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Abstract
It has long been known that epidemics can travel along communication lines, such as
roads. In the current COVID-19 epidemic, it has been observed that major roads have
enhanced its propagation in Italy. We propose a new simple model of propagation of
epidemics which exhibits this effect and allows for a quantitative analysis. The model
consists of a classical SIR model with diffusion, to which an additional compartment
is added, formed by the infected individuals travelling on a line of fast diffusion.
The line and the domain interact by constant exchanges of populations. A classical
transformation allows us to reduce the proposedmodel to a system analogous to onewe
had previously introducedBerestycki et al. (JMathBiol 66:743–766, 2013) to describe
the enhancement of biological invasions by lines of fast diffusion. We establish the
existence of a minimal spreading speed, and we show that it may be quite large, even
when the basic reproduction number R0 is close to 1. We also prove here further
qualitative features of the final state, showing the influence of the line.

Keywords COVID-19 · Epidemics · SIR model · Reaction-diffusion system · Line of
fast diffusion · Spreading speed

1 Context andMotivation of this Study

In the present context of the COVID-19 pandemic, a worldwide scientific effort is
currently under way to develop the modelling of its dynamics and propagation. Such
an endeavour is of essential value to monitor, and forecast the propagation of the
epidemic.
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Most of the models that are used rely on various extensions of the classical SIR cor-
nerstone model of epidemiology. That is, they use population compartmental models
that contain various additional compartments to the SIR ones to account for seg-
ments of the populations that are exposed, asymptomatic, presymptomatic, treated, etc.
Such models yield the evolution of the infected population at a given level of terri-
torial granularity (whole countries, regions, counties or cities). The spatial interplay
aspect, mostly overlooked, is included by involving transfer matrices of populations
and infected between various patches each of which being considered as uniform.

Yet, the propagation of COVID-19 exhibits remarkable spatial structure properties.
Indeed, the spatial organization and spreading of epidemics in general reveal important
features of the transmission process. This is especially true in relation withmovements
of individuals who carry with them infectious characteristics. It has long been known,
since ancient times, that epidemics travel along lines of communications. In the black
death epidemic of the 14th century, contagion advanced along roads connecting trade
fair cities, and from there spread inwards leading to a front like invasion of Western
Europe roughly from South to North, pulled by these roads. Such a mode of propaga-
tion was also at work for the propagation of rumours. (See for instance the propagation
of the “big fear” in France, after the Revolution. Compare, for example, the presenta-
tion given by Siegfried (1960) and the analogies between these two phenomena.) In
studying the early spread of HIV virus in Faria et al. (2014), Faria et al. pointed out
that the virus mostly travelled along the main lines of communications (railways and
waterways), see Fig. 1 below.

Some current studies are bringing to light a similar effect in the spread of the
COVID-19 virus in Italy. Gatto et al. (2020) and Sebastiani (2020) have established
that the coronavirus spread foremost along the main expressways. They argue indeed
that cities located along the main North-South and East-West highways in Italy have
faced an earlier and stronger contagion than cities with similar or higher population
sizes but not located on these roads. The spatial signatures of the spreading of the
epidemic are clearly revealed by Fig. 2 taken from the work by Gatto et al. (2020).

Then, Fig. 3 is a snapshot from a video in Gatto et al. (2020) which accounts
for hospitalization. It highlights the radiation of the epidemic along highways and
transportation infrastructures. Figure 4 below, taken from Sebastiani (2020), depicts
the Italian cities with more than 1000 infected individuals reported as for April 5. For
two of them, Piacenza and Cremona, which are located, respectively, at the crossroad
of these two main highways and 40 Km away from it, infected people are above 1%
of the population. We point out that the cities represented in this figure are by far not
the most populated ones in Italy.

That this effect of roads still matters in such a global and “modern” epidemic as
COVID-19 shows that spatial diffusion still plays an important role in the spreading of
epidemics. At an early stage, long distance “jumps” through the air transport network
played the key role in the global dissemination of the pandemic. However, the role of
ground transportation became relevant in a second phase. This is even more true after
the lockdown in many countries, that all but halted all flights. Even though ground
travel was limited, it was never interrupted and, furthermore, ground transportation
was essential in transporting all needed supplies.
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Fig. 1 From Faria et al. (2014) in Science. Strongly supported rates of virus spatial movement are projected
along the transportation network for theDemocraticRepublic ofCongo (railways andwaterways).Reprinted
with permission of AAAS (Color figure online)

Fig. 2 From Gatto et al. (2020) in PNAS. Spread of COVID-19 in Italy at the province level, spanning the
time period from Feb. 25 to Mar. 25. The quantity represented is the ratio between the total number of
confirmed cases and the resident population. Creative Commons Attribution License 4.0 (CC BY) (Color
figure online)

With respect to patch models that include transfer matrices, it thus transpires that
the effect of lines is of a different nature. And as we have seen, these lines can be
roads, railroads or rivers.

The aim of this paper is to propose a new model to account for such effects and
then to study quantitatively how a line acts on the overall epidemics propagation.
We thus introduce a model that we call the SI RT system, standing for Susceptibles,
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Fig. 3 From Gatto et al. (2020) in PNAS. Comparison between simulated and recorded cumulative number
of severe cases that required hospitalization as for March 5: model simulation at the municipality scale
(left) and province scale (centre); recorded data at the province scale (right). Creative Commons Attribution
License 4.0 (CC BY) (Color figure online)

Fig. 4 Sebastiani (2020). The 33 Italian cities where, as of April 5, the total number of infected people
reported is larger than 1,000; the streaked circles correspond to Piacenza and Cremona, where infected
people are above 1% of the population. Reproduced with permission of G. Sebastiani (Color figure online)

Infected,Recovered, andTravelling infected. This model takes explicitly into account
the existence of a line along which infected individuals can travel with a specific
diffusion coefficient. Our aim here is to gain insight into this spreading aspect at
the fundamental mathematical level of a SIR type model that now incorporates the
possibility of infected to travel along a specific line.

The SIR model dates back the fundamental paper of Kermack and McKendrick
(1927), Kendall (1956) introduced the SIR model with spatial interaction in the dis-
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cussion of a statistical study of measles by Bartlett (1957). These models may be
rewritten as nonlinear integro-differential equations in time and space variables, for
which the study of spreading dates back to the 1970’s with, in particular, the milestone
papers of Aronson (1977) and Diekmann (1979). We choose in this paper to restrict
our model to local (Brownian) diffusion and local interaction. Regarding the existence
of travelling waves for the local (homogeneous) diffusion model, see the studies of
Källén (1984), Hosono and Ilyas (1994, 1995). For a survey, see Murray (2002).

The model we propose here aims at a fundamental mathematical understanding of
this effect.We look at a stylized situation—a laboratory case as it were. The population
of susceptibles diffuse in a homogeneous open territory, that we take to be a half plane.
Then, the infected can travel along the line bounding this half plane. The populations
of infected in the open territory and on the lines are in constant exchange. This is
represented in our model by transmission parameters between these two populations
(stable and travelling infected). We aim at understanding the effects of such lines on
the speed of propagation of the epidemics, and how they affect the balance of the total
number and locations of infected individuals.

As a benchmark, we use the classical SIRmodelwith diffusion, forwhichwe briefly
recall the basic results and how to compute the speed of spreading. The latter coincides
with that of Aronson and Weinberger (1978), we simply rewrite the formulas in terms
of the basic reproduction number R0.

Let usmention that the SIRmodel falls into amore general class of systems inwhich
one equation—the one for I here—exhibits a self-reinforcement mechanism when the
other unknown function —S—is above some threshold level. Berestycki et al. (2020)
develop a mathematical study of this class of systems, called Activity/Modulator. As
described there, SIR models also arise in a variety of contexts to model contagion
phenomena. They are particularly useful in the study of collective behaviours, such as
social unrest. The work by Bonnasse-Gahot et al. (2018) developed such a system to
model the spread of riots in France in 2005.

Of course, more realistic epidemiology models will incorporate networks rather
than single lines and, likewise, the remaining propagation does not take place in a
homogeneous territory. From this simplified model, one can nonetheless deduce a
more realistic one involving a network of roads and a distribution of cities. Regarding
the latter aspect, Bonnasse-Gahot et al. (2018) use explicitly such a network of cities.

This family of models lends itself to various extensions. But since wewant to derive
the mathematical properties of this system we only consider here the stylized model.
We hope that this stylized model can shed some light on how lines influence the global
unfolding of an epidemic.

2 AModel for the Propagation of Epidemics Along Lines

2.1 The SIR Model with Infected Diffusion

The classical SIR model divides the overall population in three compartments: sus-
ceptibles S, infected (and infectious) I and recovered R. Since the total population N
is viewed as fixed, one derives the latter in a straightforward manner from the former

123



2 Page 6 of 34 H. Berestycki et al.

two: R = N − S − I . Therefore, we do not mention explicitly this function hence-
forth. When taking into account spatial dependence, we view the unknowns S and I
as depending on both time t and space location X ∈ R

2. We consider that the indi-
viduals in the susceptible population S do not move around (or rather that movement
does no affect its distribution). We can think of S as the ambient population. Thus, we
assume that only the infected population I is subject to movement. We choose here
to represent this movement as a pure local diffusion that can be viewed as a limiting
Brownian movement of individuals. In the second part of this work [8], we consider
the case of non-local diffusions. We denote by d the diffusion coefficient. We are thus
led to the following spatial diffusion SIR model:

{
∂t I − dΔI =βSI − α I (t > 0, X ∈ R

2)

∂t S =−βSI (t > 0, X ∈ R
2).

