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Abstract
Factors such as seasonality and spatial connectivity affect the spread of an infectious
disease. Accounting for these factors in infectious disease models provides useful
information on the times and locations of greatest risk for disease outbreaks. In this
investigation, stochastic multi-patch epidemic models are formulated with seasonal
and demographic variability. The stochastic models are used to investigate the prob-
ability of a disease outbreak when infected individuals are introduced into one or
more of the patches. Seasonal variation is included through periodic transmission and
dispersal rates. Multi-type branching process approximation and application of the
backward Kolmogorov differential equation lead to an estimate for the probability of
a disease outbreak. This estimate is also periodic and depends on the time, the location,
and the number of initial infected individuals introduced into the patch system as well
as the magnitude of the transmission and dispersal rates and the connectivity between
patches. Examples are given for seasonal transmission and dispersal in two and three
patches.

Keywords Branching process · Epidemic · Patch model · Stochastic model ·
Time-nonhomogeneous

Mathematics Subject Classification 92D30 · 60J28 · 60J85

1 Introduction

Seasonal fluctuations in disease incidence have been known since the time of Hip-
pocrates, about 400 B.C. (Fisman 2007). Seasonal changes in temperature, humidity,
and rainfall affect pathogen survival, host behavior, and host immune function, which
in turn affect successful transmission (Grassly and Fraser 2006; Altizer et al. 2006).
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Seasonal changes also affect the movement of susceptible and infected hosts and
impact the spatial spread of disease in humans and in domestic and wild animal popu-
lations (Altizer et al. 2006). Some of the many infectious diseases that are impacted by
seasonal variations include seasonal influenza, avian influenza (AI), malaria, cholera,
dengue, plague, foot-and-mouth disease, Ebola, Middle East respiratory syndrome
(MERS), and severe acute respiratory syndrome (SARS), e.g., (Breban et al. 2009;
Brown et al. 2014; Camitz and Liljeros 2006; Endo and Nishiura 2018; Fisman 2007;
Gao et al. 2019; Parham andMichael 2010; Keeling 2005; McLennan-Smith andMer-
cer 2014; Schmidt et al. 2017; Vaidya and Wahl 2015). The emergence of the new
coronavirus disease named COVID-19 and the worldwide pandemic has raised con-
cerns about seasonal or sporadic outbreaks after the pandemic period (Kissler et al.
2020). It is the goal of the present investigation to study infectious disease outbreaks
in a multi-patch setting when transmission within and movement between the patches
are seasonal. Our modeling framework and methods with knowledge about travel pat-
terns and seasonal trends will provide insight about effective methods for control or
prevention of disease outbreaks.

Many modeling studies have focused on disease spread among discrete patches
with no seasonal variations. These studies have been based on ordinary differential
equations (ODEs), e.g., (Allen et al. 2007; Arino 2009; Arino and van den Driessche
2003b, a, 2006; Baguette et al. 2014; Cosner et al. 2009; Gao andRuan 2012; Gao et al.
2019; Kelly Jr. et al. 2016) and on stochastic models, e.g., (Ball 1991; Ball and Clancy
1993; Clancy 1994; Breban et al. 2009; Lahodny Jr and Allen 2013; McCormack and
Allen 2007; Milliken 2017; Neal 2012). The ODE multi-patch epidemic models have
established upper and lower bounds on the basic reproduction number, existence and
stability of an endemic equilibrium and conditions for disease persistence or extinction
under various dispersal/movement assumptions. In a cholera ODEmulti-patch model,
Kelly Jr. et al. (2016) showed that targeting vaccination to specific patches is effective in
controlling the disease. In stochastic time-homogeneousmodels, the effect of dispersal
on epidemic final size and on probability of an outbreak has also been studied in multi-
patch settings.

The effects of seasonal variation on disease dynamics have been studied in ODE
models, e.g., (Bacaër and Guernaoui 2006; Bacaër 2007; Gao et al. 2014; Jin and Lin
2018; McLennan-Smith and Mercer 2014; Mitchell and Kribs 2017; Posny and Wang
2014; Schwartz and Smith 1983; Suparit et al. 2018; Vaidya and Wahl 2015; Wang
et al. 2012; Wang and Zhao 2017a, b; Zhang and Zhao 2007; Wolf et al. 2006) and
in stochastic models, e.g., (Bacaër and Ait Dads 2014; Billings and Forgoston 2018;
Breban et al. 2009; Jin and Lin 2018; Keeling et al. 2001; Lin et al. 2015; Nipa and
Allen 2020). The ODE models are nonautonomous and include seasonal variation
through periodic coefficients. In these models, the existence of a basic reproduction
numberR0 with stability of the disease-free state has been verified forR0 < 1 (Bacaër
2007; Zhang and Zhao 2007). Interestingly, numerical examples have demonstrated
that R0 for the nonautonomous model differs from the autonomous model when
coefficients are fixed at their average values. Recently, Bacaër and Ait Dads (2014)
showed that the basic reproduction number R0 from the underlying nonautonomous
ODEmodel serves as a threshold for disease extinction in the corresponding stochastic
time-nonhomogeneousmodel. IfR0 < 1, the probability of disease extinction is equal
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to 1, butwhenR0 > 1, the probability of disease extinction is periodicwith probability
< 1.Nipa and Allen (2020) applied these results to estimate the probability of disease
extinction in a stochastic vector-host epidemic model.

This investigation extends the previous researchby combiningmulti-patch epidemic
models with seasonal variation in a stochastic setting. In particular, we formulate a
stochastic multi-patch epidemic model with seasonal variability in transmission and
dispersal rates. Through multi-type branching process approximation and application
of the backward Kolmogorov differential equation, an estimate for the probability of
disease extinction is derived. It is shown that the probability of disease extinction and
disease outbreak is periodic and less than 1whenR0 > 1. In particular, the probability
of disease extinction and disease outbreak is dependent on the time, the location, and
the number of initial infected individuals i introduced at time τ into the patch system:

0 < Pext (i, τ ) < 1

and Poutbreak(i, τ ) = 1 − Pext (i, τ ), where I (τ ) = i = (i1, . . . , in) and i j is the
number of infected individuals in patch j for j = 1, . . . , n at the initial time τ ∈ [0,T]
with T the total length of the seasons (generally one year) and n the total number of
patches.

In the next section, a nonautonomous ODE multi-patch epidemic model is intro-
duced which serves as a framework for the stochastic time-nonhomogeneous model in
Sect. 3. Approximation of the time-nonhomogeneous process by a multi-type branch-
ing process and the backward Kolmogorov differential equation leads to estimates
of the periodic probability of disease extinction. Several numerical examples with
two patches in Sect. 4 illustrate the dependence of the probability of an outbreak on
time, the location, and the initial number of infected individuals. Examples with three
patches in Sect. 5 show the importance of patch arrangement and connectivity on the
probability of a disease outbreak. In the concluding section, we summarize our results
and suggest areas for further research.

2 ODEMulti-PatchModel

We consider a susceptible-infected-recovered (SIR) multi-patch epidemic model with
the dispersal of individuals between patches. The term dispersal is used to represent
seasonal movement or migration rather than human movement associated with daily
commuter travel, e.g., (Arino and van denDriessche 2003b; Cosner et al. 2009). Before
defining the stochastic process, we define the underlying nonautonomous ODEmodel.

