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Abstract
Locomotion characteristics are often recorded within bounded spaces, a constraint
which introduces geometry-specific biases and potentially complicates the inference
of behavioural features from empirical observations.We describe how statistical prop-
erties of an uncorrelated random walk, namely the steady-state stopping location
probability density and the empirical step probability density, are affected by enclosure
in a bounded space. The randomwalk here is considered as a nullmodel for an organism
moving intermittently in such a space, that is, the points represent stopping locations
and the step is the displacement between them. Closed-form expressions are derived
for motion in one dimension and simple two-dimensional geometries, in addition to
an implicit expression for arbitrary (convex) geometries. For the particular choice
of no-go boundary conditions, we demonstrate that the empirical step distribution is
related to the intrinsic step distribution, i.e. the one we would observe in unbounded
space, via a multiplicative transformation dependent solely on the boundary geometry.
This conclusion allows in practice for the compensation of boundary effects and the
reconstruction of the intrinsic step distribution from empirical observations.
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1 Introduction

Recent theoretical work on animal movement focuses attention on boundary effects
at different scales, for example, population edge effects where two habitats conjoin
(Potts et al. 2016), random walks in confined spaces (Bearup and Petrovskii 2015),
insects following walls in circular experimental arenas (Jeanson et al. 2003), and the
efficiency of catching ground-dwelling arthropods depending on trap shape (Ahmed
and Petrovskii 2019). When the movement range of the studied organism is of the
same order as the arena size, the boundary could affect many of the recorded locomo-
tion characteristics. Such external bias requires theoretical models to provide expected
values for intrinsic locomotion characteristics under the null hypothesis that the indi-
vidual’s movement follows a simple random walk. Failure to compare the empirical
values against those expected under the correct null hypothesis could lead to the wrong
conclusions. For example, an organism might appear to have an intrinsic movement
bias when, in fact, it follows a simple random walk.

In studying the anxiety levels in animals, such as mice, for instance, it is common
practice tomeasure locomotion on a grid in terms of displacements and their respective
frequencies (Michel and Tirelli 2002). To reduce the interference of the experimenter,
these tests tend to be conducted in enclosures such as cages and monitored using
cameras (Kas and Olivier 2008). Locomotion characteristics are also among the main
measurements of explorative behaviour across animal species, and these are often
recorded within bounded spaces (Russell et al. 2010; von Merten and Siemers 2012;
Degen et al. 2015). However, as demonstrated in a recent paper by some of the present
authors (Christensen et al. 2020), confining the space available to the test subject
affects the statistical properties of the movement in a non-trivial, geometry-specific
way, which can lead to erroneous conclusions about the existence of an inherent bias.
Similar effects were observed, for example, in an experiment byMallapur et al. (2009),
who found that a decrease in the enclosure size of domestic fowl leads to a decrease
in the mean and maximum step length as well as the total distance travelled. Even
in the wild, many species are observed to move within ranges or home territories
(Giuggioli et al. 2011; Potts and Lewis 2014; Riotte-Lambert et al. 2015). In theory,
the relevance of boundary effects could be diminished by selecting data produced
‘sufficiently far’ from the boundaries. However, this is not always possible and the
difficulty of estimating a suitable cut-off distance will inevitably introduce errors of
unknown size into the statistics.

These effects are not limited to ecology and the study of animal behaviour but
appear in a wide range of contexts. A relevant example from biophysics is the motion
of molecules undergoing totally confined diffusion in cell membranes. These can be
modelled as random walks following a symmetric Gaussian displacement distribution
confined within a cuboid. A study by Ritchie et al. (2005) found that increasing the
time span over which the molecule’s displacements were averaged resulted in an
increasingly peaked and circular distribution in position probabilities. This observation
demonstrates that the interplay of dynamics and geometry affects the ability to infer
the shape of the enclosing geometry solely from the time averaged position probability.