(1)

The parameter β > 0 represents the transmission rate, while α > 0 is the recovery
rate. The system is supplemented with initial conditions. We assume that the initial
distribution of S, S(0, X) ≡ S0 is constant (and positive) and that I (0, X) = I0(X)

is compactly supported (and nonnegative). The cumulative number of infected at
location X , at time t , is given by

∫ t
0 I (t, X)dt . Several authors have considered this

model or closely related ones with integral formulations. We mention some of the
references in Sect. 3.1 below. For the sake of completeness, we derive here the main
results concerning this system (1): existence and properties of a final state to which
the solutions and the cumulative number of infections at each location converge,
characterization of epidemic spreading, and asymptotic speed of propagation. These
properties involve the classical basic reproduction number R0 := S0β/α. As we will
recall, the position of R0 with respect to 1 determines here too a threshold for the
epidemic to spread. These various properties will serve as benchmarks for our study
of the effect of the presence of a road.

2.2 A“SIRT” Model in the Presence of a Road

Let us now introduce this system, which we call a road/field model. It represents a
situation where there is a road on which infected individuals can travel with a specific
diffusion coefficient D. We are especially interested in the case of a large D. The aim
is to understand in what way such a road alters the epidemic spreading, in particular
if it enhances its propagation and in what measure exactly. The starting point of our
analysis consists in distinguishing the infected individuals which are moving on the
line with fast diffusion from the ones present in the rest of the territory, by using
two distinct density functions. This is the same modelling hypothesis we made in our
previous paper Berestycki et al. (2013) to describe the dynamics of a single population
in the presence of a road.

As before, we use the densities S(t, x, y) and I (t, x, y) of susceptible and infected
individuals at time t ≥ 0 and position X = (x, y) ∈ R

2. We still assume that we
can ignore the movement of susceptibles. We introduce a new compartment of the
population that we call T (t, x) standing for “travelling individuals”. This is the density
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of infected individuals on the road, that is the line R. It is worth emphasizing that
I (t, x, y) and T (t, x) are two different compartments, in particular T (t, x) is not the
same as I (t, x, 0). Both populations are assumed to diffuse, butwith different diffusion
coefficients: D for T on the line and d for I in the plane. The two compartments
interact by a constant exchange of individuals: at each time t > 0 and point x ∈ R, the
line yields an amount μT (t, x) of individuals to the domain and receives an amount
ν I (t, x, 0) of individuals from the domain.

To shed light on the effect of such a road, it is enough to consider the interplay
of a half-plane with the road that bounds it. Indeed, results in this framework can be
translated for results in the whole space by straightforward symmetry arguments. But
it can also be seen that propagation properties in the plane in general can easily be
deduced from the half-plane case. (For such a discussion, we refer to our earlier paper
for the KPP equation with a road Berestycki et al. (2013)). We prefer to carry our
analysis in the half-plane case for the sake of clarity and to simplify notations.

Thus, we consider the following system for the unknown S, I , T : By symmetry,
we can reduce to study the problem in the upper half-space R× (0,+∞). We end up
with the following system:

⎧⎪⎪⎨
⎪⎪⎩

∂t I − dΔI + α I =βSI (t > 0, x ∈ R, y > 0)
∂t S =−βSI (t > 0, x ∈ R, y > 0)

−d∂y I =μT − ν I (t > 0, x ∈ R, y = 0)
∂t T − D∂xx T =ν I (t, x, 0) − μT (t > 0, x ∈ R, y = 0).

(2)

We assume a uniform initial susceptible density: S(0, x, y) ≡ S0 > 0. The initial
density of infected individuals is assumed to be zero outside a bounded region:

(T (0, x), I (0, x, y)) = (T0(x), I0(x, y))

are nonnegative and compactly supported inR andR×[0,+∞), respectively, with in
addition I0 �≡ 0, but possibly T0 ≡ 0. Actually, to simplify matters, most of the time
we will look at the case T0 ≡ 0, not that it changes much in the proofs.

2.3 Organization of the Paper

In the next section, we will first analyse systems (1) to have sound benchmarks that
will be useful to discuss the effects of the road. Then, the remaining of the paper will
be devoted to the study of (2). We will start by discussing the stationary limiting state
and see whether the epidemic spreads or not in Sect. 3.2. There we will also derive
the asymptotic speed of propagation for the spatial spread of the epidemic. In Sect. 4,
we discuss how the presence of the road affects the distribution of the total number of
infected per location. Section 5 is devoted to the mathematical proofs of these various
results. These depend on the various parameters, and we discuss their influence in
Sect. 6.
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3 Analysis of theModels

We are going to compare the behaviour of (2) to that of the classical SIR model in the
whole plane, with no diffusion of the susceptible population, that is (1). The proofs of
the results (in a slightly broader framework) are presented in Sect. 5.1.

3.1 Benchmark: The SIR Model

System (1) can be reduced to the classical Fisher-KPP equation by noticing that S(t, X)

is easily computed from I (t, X). Indeed, calling v the cumulative number of infected,
integrating the second equation in (1) yields

v(t, X) :=
∫ t

0
I (s, X)ds, ln

(
S(t, X)

S0

)
= −βv(t, X). (3)

Then, taking the sum of the equations in (1) and integrating in time in (0, t) we find
the equation for v:

vt − dΔv = f (v) + I0(X) (t > 0, X ∈ R
2) (4)

with
f (v) := S0(1 − e−βv) − αv,

together with the initial condition

v(0, X) ≡ 0 (X ∈ R
2). (5)

Transform (3) is awell-known particular case of a broader class (see for instanceAron-
son (1977), Diekmann (1978)) that reduces the SIR model with nonlocal interactions,
and with no diffusion on the susceptible individuals, to nonlinear integral equations.
In this particular case, we retrieve a parabolic equation. Pulsating waves and spreading
speeds for periodic S0 are studied for (1) by Ducrot and Giletti (2014). The integral
equation resulting from the model with nonlocal interactions is studied by Ducasse
(2020).

The nonlinearity f is concave and vanishes at 0, it is then of the KPP type. Only
the presence of the “source” term I0 differs from the standard Fisher-KPP equation.
However, being I0 compactly supported, the dynamics of the equation is still governed
by the sign of f ′(0). Using a notation commonly employed in the literature, we write

f ′(0) = α(R0 − 1), where R0 := S0β

α
.

The quantity R0 can be viewed as the classical basic reproduction number, see for
instance Källén (1984) and the discussion on such number and its interpretation
in Diekmann et al. (1990). This parameter plays a crucial role and is widely men-
tioned by experts, decisionmakers andmedia for the analysis of the present COVID-19
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pandemic. The sign of f ′(0) is determined by the position of R0 with respect to the
threshold value R0 = 1. The presence of I0 in (4) prevents the existence of constant
steady states, making the dynamics of the equation more complex. Nevertheless, the
following Liouville-type result holds.

Theorem 3.1 The equation in (4) admits a unique positive, bounded, stationary solu-
tion v∞(X). Moreover, v∞ satisfies

lim|X |→∞ v∞(X) =
{
0 if R0 ≤ 1

v∗ if R0 > 1,

where v∗ is the unique positive zero of f .

The proof of this result, aswell as the others in this section, are presented in Sect. 5.1.
They can also be found in Ducrot and Giletti (2014), at least for the case R0 > 1,
in the more general framework of periodic coefficients α(X), β(X) and distribution
S0(X). Some additional qualitative properties of v∞ are contained in Theorem 5.1
below. Namely, v∞ is radially decreasing outside the support of I0 and it has the shape
of a bump above the value 0 or v∗.

It turns out that the steady state v∞ is a global attractor for the dynamics of (4).

Theorem 3.2 The solution v(t, X) to (4)–(5) converges locally uniformly to v∞(X)

as t → +∞.

Since the above convergence holds true for the time derivatives (see the proof in
Sect. 5.1), a first consequence we derive is:

I (t, X) = ∂tv(t, X) → 0 as t → +∞,

that is, the number of infected individuals drops to 0 asymptotically in time.
One can also read Theorem 3.2 in terms of number of remaining susceptibles at

time t and position X , which is S(t, X) = S0e−βv(t,X). Hence, the amount of people
that will be infected by the virus at a given place X , throughout the whole course of
the epidemic, is given by

Itot (X) = S0
(
1 − e−βv∞(X)

)
.

We point out that the fact that this function is not constant is a consequence of the
hypothesis that susceptibles do not diffuse. Otherwise, the diffusion tends to “flatten”
the density S, and this mechanism occurs for rather general systems, see, e.g. (Beresty-
cki et al. 2020, Theorem 4.3). For this reason, the description of the function v∞ is
extremely important in the study of the epidemic. With this regard, Theorem 3.1 leads
to the following crucial dichotomy for the total amount of infected people far from
the epicentre:

lim|X |→∞ Itot (X) =
{
0 if R0 ≤ 1

S0
(
1 − e−βv∗) if R0 > 1.
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This corresponds to twoopposite scenarios. If R0 ≤ 1, the epidemic does not propagate
and areas very far from the initial outburst (the support of I0) will be essentially not
infected. Conversely, if R0 > 1, the epidemic propagates across the territory, and, even
though its impact will be weaker on places far from the epicentre, the total infected
people there will be a portion 1 − e−βv∗ of the overall population.

What is important to determine in the case R0 > 1 is the speed atwhich the epidemic
spreads. This is provided by the following.

