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Abstract
In phylogenetics, it is of interest for rate matrix sets to satisfy closure under matrix
multiplication as this makes finding the set of corresponding transition matrices pos-
sible without having to compute matrix exponentials. It is also advantageous to have
a small number of free parameters as this, in applications, will result in a reduction in
computation time.We explore a method of building a rate matrix set from a rooted tree
structure by assigning rates to internal tree nodes and states to the leaves, then defining
the rate of change between two states as the rate assigned to the most recent common
ancestor of those two states. We investigate the properties of these matrix sets from
both a linear algebra and a graph theory perspective and show that any rate matrix set
generated this way is closed under matrix multiplication. The consequences of setting
two rates assigned to internal tree nodes to be equal are then considered. This method-
ology could be used to develop parameterisedmodels of amino acid substitutionwhich
have a small number of parameters but convey biological meaning.

Keywords Phylogenetic methods · Graph theory · Matrix algebras · Rate matrices ·
Matrix models · Rooted trees

1 Introduction

Phylogenetics is the study of constructing phylogenetic trees that represent evolu-
tionary history. Analysis of RNA, DNA and protein sequence data with the use of
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continuous time Markov chains to measure the frequency of occurrence of point
mutations is commonly employed in this field. From a continuous timeMarkov chain,
transitions matrices (whose matrix entries represent probabilities of a change of state
for a set time period) and rate matrices (whose entries represent the rates of change
between states) can be generated. Transition matrices in phylogenetics are typically
classified as either empirical, where the transition probabilities are values which have
been calculated by analysing sequence data, or parameterised, where transition proba-
bilities are represented by free parameters which are chosen to fit data as needed (Yang
2014). Given that a parameterised transition matrix contains free parameters, it can be
thought of as a set of transition matrices and such a set is often referred to as a model
where the set of transition matrices is denoted byM and the set of corresponding rate
matrices is denoted by Q. Parameterised models are often developed to be consistent
with biological and chemical mechanisms (e.g. the K2P model Kimura 1980 captures
the fact that it is chemically easier to substitute a purine for a purine or a pyrimidine for
a pyrimidine) but sometimes they are developed to satisfy mathematical properties.
Some parameterised models are more complicated than setting two rates to be equal
to each other, e.g. there are multiplicative constraints on matrix entries. In this paper,
however, we will only be looking at models whose constraints are that some rates are
equal to other rates.

The Lie Markov models (LMM) (Sumner et al. 2012; Fernández-Sánchez et al.
2015) are a set of parameterised DNA rate substitution models. Their construction is
based on mathematical properties of matrices; each rate matrix model in this set forms
a Lie algebra (note that a Lie algebra in this context can be defined as a matrix vector
space which is closed under the operation [A, B] = AB− BA) as this guarantees that
each transition matrix set is closed under matrix multiplication. In a study following
this, Shore (2015) found that if a rate matrix set, Q, forms a matrix algebra (a matrix
algebra we define as a matrix vector space which is closed under matrix multipli-
cation, any matrix algebra is automatically a Lie algebra), the set of corresponding
transition matrices is {I + Q: Q ∈ Q, det(I + Q) �= 0}. This makes finding the space
of corresponding transition matrices a straightforward process compared to the usual
practice of having to calculate matrix exponentials, which is notoriously computa-
tionally expensive (Moler and Van Loan 1978), although unfortunately this does not
completely absolve the necessity of calculating matrix exponentials in practice. It is
therefore advantageous for a rate matrix set to form a matrix algebra.

The study conducted by Shore et al. (2020) employed a method devised by Wills
et al. (2015) of generating rate matrix sets from trees by labelling leaves on a rooted
tree as the states and then defining the rate of change between two states to be the rate
assigned to their most recent common ancestor. (Note that this method is explained in
more detail in Sect. 2.) This method was used to test if certain biological mechanisms
to distinguish amino acids could have developed in a serial manner (i.e. the specificity
of a mechanism increased over time) and what properties of amino acids could have
effected this development. To test this, the rooted trees were used to represent the
increasing specificity of amino acid selection mechanisms rather than the evolution of
a group of organisms.

Their methodology, which is now the focus of this work, was used to show that
there is a link between properties of amino acids (namely, their polarity and the class
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in which their corresponding aaRS fall into) and the observed rates of change between
amino acids as described in Le and Gascuel (2008). Given that this methodology has
already been shown to correlate with biological mechanisms, it is now proposed that it
be used to develop a suite of parameterised substitution models; particularly for amino
acid substitution of which the most commonly used rate matrices are empirical. The
family of rate matrix sets generated by this method has previously been unexplored,
and we now aim to gain a mathematical understanding of these matrix sets.