In the present study, we establish a firm theoretical framework for analysing the
effect of an arbitrary boundary on the empirical probability density of the stopping
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location and step of an uncorrelated random walk (Sect. 2). Our inspiration originates
in intermittent locomotion where the stopping locations are the turning points and the
steps are the displacements between them. Due to their special role in locomotion,
the distribution of stopping locations is not necessarily the same as the distribution of
locations. For the particular choice of no-go boundary conditions, our results showhow
to compensate for these boundary effects andprovide aprocedure for the reconstruction
of the unconstrained step distribution from the empirically observed one (Sect. 3).
Extensions to the more realistic case of a correlated random walk are beyond the
scope of the present work; however, as shown in Sects. 2.2.1 and 2.2.2, this may not be
needed to understand the aforementioned observations (Mallapur et al. 2009; Ritchie
et al. 2005), whose qualitative features already arise when considering uncorrelated
random walks in a bounded space. This suggests that the results for the uncorrelated
random walk could be used to provide estimates of boundary effects on a correlated
random walk.

1.1 Uncorrelated RandomWalk

In this study, we consider a symmetric Markovian random walk, which can be inter-
preted as a null model for intermittent locomotion (Kramer and McLaughlin 2001),
also referred to as saltatory pattern (O’Brien et al. 1990), of an individual organism
with no bodily features and no underlying decision-making capacity (Schwartz 2016).
A clearly defined null model is of the utmost importance in the identification of rel-
evant (e.g. behavioural) features from empirical data, as it provides an explicit term
of comparison. Since the observables of interest are static, we henceforth ignore any
temporal aspect of the motion, thus reducing the random walk to a sequence of stop-
ping locations. A sample sequence of consecutive stopping locations can be generated
via the following procedure:

1. Initiate the walker at location ri=0 chosen uniformly at randomwithin the bounded
domain Ω .

2. Pick a step δr with probability fi (δr), where fi (δr) denotes the probability of
observing a step δr in unbounded space. For the purpose of numerical simulations,
this probability distribution is assumed to be known. However, as we demonstrate
in Sect. 2, extracting it from experimental observations is not trivial.

3. If ri + δr ∈ Ω , the random walker moves to a new location ri+1 = ri + δr.
Otherwise, a new step is determined consistently with the particular choice of
boundary conditions. Thismight require re-sampling the probability density fi (δr),
e.g. in the case of no-go boundary conditions.

4. Steps 2–3 are repeated N times. Time series of stopping location coordinates and
steps are recorded.

Relevant observables can be extracted from the recorded sequence. The basic pro-
cedure 1 → 4 is then repeated M times and ensemble averages are calculated. It is
understood that time averages converge to ensemble averages for large enough N , due
to the ergodic nature of the process. Finally, it is important to notice that for a fixed
functional form of fi (δr), the statistical properties of the random walk depend solely
on the dimensionless ratio of the system size and some relevant length scale of the
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step distribution (e.g. its variance). In other words, they are independent of our choice
of units. Hence, we are free to fix the system size while varying fi (δr) without loss
of generality.

2 Step and Stopping Location Probability Density

The most straightforward statistical analyses of intermittent locomotion are the deter-
mination of the probability density functions of the empirical stopping location and
displacement . The latter is also known as the movement kernel (Avgar et al. 2016).
Indeed, both functions are of immediate interest for application in ecology as they
are often considered to convey information about dispersal and foraging strategies
(Clobert et al. 2012; Okubo and Levin 2001; Turchin 2015; Benhamou 2014; Lepš
1981). However, the boundary which is usually present in experiments affects the
empirical observations in a non-trivial manner. This makes it difficult to disentangle
the intrinsic motion of the test subject from these boundary effects. Assuming that the
intrinsic properties of a subject’s locomotion only depend on its internal state (Bar-
tumeus 2009; Maye et al. 2007; Anteneodo and Chialvo 2009) and not on the subject’s
locationwithin the bounded domain, it is reasonable to disregard the information about
the starting point of each step and to consider only the location averaged form of the
step distributions. Sometimes this approach may be necessitated by data which only
informs about the displacements or their magnitudes. Consequently, one must first
find general expressions for the stopping location probability.

For simplicity the effects of enclosure in a confined space upon the randomwalker’s
empirical displacement probability density function are first investigated in one dimen-
sion (Sect. 2.1) before extending the results to arbitrary convex domains in two
dimensions (Sect. 2.2, where we also briefly discuss convex domains of arbitrary
dimension). For practical reasons, most experiments involving motion in enclosed
spaces take place in either circular or rectangular geometries, such as a Petri dish or
a cage. Consequently, Sects. 2.2.1 and 2.2.2 address these particular two-dimensional
geometries explicitly.