Theorem 3.3 Assume that R0 > 1. Call

cSI R := 2
√
dα(R0 − 1). (6)

Then, for all ε ∈ (0, cSI R), the solution v(t, X) to (4)–(5) satisfies

lim
t→+∞

(
max|X |≤(cSI R−ε)t

|v(t, X) − v∞(X)|
)

= 0,

lim
t→+∞

(
max|X |≥(cSI R+ε)t

v(t, X)
)

= 0.

The quantity cSI R is the asymptotic speed of spreading of the epidemic wave. It
coincides fromonehandwith the speed2

√
d f ′(0)of the standardFisher-KPPequation,

and from the other with the minimal speed of the waves for the SIRmodel (1) obtained
by Källén (1984).

A word must be said about the proof, presented in Sect. 5.1. It is essentially a direct
consequence of Theorem 3.2 above and Aronson and Weinberger (1978). Indeed, the
former describes the behaviour of the solution in compact regions, while the latter
provides the estimates far from the origin, where the influence of I0 is negligible.

3.2 Dynamics of theModel in the Presence of the Line

It occurs that the very same transform works for the model with the line (2):

u(t, x) :=
∫ t

0
T (s, x)ds, v(t, x, y) :=

∫ t

0
I (s, x, y)ds.

The system for (u, v) is

⎧⎨
⎩

∂t u − D∂xxu =νv(t, x, 0) − μu + T0(x) (t > 0, x ∈ R)

∂tv − dΔv = f (v) + I0(x, y) (t > 0, x ∈ R, y > 0)
−d∂yv(t, x, 0) =μu(t, x) − νv(t, x, 0) (t > 0, x ∈ R).

(7)

with, as before, f (v) := S0(1 − e−βv) − αv. The initial datum is

(u(0, ·), v(0, ·)) ≡ (0, 0). (8)
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This is the same system studied in Berestycki et al. (2013), except for the “source”
terms I0, T0. We recall that these are assumed here to be nonnegative and compactly
supported, with I0 �≡ 0 (and typically T0 ≡ 0).

We start with the Liouville-type result, analogous to Theorem 3.1.

Theorem 3.4 System (7) admits a unique positive, bounded, stationary solution
(ur∞, vr∞). Such solution satisfies

lim|x |→∞
(
ur∞(x), vr∞(x, y)

) =
{

(0, 0) if R0 ≤ 1(
ν
μ
, 1

)
v∗ if R0 > 1,

uniformly in y ≥ 0,

lim
y→+∞ vr∞(x, y) =

{
0 if R0 ≤ 1

v∗ if R0 > 1,
uniformly in x ∈ R,

where v∗ is the unique positive zero of f .

The long-time behaviour for (7) is described by the following result, which is the
counterpart of Theorem 3.2 about the model without the line.

Theorem 3.5 The solution (u, v) to (7)–(8) converges to (ur∞, vr∞) as t → +∞,
locally uniformly in x ∈ R, y ≥ 0.

At this stage, the picture is identical to the standard SIR model described in the
previous section. The total amount of infected individuals after the passage of the
epidemic wave, at a given point (x, y), is

Itot (x, y) = S0
(
1 − e−βvr∞(x,y)),

with vr∞ exhibiting two qualitatively distinct behaviours depending onwhether R0 ≤ 1
or R0 > 1. Namely, the total number of infected people very far from the epicentre of
the epidemic is

lim|(x,y)|→∞ Itot (x, y) =
{
0 if R0 ≤ 1

S0
(
1 − e−βv∗) if R0 > 1,

which is the same as in the case without the line.
Next, we investigate the speed at which the epidemic spreads across the territory,

along the line.

Theorem 3.6 Assume that R0 > 1. Let (u, v) be the solution to (7)–(8). Then, there
exists cTSI R > 0 such that, for all ε ∈ (0, cTSI R),

lim
t→+∞

(
max

|x |≤(cTSI R−ε)t

∣∣(u(t, x), v(t, x, y)) − (ur∞(x), vr∞(x, y))
∣∣) = 0,

lim
t→+∞

(
max

|x |≥(cTSI R+ε)t

∣∣(u(t, x), v(t, x, y))
∣∣) = 0,

locally uniformly with respect to y ≥ 0.
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In addition, the spreading speed cTSI R satisfies

cTSI R

{
= cSI R if D ≤ 2d

> cSI R if D > 2d.

The asymptotic speed of spreading cTSI R coincides with the one for the homoge-
neous model, i.e. with I0 ≡ 0 and T0 ≡ 0, which is provided by (Berestycki et al.
2013, Theorem 1.1). From a mathematical point of view, this means that the pres-
ence of the compact perturbation does not affect the speed of propagation, as in the
case of the SIR model (4). The fact that the speed cannot decrease if one adds the
perturbation is a straightforward consequence of the comparison principle. Instead, to
derive the opposite inequality, we need to go into the proof of (Berestycki et al. 2013,
Theorem 1.1) and use the supersolutions constructed there. This is done in Sect. 5.2
below.

Theorem 3.6 shows that the presence of the line has a true impact on the speed at
which the epidemic spreads. Indeed, if the diffusion coefficient on the line D is larger
than twice the one in the field d, the asymptotic speed of spreading in the direction of
the line is enhanced, compared with the standard one cSI R . How much the spreading
is enhanced is discussed in Sect. 6. One can then wonder what is the effect of the line
on the other directions. In the case I0, T0 ≡ 0, we have shown in Berestycki et al.
(2016a) that the enhancement of the speed occurs in a cone of directions around the
line, with an associated critical angle. We suspect the same scenario to hold true for
system (7).

We conclude this section by showing that our model accounts for a true epidemic
wave, in the following sense. At every point of the domain under consideration, the
number of infected individuals, that was initially close to 0, raises to a nontrivial level
around a certain time, then decays back to 0.

Proposition 3.7 Assume that R0 > 1. There is a constant T∗ > 0, a positive function
I∗ : [0,+∞) → R and a function τ∗ : R → R satisfying

lim|x |→+∞
τ∗(x)
|x | = 1

cTSI R
, (9)

for which the following is true for any solution to (2).

1. (peak around τ∗(x)). We have

T (τ∗(x), x) ≥ T∗, I (τ∗(x), x, y) ≥ I∗(y). (10)

2. (decay far from τ∗(x)). The following limits hold uniformly in x ∈ R and locally
uniform in y ≥ 0:

lim
t→+∞

(
T (τ∗(x) + t, x), I (τ∗(x) + t, x, y)

)
= (0, 0)

lim
τ∗(x)≥t→+∞

(
T (τ∗(x) − t, x), I (τ∗(x) − t, x, y)

)
= (0, 0).

(11)
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This proposition is proved in Sect. 5.2. We note that, for the true SIR model, one
has a much stronger result, as one may relate the maximum of I to the maximum
of the derivative of the one-dimensional Fisher-KPP wave. While we do have the
existence of travelling wave here (see Berestycki et al. (2016b)), we do not have
precise convergence results for the solution of the Cauchy Problem. This will be done
in a future study.

4 Effects of the Line on the Total Number of Infected Per Location

We recall that the total number of infected people at a given location (x, y), for both
models without and with the road, is given by

Itot (x, y) = S0
(
1 − e−βṽ∞(x,y)),

where ṽ∞ is either v∞ or vr∞, that is, (the v component of) the unique positive,
bounded, stationary solution of the problem. A pointwise comparison between v∞
and vr∞ would then tell us in which way the presence of the road affects the total
number of infected, depending on the location. In order to compare the two problems
with and without the road, we consider for the SIR model (1) an initial datum I0(x, y)
in R2 which is symmetric with respect to the x-axis, and for the SI RT model (2) the
same I0 restricted to R × [0,+∞) and T0 ≡ 0. Here is our result.

Theorem 4.1 Suppose that R0 �= 1, that I0(x, y) is an even function of y and that T0 ≡
0. Then, there exist two subsets E± of R × [0,+∞) such that

vr∞ > v∞ in E+, vr∞ < v∞ in E−.

This result shows that the presence of the road increases the number of infected
people in some areas and decreases it in some others. The next theorem states a further
property of the limiting state.

Theorem 4.2 The stationary solution to the problem with the road (7) satisfies

ur∞(x) =
{
0 if R0 ≤ 1
ν
μ

v∗ if R0 > 1
+ e−κ(x)|x |, vr∞(x, y) =

{
0 if R0 ≤ 1

v∗ if R0 > 1
+ e−λ(x,y)|x |,

with

lim|x |→∞ κ(x) = lim|x |→∞ λ(x, y) = a∗ ≥ 0, locally uniformly in y ≥ 0.

Moreover, a∗ is independent of S0, I0, T0 and satisfies

a∗ = 0 if R0 = 1, 0 < a∗ <

⎧⎨
⎩

√
− f ′(0)

d if R0 < 1√
− f ′(v∗)

d if R0 > 1.
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This theorem will allow us to specify the region where the enhancement due to the
road takes place. It will be seen to happen close to the road, far from the epicentre
of the epidemic. Recall that v∞ and vr∞ have the same limit at infinity, namely 0 if
R0 ≤ 1 and v∗, the positive zero of f , if R0 > 1. The two solutions differ by their
rate of exponential decay towards the limit state. Indeed, Theorem 5.1(i i)-(i i i) below
implies that the rate of exponential decay of v∞ is

√− f ′(0)/d if R0 ≤ 1,
√− f ′(v∗)/d if R0 > 1,

whereas Theorem 4.2 shows that the decay of (ur∞, vr∞) is strictly slower.
Observe that the decay of v∞ is the natural one provided by the linearized equation

(outside supp I0) and it is obtained through rather standard arguments. On the contrary,
the decay of vr∞ is slower than the natural one. The proof of Theorem 4.2, presented in
Sect. 5.2, relies on some ideas from Berestycki et al. (2013), the keystone consisting
in the construction of suitable sub- and supersolutions.