Let n be the total number of patches. For patch j , susceptible individuals are denoted
as S j , infected individuals as I j , and recovered individuals as R j , j = 1, 2, . . . , n. We
assume there are births and natural deaths as well as disease-related deaths. The total
population size in each patch equals N j = S j + I j + R j , j = 1, 2, . . . , n and the total
population size equals N = ∑n

j=1 N j . For each patch j , parameter μ j represents
the birth and natural death rate, parameter α j is the disease-related death rate, and
parameter γ j is the recovery rate. The transmission and dispersal rates are assumed
to be time-periodic functions. The disease transmission rate is frequency-dependent,
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β j (t), and the dispersal rate from patch j to patch k is d�
jk(t), j, k = 1, 2, . . . , n and

j �= k. That is,

β j (t) = β j (t + T) and d�
jk(t) = d�

jk(t + T), (1)

where � = S, I , R represents the dispersal rate for either susceptible, infected or
recovered individuals. These functions are continuous for t ∈ (−∞,∞) with period
T > 0.

The multi-patch model with a total of n patches takes the following form:

Patch j

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ j = −β j (t)
I j
N j

S j + μ j (N j − S j ) +
n∑

k=1,k �= j

(
dS
k j (t)Sk − dS

jk(t)S j

)

İ j = β j (t)
I j
N j

S j − (μ j + α j + γ j )I j +
n∑

k=1,k �= j

(
d I
k j (t)Ik − d I

jk(t)I j
)

Ṙ j = γ j I j − μ j R j +
n∑

k=1,k �= j

(
dR
k j (t)Rk − dR

jk(t)R j

)
,

(2)

where S j (0) > 0, I j (0) ≥ 0, R j (0) = 0, S j (0) + I j (0) + R j (0) = N j and with all
parameters nonnegative such that β j (t) > 0 and μ j + γ j + α j > 0 for j = 1, . . . , n.
In general,

Ṅ = −
n∑

j=1

α j I j .

If there are no disease-related deaths, α j = 0, then the total population size N is
constant. However, with dispersal and disease, the population size within each patch
may change over time.

Wemake some simplifying assumptions to ensure there exists a unique disease-free
equilibrium (DFE). Assume

d�
jk(t) = d�

k j (t) (3)

for � = S, I , R. In the absence of infection, I j ≡ 0, the equilibrium population sizes
within each of the patches are constant, i.e., N1 = N2 = · · · = Nn . The unique DFE
is S̄ j = N j = N/n, j = 1, . . . , n. The simplifying assumption in Eq. (3) implies
movement to and from a patch is balanced or symmetric. This assumption does not
hold, for example, if there is directed movement such as asymmetric connectivity as
in Chen et al. (2020). We relax this assumption for an example in Sect. 4.

Linearizing the system (2) about theDFE for the n infected states I = (I1, . . . , In)T

results in the linear system

İ = [F(t) − V (t)]I . (4)
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The basic reproduction number, R0, depends on the two matrices, F(t) and V (t).
Matrix F(t) represents new infections, a diagonal matrix, and matrix V (t) represents
other transitions (dispersal, recovery and deaths):

F(t) =

⎛

⎜
⎜
⎜
⎝

β1(t) 0 . . . 0
0 β2(t) . . . 0
...

...
...

...

0 0 . . . βn(t)

⎞

⎟
⎟
⎟
⎠

(5)

and

V (t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v11(t) −d I
21(t) −d I

31(t) . . . −d I
n1(t)−d I

12(t) v22(t) −d I
32(t) . . . −d I

n2(t)−d I
13(t) −d I

23(t) v33(t) . . . −d I
n3(t)

...
...

...
...

...

−d I
1n(t) −d I

2n(t) −d I
3n(t) . . . vnn(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (6)

where vi i (t) = μi + αi + γi + ∑n
k=1,k �=i d

I
ik(t). For the nonautonomous system,

explicit solutions for the basic reproduction number can be calculated only in special
cases, e.g., Mitchell and Kribs (2017); Wang and Zhao (2008). For example, if there
is no dispersal between patches, the basic reproduction number for patch j can be
computed as follows:

R0 j =
∫ T
0 β j (t) dt

∫ T
0 (μ j + α j + γ j ) dt

=
∫ T
0 β j (t) dt

T(μ j + α j + γ j )
= β̄ j

μ j + α j + γ j
. (7)

We refer to R0 j as the patch reproduction number which in this case is simply the
average of the transmission rate, denoted as β̄ j , multiplied by the average duration of
the infection, 1/(μ j + α j + γ j ).

In the more general case, Assumptions (A1)–(A7) (Appendix A) ensure that the
basic reproduction number exists for the system (2) (Wang and Zhao 2008). Theoret-
ically, R0 can be found from the following linear periodic system:

ẇ = [F(t)/λ − V (t)]w. (8)

The spectral radius of the fundamental matrix solution of system, evaluated at t = T,
equals one, then λ = R0 (Theorem 2.1 p. 704, (Wang and Zhao 2008)), i.e.,

φF(t)/λ−V (t)(T) = 1.

If an analytical solution cannot be obtained, numerical methods as well as computer
algebra systems can be used to compute the spectral radius of this matrix (Klausmeier
2008; Posny and Wang 2014). In the following examples, we compute the results
numerically by choosing a sequence of values λi , i = 1, 2, . . . and 0 < ε � 1, where
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Table 1 Infinitesimal transition probabilities for the stochastic n-patch model

Description Transition Probabilities

Infection in patch j S j → S j − 1, I j → I j + 1 β j (t)
i j
n j

s jΔt + o(Δt)

Healthy birth in patch j S j → S j + 1 μ j n jΔt + o(Δt)

Healthy death in patch j S j → S j − 1 μ j s jΔt + o(Δt)

Healthy dispersal from patch j to k S j → S j − 1, Sk → Sk + 1 dSjk (t)s jΔt + o(Δt)

Healthy dispersal from patch k to j S j → S j + 1, Sk → Sk − 1 dSk j (t)skΔt + o(Δt)

Infected death in patch j I j → I j − 1 (μ j + α j )i jΔt + o(Δt)

Recovery in patch j I j → I j − 1, R j → R j + 1 γ j i jΔt + o(Δt)

Infected dispersal from patch j to k I j → I j − 1, Ik → Ik + 1 d Ijk (t)i jΔt + o(Δt)

Infected dispersal from patch k to j I j → I j + 1, Ik → Ik − 1 d Ik j (t)ikΔt + o(Δt)

Recovered death in patch j R j → R j − 1 μ j r jΔt + o(Δt)

Recovered dispersal from patch j to k R j → R j − 1, Rk → Rk + 1 dRjk (t)r jΔt + o(Δt)

Recovered dispersal from patch k to j R j → R j + 1, Rk → Rk − 1 dRk j (t)rkΔt + o(Δt)

Sum of Changes Σ(t)Δt + o(Δt)

|λi+1 − λi | < ε until a value of λk is reached such that φF(t)/λk−V (t)(T) ≈ 1. Then,
R0 ≈ λk . It should be noted that the basic reproduction number does not depend on
the dispersal of S or R, only the dispersal rate of I . We use the terminology that patch
j is high-risk ifR0 j > 1 and is low-risk ifR0 j < 1 (Allen et al. 2007).

3 Time-Nonhomogeneous Stochastic Process

The ODE model serves as a framework for formulation of the time-nonhomogeneous
stochastic process. For simplicity, the same notation is used for the variables as in the
ODE model. The random variables are discrete and time is continuous, t ∈ [0,∞),

S j (t), I j (t), R j (t) ∈ {0, 1, 2, 3, . . . , N j }

for j = 1, 2, . . . , n. The changes in the random variables are ±1 during a small
interval of time Δt . The rates in the ODE model are used to define the infinitesimal
transition probabilities. They are summarized in Table 1.