2.1 One-dimensional Case

We will use the phrase “step of �”, where � ∈ R, to indicate a displacement between
stopping locations of magnitude |�|. We say that the step is to the right (resp. left) if
� > 0 (resp. � < 0). We denote by fi (�) the probability density function of a step
� on the whole real line, which we assume to be independent of the starting point
and symmetric, fi (�) = fi (−�). Thus, we think of fi (�) as an intrinsic, or internal,
characteristic of the intermittent locomotion, as opposed to the extrinsic, or external,
features introduced by the interaction with the boundary. In unbounded space, fi (�)
is the limiting form of the empirical histogram of the observed steps and can therefore
be reconstructed directly from experimental data.

In bounded space, however, the probability density of a step � differs from fi (�)
in a boundary-condition specific way. Here, we follow the treatment of Bearup and
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Petrovskii (2015) and consider three types of boundary conditions: a no-go boundary,
where steps extending outside of the domain are rejected; a stop-go boundary, where
such steps are terminated at the boundary; and a reflecting boundary, where the portion
of such steps extending beyond the domain boundary is reflected back into the domain.
A schematic is provided in Fig. 1. Given a starting point at location x ∈ [0, 1], the
probability density function of the next step being a step of � terminating within the
domain [0, 1] is then

P(�|x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fi (�)θ(� + x)θ(1 − � − x)N−1(x) no-go
fi (�)θ(� + x)θ(1 − � − x) + δ(� + x)

∫ −x
−∞ d�′ f (�′)

+δ(� + x − 1)
∫ ∞
1−x d�

′ fi (�′) stop-go
[ fi (�) + fi (� + 2x) + fi (2 − 2x − �)

+h.o.t.]θ(� + x)θ(1 − � − x) reflecting,

(1)

where θ is the Heaviside step function and δ is the Dirac delta function. The location-
dependent normalisation factor N (x) appearing in the no-go case reads

N (x) =
∫ 1

0
d�′ fi (�′ − x). (2)

The higher order terms, h.o.t. in Eq. (1), entering the conditional probability for the
reflecting boundary condition account for cases where multiple reflections occur in a
single burst of motion between stopping events. They read

h.o.t. =
∞∑

N=1

fi (� + 2x + 2N )

+ fi (2 − �) + fi (2 − 2x − � + 2N ) + fi (2 + � + 2N ) (3)

and vanish if the support of the intrinsic step probability fi (�) is a subset of (−2, 2).
In a realistic setting, where the studied organism is not in distress, multiple reflections
are expected to play a negligible role.

The probability density of a step of � starting and ending in [0, 1], which we denote
ft (�) and will henceforth refer to as the ‘transformed’ probability, is then obtained by
integrating Eq. (1) over the starting location x ∈ [0, 1] with some measure dμ(x),

ft (�) =
∫ 1

0
dμ(x)P(�|x). (4)

It corresponds to the limiting form of the empirical histogram of the observed steps
in bounded space. In the present context, it is most meaningful to assume that the
measure dμ(x) corresponds to the steady-state stopping location probability density,
which we denote g(x), whence dμ(x) = g(x)dx . The probability density g(x), which
depends both on fi (�) and on the choice of boundary conditions, can be found by
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Fig. 1 Different types of interaction with the domain boundary corresponding to different conditional
probability densities P(�|x) of the next step � given the starting point x , as summarised in Eq. (1) for a
random walk in one dimension (where x ∈ [0, 1]). For the plots in the bottom row, we picked the intrinsic
step probability density fi (�) = 3(a2 − �2)θ(a2 − �2)/(4a3) with a = 0.75 and starting location x = 0.4
(black dashed), which we compare to the conditional step probability density for each boundary condition
(blue solid, shaded). Unlike the intrinsic step probability fi (�), the conditional probability P(�|x) is not
symmetric in general. The top part of the schematic is adapted from Bearup and Petrovskii (2015)

solving a homogeneous Fredholm equation of the second kind of the form

g(x) =
∫ 1

0
dx ′g(x ′)P(x − x ′|x ′), (5)

with P(x − x ′|x ′) the conditional probability densities given in Eq. (1). For the no-
go boundary condition, one can check by substitution that the integral equation (5)
is solved by the ansatz g(x) ∝ N (x). For this particular boundary condition, the
expression for the transformed probability density function simplifies dramatically,

ft (�) ∝ fi (�)(1 − |�|)θ(1 − |�|) for no-go boundary. (6)

