.
Though the system sampled from is quite different to our model system, in that it is
comprised of multiple water storage facilities, the similarities between the results are
encouraging. As the study does not sample only E. coli, temperature may play some
part in the development of resistance at each of the sampling points. Furthermore, the
fluctuations in resistance to specific antibiotics shown by Mulamattathil et al. (2000)
indicate that an interesting extension to the model would be to incorporate resistance
to multiple specific bacteriolytic and bacteriostatic antibiotics with different modes of
action. In addition, Gullberg et al. (2011) found that in certain E. coli strains, when
exposed to varying concentrations of ciprofloxacin, resistant bacteria could outnumber
susceptible by over 100 to 1 after 60 generations of growth over 24 h, though the speed
of growth was found to vary with strain and antibiotic concentration. This indicates
that it is plausible that resistant bacteria can dominate systems in which selective
pressure is exerted by antibiotics. To test the outputs of our model in more detail, time
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series data from dairy slurry storage facilities will need to be analysed; such data are
not yet available.

4 Conclusions

We have developed a model of the spread and persistence of antimicrobial resistance
in an E. coli population in a dairy farm slurry tank. The model incorporates bacte-
riolytic and bacteriostatic antibiotics and four strains of E. coli: a strain susceptible
to both antibiotics, a strain resistant to bacteriolytic antibiotics, a strain resistant to
bacteriostatic antibiotics and a “multidrug-resistant” strain which is resistant to both
antibiotics. We have shown that tank emptying regime may affect the rate at which
AMR develops. We have also shown that bacteriolytic antibiotics have more effect on
the spread of MDR than bacteriostatic antibiotics.
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