For example, a new infection in patch j at time t results in a change in the random
variables,ΔS j (t) = S j (t+Δt)−S j (t) = −1 andΔI j (t) = I j (t+Δt)− I j (t) = +1
with probability
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Fig. 1 (Color Figure Online) Two sample paths are graphed with one infected individual introduced into
patch 1, (S1(0), I1(0), R1(0)) = (1999, 1, 0) (S2(0), I1(0), R2(0)) = (2000, 0, 0). Patch 1 is high-risk
withR01 = 3 and patch 2 is low-riskwithR0 = 0.2.One sample path illustrates amajor outbreak, while the
second sample path illustrates rapid disease extinction. The top two panels show the dynamics of susceptible,
infected, and recovered individuals in the two patches. The bottom two panels show a close-up view of the
two sample paths of the infected individuals. Parameter values are β1(t) = 18(1+0.8 sin(π t/2)), β2(t) =
1.2(1+ 0.8 sin(π t/2)), d�

jk = 2(1+ 0.8 sin(π t/2)), � = S, I , R, μ1 = μ2 = 0.01, γ1 = γ2 = 5.99, and
α1 = α2 = 0

P{(ΔS j (t),ΔI j (t)) = (−1,+1)|(S j (t), I j (t)) = (s j , i j )} = β j (t)
i j
n j

s jΔt + o(Δt).

The lower case letters s j , i j , and n j denote the values of the random variables S j (t),
I j (t), and N j (t), respectively.

A simple example of two patches illustrates the dynamics of the stochastic time-
nonhomogeneous process when either a disease outbreak or disease extinction occurs.
In Fig. 1, two sample paths are graphed for (I1(0), I2(0)) = (1, 0). The top two panels
show the dynamics of the SIR process in two patches when an outbreak occurs. In
this example, susceptible, infected, and recovered individuals have the same periodic
dispersal rates in both patches, but the periodic transmission rates differ in patches
1 and 2. Disease extinction is not visible in the top two panels, but a close-up view
in the bottom two panels shows the infected population in each patch. In one sample
path, there is no outbreak, the number of infected individuals reaches zero by time
0.25 (approximately 3 weeks), whereas in the other sample path there is a disease
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Table 2 Infinitesimal transition probabilities for the infected states in the branching process approximation
of the stochastic n-patch model

Event Description Transition Probabilities

1 Infection in patch j I j → I j + 1 β j (t)i jΔt + o(Δt)

2 Infected death in patch j I j → I j − 1 (μ j + α j )i jΔt + o(Δt)

3 Recovery in patch j I j → I j − 1 γ j i jΔt + o(Δt)

4 Infected dispersal from patch j to k I j → I j − 1, Ik → Ik + 1 d Ijk (t)i jΔt + o(Δt)

5 Infected dispersal from patch k to j I j → I j + 1, Ik → Ik − 1 d Ik j (t)ikΔt + o(Δt)

Total Sum of Changes ΣI (t)Δt + o(Δt)

outbreak. It is clear that a major outbreak occurs in patch 1, where the number of
infected individuals reaches a level of over 500 individuals, and a smaller outbreak is
visible in patch 2. There is only a single outbreak as the susceptible populations are
depleted in both patches, and the infected population sizes reach zero in both patches
before a second outbreak occurs. That is, the populations in both patches become
disease-free.

3.1 Branching Process Approximation

Amulti-type branching process approximation is applied to the n infected states I j in
the time-nonhomogeneous process near the DFE, where S j = N j . The infinitesimal
transition rates in the branching process approximation during a small period of time
Δt are summarized in Table 2.

The changes in the infected states are related to the transitions that occur in the lin-
earized ODE system, Eq. (4). Unlike the nonhomogeneous stochastic process defined
in Table 1, the random variables for the branching process are not bounded above,

I j (t) ∈ {0, 1, 2, . . .} j = 1, . . . , n.

Bacaër and Ait Dads (2014) applied the forward Kolmogorov differential equation
to show that the basic reproduction number R0 from the ODE model serves as a
threshold for the branching process approximation. In particular, they showed ifR0 ≤
1, then themulti-type branching processwith the same periodic rates has an asymptotic
periodic probability of disease extinction that depends on the time of introduction τ

and the number of infected individuals i = (i1, . . . , in), i.e., I j (τ ) = i j ≥ 0 and
I (τ ) = i . If R0 ≤ 1, then the asymptotic probability of disease extinction is 1, but if
R0 > 1, then

0 < Pext (i, τ ) < 1, τ ∈ [0,T].
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In addition, the asymptotic probability of a disease outbreak can be approximated as
follows:

Poutbreak(i, τ ) = 1 − Pext (i, τ ).

We describe another method to obtain the estimate for the probability of disease
extinction via probability generating functions (pgfs) and the backward Kolmogorov
differential equation (Nipa and Allen 2020). Denote the transition probability for the
multi-type branching process as

pi,m(τ, t) = P{I (t) = m|I (τ ) = i}, τ < t,

where the notation m = (m1, . . . ,mn), I j (t) = m j ≥ 0, j = 1, . . . , n is the number
infected at time t and i = (i1, . . . , in), I j (τ ) = i j , j = 1, . . . , n is the number infected
at time τ . The backward Kolmogorov differential equation can be derived from the
transitions defined in Table 2, e.g., (Athreya and Ney 2004; Harris 1963; Jagers and
Nerman 1985):

−∂ pi,m(τ, t)

∂τ
=

n∑

j=1

i j
[
β j (τ )p(i+e j ,m)(τ, t) + (μ j + α j + γ j )p(i j−e j ,m(τ, t)

]

+
n∑

j=1

n∑

k=1,k �= j

i j d
I
jk(τ )p(i−e j+ek ,m)(τ, t)

−
n∑

j=1

i j

⎡

⎣β j (τ ) + (μ j + α j + γ j ) +
n∑

k=1,k �= j

d I
jk(τ )

⎤

⎦ p(i,m)(τ, t),

(9)

where e j is the standard unit vector in Rn .
Next, we define the offspring pgfs, one for each of the random variables I j . The

offspring pgfs for this time-continuous process are distinct from those in a discrete-
time Markov chain (DTMC). The number of infections generated by I j in the time-
continuous process is assumed to occur in a small period of timeΔt rather than during
the entire infectious period as in a DTMC. Given I j (τ ) = 1 and Ik(τ ) = 0 for k �= j ,
one of four events defined in Table 2, if any, occurs in a small period of time Δt . An
infected individual in patch j (1) transmits the infection to another individual in patch
j or (2) dies (naturally or from the infection) or (3) recovers from the infection or (4)
moves to another patch k. The pgf for I j that includes these four events is defined by

f j (u, τ ) = β j (τ )u2j + μ j + α j + γ j + ∑n
k=1,k �= j d

I
jk(τ )uk

β j (τ ) + μ j + α j + γ j + ∑n
k=1,k �= j d

I
jk(τ )

, (10)

where u = (u1, . . . , un) ∈ [0, 1]n , j = 1, . . . , n. Each pgf has the property that
f j (u, τ )|u=1 = 1 and f j is nonlinear in u and positive on the set [0, 1]n . The difference
between this pgf and the pgf for the model with constant parameters (equation (12) in
Lahodny Jr and Allen (2013)) is that the pgf (10) is dependent on τ .
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In addition to the offspring pgfs for each of the infected states, we define the
generating function for the multi-type branching process consisting of all n infected
states. Let

Gi (u, τ, t) = E

⎡

⎣
n∏

j=1

u
I j (t)
j |I (τ ) = i

⎤

⎦ =
∑

m

pi,m(τ, t)
n∏

j

u
m j
j , τ < t, (11)

where u = (u1, . . . , un). In the branching process, the random variables I j are
assumed to be independent, resulting in

Gi (u, τ, t) =
n∏

k=1

[Gek (u, τ, t)]ik . (12)

This is a reasonable assumption if the initial number of infected individuals is small.
Let I j (τ ) = i j and the remaining infected states Ik(τ ) = 0, k �= j . Then, for
i = (0, . . . , i j , . . . , 0), differentiating Eq. (12) with respect to τ , using the definition
(11), applying the identity (9), and substituting the pgf (10), leads to a differential
equation for Gej . That is,

∂Gej

∂τ
= −ω j (τ )[ f j (Ge1 , . . . ,Gen , τ ) − Gej ], (13)

where

ω j (τ ) = β j (τ ) + μ j + α j + γ j +
n∑

j=1, j �=k

d I
jk(τ ).