This is a remarkable result as it indicates that, for no-go boundaries, the mapping
between the intrinsic step probability fi (�) and the empirically observed (transformed)
step probability ft (�) is multiplicative and independent of the specific choice of fi (�).
In particular, it only depends on the geometry of the bounded space through

h1D(�) := (1 − |�|)θ(1 − |�|), (7)

shown in Fig. 2, which we will henceforth refer to as ‘shaper’ function. We will see
that this result extends straightforwardly to higher dimensions. Notably, the variance
of the transformed step probability density, 〈�2〉t , is always smaller than that of the
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Fig. 2 Shaper function for a simple random walk on the unit segment, x ∈ [0, 1], with no-go bound-
ary conditions. It enters the expression for the transformed one-dimensional step probability density as a
multiplicative factor in Eq. (6). This shaper function linearly suppresses the intrinsic step probability for
increasing step magnitude and vanishes for step magnitudes larger than or equal to the system size

corresponding probability density in unbounded space, 〈�2〉i ,

〈�2〉i = 2
∫ ∞

0
d� �2 fi (�) (8)

≥ 2
∫ 1

0
d� �2

fi (�)

2
∫ 1
0 d�′ fi (�′)

(9)

> 2
∫ 1

0
d� �2

(1 − �) fi (�)

2
∫ 1
0 d�′ fi (�′)(1 − �′)

= 〈�2〉t (10)

where to go from Eq. (8) to (9) we have reduced the support of fi (�) to [0, 1] (normal-
ising the resulting probability density accordingly) and the inequality relating Eqs. (9)
and (10) follows from the shaper function being monotonically decreasing in |�| (see
“Appendix A”).

For the case of reflecting boundaries, one can check by substitution that Eq. (5) is
solved by the uniform probability density g(x) = 1, independently of fi (�). Substi-
tuting into Eq. (4) we find

ft (�) = fi (�)h1D(�) +
∫ 1

0
dx [ fi (� + 2x) + fi (2 − 2x − �)

+ h.o.t.]θ(� + x)θ(1 − � − x) for reflecting boundary, (11)

which lacks the simple structure that was observed for no-go boundaries.
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Finally, for the case of stop-go boundaries, Eq. (5) for the steady-state stopping
location probability density cannot in general be solved in closed form. To proceed
further, we assume that g(x) = 1, corresponding to an experiment where the subject
is placed uniformly at random within the bounded domain and only statistics of the
first step are collected. Substituting the relevant form of Eqs. (1) into (4) produces

ft (�) = fi (�)h1D(�) +
∫ �

−∞
d�′ fi (�′)θ(−�2 − �) +

∫ ∞

�

d�′ fi (�′)θ(� − �2) (12)

= fi (�)h1D(�) + 1

2

(∫ −|�|

−∞
d�′ fi (�′) +

∫ ∞

|�|
d�′ fi (�′)

)

θ(1 − �2)

for stop-go boundary, (13)

where in going from Eqs. (12) to (13) we have used fi (�) = fi (−�) to express the
transformed step probability in a more symmetric fashion. Once again, the expression
for the transformed step probability lacks the simple structure observed in the no-go
case.

While the precise form of the transformed step probability density function depends
on the combination of fi (�) and boundary conditions, Eqs. (6), (11), and (12) share
the property that ft (�) vanishes for |�| > 1, reflecting the impossibility for the random
walker to exit the domain [0, 1]. In the following, we will focus solely on the case
of no-go boundary conditions. We focus on it because we think it is compatible with
the behaviour of animals that have habituated to their environment, when we do not
expect many animals would have an increased probability of stopping at the boundary
(the ‘stop-go’ boundary condition) or would simply be reflected off the boundary (the
‘reflecting’ boundary condition).