In the present paper, we introduce a set of matrices associated with trees with rates
associated to each interior vertex. In Sect. 3, we derive results on the multiplication
of these matrices, and show, in the case that each rate is unique, that the matrices
form a matrix algebra, which we refer to as a phylosymmetric algebra. In Sect. 5,
we extend this result to completely characterise all conditions for which the matrices
form a matrix algebra when two rates are identical, and derive sufficient conditions
for simple cases of arbitrarily many equal rates.

2 Background

Definition 1 A rooted tree T on a set of taxa X is a connected, directed acyclic graph
with no vertices of degree-2 other than the root, and whose leaves (degree-1 vertices)
are bijectively labelled by the set X . The vertices other than the root and the leaves are
referred to as internal vertices. Subtrees of T are denoted by T . The set of all rooted
trees on a set of taxa X is denoted RP(X).

All trees in this paper are rooted trees and are permitted to be non-binary. We will
henceforth refer to them as X -trees, or simply trees if there is no ambiguity.

If there is a directed edge from a vertex u to a vertex v, then we say that u is a
parent of v and v is a child of u. If there is a directed path from u to v, then u is an
ancestor of v and v is a descendant of u. In particular, a parent of a vertex v is always
an ancestor of v, a child of v is always a descendant of v, and v is both an ancestor
and descendant of itself. If two vertices u and v share a parent vertex, we say that u
and v are siblings of each other.

Definition 2 A hierarchy H on a set X is a collection of subsets of X with the following
properties:

1. H contains both X and all singleton sets {x} for x ∈ X .
2. If H1, H2 ∈ H , then H1 ∩ H2 = ∅, H1 ⊆ H2 or H2 ⊆ H1.

Definition 3 Let T ∈ RP(X) be a tree and v be a vertex of T . Then, the cluster of T
associated with v is the subset of X consisting of the descendants of v in T .

A collection of subsets of X is a hierarchy if and only if it is the set of clusters of
some rooted tree T taken over all vertices of T (see Steel 2016 for instance). For this
reason, we refer to the set of clusters of T as the hierarchy of T , denoted H(T ).

Suppose T is a tree with vertex set V and leaf set X = {1, 2, . . . , n} ⊆ V . For
each pair of vertices a, b we denote their most recent common ancestor as mrca(a, b).
Define a function ω: V → R that assigns a real number to each vertex of the tree. For
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each vertex, u ∈ V , we call ω(u) = α the rate at u. Define the subset Cα ⊆ X × X
where (x, y) ∈ Cα if and only if mrca(x, y) = u for all u with ω(u) = α. It follows
that the set {Cα: α ∈ V } forms a partition of X × X .

To each Cα , we associate an n × n matrix Qα with off diagonal entries given by

(Qα)xy =
{
1 if mrca(x, y) = u,

0 otherwise
;

and diagonal entries

(Qα)xx = −#(z: (x, z) ∈ Cα).

We refer to Qα as the rate matrix associated with α. Note that when u is a leaf on
T , the corresponding rate matrix Qα = 0, and that matrices produced by the mrca
function are symmetric. The set of mrca matrices produced by a single tree form
the basis for a matrix algebra (see Theorem 8). Therefore, products in this space are
symmetric, which implies that the algebra is commutative (see Lemma 1). The intent
of this paper is to investigate the properties of the resulting set of matrix algebras.

Remark 1 It follows quickly from the definitions that

∑
α∈ω(V )

Qα = J ,

where J is the n×nmatrix with 1 in each off diagonal entry and 1−n in each diagonal
entry. In fact, for a tree with a unique rate at every vertex, if some non-leaf vertex u
has m leaf descendants and we denote the set of all vertices that are descendants of
some vertex u by Vu , we can see that

∑
α∈ω(Vu)

Qα = Ju,

where Ju is the matrix

(Ju)i j =

⎧⎪⎨
⎪⎩
1 if i �= j and i, j are descendants ofu,

−m if i = j, and

0 otherwise.

Lemma 1 If the product of two symmetric matrices is also symmetric, then those two
matrices commute (Leon 2010).

123



Phylosymmetric Algebras: Mathematical Properties of a New… Page 5 of 17 151

Fig. 1 A rooted tree on taxa
X = {1, 2, 3, 4, 5}, with all
non-leaf vertices labelled by
their rates

Proof Let A, B and AB be symmetric matrices. Then, we have:

AB = (AB)T

= BT AT

= BA.

��
Example 1 We end this section by computing the rate matrix set associated with the
tree in Fig. 1.