Let us sketch the argument. To start with, we look for a stationary solution to (7)
as a perturbation of the limit at infinity:

u(x) = ν

μ
v∗ + hũ(x), v(x, y) = v∗ + hṽ(x, y),

where, for notational simplicity, we have set v∗ := 0 in the cases R0 ≤ 1. Dropping
the o(h) terms, outside the supports of I0 and T0 we get the linearized system

⎧⎨
⎩

−D∂xx ũ =νṽ(x, 0) − μũ(x) (x ∈ R)

−dΔṽ = f ′(v∗)̃v (x ∈ R, y > 0)
−d∂y ṽ(x, 0) =μũ(x) − νṽ(x, 0) (x ∈ R).

(12)

Observe that f ′(v∗) ≤ 0. We seek for solutions in the form

ũ(x) = e−ax , ṽ(x, y) = γ e−ax−by, (13)

with a, b, γ > 0. After some computation, the problem reduces to the algebraic
system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Da2 = μdb

db + ν

a2 + b2 = − f ′(v∗)
d

γ = μ

db + ν
.

(14)

If R0 �= 1, i.e. f ′(v∗) < 0, this system admits a unique positive solution, that we
denote (a∗, b∗, γ∗), whose first two components are represented in Fig. 5 (observe that
a∗ <

√− f ′(v∗)/d , which is the radius of the disk). If instead R0 = 0, i.e. f ′(v∗) = 0,
the unique solution of (14) is (a∗, b∗, γ∗) := (0, 0, μ/ν). In both cases, the pair (̃u, ṽ)

will serve as a supersolution to (7) and will provide the upper bound in Theorem 4.2.
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Fig. 5 The solution (b∗, a∗) to (14). Shaded regions correspond to inequalities “≤” (Color figure online)

For the lower bound, we need to modify the construction in order to obtain a
subsolution supported in a strip. First of all, we penalize the reaction term in the field
by considering a parameter ζ > − f ′(v∗) ≥ 0. Next, we modify the above function ṽ,
considering now the pair

ũ(x) = e−ax , ṽ(x, y) = γ e−ax(e−by − εeby
)
, (15)

where 0 < ε < 1. The linear system (12) with f ′(v∗) replaced by −ζ reduces to the
new algebraic system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Da2 = μdb(1 + ε)

db(1 + ε) + ν(1 − ε)

a2 + b2 = ζ

d
γ = μ

db(1 + ε) + ν(1 − ε)
.

(16)

This system converges to (14) as (ζ, ε) → (− f ′(v∗), 0), and thus its unique positive
solution, denoted by (aζ,ε∗ , bζ,ε∗ , γ

ζ,ε∗ ), satisfies

lim
(ζ,ε)→(− f ′(v∗),0)

(aζ,ε∗ , bζ,ε∗ , γ
ζ,ε∗ ) = (a∗, b∗, γ∗). (17)

This leads to a family of bounded subsolutionswith a decay in the x-variable arbitrarily
close to a∗.
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5 Proofs of the Results

5.1 The SIR Model

We give here the proofs of the results of Sect. 3.1, and we also derive some further
qualitative properties of the solution. We consider a more general framework: we set
problems (1), (4) in arbitrary space dimension N ≥ 1, i.e. X ∈ R

N , and for initial data
v(0, X) not necessarily identically equal to zero, but rather nonnegative and compactly
supported. This does not entail any additional difficulty.

Proof (Theorem 3.1) On one hand, the function identically equal to 0 is a subsolution
to the stationary equation

dΔv + f (v) + I0(X) = 0 (X ∈ R
N ). (18)

On the other hand, the constant function v̄ ≡ s is a supersolution of this equation
provided s > 0 is sufficiently large, because I0 is bounded and f (+∞) = −∞. The
existence of a solution 0 ≤ v∞ ≤ s then follows from the standard sub-/supersolution
method. Actually, as 0 is not a solution, the elliptic strong maximum principle yields
v∞ > 0 in RN .

Let us now derive the limit as |X | → ∞. By elliptic estimates, any sequence of
translations v∞(X + Xn), with (Xn)n∈N diverging, converges (up to subsequences)
towards a nonnegative, bounded solution ṽ to

dΔṽ + f (̃v) = 0 (X ∈ R
N ).

If R0 ≤ 1, i.e. f ′(0) ≤ 0, then f < 0 on (0,+∞), from which one readily derives
that necessarily ṽ ≡ 0 (for instance by comparison with the ODE u̇ = f (u)). This
shows that v∞(X) → 0 as |X | → ∞ when R0 ≤ 1.

In the case R0 > 1, we remark that v∞ is a supersolution to the classical Fisher-KPP
equation

∂tv = dΔv + f (v) (t > 0, X ∈ R
N ), (19)

for which the “hair-trigger” effect holds, see Aronson and Weinberger (1978): any
solution with a positive, bounded initial datum converges as t → +∞, locally uni-
formly in space, to the positive zero v∗ of f . We infer by comparison that v∞ ≥ v∗
in RN . This shows in particular that ṽ is positive, and thus applying the “hair-trigger”
effect to ṽ we derive ṽ ≡ v∗. We have shown that v∞(X) → v∗ as |X | → ∞
when R0 > 1.

To prove the uniqueness, we distinguish again the cases R0 > 1 and R0 ≤ 1.
Case R0 > 1.

We need to show that, for any pair of positive, bounded solutions v1, v2 to (18), there
holds that v1 ≤ v2 in RN . Assume by way of contradiction that

k := sup
RN

v1

v2
> 1.
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Since v1, v2 → v∗ at infinity, the above supremum is a maximum, attained at some
point X̄ . Subtracting the equations, we get

dΔ(v1 − kv2) + f (v1) − k f (v2) + I0(X)(1 − k) = 0,

which, evaluated at the point X̄ (where v1 = kv2 and Δ(v1 − kv2) ≤ 0) yields

k f (v2(X̄)) ≤ f (v1(X̄)) = f (kv2(X̄)).

But this is impossible because, being concave and vanishing at 0, f satisfies

∀s > 0,
f (ks)

ks
<

f (s)

s
.

Case R0 ≤ 1.
Now, any given positive, bounded solutions v1, v2 to (18) tend to 0 at infinity. Take
ε > 0 and call vε

2 := v2 + ε. Because f is decreasing in R+, we see that

dΔvε
2 + f (vε

2) + I0(X) < 0 (X ∈ R
N ).

Assuming by contradiction that v1 > vε
2 somewhere and repeating the same arguments

as before with v2 replaced by vε
2, we end up with the inequality

k f (vε
2(X̄)) < f (kvε

2(X̄)),

at some point X̄ and for some k > 1. As seen before, this is impossible. This means
that v1 ≤ vε

2 in R
N , which, by the arbitrariness of ε, entails the desired inequality

v1 ≤ v2. �

The following result contains some additional properties of v∞.

Theorem 5.1 The stationary solution v∞(X) satisfies the following properties:

(i) v∞ is radially decreasing outside the support of I0, i.e.

∀e ∈ S
N−1, δ ≤ r1 < r2, v∞(r1e) > v∞(r2e),

where δ is such that X · e ≤ δ for all X ∈ supp I0;
(ii) if R0 > 1, then v∞ > v∗ and moreover

v∞(X) = v∗ + e−λ(X)|X |, with lim|X |→∞ λ(X) =
√− f ′(v∗)

d
; (20)

(iii) if R0 ≤ 1, then

v∞(X) = e−λ(X)|X |, with lim|X |→∞ λ(X) =
√− f ′(0)

d
. (21)
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Proof Statement (i).
We make use of a reflection argument due to Jones (1983). Fix a direction e ∈ S

N−1

and take r > δ, where δ is such that X · e ≤ δ for all X ∈ supp I0. Let T be the
reflection with respect to the hyperplane {X · e = r}, and define ṽ := v∞ ◦ T . In the
half-space {X · e < r} (⊃ supp I0), the function ṽ solves dΔṽ + f (̃v) = 0, hence it
is a subsolution of the equation satisfied by v∞. In addition, ṽ ≡ v∞ on {X · e = r}.
Repeating the comparison argument in the proof of Theorem 3.1 with v1 = ṽ and
v2 = v∞, but in {X · e < r}, and observing that the point X̄ cannot belong to the
boundary {X · e = r}, one infers that ṽ ≤ v∞ in {X · e < r}. Actually, the strong
maximum principle andHopf’s lemma imply that the inequality is strict andmoreover

∇ṽ(re) · e > ∇v∞(re) · e.

Since ∇ṽ(re) · e = −∇v∞(re) · e, this gives the desired monotonicity.
Statements (i i)-(i i i).

We have shown in the proof of Theorem 3.1 that, in the case R0 > 1, v∞ ≥ v∗ in RN .
The strict inequality follows from the strong maximum principle.