2.2 Two-dimensional Case (Convex Domain)

Here, we extend the analysis presented in the previous Sect. 2.1 to intermittent loco-
motion in two-dimensional bounded space, focusing solely on the case of no-go
boundary conditions. Displacements between successive stopping locations will be
denoted � = (�x , �y), with � ∈ R

2. The probability density function of � on the real
plane is denoted fi (�x , �y) and is assumed to be rotationally symmetric,

fi (� cos(θ), � sin(θ)) = fi (�, 0) (14)

for all θ ∈ [0, 2π). Now let Ω be a bounded convex domain and IΩ(x, y) be the
indicator function taking the value 1 if (x, y) ∈ Ω and 0 otherwise. For a convex
polygon with N sides, such that each side i ∈ {1, . . . , N } is given by the equation
y = ai x + ci , the indicator function IΩ(x, y) is the following product of Heaviside
step functions

IΩ(x, y) =
N∏

i=1

θ(q(i)Ji (x, y)), (15)
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where q(i) = 1 (resp. q(i) = −1) if the polygon is above (resp. below) the line
y = ai x + ci and Ji (x, y) = y − ai x − ci . In bounded space and with the specific
choice of no-go boundary conditions, the probability density function of the next step
being a step of � terminating within Ω given a starting point at location r = (x, y) is

P(�|r) = fi (�x , �y)IΩ(x + �x , y + �y)N−1(r), (16)

with the normalisation factor

N (r) =
∫

Ω

d�′
xd�

′
y fi (�

′
x − x, �′

y − y). (17)

The reason for imposing thatΩ is convex is to avoid ambiguitieswhen both the starting
and finishing points are within Ω but some convex combination of the two is not. The
probability density of a step � starting and ending in Ω , which we denote ft (�x , �y),
is then obtained by integrating Eq. (16) over the starting location r ∈ Ω with some
measure dμ(r),

ft (�x , �y) =
∫

Ω

dμ(r)P(�|r). (18)

Similar to the one-dimensional case, we argue that this measure should correspond to
the steady-state stopping location probability density function g(r), which is defined
as the solution of the integral equation

g(r) =
∫

Ω

dr′g(r′)P(r − r′|r′). (19)

One can check by substitution that Eq. (19) is solved by the ansatz g(r) ∝ N (r),
whence

ft (�x , �y) ∝ fi (�x , �y)
∫

Ω

dxdy IΩ(x + �x , y + �y). (20)

The mapping between the intrinsic and transformed step probability density for the
case of no-go boundary conditions thus has the same structure as seen in the one-
dimensional case, namely that of a multiplication by a geometric-specific shaper
function of the form

h2D(�x , �y) :=
∫

Ω

dxdy IΩ(x + �x , y + �y). (21)

Assuming that Ω is convex, the shaper function Eq. (21) is monotonically decreasing
in |�|, the magnitude of the step (see “Appendix B”). Consequently, the variance of
|�| under the transformed probability density ft (�x , �y) is always smaller than that
under the corresponding probability density fi (�x , �y) in unbounded space. This can
be shown along the lines of Eqs. (8)–(10).
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The construction outlined in this section can be extended straightforwardly to (con-
vex) domains of arbitrary dimensionality. With Ω a bounded d-dimensional convex
domain and IΩ(r) the associated indicator function of r ∈ R

d , one arrives at the now
familiar multiplicative relation

ft (�) ∝ fi (�)
∫

Ω

dr IΩ(r + �) = fi (�)hdD(�), (22)

where the higher-dimensional shaper function hdD(�) is defined as

hdD(�) :=
∫

Ω

dr IΩ(r + �). (23)

2.2.1 Square Geometry

As an example, we can use Eq. (15) for the indicator function of a polygonal domain in
combination with Eq. (21) for a general shaper function to obtain the shaper function
associated with a square domain of unit side, in which case

h�(�x , �y) =
∫

dxdy θ(�x + x)θ(1 − �x − x)θ(�y + y)θ(1 − �y − y)I�(x, y)

= (1 − |�x |)(1 − |�y |)θ(1 − |�x |)θ(1 − |�y |), (24)

which can also be written as a product of one-dimensional shaper functions, Eq. (7),

h�(�x , �y) = h1D(�x )h1D(�y). (25)

Notably, the shaper function h�(�x , �y), shown in Fig. 3, does not satisfy the same
rotational symmetry as the step probability density function in unbounded space,
Eq. (14), meaning that this symmetry is broken by the interaction with the boundary.