In this space, we have

Qα =

⎛
⎜⎜⎜⎜⎝

− 3 0 1 1 1
0 − 3 1 1 1
1 1 − 2 0 0
1 1 0 − 2 0
1 1 0 0 − 2

⎞
⎟⎟⎟⎟⎠ , Qβ =

⎛
⎜⎜⎜⎜⎝

− 1 1 0 0 0
1 − 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

Qγ =

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 − 2 1 1
0 0 1 − 1 0
0 0 1 0 − 1

⎞
⎟⎟⎟⎟⎠ , Qδ =

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 − 1 1
0 0 0 1 − 1

⎞
⎟⎟⎟⎟⎠ ,

and the matrix algebra is the set⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

∗ β α α α

β ∗ α α α

α α ∗ γ γ

α α γ ∗ δ

α α γ δ ∗

⎞
⎟⎟⎟⎟⎠ : α, β, γ, δ ∈ R

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where ∗ is chosen to give zero row, and column, sum.
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Fig. 2 An example of a TIGS. Additionally, these graphs are the α-, β-, γ - and δ-mrca graphs of the tree
in Fig. 1, as defined in Definition 5

3 The Link to Graph Theory

We can also construct the matrix algebra corresponding to a tree T by considering
a certain set of graphs associated with T that we will refer to as tree-induced graph
sets (or TIGS). The basis elements of the matrix algebra will then be the Laplacian
matrices of the associated TIGS.

Definition 4 Let GX be a set of graphs on vertex set X , where GX = {G1 =
(X , E1), . . . ,G� = (X , E�)} with edge sets E1, . . . , E� disjoint, such that (X ,∪Ei )

is the complete graph on |X | vertices. Suppose each graph Gi ∈ G is a disjoint union
Zi � Ci where Zi is a set of degree-0 vertices and Ci is a complete k-partite graph
for some k, and that without loss of generality that G1 contains no degree-0 vertices.
Finally, given a graphGi in G, suppose that for each part P of the k partitions inCi that
contain more than one element, there exists a unique graphG j where V (C j ) = V (P).
Then, we call G a tree-induced graph set (or TIGS).

This definition may seem opaque, so we provide an example to aid understanding.
While the TIGS have been defined independently of trees, there is a very natural
association between TIGS and trees, described in Theorem 1. We can therefore refer
to a tree and its associated TIGS, with the intention of examining the TIGS using the
Laplacian of each graph in the graph set.

Example 2 For example, consider the set of graphs depicted in Fig. 2. We can see
that Gα is the only graph in the set that has no degree zero vertices. Further, Gα is
a bipartite graph, with partitions P1 = {1, 2} and P2 = {3, 4, 5}. We can then see
that V (Gβ) corresponds to the partition P1, as Cβ = P1 and Zβ = X\P1, and that
Cβ is bipartite with partitions {1} and {2}. Similarly, Gγ corresponds to the partition
P2 of Gα , and Gγ is bipartite with partitions {3} and {4, 5}. Finally, Gδ corresponds
to the partition {4, 5} of Gγ . As the only remaining partitions are singletons, the set
{Gα,Gβ,Gγ ,Gδ} is a TIGS.

Theorem 1 There exists a bijection between the set of hierarchies on X and the set of
tree-induced graph sets on X.

Proof For a cluster A in a hierarchy H(T ) with inclusion-maximal subclusters
A1, . . . , A�, we can define the graph G(A) = (V , E)where V = X and e = (v,w) ∈
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E if and only if v and w are in the same inclusion-maximal subcluster Ai . This is the
disjoint union of the complete graphs KAi . Let Z be the subset of V corresponding to
X\A. Let ϕ be a function that maps A to G(A) ∪ Z , and let ϕC be the function that
maps A to GC (A) ∪ Z , where GC denotes the complement of G (that is, the graph
consisting of the same vertex set as G and an edge between vertices v and w if and
only if there is not an edge between them in G).

Denote by φ the function that maps H(T ) to the set {ϕC (A) | A ∈ H(T )}. This is
certainly injective, as ϕ and the operation of taking the complement on the subgraph
induced by G(A) are both invertible. We therefore just need to show that the image of
φ is precisely the set of TIGS.

Suppose we have some TIGS G = {G1 = (X , E1), . . . ,G� = (X , Ek)}. Let
GC = {CC

1 ∪ Z1, . . . ,CC
k ∪ Zk}, where for Ci the complement is taken on the induced

subgraph of Ci . Let Hi, j be the vertex set of the j th complete graph of Ci . We claim
that H = {X} ∪ S ∪ {Hi, j | i ∈ {1, . . . , �}, j ∈ {1, . . . , k}} forms a hierarchy, where
S is the set of singletons on X .