(Amore detailed derivation of (13) in the case of two patches is given in Appendix B.)
An estimate of the probability of extinction follows from (11) and (12):

pe j ,0(τ, t) = Gej (0, τ, t)

pi,0(τ, t) =
n∏

j=1

[Gej (0, τ, t)]i j .

The asymptotic probability of disease extinction is a periodic function

lim
t→∞ pi,0(τ, t) = Pext (i, τ )

for τ ∈ [0,T] (Bacaër and Ait Dads 2014). In particular, the probability of an outbreak
given I j (τ ) = i j , j = 1, . . . , n equals

Poutbreak(i, τ ) = 1 −
n∏

k=1

[Pext (ek, τ )]ik . (14)
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3.2 Numerical Methods

In the following examples for two and three patches, we estimate the probability of an
outbreak given by Eq. (14) from the differential equation (13). In particular, we make
a change of variable s = t − τ in the differential equation (13) and for simplicity, we
fix t = 0, Pj (s) = pe j ,0(τ, 0), so that

dPj (s)

ds
= ω j (−s)

[
f j (P1, . . . , Pn,−s) − Pj

]
, Pj (0) = 0.

The preceding differential equation is solved (backward in time) for sufficiently large
s > 0 so that there is convergence to a periodic solution,

Pj (s + kT) → Φ j (s) as k → ∞.

Another change of variable yields Pext (e j , τ ) ≈ Φ j (T − τ).
For each numerical example, we estimate Pext (e j , τ ) and apply formula (14). This

estimate is checked against the full nonlinear time-nonhomogeneous stochastic process
based on the transition probabilities in Table 1. AMonte Carlo approach is used with a
small time stepΔt , chosen sufficiently small, such that during each time step, only one,
if any, of the events in Table 1 occurs (Σ(t)Δt < 1). The accuracy of the Monte Carlo
approximation is tested by using a sequence of progressively smaller time steps. A
total of 104 sample paths are simulated for a given set of initial conditions at a specific
time τ . Each sample path continues until a time ts > τ when either

∑
j I j (ts) = 0

or
∑

j I j (ts) = 50. If the total infected population reaches 50, then it is assumed that

there is an outbreak. The proportion of sample paths q out of 104 that reach zero is
an estimate for the probability of extinction, and the remaining proportion 1 − q that
reach 50 is an estimate of the probability of an outbreak.

4 Two Patches

For two patches, the SIR ODE model has a simple form, illustrated in the compart-
mental diagram in Fig. 2.

Sinusoidal functions are assumed for the transmission and dispersal rates with
period T:

β j (t) = β̄ j

(

1 + δ j sin

(
2π t

T

))

,

d�
jk(t) = d̄�

jk

(

1 + δ�
jk sin

(
2π t

T

))

, � = S, I , R,

(15)

j, k = 1, 2, j �= k. The amplitude of these rates are |δ j | and |δ�
jk |, respectively. The

dispersal rates in each patch are the same, except for the value of δ�
jk which may be

either positive or negative while the transmission rates differ in the magnitude of β̄ j .
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Fig. 2 (Color Figure Online) Compartmental diagram for the two-patch model

If the values δ j and δ�
jk have the same sign, we say the parameters for transmission

and dispersal are “synchonized,” but if they have opposite signs, one positive and
one negative, we say they are “desynchronized.” Synchronization of transmission and
dispersal rates means that the times of the extrema for the two rates are the same,
whereas desynchronization means the times of the extrema are reversed, i.e., high
transmission rate corresponds to low dispersal rate and vice versa. Figure 3 shows an
example when the two patches are synchronized or desynchronized with respect to
dispersal and transmission.

Parameter values for the two-patch model are given in Table 3. The year is divided
into four seasons, and the transmission and dispersal rates in Eq. (15) have a periodT =
4. The time unit 1 equals three months. We assume either all susceptible, infected, and
recovered individuals disperse at the same rate or only infected individuals disperse.
In addition, we let μi = 0 = αi or μi = 0.01 and αi = 0.5 but keep R0i , i = 1, 2
constant, i.e.,R0i = β̄i/(γi + μi + αi ). Each patch has the same recovery and death
rates but differs in the average transmission rates, β̄i , i = 1, 2. Patch 1 is high-risk
with patch reproduction number R01 = 3 and patch 2 is low-risk with R02 = 0.2
(Fig. 4). The following examples show that the probabilities of an outbreak depend on
the time and location of the first infected individual and the relation between dispersal
and transmission rates.

In Fig. 5, four different cases are considered, (A)–(D), with constant transmission
or dispersal and synchronized or desynchronized transmission and dispersal. In the
top two panels of each of (A)–(D), the transmission and dispersal rates are graphed for
patches 1 and 2 and in the bottom two panels, the periodic probabilities of an outbreak
for initial conditions (I1(τ ), I2(τ )) = (1, 0) and (0, 1), respectively. The branching
process estimate is verified by checking thirteen different times τ = 0, 1/3, 2/3, . . . , 4
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Fig. 3 (Color FigureOnline)An illustrationwhen patches 1 and 2 are either synchronized or desynchronized
with respect to dispersal and transmission

Table 3 Baseline Parameter values for the two- and three-patch models where the units are per season

Description Parameters Two patches, i = 1, 2 Three Patches, i = 1, 2, 3

Total population size Ni 2000 2000

Natural death rate μi 0, 0.01 0, 0.01

Disease-related death rate αi 0, 0.5 0, 0.5

Recovery rate γi 6 − μi − αi 2 − μi − αi

Average transmission rates β̄i 18, 1.2 10, 1, 0.5

Average dispersal d̄�
i j , � = S, I , R 2 2

Amplitude of transmission rate δi 0, 0.8 0, 0.8

Amplitude of dispersal rate δ�
i j , � = S, I , R 0, ±0.8 0, ±0.8

Length of period T 4 4

Fig. 4 (Color Figure Online)
Two patches with one high-risk
patch, R01 = 3, and one
low-risk patch, R02 = 0.2
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Fig. 5 (Color Figure Online) Two-patch model with the periodic transmission (black solid curve) and
dispersal (red dashed curve) rates, graphed in each of the top two (a)–(d), and probability of an outbreak,
graphed in each of the bottom two (a)–(d) for patches 1 and 2when (I1(τ ), I2(τ )) = (1, 0) or (0, 1), respec-
tively. In a constant transmission with periodic dispersal, b constant dispersal with periodic transmission,
c transmission synchronized with dispersal and d transmission desynchronized with dispersal. Thirteen
different introductions of one infected individual into either patch 1 or 2 at times t = 0, 1/3, 2/3, . . . , 4 are
checked using 104 sample paths of the Monte Carlo simulation of the full nonhomogeneous process (Num
Sim, circles). The parameter values are given in Table 3

with aMonte Carlo simulation of 104 sample paths of the nonhomogeneous stochastic
process. The results from the Monte Carlo simulations show good agreement with the
branching process approximation.