We simultaneously derive properties (20)–(21). To do so, we set v∗ = 0 in the case
R0 ≤ 1. For given e ∈ S

N−1, k > 0 and λ = √− f ′(v∗)/d , consider the function
w(X) := ke−λX ·e. Using the concavity of f , we derive

−dΔw = f ′(v∗)w > f (v∗ + w),

that is, v∗ + w is a supersolution to (18) outside supp I0. Let ρ > 0 be such that
supp I0 ⊂ Bρ . We choose

k := eλρ max v∞,

so that v∗+w ≥ v∞ in Bρ ⊃ supp I0.As a consequence, the functionmin
(
v∞, v∗+w

)
is a generalized supersolution to (18). It then follows from the sub-/supersolution
method, that there exists a solution 0 ≤ v ≤ (

v∞, v∗ + w
)
, which is actually positive

by the strong maximum principle. Then, v ≡ v∞ thanks to the Liouville result of
Theorem 3.1. We have thereby shown that

∀|X | ≥ ρ, v∞(X) ≤ v∗ + kz(X) = v∗ + ke−√− f ′(v∗)/d X ·e.

This being true for all e ∈ S
N−1, we obtain the upper bound

∀|X | ≥ ρ, v∞(X) ≤ v∗ + ke−√− f ′(v∗)/d |X |. (22)

Let us derive the lower bound. Take

λ :=
√− f ′(v∗) + 2ε

d
, with ε > 0,
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and define z := e−λ|X |. This function satisfies, for |X | ≥ dλ(N−1)
ε

,

−dΔz =
(
f ′(v∗) − 2ε + dλ

N − 1

|X |
)
z ≤ (

f ′(v∗) − ε
)
z.

It follows that, for h > 0 sufficiently small, the function v∗+hz is a subsolution to (18)
for |X | ≥ dλ(N−1)

ε
. Up to decreasing h if need be, we further have that v∗ + hz < v∞

for |X | ≤ dλ(N−1)
ε

, hence v := max
(
v∞, v∗+hz

)
is a generalized subsolution to (18).

By the sub-/supersolution method, there exists a solution v ≤ v ≤ s, where s is such
that f (s) < −max I0. Theorem 3.1 eventually yields v ≡ v∞. This shows the lower
bound

∀|X | ≥ dλ(N − 1)

ε
, v∞(X) ≥ v∗ + he−

√
− f ′(v∗)+2ε

d |X |
. (23)

Call

λ(X) := − log(v∞(X) − v∗)
|X | .

The estimates (22)–(23) yield, for |X | sufficiently large,

√− f ′(v∗)
d

− log k

|X | ≤ λ(X) ≤
√− f ′(v∗) + 2ε

d
− log h

|X | ,

from which the limits in (20)–(21) follow due to the arbitrariness of ε > 0. �

We now turn to the results about the Cauchy problem (4), with an initial datum

v(0, X) nonnegative and compactly supported.

Proof (Theorem 3.2) Let v, v be the solutions to the Cauchy problem emerging from
the initial data identically equal to 0 and s, respectively, with s > 0 large enough so
that f (s) + max I0 < 0. We further take s > max v(0, ·). The parabolic comparison
principle yields

∀t > 0, X ∈ R
N , v(t, X) ≤ v(t, X) ≤ v(t, X).

Since the initial data of v, v are, respectively, a sub- and a supersolution of the problem,
the comparison principle implies that v, v are, respectively, increasing and decreasing
in t and then, by parabolic estimates, they converge to two stationary solutions 0 <

V ≤ V < s. The convergences occur locally uniformly in space and hold true for the
time derivatives. Theorem 3.1 implies that V ≡ V ≡ v∞. The proof is complete. �

Proof (Theorem 3.3) Take ε ∈ (0, cSI R) and consider a sequence (tn)n∈N diverging
to +∞ and a sequence (Xn)n∈N in R

N such that |Xn| ≤ (cSI R − ε)tn . If (Xn)n∈N
is bounded, we already know from Theorem 3.2 that v(tn, Xn) − v∞(Xn) → 0 as
n → ∞. Suppose now that (Xn)n∈N diverges (up to subsequences). Recall that v is a
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supersolution to the standard Fisher-KPP equation (19), for which spreading occurs
with the asymptotic speed 2

√
d f ′(0), that is exactly cSI R . Because v(1, ·) > 0, we

infer that

lim inf
n→∞

(
v(tn, Xn) − v∞(Xn)

)
) ≥ v∗ − v∗ = 0.

To derive the upper bound, we consider the same function w(X) := ke−λX ·e as in
the proof of Theorem 5.1(i i), with λ = √− f ′(v∗)/d and e ∈ S

N−1, k > 0. We
have seen that v∗ + w is a supersolution to (18) outside supp I0. We then take k
large enough, independently of e, so that v∗ + w(X) > v(t, X) for all t > 0 and
X ∈ supp I0 ∪ supp v(0, ·). Hence, by comparison, v(t, X) < v∗ + w(X) for all
t > 0, X ∈ R

N . This being true for any e ∈ S
N−1, with k independent of e, yields

v(t, X) ≤ v∗ + ke−λ|X |, for all t > 0, X ∈ R
N . It follows that

lim sup
n→∞

v(tn, Xn) ≤ lim sup
n→∞

(
v∗ + ke−λ|Xn |) = v∗.

The proof of the first limit stated in the theorem is achieved.
Let us deal with the second limit. For c = cSI R = 2

√
d f ′(0), λ = cSI R

2d and any
given e ∈ S

N−1 and k > 0, the function w(t, X) := ke−λ(X ·e−ct) satisfies

∂tw − dΔw − f ′(0)w = (
cλ − dλ2 − f ′(0)

)
w = 0.

Hence, by the concavity of f , it is a supersolution to (4) outside supp I0. We choose k
large enough, independently of e, in such a way that w(0, X) > v(t, X) for all t > 0
and X ∈ supp I0 ∪ supp v(0, ·). Hence, by comparison, v(t, X) < w(t, X) for all
t > 0, X ∈ R

N , and therefore, letting e vary in SN−1, we get

v(t, x) ≤ ke−λ(|X |−cSI R t),

which gives the desired limit. �

Using the same reflection argument as in the proof of Theorem 5.1, one can show

that the solution v(t, X) to (4) is radially decreasing with respect to X outside the
support of I0.

We conclude this section with a monotonicity result with respect to the diffusion
coefficient d. We assume now for simplicity that the initial datum v(0, ·) is identically
equal to 0.

Proposition 5.2 Under the assumption that I0 is radially decreasing, the values v∞(0)
and v(t, 0), for any t > 0, are decreasing with respect to the diffusion coefficient d.

Proof Let v1, v2 be the solutions to (4) associated with the coefficients d = d1 and
d = d2, respectively, with 0 < d1 < d2. The function ṽ j (t, X) := v j (t,

√
d j X), for

j = 1, 2, satisfies

ṽ
j
t − Δṽ j = f (̃v j ) + I0(

√
d j X) (t > 0, X ∈ R

2).
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Thus, owing to the monotonicity of I0, the comparison principle yields ṽ1(t, X) >

ṽ2(t, X) for all t > 0, X ∈ R
N , which, evaluated at X = 0, gives v1(t, 0) > v2(t, 0).

Moreover, because v j converges towards the steady state v
j∞ as t → +∞, thanks

to Theorem 3.2, one further derives

v1∞(
√
d1X) = lim

t→+∞ ṽ1(t, X) ≥ lim
t→+∞ ṽ2(t, X) = v2∞(

√
d2X).

This inequality is actually strict due to the strong maximum principle. We infer that
v1∞(0) > v2∞(0). �


5.2 The SIRTModel

We will make repeatedly use of the weak and strong comparison principles for the
road-field system. They are provided by (Berestycki et al. 2013, Proposition 3.2) in
the case I0 ≡ 0, and one can check that the presence of the bounded source term
I0 does not affect their proofs. When applied to a stationary subsolution (u, v) and
supersolution (u, v) satisfying (u, v) ≤ (u, v), the strong comparisonprinciple implies
that the inequality is strict unless (u, v) ≡ (u, v). Here and in the sequel, inequalities
are understood component-wise.

Proof (Theorem 3.4)We start with constructing a stationary supersolution to (7). Take
0 < σ <

√
α/d and define the functions

u := K
2ν + dσ

μ
, v := K

(
1 + e−σ y), (24)

where K is a positive constant that will be fixed later. The pair (u, v) satisfies the last
equation of (7). Moreover, we compute

−D∂xxu − νv(x, 0) + μu = 2dKσ,

−dΔv − f (v) ≥ −Kdσ 2 − S0 + Kα,

We then choose K sufficiently large so that the above right-hand sides are larger than
max T0 and max I0, respectively. Then, (u, v) is a supersolution to (7).

The existence of a positive, stationary solution follows from the sub-/supersolution
method, applied with (0, 0) as a subsolution and (u, v) as a supersolution. Owing to
the strong maximum principle, this provides us with a solution

(0, 0) < (ur∞, vr∞) < (u, v).

We derive the uniqueness result, as well as the limit at infinity, by distinguishing
the cases R0 ≤ 1 and R0 > 1.

Case R0 > 1.
The positive steady state (ur∞, vr∞) is a supersolution to the problem with I0, T0 ≡ 0,
which reduces to the system studied in Berestycki et al. (2013). For such system, we
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know from (Berestycki et al. 2013, Theorem 4.1) that positive solutions converge as
t → +∞ to the steady state (ν/μ, 1)v∗ (v∗ = 1 for the f in Berestycki et al. (2013)),
whence by comparison,

(ur∞, vr∞) ≥ (ν/μ, 1)v∗. (25)

Consider a sequence ((xn, yn))n∈N inR×R
+, with (yn)n∈N diverging to+∞. Then,

by elliptic estimates, as n → ∞, vr∞(x + xn, y + yn) converges locally uniformly (up
to subsequences) towards a solution ṽ of the equation−dΔṽ = f (̃v) inR2. Moreover,
ṽ ≥ v∗ due to (25). Then, as seen in the Proof of Theorem 3.1, we necessarily have
ṽ ≡ v∗. This proves the second limit of the theorem in the case R0 > 1.