Recall that a hierarchy is a set of subsets of X that contains X , all singletons and
the intersection between two subsets A and B is A, B or empty. Certainly,H contains
all singletons, and the intersection of any Hi, j with X is Hi, j , so it only remains to
check that for any Hi1, j1 , Hi2, j2 the intersection Hi1, j1 ∩ Hi2, j2 is either empty or one
of Hi1, j1 or Hi2, j2 .

Suppose Hi1, j1 ∩Hi2, j2 is non-empty. The only way that this is possible is if V (Ci1)

is a subset of one of the partitions ofCi2 , or vice versa. But then, respectively, Hi1, j1 ⊆
Hi2, j2 or the reverse, so the intersection Hi1, j1 ∩ Hi2, j2 is one of Hi1, j1 or Hi2, j2 .

It follows that H is a hierarchy and therefore that the stated bijection exists. ��
Following the construction in Theorem 1, for each interior vertex of a tree, with

rate α, we can associate a single graph.

Definition 5 Let T be a tree with associated mrca partition Cα . Let Gα be the graph
(V , E) where V = X and an edge e = (x, y) ∈ E if and only if ω(mrca(x, y)) = α.
Then, Gα(T ) is referred to as the α-mrca graph of T .

Then, the set of mrca graphs of T is the corresponding tree-induced graph set as
seen in Theorem 1. For example, the corresponding set of mrca graphs of the tree in
Fig. 1 is shown in Fig. 2.

Recall the following standard graph-theoretic definitions.

Definition 6 Let G = (V , E) be a graph. Then, the adjacency matrix A(G) of G is
the |V | × |V | matrix where

(A(G))vw =
{
1 if (v,w) ∈ E,

0 otherwise
.

The degree matrix D(G) of G is the diagonal |V | × |V | matrix

(D(G))vw =
{
deg(v) if v = w,

0 otherwise
.

123



151 Page 8 of 17 M. Hendriksen, J. A. Shore

Finally, the Laplacian matrix L(G) of G is the |V | × |V | matrix L(G) = D(G) −
A(G). We simply write L, D, A if G is clear from context.

One can then see that the set of negative Laplacians of the associated mrca graphs
of T correspond exactly to the basis elements of the matrix algebra.

Theorem 2 For any tree T , interior vertex u, and rate ω(u) = α, Qα = −L(Gα(T )).

In the next section, we will use the properties of the Laplacians of the associated
mrca graphs to prove properties of the resulting matrix algebras.

4 Algebras Induced by Trees with Distinct Rates for each Vertex

We will now show that for a given tree, the set of rate matrices under matrix multipli-
cation forms a matrix algebra.

Definition 7 A matrix algebra is a matrix vector space which is closed under matrix
multiplication. A phylosymmetric algebra is a matrix set generated from a rooted
tree using the previously described method. It always forms an commutative matrix
algebra when the rates assigned to the non-leaf vertices are unique (see Theorem 8).
We denote the matrix set generated from a tree T by QT .

In order to prove that the set of rate matrices under matrix multiplication for a given
tree T forms a matrix algebra, it suffices to check that for each possible pair of rate
matrices Qα, Qβ , the product QαQβ is a linear combination of rate matrices derived
from T . To do this, we will need to be able to refer the relationship between different
vertices of T .

Definition 8 For a tree T and two vertices on this tree u and v, we say that

– u and v are comparable if either u is a descendant of v or the reverse.
– u and v are incomparable if u is neither an ancestor nor a descendant of v.

We will also need to refer to different subtrees of T .

Definition 9 For a tree T which has an internal vertex u with rateω(u) = α, we define

– T α as the subtree rooted at u;
– T α

β as the subtree rooted at the child of u that is an ancestor of v.

Finally, we will need to appeal to some classical graph-theoretical results. Theorem
3 is folkloric and easily proven (see e.g. Brouwer andHaemers 2011, Proposition 1.3.1)
and Theorem 4 can be proven in an almost identical way. We provide them here as
they will be heavily used in the following work.

Theorem 3 Let G be a graph and A = A(G) its adjacency matrix. Then, (Ak)i j is the
number of walks of length k on G from vertex i to vertex j .
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Theorem 4 Let G1 = (V , E1) andG2 = (V , E2) be graphs on the same set of vertices
and A1 = A(G1), A2 = A(G2) their corresponding adjacency matrices. Consider
the multigraph G× = (V , E1 ∪ E2). Then, (A1A2)i j is the number of walks of length
2 on G× from vertex i to vertex j , where the first edge is taken from E1 and the second
from E2.