2.2.2 Circular Geometry

While the discussion above encompasses the disk of unit radius as a specific case of
bounded convex domain with indicator function

IΩ(x, y) = θ

(

1 −
√

x2 + y2
)

, (26)

the commonness of (at least approximately) circular boundaries in natural as well
as experimental conditions makes it worthwhile presenting the corresponding results
in an explicit form. Starting with the steady-state stopping location distribution, we
use g(r) ∝ N (r) together with Eqs. (17), (14) and the indicator function Eq. (26) to
obtain

g(r) ∝
∫ 1−|r|

0
d� 2π� f 2Di (�, 0) +

∫ 1+|r|

1−|r|
d� 2π� f 2Di (�, 0)γ (|r|, �) (27)

123



Reconstructing the Intrinsic Statistical Properties of… Page 11 of 17 28

Fig. 3 Shaper function for a
square geometry of unit side as
defined in Eq. (24). It vanishes
in every direction when
|�| >

√
2, i.e. when the step

magnitude exceeds the diameter
of the domain. Remarkably, the
shaper function does not satisfy
the same rotational symmetry of
the intrinsic step probability
density function, which is
therefore broken in the empirical
step distribution

Fig. 4 Shaper function for a
circular geometry of unit radius
as defined in Eq. (29). It
vanishes in every direction when
|�| > 2, i.e. when the step
magnitude exceeds the diameter
of the domain. Unlike the square
case, this shaper function
preserves the symmetry of the
intrinsic step probability density

where

γ (R, �) = 1

π
cos−1

(
R2 + �2 − 1

2R�

)

. (28)

The geometry-specific shaper function, which we denote h◦(�x , �y), can be obtained
by substituting Eq. (26) into Eq. (21) and reads

h◦(�x , �y) = 2 cos−1

⎛

⎝

√
�2x + �2y

2

⎞

⎠ − 1

2

√

(4 − �2x − �2y)(�
2
x + �2y). (29)

Unlike the shaper function for a unit square domain, Eq. (24), the shaper function for
a circular domain h◦(�x , �y) is rotationally symmetric, see Fig. 4, and the symmetry
of the intrinsic step probability density fi (�x , �y) is preserved under the interaction
with the boundary.
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2.2.3 Statistics of the Step Magnitude

In the discussion above, the dependence of the transformed step probability density
function ft (�x , �y) on its two arguments �x and �y was left explicit. This might have
been redundant for the intrinsic probability fi (�x , �y), which was assumed to be
rotationally symmetric; however, it is not so for ft (�x , �y) since the shaper function
h2D(�x , �y) need not satisfy that same symmetry (see Sect. 2.2.1 for an example).
On the other hand, the magnitude of the displacement between successive stopping
locations is often more easily accessible from an experimental point of view, as it does
not require the set of coordinates to be consistent across sample paths. It is therefore
instructive to consider how the probability density function of the step magnitude is
affected by enclosure in a bounded space with no-go boundary conditions. We denote
by f̃i (�) the probability to observe a step � of magnitude |�| = � in the real plane. It
is related to its two-dimensional counterpart via

f̃i (�) =
∫ 2π

0
dθ � fi (� cos(θ), � sin(θ)) = 2π� fi (�, 0). (30)

Similarly, we denote by f̃t (�) the probability to observe a step � of magnitude |�| = �

starting and ending in Ω . It can be written using Eqs. (20) and (21) as

f̃t (�) ∝
∫ 2π

0
dθ � fi (� cos(θ), � sin(θ))h2D(� cos(θ), � sin(θ))

∝ fi (�, 0)�
∫ 2π

0
dθ h2D(� cos(θ), � sin(θ)), (31)

which has the samemultiplicative structure as Eq. (4) with a modified shaper function

h̃2D(�) :=
∫ 2π

0
dθ h2D(� cos(θ), � sin(θ)) (32)

depending only on the step magnitude �.