Dispersal between the two patches allows an outbreak to occur even when an
infected individual is introduced into a low-risk patch, but there is a much smaller
probability of an outbreak if the infection is initiated into a low-risk patch than into a
high-risk patch (Fig. 5).With desynchronized dispersal and transmission (Fig. 5D), the
probability of an outbreakwhen the infection starts in the low-risk patch is smaller than
in cases (A), (B), or (C). Also, fluctuation in the transmission rate has a greater effect
on the amplitude of the periodic outbreaks than dispersal (compare Fig. 5A, B). In all
cases, the time of the highest (lowest) transmission rate is closely related to the highest
(lowest) probability of an outbreak. But the extrema of the probability of an outbreak
are shifted slightly left of the extrema of the transmission rates. This phenomenon
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Table 4 Average probability of an outbreak P̄outbreak (1, 0) for patch 1 and P̄outbreak (0, 1) for patch 2
and the threshold valueR0 for the two-patch system when R01 = 3 andR02 = 0.2

Two-patch β j d Ijk R0 Patch 1 Patch 2

(A) Constant Periodic 2.45 0.59 0.15

(B) Periodic Constant 2.46 0.44 0.13

(C) Periodic Synchronized 2.41 0.45 0.16

(D) Periodic Desynchronized 2.58 0.44 0.09

Base Constant Constant 2.41 0.59 0.17

was also noted by Nipa and Allen (2020) in a vector-host epidemic model. When
infected individuals are first introduced, they may not transmit the infection to others
immediately. Whether there is a successful transmission depends on the duration of
the infectious period (average duration 1/(γ j + μ j + α j )), the patch j , the location
of the infectious individual and the value of the transmission rate β j (t) at the time
of transmission. The largest probability of an outbreak occurs just before the peak of
transmission when the transmission rate is increasing.

Table 4 records the average of the periodic probabilities of an outbreak that are
displayed in Fig. 5A–D. The average is computed as follows:

P̄outbreak(i, j) = 1

T

∫ T

0
Poutbreak(i, j, τ ) dτ.

For each case (A)–(D), the threshold value R0 from the underlying nonautonomous
ODEmodel is also calculated. For comparison purposes, the baseline case (Base) with
constant transmission and dispersal rates, set at their average values, is also included.
It is notable that the four cases of periodic transmission and dispersal have an overall
lower average probability of an outbreak than at the baseline case. The lowest average
probabilities of an outbreak occur with desynchronized transmission and dispersal.
The magnitude of R0 is not a good predictor of disease severity in these cases as the
largest value ofR0 has the lowest average probability of an outbreak.

We show that the branching process estimate is also a good approximation when
there are several infected individuals introduced into one or both patches (Fig. 6). For
two patches, the probability of an outbreak in Eq. (14) equals

Poutbreak(i, j, τ ) = 1 − [Pext (1, 0, τ )]i [Pext (0, 1, τ )] j .

The probability of an outbreak is close to 1 when I2(τ ) = 3 and τ ∈ [0, 5/3] but drops
rapidly to < 0.3 for τ ∈ [7/3, 3]. The example in Fig. 6 illustrates synchronous dis-
persal and transmission. Additional Monte Carlo simulations showed good agreement
with the branching process estimate for desynchronous dispersal and transmission
and for unequal population sizes in the two patches ranging from 200 to 5000 (not
shown). The branching process approximation may fail if population sizes are too
small. Some other limitations of the branching process approximation are discussed
in the conclusion.
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Fig. 6 (Color Figure Online) For synchronous dispersal as in Fig. 5C, the probability of an outbreak for
one infected individual in patch 2 and either 0, 1, 2, or 3 infected individuals in patch 1 (four graphs ordered
from bottom to top, have initial conditions for the high-risk patch 1, I1(τ ) = 0, 1, 2, 3, respectively ). The
blue circles are the results of the Monte Carlo simulation of the nonhomogeneous stochastic process with
5 × 103 sample paths at τ = 0, 1/3, 2/3, 1, . . . , 4. The parameter values are given in Table 3

Fig. 7 (Color Figure Online)
The probabilities of an outbreak
for initial conditions
(I1(τ ), I2(τ )) = (1, 0) (patch 1,
solid curves) or (0, 1) (patch 2,
dashed curves) are graphed
when the average dispersal rate
is increased
d̄ Ijk = 1/4, 1/2, 1, 2, 4, 8,
j, k = 1, 2, j �= k, when
transmission and dispersal rates
in patches 1 and 2 are
synchronized (Fig. 5C). The
arrows indicate the direction of
change in the probability of an
outbreak as d̄ Ijk increases

Next, we examine how an increase in the dispersal rate affects the probability of
an outbreak (Fig. 7). As the average dispersal rate d̄ I

jk increases, the periodic curves
for the probability of an outbreak in the two patches come closer together. That is,
with a large amount of mixing of infected individuals in the two patches, whether
infection is initiated into the high-risk or the low-risk patch does not matter, as the
periodic probabilities of outbreaks for patches 1 and 2 are very close to each other.
This phenomenon also occurs when constant dispersal rates are increased (Lahodny Jr
and Allen 2013).

In the final two-patch example, we relax the restriction imposed on dispersal, condi-
tion (3).Weassume individuals disperse at different rates in the twopatches,d�

12 �= d�
21,
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Fig. 8 (Color Figure Online)
Disease-free solution of the
two-patch model is graphed for
the ODE two-patch model (black
solid and red dashed curves) and
one sample path of the stochastic
time-nonhomogeneous process
(green curves). Initial conditions
are S1(0) = N1(0) = 2000 and
S2(0) = N2(0) = 1000.
Parameter values are
summarized in the list (16)

� = S, I , R. The dispersal parameters for the two-patch model are

d̄�
12 = 2, d̄�

21 = 1, δ�
12 = 0.8, δ�

21 = −0.8, � = S, I , R (16)

with remaining parameters

β̄1 = 18, β̄2 = 1.2, δi = 0.8, μi = 0.2, αi = 0.5, γi = 6 − μi − αi (17)

for i = 1, 2. In patch 1, transmission and dispersal are synchronized but in patch 2,
they are desynchronized. The values of the patch reproduction numbers are the same
as in Fig. 4. Relaxation of the condition (3) results in oscillation of the populations
in the absence of infection (Fig. 8). In the Monte Carlo simulations of the time-
nonhomogeneous process, the initial conditions for the population sizes are equal to
the disease-free population sizes. That is, N j (τ ) takes the value of S j (τ ) in Fig. 8
for τ ∈ [0,T]. When infection is introduced, (I1(τ ), I2(τ )) = (1, 0) or (0, 1), then
S j (τ ) = N j (τ ) − I j (τ ), and R j (τ ) = 0, j = 1, 2.

The branching process estimate in Fig. 9 agrees well with the Monte Carlo simu-
lations of the time-nonhomogeneous process. The reason for this agreement is due to
the assumption of frequency-dependent transmission; Si (t) ≈ Ni (t) at the initiation
of an epidemic.

5 Three Patches

For three patches,we consider how the connections between low- and high-risk patches
affect the probability of an outbreak. For each example, we keep the same relation
between transmission and dispersal rates, as in Fig. 5A–D. Three types of connection
between the patches are referred to as full connection (FC), bidirectional connection
(BC), and circular connection (CC).