We are now in a position to investigate matrix multiplication of elements of QT ,
by appealing to the structure of the associated TIGS. We will consider squares of a
rate matrix first.

Theorem 5 Let u be a vertex of a tree T so that ω(u) = α, and let Gα be an α-mrca
graph, and Qα = −L(Gα) = Aα −Dα be the n×n matrix described before. Suppose
Dα = diag(d1, ..., dn). Then,

(Q2
α)i j =

⎧⎪⎨
⎪⎩
di (di + 1) if i = j,

−|T α| if i and j are in different k-partitions of Gα

di if i �= j are in the same k-partition of Gα

.

Equivalently, if we denote the set of child vertices of u by Cu,

Q2
α = (1 − |T α|)Qα +

∑
β∈ω(Cu)

⎡
⎣(|T α| − |T β |)

⎛
⎝ ∑

γ∈ω(Vu)

Qγ

⎞
⎠

⎤
⎦ .

Proof Since Qα = Aα − Dα , we know Q2
α = A2

α − DαAα − AαDα + D2
α , and it

suffices to consider each of these terms separately.
As Dα is a diagonal matrix, the last three terms are trivial to calculate. Certainly,

D2
α = diag(d21 , . . . , d

2
n ). Further,

(DαAα)i j = di (A)i j =
{
0 if i, j are in the same k-partition ofGα,

di otherwise
,

and

(AαDα)i j = d j (A)i j =
{
0 if i, j are in the same k-partition of Gα,

d j otherwise.
.

Now, by Theorem 1, we can consider the associated TIGS graph (and in particular
Gα), and by Theorem 3, (A2

α)i j is the number of walks of length 2 from i to j in Gα .
As Gα is the complete k-partite graph for k the number of partitions, if i, j are in the
same partition, this is simply the number of vertices of Gα not in this partition, so di .
If they are in different partitions, this is the number of vertices that are in neither the
partition containing i nor the one containing j . If we denote the partition containing
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i by P(i) and similarly for j , this is |T α| − |P(i)| − |P( j)| = di + d j − |T α|, since
|P(i)| = |T α| − di and |P( j)| = |T α| − d j .

To summarise,

(A2
α)i j =

{
di if i, j are in the same k-partition ofGα

di + d j − |T α| otherwise.

Since Q2
α = A2

α − DαAα − AαDα + D2
α , we therefore obtain

(Q2
α)i j =

⎧⎪⎨
⎪⎩
di (di + 1) if i = j,

−|T α| if i and j are in different k-partitions ofGα

di if i �= j are in the same k-partition ofGα

.

as required.
Finally, equivalence of the two expressions in the statement of the theorem follows

simply by observing the entries of the matrix and applying Remark 1. ��
We will now consider multiplication of two rate matrices associated to comparable

vertices.

Theorem 6 Let u and v be vertices of a tree T so that ω(u) = α,ω(v) = β. Let
Gα,Gβ be α- and β-mrca graphs, and Qα = −L(Gα) = Aα − Dα and Qβ =
−L(Gβ) = Aβ − Dβ be the n × n matrices described before. Finally, suppose that v
is a descendant of u. Then,

QαQβ = (|T α
β | − |T α|)Qβ = QβQα.

Proof Suppose Dα = diag(c1, . . . , cn) and Dβ = diag(d1, . . . , dn). Further let Aα =
(ai j ) and Aβ = (bi j ).

Since QαQβ = (Aα − Dα)(Aβ − Dβ), we know QαQβ = AαAβ − AβDα −
AαDβ + DαDβ , and it suffices to consider each of these terms separately.

We first consider DαDβ . As v is a descendant of u, any vertex i ofGβ with nonzero
degree is a subset of a single k-partition of Gα . In particular, as Gα is a complete k-
partite graph ci = |T α| − |T α

β | so it follows

(DαDβ)i j =
{

(|T α| − |T α
β |)di if i = j and i is a descendant of v,

0 otherwise
.

Therefore, (DαDβ) = (|T α| − |T α
β |)Dβ .

We now consider AβDα . Let (Aβ)i j = bi j . As Dα is diagonal, (AβDα)i j = bi j ci .
In particular, bi j is nonzero (in fact 1) if and only if i, j are both descendants of v and
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i and j are in different partitions of Gβ . For all such i, j , we see i and j are in the
same partition of Gα , so again ci = |T α| − |T α

β |. Hence,

(AβDα)i j =

⎧⎪⎨
⎪⎩

|T α| − |T α
β | if i, j

are descendants of v and in separate partitions ofGβ,

0 otherwise

.