3 Correcting for Boundary Effects Under No-Go Boundary Conditions

In Sect. 2, we explored how three common choices of boundary conditions (no-go,
stop-go and reflecting) affect the statistical properties of intermittent locomotion in
bounded space. For the particular case of no-go boundary conditions, starting from the
conditional probability density function of the next step, Eq. (1) for one-dimensional
domains or Eq. (16) for two-dimensional ones, we showed that the empirical step
probability ft (�) density is related to the intrinsic step probability fi (�) by a multi-
plicative transformation involving a ‘shaper function’, Eqs. (7) or (21), that depends
solely on the geometry of the domain. This simple structure can be exploited to correct
for boundary effects, assuming that the boundary geometry is known. In particular,
we can write
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(a) (b)

Fig. 5 Comparison of numerical results and analytical predictions for the transformed step probability (a),
and the reconstructed intrinsic step probability (b), for a square geometry with unit side. Numerical data
are plotted as an envelope of one standard deviation around the mean calculated from M = 104 runs of
N = 105 steps, the first 103 of whichwere ignored for each run. The empirical step probability f̃t (�), purple
in (a), is recapitulated upon multiplication of f̃i (�) by the shaper function, in agreement with Eq. (31). The
uncertainty on the reconstructed intrinsic step distribution in (b) increases with step magnitude because
larger steps are increasingly unlikely and the reciprocal of the shaper function diverges as � approaches

√
2,

i.e. the diameter of the domain (vertical dashed). The reconstructed intrinsic step distribution f̃i (�) in (b)
is not normalised for ease of comparison (color figure online)

fi (�) ∝ ft (�)

h1D(�)
and fi (�x , �y) ∝ ft (�x , �y)

h2D(�x , �y)
(33)

for one- and two-dimensional geometries, respectively. When the step exceeds the
maximum linear dimension of the domain in a given direction, the shaper func-
tion vanishes and the expressions in Eq. (33) become undefined. This behaviour is
expected, since such steps cannot be performed inside the domain. In two dimen-
sions and focusing on the statistics of the step magnitude, Eqs. (30) and (31)
give f̃i (�) ∝ f̃t (�)/h̃2D(�), which is undefined for step magnitudes exceeding the
maximum linear dimension of the bounded space. We demonstrate this procedure
numerically in Fig. 5 for the case of a non-trivial intrinsic step probability density in
a square geometry.

4 Conclusion and Outlook

Westudied the effect of enclosure in a bounded space on locomotion characteristics in a
nullmodel of an organismmoving intermittently in one- and two-dimensional domains
of arbitrary convex geometry. Intermittent locomotion, which characterises organisms
across taxa (Kramer andMcLaughlin 2001), ismodelled here as a simple randomwalk,
where we consider individual steps to represent the net displacement between stop-
ping locations. The temporal aspect of locomotion is not taken into account. For the
particular case of no-go boundary conditions, our analysis yielded analytical closed
form expressions for the probability density function of the stopping location and
step. Corresponding expressions were also obtained in one dimension for stop-go and
reflecting boundary conditions. Both these locomotion characteristics are affected by
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the boundary geometry in a non-trivial way, thus demonstrating how a superficial
statistical analysis can lead to erroneous conclusions. For example, the empirical vari-
ance of the step probability density function is reduced upon enclosure, which could
be misinterpreted as a behavioural response to the latter.

For the particular case of no-go boundary conditions, we also demonstrated that the
relation between the intrinsic step probability density, fi (�), and its empirical coun-
terpart in bounded space, ft (�), amounts to a multiplication by a geometry-specific
function of the step �, whichwe termed ‘shaper’ function and denoted h(�). This shaper
function displays a maximum at |�| = 0 and is a monotonically decreasing function
of the step magnitude |�| in a given direction. In one dimension and for general two-
dimensional convex domains, the shaper function can be calculated straightforwardly
and often in closed form. The simple relations between fi (�) and ft (�) further enables
the reconstruction of fi (�) from an empirically measured ft (�) up to the maximum
step allowed within the enclosure. Any information about steps larger than this cut-off
is lost, as such an observation is forbidden within the boundary. The reliability of such
reconstruction has been numerically demonstrated.