With full connection (FC), each patch is connected to its neighbors by a one-step
transition, i.e., 1 ↔ 2 ↔ 3 ↔ 1 (Fig. 10). Patch 1 is high-risk with R01 = 5, and
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Fig. 9 (Color Figure Online) Periodic probability of a disease outbreak for two patches with oscillating
population sizes. Parameter values are summarized in the lists (16) and (17)

patches 2 and 3 are low-risk with R02 = 0.5 and R02 = 0.25. The second type of
connection is called a circular connection (CC), i.e., 1 → 2 → 3 → 1. The patch
reproduction numbers are the same as in FC. In the third type of connection, referred
to as a bidirectional connection (BC), the patches are linearly ordered and connected
only to nearest neighbor, i.e., 1 ↔ 2 ↔ 3. The arrangement is changed in the third
case, the second patch has R02 = 0.25 and R03 = 0.5. The periodic functions for
dispersal and transmission are given in Eq. (15) with parameter values in Table 3.

The periodic probabilities of an outbreak with FC are illustrated in Fig. 11 when
initial conditions (I1(τ ), I2(τ ), I3(τ )) = (1, 0, 0), (0, 1, 0), and (0, 0, 1) for patches
1, 2, and 3, respectively. (The graphs for BC and CC are in Appendix C, Figs. 13
and 14). Similar trends are observed for three patches with FC as in two patches. The
largest probability of an outbreak occurs when infected individuals are introduced
into the high-risk patch 1 and the lowest when introduced into low-risk patch 3 with
the smallest patch reproduction number, R03 = 0.25. Desynchronized dispersal and
transmission rates in case (D) show that the peaks of an outbreak are smaller in both
of the low-risk patches but larger in the high-risk patch than in cases (A), (B), or (C).
The periodic transmission rate has a greater impact on the magnitude of the periodic
probability of an outbreak than periodic dispersal, case (A) versus case (B).

There are similar trends in the average probabilities for cases (A)–(D) for FC as in
two patches (Tables 4, 5). Case (D), desynchronized dispersal and transmission, has
the largest threshold value of R0, but the average probabilities are generally lower
than for constant transmission and dispersal.

Themost important difference betweenFC and the two other connections iswhether
a low-risk patch is directly connected to the high-risk patch. The low-risk patch directly
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Fig. 10 (Color Figure Online) Three patches with either full connection (FC), circular connection (CC) or
bidirectional connection (BC) containing one high-risk patchR01 = 5 and two low-risk patches,R02 = 0.5
andR03 = 0.25 (FC and CC) orR02 = 0.25 andR03 = 0.5 (BC)

(a) (b)

(c) (d)

Fig. 11 (Color Figure Online) The periodic probabilities of an outbreak for FCwith the four cases of disper-
sal and transmission (a)–(d) as in Fig. 5. The initial conditions are (I1(τ ), I2(τ ), I3(τ )) = (1, 0, 0), (0, 1, 0)
and (0, 0, 1) for patches 1, 2, and 3, respectively. Patch 1 is high-risk, R01 = 5, and patches 2 and 3 are
low-risk, R02 = 0.5 andR02 = 0.25. Parameter values are given in Table 3
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Table 5 Average probabilities of an outbreak in three patches with FC for the four cases in Fig. 11

FC β j d Ijk R0 Patch 1 Patch 2 Patch 3

R01 = 5 R02 = 0.5 R03 = 0.25

(A) Constant Periodic 2.79 0.64 0.34 0.32

(B) Periodic Constant 2.75 0.52 0.31 0.30

(C) Periodic Synchronized 2.60 0.55 0.33 0.32

(D) Periodic Desynchronized 3.21 0.53 0.25 0.23

Base Constant Constant 2.60 0.63 0.36 0.35

Table 6 Average probabilities of an outbreak in three patches with BC and CC for the four cases (A)–(D)
corresponding to Figs. 13 and 14

Case BC CC

R0 Patch 1 Patch 2 Patch 3 R0 Patch 1 Patch 2 Patch 3

R01 = 5 R02 = 0.25 R03 = 0.5 R01 = 5 R02 = 0.5 R03 = 0.25

(A) 3.29 0.70 0.29 0.18 3.09 0.68 0.21 0.33

(B) 3.28 0.58 0.27 0.17 3.08 0.56 0.19 0.31

(C) 3.17 0.61 0.29 0.20 2.92 0.59 0.22 0.33

(D) 3.61 0.57 0.21 0.12 3.50 0.55 0.14 0.24

Base 3.17 0.69 0.31 0.20 2.92 0.67 0.23 0.36

connected to the high-risk patch (patch 3 in CC and patch 2 in BC) has a larger
probability of an outbreak than the low-risk patch not directly connected. In the case
of BC, infection initiated in the patch with the smallest patch reproduction number
does not correspond to the lowest probability of an outbreak. More important is the
direct connection to the high-risk patch (see Table 6).

In a final example for three patches, we compare the probabilities of an outbreak
in each of the three patches with synchronized dispersal and transmission, (case (C)
in Figs. 11, 13, 14) for FC, BC, and CC. In Fig. 12, the changes in the periodic
probabilities of an outbreak are shown for increasing recovery rates (i) γi = 0.5 (top),
(ii) γi = 1, (ii) γi = 2, (iv) γi = 4 (bottom), i = 1, 2, 3. Here, we assume natural and
disease-related death rates are μi = 0 = αi so thatR0i = β̄i/γi . As the recovery rate
γi increases from (i) to (iv), the average duration of the infection shortens, each patch
reproduction numberR0i decreases and the probability of an outbreak decreases. The
low-risk patches 2 and 3 have the lowest probability of outbreak in all three cases with
a large recovery rate. It is interesting to note that the high-risk patch in BC and CC
has a larger probability of an outbreak than FC, but the low-risk patches in BC and
CC have lower probabilities of outbreaks than FC. This is clearly visible in case (D)
with the largest recovery rate. The lowest risk of an outbreak in Figure 12 occurs when
infections are introduced during τ ∈ (2, 3) when transmission is decreasing.
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Fig. 12 (Color Figure Online) Probability of an outbreak with synchronized dispersal in three patches
with FC, BC, and CC as in Fig. 10. Initial conditions in patch 1 are (I1(τ ), I2(τ ), I3(τ )) = (1, 0, 0)
(solid black curve), in patch 2, (I1(τ ), I2(τ ), I3(τ )) = (0, 1, 0) (red dashed curve) and in patch 3,
(I1(τ ), I2(τ ), I3(τ )) = (0, 1, 0) (blue dotted curve). Values of the recovery rate in rows (i) γi = 0.5,
(ii) γi = 1, (iii) γi = 2 and (iv) γi = 4, i = 1, 2, 3 with natural and disease-related death rates set to zero
μi = 0 = αi . All other parameters are in Table 3

Table 7 is a summary of the average probabilities of an outbreak and the values of
R0 for FC, BC, and CC corresponding to Fig. 12. For comparison purposes, consider
the case where the patches are isolated, not connected via dispersal, and there is no
seasonal variation in transmission, β j (t) = β̄ j . In this case, the well-known result of
Whittle (1955) can be applied: the probability of an outbreak in the low-risk patches
equals zero, and the probability of an outbreak in the high-risk patch equals

1 − 1

R01
,
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Table 7 Average probability of an outbreak in three patches for FC, BC, andCCwith synchronized dispersal
and transmission, corresponding to Fig. 12

Patch FC BC CC

1 2 3 R0 1 2 3 R0 1 2 3 R0

(i) 0.86 0.74 0.72 8.46 0.88 0.69 0.64 9.51 0.88 0.66 0.72 8.86

(ii) 0.75 0.55 0.54 4.59 0.78 0.50 0.41 5.44 0.77 0.44 0.54 4.97

(iii) 0.55 0.33 0.32 2.60 0.61 0.29 0.20 3.17 0.59 0.22 0.33 2.92

(iv) 0.28 0.12 0.12 1.53 0.36 0.12 0.06 1.85 0.33 0.07 0.14 1.74

whereR01 = β̄1/γ1.With isolation and no seasonality, the probabilities of an outbreak
in the high-risk patch equal 0.95, 0.9, 0.8, and 0.6 in cases (i), (ii), (iii), and (iv),
respectively.With dispersal connecting the high- and low-risk patches and seasonality,
it can be seen that the average probabilities in Table 7 decrease in the high-risk patch,
from 0.6 to 0.28 in case FC (iv), but the average probabilities of an outbreak initiated
from the low-risk patches increase significantly from 0 to as high as 0.74 in case FC
(i) in patch 2.