Therefore, (AβDα) = (|T α| − |T α
β |)Aβ .

We now consider AαDβ . Let (Aα)i j = ai j . As Dβ is diagonal, (DαAβ)i j = d jai j .
In this case, d j is nonzero if and only if j is a descendant of v. But we know all
descendants of v are in the same k-partition of Gα , so it follows that

(AαDβ)i j =
{
d j if j is a descendant of v and i is a descendant of u but not v,

0 otherwise
.

Finally, we consider AαAβ . By Theorem 1, we can consider the associated TIGS
graph of T (and in particular Gα and Gβ ), and by Theorem 4, this says that if Gα =
(V , E1),Gβ = (V , E2), then by taking themultigraphG× = (V , E1∪E2), (AαAβ)i j
is the number of walks of length 2 on G× from vertex i to vertex j , where the first
edge e1 is taken from E1 and the second edge e2 from E2. We consider e2 first. This
is an edge from leaf k in a partition of Gβ that does not contain j to j itself, of which
there are deg( j) = d j such edges. It follows that, if it exists, e1 is an edge in Gα from
the vertex i (which is not a descendant of v) to k, of which there is only one. Thus

(AαAβ)i j =
{
d j if j is a descendant of v and i is a descendant of u but not v,

0 otherwise
,

which means AαAβ = AαDβ .
It follows that

QαQβ = AαAβ − AβDα − AαDβ + DαDβ

= DαDβ − AβDα

= (|T α| − |T α
β |)Dβ − (|T α| − |T α

β |)Aβ

= (|T α| − |T α
β |)(Dβ − Aβ)

= (|T α
β | − |T α|)Qβ

as required.
To complete the proof, we see that QαQβ = QβQα , as Qα and Qβ are symmetric

matrices, and their product is a scalar multiple of a symmetric matrix and hence
symmetric itself, so by Lemma 1, we know that Qα and Qβ commute. ��

Finally, we consider multiplication of two rate matrices associated with incompa-
rable vertices.
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Theorem 7 Suppose that u and v are incomparable vertices so that ω(u) = α and
ω(v) = β. Let Gα,Gβ be α- and β-mrca graphs, and Qα = Aα − Dα and Qβ =
Aβ − Dβ be the n × n matrices described before. Then,

QαQβ = 0n×n .

Proof By Theorem 1, we can consider the associated TIGS graph (and in particular
Gα and Gβ ), and as u and v are incomparable, Gα and Gβ can have their vertices
partitioned into disjoint sets A and B, where Gα only has edges between vertices in
A, and Gβ only has edges between vertices in B.

It therefore suffices to observe that under an appropriate choice of basis, the Lapla-
cianmatrix of each graph is block diagonal,where all nonzero blocks of Qα correspond
to zero blocks of Qβ , and vice versa. It follows that

QαQβ = 0n×n .

��
Theorem 8 For a binary rooted tree T , QT is an commutative matrix algebra.

Proof Weknow thatQT is a vector space, closed undermatrix products (see Theorems
5–7) and that all matrices in QT and their products are symmetric, so the space is
commutative by Lemma 1.

��

5 Algebras Induced by Trees with Repeated Rates

So far we have found that when the rates assigned to tree nodes are unique, the matrix
set forms an algebra. Now, we explore cases of rates not being unique. We note here
that the K2P model is an example of a phylosymmetric algebra with non-unique rates.
We see that the tree represented in Fig. 3 gives rise to the K2P model. We know from
previous work (Fernández-Sánchez et al. 2015) that the matrix set for K2P is closed
under matrix multiplication. However, in the general case, there is no guarantee that
a matrix set will still be closed under matrix multiplication when several rates on the
tree are set to be equal. It should be noted here that for all cases in which two or
more rates are set to be equal, the matrix algebra generated from the same tree with
unique rates will always be a commuting matrix algebra which contains the set of rate
matrices generated from the tree which contains repeated rates. (This matrix algebra,
however, would not honour the constraint of the rates being equal.) We now explore
the conditions that have to be met on such a rooted tree for its rate matrix set to be an
algebra.

Definition 10 Let T be a tree with at least two non-leaf vertices u and v, so that
ω(u) = α and ω(v) = β. Let T ′ be a tree with the same topological tree struc-
ture and associated rates as T , with the additional constraint that α = β. (Here, we
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Fig. 3 A rooted tree on states of
DNA with taxa X = { A, G, C,
T }, with all non-leaf vertices
labelled by their rates. The
phylosymmetric algebra that this
tree gives rise to is the K2P
model

suppose that there are only two rates on T ′ that are equal.) We note that if QT =
span{Qα, Qβ, Qγ , Qδ, . . .}R and we define QX = Qα + Qβ , then we have QT ′ =
span{QX , Qγ , Qδ, . . .}R. If QT ′ is a matrix algebra, we say that α = β is a phylo-
algebraic constraint.