The possibility of consistently eliminating boundary effects is of immediate interest
in behaviour and ecology, where properties of movement can provide useful informa-
tion about the state of an organism. Locomotion as performed by real organisms is
generally functional to other activities (e.g. foraging) and is expected to be subjected
to considerable biases. These biases can be intrinsic, such as asymmetries in body or
behaviour (Wiper 2017) and changes due to learning, or extrinsic, such as the particu-
lar conformation of the bounded environment. As such, the random walk examined in
this paper can be considered a null model for the displacement of an actual organism
in space. Nonetheless, our study sheds light on the risks associated with overlooking
boundary effects when interpreting locomotion data as a behavioural feature. Higher
moments of the step probability density, particularly the correlation function of sequen-
tial steps, were not considered in this work. However, a recent study by some of the
authors (Christensen et al. 2020) demonstrates how enclosure also introduces extrinsic
negative correlations, which are required to prevent the random walker from exiting
the domain.
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Appendices

A Variance of ft(�) in One Dimension

Let F(x) be a non-negative, monotonically decreasing function of x . Let P(x) be
a probability density function of x ∈ [0, 1] satisfying the normalisation condition
∫ 1
0 dx P(x) = 1. Then P(x)F(x)/(

∫ 1
0 dyP(y)F(y)) is also a valid probability density

function of x ∈ [0, 1]. Define the variance of x with respect to the two probability
densities

I =
∫ 1

0
dx P(x)x2 = 〈x2〉 (34)

J =
∫ 1

0
dx

P(x)F(x)
∫ 1
0 dyP(y)F(y)

x2 = 〈F(x)x2〉
〈F(x)〉 , (35)

corresponding to expressions (8) and (10), Sect. 2.1. In order to prove the inequality
I > J , we first use the law of total expectation to write

〈x2F(x)〉 = 〈x2〉〈F(x)〉 + Cov(x2, F(x)), (36)

whence

I > J ⇐⇒ Cov(x2, F(x)) < 0. (37)

The proof of the right-hand side of equivalence (37) for F(x) a monotonically
decreasing function of x is a standard textbook exercise. It follows by noticing that
〈(F(x) − F(y))(x2 − y2)〉 < 0 for any pair of random variables x and y and that
〈(F(x) − F(y))(x2 − y2)〉 = 2Cov(x2, F) when x and y are i.i.d.

B Overlap of Indicator Functions

The generic two-dimensional shaper function for convex domains h2D(�x , �y) of
Eq. (21) can be interpreted as the area of the intersection between Ω and a copy
of itself, Ω ′, which was offset by � = (�x , �y). Using the indicator function,

h2D(�x , �y) =
∫ ∞

−∞
dxdy IΩ(x, y)IΩ(x + �x , y + �y). (38)

To demonstrate that h2D(� cos(θ), � sin(θ)) decreases monotonically with |�| at fixed
θ , we first perform a rotation of the coordinate axes so that, without loss of gener-
ality, θ = 0 and the relative offset of Ω and Ω ′ is aligned with the x-axis. We now
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Fig. 6 Area of the intersection
of two convex domains of
identical geometry, Ω and Ω ′,
with a relative displacement of
�. Each domain is approximated
as a union of non-overlapping
rectangular domains of height h
(shaded), such that each
rectangular sub-domain of Ω

can only ever overlap with one
rectangular sub-domain of Ω as
|�| varies

approximate Ω and Ω ′ as unions of N non-overlapping rectangular domains ri and
r ′
i of height h; see Fig. 6, with the understanding that this approximation becomes
exact in the limit h → 0. The intersection Ω ∩ Ω ′ can now be written as a union of
intersections

Ω ∩ Ω ′ =
N⋃

i=1

(ri ∩ r ′
i ), (39)

whence

h2D(�x , �y) =
∑

i

∫ ∞

−∞
dxdy Iri (x, y)Ir ′

i
(x + �, y). (40)

It is straightforward to show that each term appearing in the sum in the right-hand side
of Eq. (40) is monotonically decreasing in |�|. Consequently, h2D(� cos(θ), � sin(θ))

also decreases monotonically with |�| at fixed θ .
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