6 Summary and Conclusion

Seasonal changes that affect the pathogen life cycle or the within-host and between-
host interactions result in seasonal outbreaks of many infectious diseases, such as
seasonal influenza, AI, malaria, cholera, dengue, Ebola, and coronavirus diseases
(Altizer et al. 2006; Endo and Nishiura 2018; Fisman 2007; Grassly and Fraser 2006;
Kissler et al. 2020; Martinez 2018). In this investigation, we applied a stochastic
time-nonhomogeneous, multi-patch epidemic model with seasonal and demographic
variability to investigate how time and location affect the probability of an outbreak
when the infection is introduced into the patch system.We applied amulti-type branch-
ing process approximation to the infected classes to obtain an analytical estimate for
the probability of a disease outbreak. Examples with two and three patches were
used to test the branching process approximation against the full nonlinear time-
nonhomogeneous process. In particular, we investigated how the periodic probability
of an outbreak changes with different assumptions regarding patch arrangement, con-
nectivity, and relations between the periodic dispersal and transmission rates (cases
(A)–(D) and FC, BC, and CC).

We found that seasonality in dispersal and transmission affects the time and location
of the greatest risk for an outbreak. If the infection is introduced into a high-risk
patch (R0 > 1) at a time when the transmission rate is large and increasing, then
the probability of an outbreak is high. But if the infection is introduced at a time
when the transmission rate is small and decreasing, or the dispersal rate to a low-risk
patch is large, then the probability of an outbreak is low. Interestingly, seasonality in
transmission and dispersal rates can, in some cases, result in a lower average risk of an
outbreak than if the transmission and dispersal rates are constant (Tables 4, 5, 6). The
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shapes of the outbreak probabilities do not directly coincide with those of either the
dispersal or transmission rates. In an ODE patchmodel without seasonality, developed
for cholera, Kelly Jr. et al. (2016) investigated the optimal vaccination strategy. In a
linear arrangement of patches, similar to BC, they found that after an outbreak occurs
in a patch, the optimal vaccination strategy is to target neighboring or downstream
patches. In our stochasticmodel, with dispersal and transmission rates changing during
the season, the magnitude of these rates and whether they are increasing or decreasing
at the time of the outbreak is important and makes the stochastic optimal control
problem with seasonality an interesting and challenging problem.

As shown here and elsewhere, multi-type branching processes are often a good
approximation method for the probability of an outbreak near the DFE, e.g., (Allen
and van den Driessche 2013; Allen and Lahodny Jr 2012; Lahodny Jr and Allen 2013;
Lahodny Jr et al. 2015; Milliken 2017; Nipa and Allen 2020). The branching process
approximation may fail ifR0 is too close to one, if demographic dynamics dominate
the infection dynamics, or if population sizes are too small. The reasons for these
failures are that the underlying assumptions of the multi-type branching process are
no longer valid. The total population sizes must be sufficiently large and not deviate
substantially from the disease-free state, and the initial infected population size must
be small but grow to a sufficiently large size. Therefore, it is important to test the
branching process approximation against the time-nonhomogeneous process.

There are many generalizations of these stochastic multi-patch epidemic models
worthy of further investigation, such as additional stages or classes of infection, a mass
action incidence rate, patch-dependent population densities, patch arrangements, and
alternate movement and dispersal strategies. Realistic models that incorporate both
demographic and seasonal variability in conjunction with case data and environmen-
tal data on specific diseases provide useful public health information on preventive
and control measures such as isolation, quarantine, and travel restrictions. The impact
of such measures has been evaluated in general models and in specific models applied
to outbreaks of SARS, MERS, Ebola, and COVID-19, e.g., (Arino et al. 2007; Camitz
and Liljeros 2006; Chinazzi et al. 2020; Dénes and Gumel 2019; Gao and Ruan 2012;
Hsieh et al. 2007; Kwok et al. 2019; Parmet and Sinha 2020; Peak et al. 2020) and
references therein. Application of our modeling framework and methods, coupled
with information about travel patterns and seasonal trends on specific diseases (such
as seasonal influenza, AI, dengue, malaria, cholera, Ebola, and coronavirus diseases),
provide additional insight into the times and locations for quarantine and travel restric-
tions.
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A ODEModel Assumptions

The following assumptions are taken from Wang and Zhao (2008) and applied to the
ODE system (2). The system can be written as follows:

ẋi = Fi (t, x) − Vi (t, x) ≡ fi (t, x), i = 1, . . . , 3n, (18)

where x = (x1, . . . , x3n) = (I1, . . . , In, S1, . . . , Sn, R1, . . . , Rn) and Vi = V +
i −

V −
i . In particular, linearization of system (18) about the DFE has the form

Ẋ =
(
F(t) − V (t) O

−J (t) M(t)

)

X .

Matrices F(t) and V (t) are defined in Eqs. (5) and (6) and O is the 2n×2n zeromatrix.
Let ż = M(t)z and ẏ = −V (t)y. The fundamental matrix solutions for these linear
periodic systems are known as monodromy matrices. Let these monodromy matrices
be denoted as φM (t) and φ−V (t), respectively. The following assumptions guarantee
there exists a basic reproduction number R0 > 0 (Theorem 2.1 p. 704, Wang and
Zhao (2008)).

(A1) The functions Fi (t, x), V
+
i (t, x), and V −

i (t, x) are nonnegative and con-
tinuous on R × R

3n+ and continuously differential with respect to x .
(A2) The functionsFi (t, x), V

+
i (t, x), and V −

i (t, x) are p−periodic in t , p > 0.
(A3) If xi = 0 then V −

i (t, x) = 0.
(A4) Fi (t, x) = 0 for i = n + 1, . . . , 3n.
(A5) If I = 0, then Fi (t, x) = V+

i (t, x) = 0 for i = 1, . . . , n.
(A6) The DFE is stable if I = 0, i.e., the spectral radius ρ(φM (p)) < 1.
(A7) The spectral radius ρ(φ−V (p)) < 1.

Assumptions (A1)–(A7) hold for the ODE system (2).
The following assumptions were applied by Bacaër and Ait Dads (2014) for the multi-
type branching process approximation based on the linear system (4).

İ = [F(t) − V (t)]I , (19)

where matrices F(t) and V (t) are defined in (5) and (6) (Proposition, p. 36 Bacaër
and Ait Dads (2014)).