Labelling two vertices by the same rate is equivalent to adding their rate matrices,
so we can consider

(Qα + Qβ)2 = Q2
α + Q2

β + 2QαQβ,

as QαQβ = QβQα by Lemma 1 and Theorem 6.
If u is an ancestor of v, then by Lemma 5 this becomes

Q2
α + Q2

β + 2(|T α| − |T β |)Qβ,

and in the particular case that they are incomparable, by Theorem 7 we obtain

Q2
α + Q2

β.

Theorem 9 If T is a tree and u and v are siblings so that ω(u) = α and ω(v) = β,
and u and v have the same number of leaf descendants, α = β is a phylo-algebraic
constraint (and hence the resultant matrix algebra is closed).

Proof Suppose u and v are siblings, and have the same number of leaf descendants
(i.e. |T α| = |T β |). Then, by Theorem 5,

Q2
α + Q2

β = −|T α|(Qα + Qβ)

+scalar multiples of the rate matrices of their descendants,

which is certainly within the generated matrix set. As u and v are siblings, then for
any third vertex w with rate γ , w is an ancestor to both of them, incomparable to both
of them, or incomparable to one and a descendant of the other.

Ifw is an ancestor of both u and v, then (Qα +Qβ)Qγ = (|T γ |−|T β |)(Qα +Qβ).
If w is incomparable to both, (Qα + Qβ)Qγ = 0n×n . If, w is, say, incomparable to
u and a descendant of v, then (Qα + Qβ)Qγ = (|T α| − |T γ |)Qγ . This covers all
possible cases, as u and v are siblings.

In all three cases, the result is clearly in the algebra, so we will always obtain a
phylosymmetric algebra. ��
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Theorem 10 If T is a tree, u and v are interior vertices such that ω(u) = α and
ω(v) = β, and one of u and v is the parent of the other, α = β is a phylo-algebraic
constraint

Proof Suppose without loss of generality, u is the parent of v. We first consider the
tree T without the α = β constraint. Using Theorem 1, we can consider the associated
TIGS, in particular Gα and Gβ . Suppose Gα be a complete k-partite graph and Gβ be
a complete k′-partite graph. In this case, we can see that the only change induced to
the corresponding TIGS by the α = β constraint is that Gα and Gβ are removed and
replacedwithGα+Gβ , where+ indicates a graph sum. Then, the resultingmrca graph
set is certainly a TIGS, as we can partitionGα +Gβ into a complete (k+k′−1)-partite
graph, by applying the k-partition of Gα and subpartition the partition consisting of
the descendants of v into the k′ parts corresponding to Gβ .

The resultant TIGS therefore corresponds to a tree by Theorem 1, and therefore by
Theorem 8 forms a matrix algebra. ��
Observation The set of basis matrices obtained in the case of Lemma 10 coincides
exactly with the set of basis matrices of the tree in which the vertices u and v are
identified in the graph theoretic sense. Let T be a tree in which there is a union ∪Ci of
connected subgraphs of T where each connected subgraph Ci has all rates identified
with each other, but not any other connected subgraph C j . Then this will also induce
a matrix algebra (indeed a phylosymmetric algebra), as we can sequentially identify
parent–child pairs, obtain a matrix algebra corresponding to a tree and then identify
another parent–child pair.

Theorem 11 Let T be a tree with unique rates andQT be the phylosymmetric algebra
of T . If u and v are interior vertices so that ω(u) = α and ω(v) = β, we defineQα=β

T
as the matrix set generated from setting α = β.Qα=β

T is a matrix algebra if and only
if one of the following is true:

1. u is a parent of v or vice versa;
2. u and v are siblings and have the same number of leaf descendants.

Proof For an added constraint α = β, we let QX = Qα + Qβ . We can show that

Qα=β

T is not a matrix algebra by showing that products in the space cannot be written
as linear combinations that include QX but do not include Qα and Qβ .