Take now a diverging sequence (xn)n∈N in R, and let (̃u(x), ṽ(x, y)) be the limit
of (a subsequence of) (ur∞(x + xn), vr∞(x + xn, y)), whose existence is guaranteed
by elliptic estimates up to the boundary. Thus, (̃u, ṽ) is a stationary solution of (7)
with I0, T0 ≡ 0, which is positive due to (25). It follows from (Berestycki et al. 2013,
Theorem 4.1) that (̃u, ṽ) ≡ (ν/μ, 1)v∗. This proves the first limit stated in the theorem
(the uniformity in y following from the first limit).

It remains to prove the uniqueness. Let (u1, v1) and (u2, v2) be two pairs of positive,
bounded, stationary solutions to (7). Assume by way of contradiction that

k := max

(
sup
R

u1
u2

, sup
R×R+

v1

v2

)
> 1.

Because of the limits we have just proved, one of the following situations necessarily
occurs:

max
R

u1
u2

= k, or max
R×R+

v1

v2
= k.

Suppose we are in the latter case. Then, exactly as in the proof of ..., the concavity of
f prevents the maximum from being achieved in the interior of R × R

+. Then, it is
achieved at some point (x̄, 0), and Hopf’s lemma yields

∂y(kv2 − v1)(x̄, 0) > 0.

Using the third equation in (7), together with v1(x̄, 0) = kv2(x̄, 0), we find that

ku2(x̄) = −kd

μ
∂yv2(x̄, 0) + kν

μ
v2(x̄, 0) < − d

μ
∂yv1(x̄, 0) + ν

μ
v1(x̄, 0) = u1(x̄),

which contradicts the definition of k. Consider the remaining case:

max
R

u1
u2

= k >
v1

v2
.
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Computing the difference of the equations satisfied by ku2 and u1 at a point x̄ where
this maximum is achieved, we derive

0 ≤ −D∂xx (ku2 − u1)(x̄) = ν(kv2 − v1)(x̄, 0) − μ(ku2 − u1)(x̄) = ν(kv2 − v1)(x̄, 0).

This is impossible because v1 < kv2.
We have thereby shown that k ≤ 1, that is, (u1, v1) ≤ (u2, v2). Exchanging the

roles of the solutions yields the uniqueness result.
Case R0 ≤ 1.

We start with the uniqueness result. We derive it in the more general framework of
nonnegative solutions, with possibly I0 ≡ 0. We need to show that, for any two pairs
(u1, v1), (u2, v2) of nonnegative, bounded, stationary solutions to (7), there holds that
(u1, v1) ≤ (u2, v2). Assume by contradiction that, on the contrary,

h := max
(μ

ν
sup
R

(u1 − u2) , sup
R×R+

(v1 − v2)
)

> 0.

Suppose first that supR×R+(v1 − v2) = h, and let ((xn, yn))n∈N be a maximizing
sequence. If (yn)n∈N is bounded from below away from 0, then the functions v j (x +
xn, y + yn) converge locally uniformly (up to subsequences) towards two solutions
ṽ j of the equation −dΔṽ j = f (̃v j ) in a neighbourhood of the origin. Moreover,
(̃v1 − ṽ2)(0, 0) = max(̃v1 − ṽ2) = h, and thus

0 ≤ −dΔ(̃v1 − ṽ2)(0, 0) = f (̃v1(0)) − f (̃v2(0)) = f (̃v2(0) + h) − f (̃v2(0)).

This is impossible, because f ′(0) = α(R0 −1) ≤ 0 and hence f is decreasing onR+.
If, instead, yn → 0 (up to subsequences), then the pairs (u j (x + xn), v j (x + xn, y))
converge locally uniformly (up to subsequences) towards two solutions (̃u j , ṽ j ) of the
same system, which is of the form (7) with I0 either translated by some vector (ξ, 0),
or replaced by 0. Moreover, (̃v1 − ṽ2)(0, 0) = max(̃v1 − ṽ2) = h. If the maximum is
also attained at some interior point, we get the same contradiction as before. Therefore,
Hopf’s lemma yields

0 > d∂y (̃v1 − ṽ2)(0, 0) = ν(̃v1 − ṽ2)(0, 0) − μ(̃u1 − ũ2)(0) = hν − μ(̃u1 − ũ2)(0).

This contradicts the definition of h.
Suppose now that

h = μ

ν
sup
R

(u1 − u2) > sup
R×R+

(v1 − v2).

Considering now a maximizing sequence (xn)n∈N for u1 − u2, then the limits (up to
subsequences) (̃u j , ṽ j ) of the translations (u j (x + xn), v j (x + xn, y)), which, once
again, satisfy a system analogous to (7). The difference ũ1 − ũ2 attains its maximum
ν
μ
h at the origin, whence
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0 ≤ −D∂xx (̃u1 − u2)(0) = ν(̃v2 − ṽ1)(0, 0) − μ(̃u2 − ũ1)(0) = ν(̃v2 − ṽ1)(0, 0) − νh.

This contradicts supR×R+(v1 − v2) < h.
The proof of the uniqueness is concluded. Let us pass to the limits at infinity. The

limit vr∞(x, y) → 0 as y → +∞, uniformly with respect to x , follows from the neg-
ativity of f , exactly as in the above proof of Theorem 3.1. Consider now a diverging
sequence (xn)n∈N inR. The sequence of translations (ur∞(x+xn), vr∞(x+xn, y)) con-
verges locally uniformly (up to subsequences) towards a bounded, stationary solution
(̃u, ṽ) to (7) with I0 ≡ 0. We have seen above that the Liouville-type result holds for
nonnegative stationary solutions of such system, hence, necessarily, (̃u, ṽ) ≡ (0, 0).
This concludes the proof of the theorem. �


We now turn to the set of results on the solution of the Cauchy problem (7)–(8).

Proof (Theorem 3.5) Since the initial datum (0, 0) is a subsolution to (7) which is not
a solution, the comparison principle implies that the solution (u, v) is strictly increas-
ing in t . It further implies that (u, v) is smaller than the supersolution constructed in
the proof of Theorem 3.4, defined by (24). It follows that, as t → +∞, (u, v) con-
verges locally uniformly to a positive, bounded, stationary solution, which necessarily
coincides with (ur∞, vr∞) due to Theorem 3.4. �

Proof (Theorem 3.6) In the case I0, T0 ≡ 0, the result reduces to (Berestycki et al.
2013. Theorem 1.1), with the only difference that the initial datum there must not
be identically equal to (0, 0) (otherwise the solution remains (0, 0) for all times). In
that case, the limit state is simply (ur∞, vr∞) ≡ (ν/μ, 1)v∗. We call cTSI R the speed
provided by (Berestycki et al. 2013, Theorem 1.1).

Take ε ∈ (0, cTSI R) and consider a sequence (tn)n∈N diverging to +∞ and a
sequence (xn)n∈N in R such that |xn| ≤ (cTSI R − ε)tn . If (xn)n∈N is bounded, then the
convergence of (u(xn), v(xn, y)) towards the steady state follows from Theorem 3.5.

Suppose that (xn)n∈N diverges (up to subsequences). By the strong maximum prin-
ciple, the solution (u, v) is strictly larger than (0, 0) at, say, t = 1. Fitting a compactly
supported datum below it, and applying the spreading result from (Berestycki et al.
2013, Theorem 1.1) to the solution of (7) with I0, T0 ≡ 0, emerging from such datum,
we infer by comparison that

lim inf
n→∞

((
u(tn, xn), v(tn, xn, y)

) − (
ur∞(xn), v

r∞(xn, y)
)) ≥

( ν

μ
, 1

)
v∗ −

( ν

μ
, 1

)
v∗ = 0,

where we have also used the limit given by Theorem 3.4. On the other hand, by
comparison, (u, v) ≤ (ur∞, vr∞), for all t ≥ 0. Thus, the first limit in Theorem 3.6 is
proved.

We turn to the second limit. We restrict to x > 0, the case x < 0 being obtained
by a specular argument. Let us briefly remind how the asymptotic speed—named
here cTSI R—is obtained in Berestycki et al. (2013). To start with, one linearizes (7)
around (0, 0), i.e. replaces f (v) with f ′(0)v = α(R0 − 1)v and set I0, T0 to 0. One
then looks plane wave solutions of the form

(
ϕ(t, x), ψ(t, x, y)

) = e−a(x−ct)(1, γ e−by), a, b, c, γ > 0.
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This leads to the following algebraic system for the unknowns (a, b, c) (the coeffi-
cient γ is easily computed from the exchange condition):

⎧⎨
⎩

−Da2 + ca + dbμ

ν + db
= 0

−d(a2 + b2) + ca = α(R0 − 1).