(H1) F(t) is nonnegative with at least one entry strictly positive for t ≥ 0.
(H2) K (t) = F(t) − V (t) is irreducible for all t ≥ 0.
(H3) F(t) and V (t) are piecewise continuous and p−periodic for t ≥ 0.
(H4) V (t) = (vi j (t)) has nonpositive off-diagonal elements, vi j (t) ≤ 0, i �= j ,

t ≥ 0 and has positive diagonal elements, vi i (t) ≥ A > 0, t ≥ 0.

From these assumptions, the following results hold for the multi-type branching pro-
cess. If R0 ≤ 1, then the multi-type branching process with the same periodic rates
(defined in Table 2) has an asymptotic probability of extinctionPext (i1, . . . , in, τ ) = 1
and if R0 > 1, then the asymptotic probability of disease extinction is a p-periodic
function satisfying 0 < Pext (i1, . . . , in, τ ) < 1.
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B Derivation of Probability of Disease Extinction for Two Patches

Applying a multi-type branching process approximation for two patches, the detailed
steps of the derivation of the probability of extinction are derived here using generating
functions and the backward Kolmogorov differential equation. For I j (τ ) = 1 and
Ik(τ ) = 0, j, k = 1, 2 and k �= j the offspring pgf for patch j is

f j (u1, u2, τ ) = β j (τ )u2j+μ j+α j+γ j+d I
jk(τ )uk

β j (τ )+μ j+α j+γ j+d I
jk(τ )

, j = 1, 2.

The backward Kolmogorov differential equation in (9) for the branching process
approximation of I1 and I2 is

−∂ p(i1,i2),( j,k)(τ, t)

∂τ
= β1(τ )i1 p(i1+1,i2),( j,k)(τ, t)

+ (μ1 + α1 + γ1)i1 p(i1−1,i2),( j,k)(τ, t)

+ d I
21(τ )i2 p(i1+1,i2−1),( j,k)(τ, t)

+ β2(τ )i2 p(i1,i2+1),( j,k)(τ, t)

+ (μ2 + α2 + γ2)i2 p(i1,i2−1),( j,k)(τ, t)

+ d I
12(τ )i1 p(i1−1,i2+1),( j,k)(τ, t)

− [β1(τ )i1 + (μ1 + α1 + γ1)i1 + d I
21(τ )i2

+ β2(τ )i2 + (μ2 + α2 + γ2)i2

+ d I
12(τ )i1]p(i1,i2),( j,k)(τ, t).

(20)

Also, the generating function G(i1,i2)(u1, u2, τ, t) for the two-patch model can be
expressed in terms of the transition probabilities in (11):

G(i1,i2)(u1, u2, τ, t) = E

[
uI1(t)
1 uI2(t)

2 |(I1(τ ), I2(τ )) = (i1, i2)
]

=
∑

j,k≥0

p(i1,i2),( j,k)(τ, t)u
j
1u

k
2, τ < t . (21)

For j = k = 0, G(i1,i2)(0, 0, τ, t) = p(i1,i2),(0,0)(τ, t) is the probability of disease
extinction. From the independent assumptions of the random variables I1 and I2 in
the branching process approximation, it follows that

G(i1,i2)(u1, u2, τ, t) = [Ge1(u1, u2, τ, t)]i1 [Ge2(u1, u2, τ, t)]i2 , (22)

where e1 = (1, 0) and e2 = (0, 1).
For initial data (I1(τ ), I2(τ )) = (i1, i2), the probability of extinction at time t > τ

is

p(i1,i2),(0,0)(τ, t) = [pe1,(0,0)(τ, t)]i1 [pe2,(0,0)(τ, t)]i2 . (23)
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For simplicity, let G(i1,i2) ≡ G(i1,i2)(u1, u2, τ, t) and p(i1,i2),( j,k) ≡ p(i1,i2),( j,k)(τ, t).
By differentiating G(i1,i2) with respect to τ in Eq. (22) and applying the identities
G(i1,0) = Gi1

e1 and G(0,i2) = Gi2
e2 yields

∂Ge1

∂τ
= 1

i1[G(i1−1,0)]
∑

j,k

∂ p(i1,0),( j,k)

∂τ
u j
1u

k
2

∂Ge2

∂τ
= 1

i2[G(0,i2−1)]
∑

j,k

∂ p(0,i2),( j,k)

∂τ
u j
1u

k
2.

Substituting the backward Kolmogorov differential equation (20) into the right side,
applying the identity (22), using offspring pgf f j , and simplifying leads to

∂Ge1

∂τ
= − 1

G(i1−1,0)

∑

j,k

{
β1(τ )p(i1+1,0),( j,k)(τ, t)

+ (μ1 + α1 + γ1)p(i1−1,0),( j,k)(τ, t)

+ d I
12(τ )p(i1−1,1),( j,k)(τ, t) − [(β1(τ )

+ (μ1 + α1 + γ1) + d I
12(τ )]p(i1,0),( j,k)(τ, t)

}
u j
1u

k
2

= − 1

G(i1−1,0)

{
β1(τ )G(i1+1,0) + (μ1 + α1 + γ1)G(i1−1,0) + d I

12(τ )G(i1−1,1)

− (β1(τ ) + μ1 + α1 + γ1 + d I
12(τ ))G(i1,0)

}
u j
1u

k
2

= −(β1(τ ) + μ1 + α1 + γ1 + d I
12(τ ))

[ f1(Ge1 ,Ge2 , τ ) − Ge1]

and

∂Ge2

∂τ
= −(β2(τ ) + μ2 + α2 + γ2 + d I

21(τ ))[ f2(Ge1 ,Ge2 , τ ) − Ge2 ]

Since the right side of the differential equation is independent of u1 and u2, the
differential equation also applies to Gej (0, 0, τ, t) = pe j ,(0,0)(τ, t) = pe j ,(0,0). That
is,

dpe1,(0,0)
dτ

= (β1(τ ) + μ1 + α1 + γ1 + d I
12(τ ))[ f1(pe1,(0,0), pe2,(0,0), τ ) − pe1,(0,0)],

dpe2,(0,0)
dτ

= (β2(τ ) + μ2 + α2 + γ2 + d I
21(τ ))[ f2(pe1,(0,0), pe2,(0,0), τ ) − pe2,(0,0)].
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C Periodic Probability of an Outbreak for Three Patches with BC and
CC

The periodic probabilities of an outbreak are computed from the branching process
approximation and verified with the time-nonhomogeneous process (circles) for the
three-patch models with bidirectional (BC) or circular connections (CC) (Figs. 13,
14). Parameter values are given in Table 3.

(a) (b)

(c) (d)

Fig. 13 (Color Figure Online) The periodic probabilities of an outbreak for the four cases of dispersal
and transmission rates, (a)–(d) as in Fig. 5, with bidirectional connection (BC). The initial conditions are
(I1(τ ), I2(τ ), I3(τ )) = (1, 0, 0), (0, 1, 0), and (0, 0, 1) for patches 1, 2, and 3, respectively. Patch 1 is
high-risk,R01 = 5, and patches 2 and 3 are low-risk, R02 = 0.25 andR03 = 0.5
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(a) (b)

(c) (d)

Fig. 14 (Color Figure Online) The periodic probabilities of an outbreak for the four cases of dispersal
and transmission rates, (a)–(d) as in Fig. 5, with circular connection (CC). The initial conditions are
(I1(τ ), I2(τ ), I3(τ )) = (1, 0, 0), (0, 1, 0) and (0, 0, 1) for patches 1, 2, and 3, respectively. Patch 1 is
high-risk,R01 = 5, and patches 2 and 3 are low-risk, R02 = 0.5 and R03 = 0.25
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