First, we assume that Qα=β

T is a matrix algebra. There are five possible ways to
describe the positions of two vertices u and v on a tree:

1. There exists a vertex w such that w is a descendant of u and an ancestor of v.
2. There exists a vertex w such that u and w are incomparable and v is a descendant

of w.
3. There exists a vertex w with rate γ such that u and v are child vertices of w and

|T α| �= |T β |.
4. There exists a vertex w with rate γ such that u and v are child vertices of w and

|T α| = |T β |.
5. The vertex u is a parent of v or vice versa.
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In Case 1, we see that

Qγ QX = Qγ (Qα + Qβ)

= Qγ Qα + Qγ Qβ

= −n1Qγ − n2Qβ(∵ Theorem 6 where ni ∈ N),

as n1 �= n2, therefore α = β is not a phylo-algebraic constraint and Qα=β

T is not a
matrix algebra.

For Case 2, we let u and w be incomparable and v be a descendant of w. We then
have

Qγ QX = Qγ (Qα + Qβ)

= Qγ Qα + Qγ Qβ

= (|T γ | − |T β |)Qβ.

As this set of matrices are linearly independent, any scalar multiple of Qβ is not
able to be generated by the set, and so this product is not contained within the space.

In Case 3, if we denote the set of child vertices of w by Cw,

Q2
γ = (1 − |T γ |)Qγ +

∑
δ∈ω(Cw)

⎡
⎣(|T γ | − |T δ|)

⎛
⎝ ∑

ε∈ω(Vw)

Qε

⎞
⎠

⎤
⎦

= (|T γ | − |T α|)Qα + (|T γ | − |T β |)Qβ

+ other matrix terms linearly independent of Qα and Qβ.

As we know that |T α| �= |T β |, we can see that under these circumstances, Qα=β

T is
not a matrix algebra.

So we see that only cases 4 and 5 remain, and both produce matrix algebras by
Lemmas 9 and 10 respectively.

The theorem follows. ��

6 Discussion

In Sect. 2, we introduced a set ofmatrices associatedwith trees that had rates associated
to each non-leaf vertex. In Sect. 4, we derived results on the multiplication of these
matrices, and showed, in the case that each rate is unique, that the matrices form
a matrix algebra. In Sect. 5, we extended this result to completely characterise all
conditions for which the matrices form a matrix algebra when two rates are identical,
and derived sufficient conditions for simple cases of arbitrarily many equal rates.

In previous work, it has been found that building phylogenetic models with a focus
on mathematical, rather than biological, properties can produce models which are
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computationally faster to use and can address biological problems that had not previ-
ously been considered (Sumner et al. 2012; Sumner 2017; Shore 2015). Development
of phylogenetic models also presents new applications of, and new problems in, linear
algebra, graph theory and other areas of mathematics (Steel 2016). Phylosymmetric
algebras are an application of both linear algebra and graph theory in phylogenetics
which has previously been unexplored. We hope that future research in this area will
provide similarly valuable results. In particular, future work could characterise all
conditions for which a tree with a given set of associated rates form a matrix algebra.
In addition, a characterisation of which matrix algebras are induced by trees would
also be interesting and may lead to a better structural understanding of rooted trees.

Another avenue of possible research from this point is development of phylogenetic
models. We have shown that phylosymmetric algebras have desirable mathematical
properties. Sumner et al. (2012) and Shore (2015) have shown that such mathematical
properties are desirable in rate substitution models. To use these algebras for rate
substitution models in DNA would not provide much in the way of new ground given
the broad literature of DNA rate substitution models (Fernández-Sánchez et al. 2015
for example provides a list of all parameterised DNA models with purine/pyrimidine
symmetry which are closed under multiplication). Although, as discussed in Sect. 5,
we note that the K2P model is an example of a phylosymmetric algebra.

In amino acid substitution models, however, empirical models are most commonly
used (Le and Gascuel 2008 for example) with very few parameterised models having
been developed as utilised. The current parameterised amino acid substitution models
(Yang et al. 1998; Adachi and Hasegawa 1996) have between 24 and 190 parameters
and are not constructed with desirable mathematical properties. To fill this gap, our
method of rate matrix construction could be used to build a suite of parameterised
amino acid substitution matrices with between 3 and 19 parameters. Having a smaller
number of parameters makes computations faster (and hence more computational
power can be dedicated to checking the robustness of results) (Mello et al. 2016) and
makes the process of interpreting the fitted parameters a much simpler task.

This proposed method of amino acid substitution matrix generation is distinct from
all existing amino acid substitution matrices as our proposed approach features a
set of parameterised matrices with a low number of parameters. These models have
desirable mathematical properties and, given we can build the initial trees with splits
that represent characteristics of amino acids such as polarity, the parameters convey
biological significance. As well as such models being mathematically tractable, they
have also already been shown to have real biological applications and correlate with
biological data as shown by Shore et al. (2020).
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