The analysis of this system is somewhat involved, and we refer to Berestycki et al.
(2013) for a detailed discussion. Following this analysis, one sees that the system
admits a solution starting from aminimal value of c , called cTSI R . Hence, for c = cTSI R ,
the pair (ϕ, ψ) above is a solution to the linearized system and therefore, by the
concavity of f , it is a supersolution to the original system (7) outside the supports of
I0, T0. The second limit in Theorem 3.6 for x > 0 then follows by comparison with
k(ϕ, ψ), with k sufficiently large so that k(ϕ, ψ) ≥ (ur∞, vr∞)(≥ (u, v)) inside the
supports of I0, T0. �


Proof (Proposition 3.7) For x ∈ R, define τ∗(x) as the first time t > 0 such that

v(t, x, 0) = v∗
2

.

This is possible due to Theorem 3.6 and (25). These also entail that the function τ∗(x)
is locally bounded and satisfies (9). It is also clear that inf τ∗ > 0, because v identically
vanishes at t = 0 and it is uniformly continuous by parabolic estimates. Assume (10)
to be false. Namely, there exists a sequence (xn)n∈N in R and a bounded sequence
(yn)n∈N in [0,+∞) such that one of the following situations occurs:

lim
n→∞ I (τ∗(xn), xn, yn) = 0, or lim

n→∞ T (τ∗(xn), xn) = 0. (26)

Because τ∗(x) is bounded from below away from zero and locally bounded from
above, and I , T are positive for t > 0, we necessarily have that (τ∗(xn))n∈N diverges.
Set

Tn(t, x) := T (τ∗(xn) + t, xn + x), In(t, x, y) := I (τ∗(xn) + t, xn + x, y),
Sn(t, x, y) := S(τ∗(xn) + t, xn + x, y);

from parabolic estimates, a subsequence of (Sn, In, Tn)n∈N (that wemay assumewith-
out loss of generality to be thewhole sequence) converges to an entire (i.e. for all t ∈ R)
solution (S∞, I∞, T∞) of the SI RT system (2). We may also assume (yn)n∈N to con-
verge to some y∞ ≥ 0; by (26) we have that either I∞(0, 0, y∞) = 0 or T∞(0, 0) = 0.
In the latter case, we deduce from the last equation in (2) that T∞ ≡ 0 for t ≤ 0, and
then I∞ ≡ 0 too; in the former case, the same conclusion follows from the strong
maximum principle and Hopf’s lemma, using the first and third equations in (2). Set

un(t, x) = u(τ∗(xn) + t, xn + x), vn(t, x, y) = v(τ∗(xn) + t, xn + x, y);
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as Tn = ∂t un and In = ∂tvn , a subsequence (that we may once again to be the
whole sequence) converges to a t-independent pair (u∞(x), v∞(x, y)), as their time
derivatives converge to 0 as n → ∞. So, (u∞, v∞) is a stationary solution of (7) with
I0, T0 ≡ 0. But we know from (Berestycki et al. 2013, Theorem 4.1) that the Liouville-
property holds for such system, that is, either (u∞, v∞) ≡ (0, 0) or (u∞, v∞) ≡
( ν
μ
, 1)v∗. This is impossible because

v∞(0, 0) = lim
n→∞ v(τ∗(xn), xn, 0) = v∗

2
,

by the definition of τ∗(x). �

We now prove the result about the rate of decay of the steady state.

Proof (Theorem 4.2) We derive these limits in the case x → +∞, the limits at −∞
being analogous.

Upper bound.
In order to simultaneously treat the cases R0 ≤ 1 and R0 > 1, we set in the former
v∗ := 0. It follows that f ′(v∗) ≤ 0 for all R0 > 0. Consider the pair (̃u, ṽ) given
by (13), with (a, b, γ ) = (a∗, b∗, γ∗) unique positive solution of (14) if R0 �= 1, or
(a∗, b∗, γ∗) = (0, 0, μ/ν) if R0 = 1. Namely, (̃u, ṽ) satisfies the linearized prob-
lem (12). By the concavity of f , we see that, for any h > 0,

f (v∗ + hṽ) ≤ f ′(v∗)hṽ,

−ζ replaced by f ′(v∗), as correctly observed by the referee and therefore the pair
( ν
μ
v∗ + hũ, v∗ + hṽ) is a supersolution to (7) outside the supports of T0, I0. We take h

large enough so that, inside these supports, such pair is larger than the supersolution
(u, v) used in the proof of Theorem 3.4, defined by (24). As a consequence, the pair

(
min

( ν

μ
v∗ + hũ , u

)
, min

(
v∗ + hṽ , v

))

is a generalized supersolution to (7). Hence, we can find a stationary solution between
(0, 0) and such supersolution, which is necessarily positive and thus coincides with
(ur∞, vr∞) thanks to the Liouville result of Theorem 3.4. We have thereby shown that

ur∞ ≤ ν

μ
v∗ + hũ, vr∞ ≤ v∗ + hṽ,

and therefore the desired upper bounds.
Lower bound.

Fix ζ > − f ′(v∗) ≥ 0. We consider now the pair (̃u, ṽ) from (15), with 0 < ε < 1 and
(a, b, γ ) = (aζ,ε∗ , bζ,ε∗ , γ

ζ,ε∗ ) unique positive solution of (16). The function ṽ(x, y)
vanishes at y = yε := − log ε

2bζ,ε∗
, it is bounded in the half-strip

Sε := {x > 0, 0 < y < yε},
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and, by construction, satisfies there −dΔṽ = −ζ ṽ. Hence, because f (v∗) = 0 and
ζ < − f ′(v∗), the function v∗ +hṽ is a subsolution to the second equation of (7) in Sε

provided h > 0 is sufficiently small, depending on ζ . As a consequence, choosing
h = hζ small, we have that the pair

(u, v) :=
( ν

μ
v∗ + hũ, v∗ + hζ ṽ

)

is a subsolution to (7) in Sε. Up to replacing hζ with a smaller quantity hζ,ε if need
be, we can also require

u(0) ≤ ur∞(0), max
y∈[0,yε] v(y) ≤ min

y∈[0,yε] v
r∞(y),

and, in addition, that in the half-strip Sε, (u, v) is smaller than the supersolution (u, v)

defined by (24). Let us consider the solution (u, v) of the evolution problem (7) having
(u, v) as initial datum.Weknow from theLiouville-type result that (u, v) ↘ (ur∞, vr∞)

as t → +∞. It follows that, for all t > 0,

u(t, 0) ≥ ur∞(0) ≥ u(0), ∀y ∈ [0, yε], v(t, 0, y) ≥ vr∞(0, y) ≥ v(0, y),

and moreover v(t, x, yε) > 0 = v(x, yε) for x ≥ 0. We can therefore apply the
comparison principle for the road-field system in the half-strip Sε and deduce that,
there, (u, v) remains larger than (u, v) for all t > 0. Thus, we infer that

∀x > 0, ur∞(x) ≥ ν

μ
v∗ + hζ,εe−aζ,ε∗ x ,

∀x > 0, y ∈ [0, yε], vr∞(x, y) ≥ v∗ + hζ,εγ
ζ,ε∗ e−aζ,ε∗ x(e−bζ,ε∗ y − εeb

ζ,ε∗ y).
Owing to the arbitrariness of ζ > − f ′(v∗) and 0 < ε < 1, one then gets the desired
lower bound using (17) and noticing that yε → +∞ as ε → 0. �


We conclude with the comparison between the steady state for the models without
and with the line.

Proof (Theorem 4.1) The existence of the set E+, of the form |x | ≥ ρ, y < h, directly
follows from Theorems 5.1 and 4.2. Let us show the existence of E−.

Because I0(x, y) is an even function of y, the stationary solution of (4) v∞ is even
in y too, by uniqueness. Hence, ∂yv∞(x, 0) = 0 for all x ∈ R. Thus, integrating the
equation −dΔv∞ = f (v∞) + I0(x, y) on R × (0,+∞) yields

∫
R×(0,+∞)

(
f (v∞) + I0(x, y)

)
dx dy = d

∫
R

∂yv∞(x, 0)dx = 0.
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On the other hand, integrating the equations (7) for (ur∞, vr∞) shows1

∫
R×(0,+∞)

(
f (vr∞) + I0(x, y)

)
dx dy = d

∫
R

∂yv
r∞(x, 0)dx

=
∫
R

(
νvr∞(x, 0) − μur∞

)
dx = 0.

This means that
∫
R×(0,+∞)

f (v∞)dx dy =
∫
R×(0,+∞)

f (vr∞)dx dy.

Recall that v∞ and vr∞ are larger than v∗, and that f is decreasing on (v∗,+∞). It
follows that, in the set E+ on which we have shown that v∞ < vr∞, there holds

∫
E+

f (v∞)dx dy >

∫
E+

f (vr∞)dx dy,

and therefore
∫

(R×(0,+∞))\E+
f (v∞)dx dy <

∫
(R×(0,+∞))\E+

f (vr∞)dx dy.

This in turn implies that there exists a set E− ⊂ (R× (0,+∞))\E+ where v∞ > vr∞.
�


6 The Influence of R0 and Other Parameters

We wish to understand here how the different coefficients in our model will influence
the speed cTSI R . For that we first write (2) in non-dimensional form. We then write the
algebraic system that leads to the (non-dimensional) velocity. Finally, we study how
the reduced parameters will contribute to the enhancement of the SI RT velocity. The
space and time variables are non-dimensionalized as

t = τ

α
, (x, y) =

√
d

α
(ξ, ζ ),

while the unknowns T (t, x) and I (t, x, y) are expressed as

T (t, x) = S0T (τ, ξ), I (t, x, y) = S0I(τ, ξ, ζ ), S(t, x, y) = S0S(τ, ξ, ζ ).

The parameters of importance are then found to be

D = D

d
, R0 = βS0

α
, ν̄ = ν

α
, μ̄ = μ

α
.

1 The integrations are justified by Theorems 5.1 and 4.2, together with elliptic estimates.
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The speed cSI R is expressed as

cSI R = √
dαwSI R, wSI R = 2

√
R0 − 1.

System (2) is then rewritten as

⎧⎪⎪⎨
⎪⎪⎩

∂τI − ΔI + I = R0SI (τ > 0, ξ ∈ R, ζ > 0)
∂τS =−R0SI (τ > 0, ξ ∈ R, ζ > 0)

−∂ζI = μ̄T − ν̄I (τ > 0, ξ ∈ R)

∂τT − D∂ξξT = ν̄I(τ, ξ, 0) − μ̄T (τ > 0, ξ ∈ R).

The integrated quantities

U(τ, ξ) =
∫ τ

0
T (σ, ξ)dσ, V(τ, ξ, ζ ) =

∫ τ

0
I(t, x, y)ds.

will then solve
⎧⎨
⎩

∂τU − D∂ξξU = ν̄V(τ, ξ, 0) − μ̄U + T0(ξ) (τ > 0, ξ ∈ R)

∂τV − ΔV = f (V) + I0(ξ, ζ ) (τ > 0, ξ ∈ R, ζ > 0)
−∂ζV(τ, ξ, 0) = μ̄U(τ, ξ) − ν̄V(τ, ξ, 0) (τ > 0, ξ ∈ R).

(27)

The function f is given by f (V) = R0(1−e−V )−V , so that, f ′(0) = R0−1 = w2
SI R

4
.

The initial quantities I0 and T0 have obvious meanings. Now, recall that the minimal
reduced speed for (27), that we name wT

SI R , is shown to be the least w so that the
algebraic system in a, b

⎧⎪⎨
⎪⎩

−Da2 + wa + μ̄b

ν̄ + b
= 0

−(a2 + b2) + wa = w2
SI R

4
.

(28)

has solutions. Let us discuss how the parameters R0, μ̄, ν̄, D interact so as to yield
a large minimal speed wT

SI R , while wSI R is small. The latter condition just means
that R0 is only slightly larger than 1. So, wSI R is now a small parameter. From the
second equation of (28), we suspect that a, b and w will scale like wSI R , while the
first equation leads us to think that a will additionally scale like D−1/2, and that w

will scale like D1/2. So, we perform a last round of scalings:

a = wSI R√
D

ā, b = wSI Rb̄, w = √
DwSI Rw̄, (29)

and we introduce the new parameters

λ = μ̄

ν̄wSI R
, ρ = wSI R

ν̄
. (30)
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This leads to the final reduced system

⎧⎪⎪⎨
⎪⎪⎩

−ā2 + w̄ā + λb̄

1 + ρb̄
= 0

−(
ā2

D + b̄2) + w̄ā = 1

4
,

(31)

Recall now that we are interested in a situation where R0 is slightly above 1, that
is, wSI R is small. From the scalings (29), enhancement of propagation by the line
should be achieved by a large reduced diffusion coefficient D. As the parameter ρ

is proportional to wSI R , we anticipate that it will be small. Let ωT
SI R(λ) the minimal

reduced speed in (31),wewill look for it in the limitD → +∞,ρ → 0 andwSI R → 0.
This amounts to estimating the minimal speed, still called ωT

SI R(λ) in the simplified
system {−ā2 + w̄ā + λb̄ = 0

−b̄2 + w̄ā = 1

4
.

(32)

The first equation gives an inverted parabola Γ1,λ,w̄:

ā = w̄ +
√

w̄2 + 4λb̄

2
:= g(w̄, λ, b̄),

starting from the point (b̄ = 0, ā = w̄), while the second equation is the standard
parabola Γ2,w̄

ā = 1

w̄

(
1

4
+ b̄2

)
:= h(w̄, b̄).

And so, we want to make Γ1,λ,w̄ and Γ2,w̄ intersect in the (b̄, ā) plane. Given the
behaviour of g and h for large b̄, the other variables being fixed, we deduce that Γ1,λ,w̄

and Γ2,w̄ always intersect if w̄ >
1

2
. This implies

ωT
SI R(λ) ≤ 1

2
.

On the other hand, Γ1,0,1/2 and Γ2,1/2 intersect at their very start, that is b̄ = 0, ā = 1

4
,

so that ωT
SI R(0) = 1

2
. Notice that one way to achieve λ = 0 is to have

wSI R → 0, ν̄wSI R → +∞, μ̄ = O(1),

that is, a very high transmission from the domain to the line and a normal transmission
from the line to the domain. More generally, one may also have

μ̄ ∝ wα
SI R, ν̄ ∝ w−1+α

SI R , for any α ∈ (0, 1).
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This corresponds to a small transmission from the road to the field, yet a large trans-
mission from the field to the road. This is sufficient to accelerate the epidemics.

Let us now increase λ, while keeping w̄ ≤ 1

2
. Since g is strictly concave in b̄, while

h is strictly convex in b̄, the two graphs may have zero, one or two intersection points,
the case of one intersection corresponding to the sought for reduced SI RT velocity
ωT
SI R(λ). Since

∂

∂λ

(
∂g

∂ b̄

)
= w̄2 + 4λb̄

(w̄2 + 4λb̄)3/2
> 0,

the functionλ �→ ωT
SI R(λ) is strictly decreasing.Onemay also easily show that it tends

to 0 as λ → ∞. Summing up, we have proved the existence of a strictly decreasing

function ωT
SI R , with ωT

SI R(0) = 1

2
, tending to 0 at infinity, such that

lim
D→+∞,wSI R→0

wT
SI R√

DwSI R
= ωT

SI R(λ), λ = μ̄

ν̄wSI R
. (33)

This means, in particular, thatwT
SI R can be quite large even if the reproduction number

R0 is close to 1. If such is the case, then wSI R is small. However, as we saw above,
the speed wT

SI R may be rendered large in several instances.

7 Discussion and Conclusions

In this paper, we discuss the effects of the presence of a road on the spatial propagation
of an epidemicwithin the context of a spatial SIRmodel. The road has specific diffusion
and infected can travel faster along it. To this end, we introduce a new model that we
call a SI RT model. In addition to the classical S, I and R compartments, it involves a
compartment T for travelling infected on this road. Here, we only discuss the case of
local Brownian diffusion and local interactions. In a forthcoming paper [8], we carry
an analogous analysis for non-local interactions.

By means of a classical transformation, this model can be reduced to a system
involving a non-homogeneous Fisher-KPP type equation. The unknown functions for
this system are

u(t, x) :=
∫ t

0
T (s, x)ds, v(t, x, y) :=

∫ t

0
I (s, x, y)ds.

This allows us to extend previous works and to derive some rather precise properties
of this model. The main outcomes of our work are the following.

1. Wefirst show that the SI RT system in the (u, v) unknowns admits a unique positive
(bounded) steady state, which describes the long-time behaviour of the solutions
of the evolution system. When R0 ≤ 1, this steady state tends to 0 at infinity. We
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interpret this as saying that the epidemic does not propagate. On the contrary, when
R0 > 1, the steady state converges to some positive constant and the epidemic has
propagated. Thus, the position of R0 relative to 1 still governs the propagation or
dying out of the epidemic. At this stage, the scenario is exactly the same as for the
standard SIR model.

2. We compute an asymptotic speed of propagation for this model, that we call cTSI R ,
and compare it with cSI R , the speed of propagation for the classical SIR model
with diffusion (1). We show that cTSI R > cSI R if D > 2d, where D and d are the
diffusion coefficients on the road and in the rest of the territory, respectively. In the
case D ≤ 2d, then, cTSI R = cSI R . Thus, the presence of a road with fast diffusion
enhances the speed of propagation of the epidemic.

3. We show that the SI RT system is governed by four parameters: the basic reproduc-
tion number R0 (from which the classical SIR speed of propagation is computed),
the reduced transmission coefficients μ̄ and ν̄, and the ratioD = D/d between the
diffusion on the road and the diffusion in the field. We find that, even if R0 is very
close to 1, the diffusion on the road may trigger a wave of contamination spreading
at high speed. Even though the growth of the infection at each location may be
slow, the propagation along the road may be fast. This may lead to situations where
an epidemic may seem dormant and thus innocuous while it spreads seeds far away
bringing about outbreaks and clusters apparently unconnected to the regions with
a significant prevalence.

4. We compare the total cumulative number of infected individuals per location,
Itot (x), in the cases with and without the road. We show that, compared with
the standard SIR model, the presence of the road increases Itot (x) in the range of
x large, that is, far from the epicentre of the epidemic. This result is not intuitive a
priori. Indeed, by the enhancement of the speed of spreading of the epidemic wave
due to the road, it also follows that at any location the epidemic peak lasts less than
without the road. Therefore, one might have thought that, moving faster, the total
number of infected by the epidemic would go down. However, far from the epi-
centre, the contrary happens. We also prove that while the total number of infected
is higher far away, there is also a region E−, presumably close to the epicentre,
where the total number of infected Itot (x) for the model with the road is smaller
than the corresponding one for the standard SIR model. It would be interesting to
characterize such a set E− in some specific cases, establishing for instance whether
it actually contains the epicentre of the epidemic.We leave this as an open question.
The lower number of infected near the epicentre due to the presence of the road
could be related to another phenomenon that we observe on the standard SIRmodel.
In Proposition 5.2 above, we prove that the quantity Itot (x) evaluated at the epi-
centre of the epidemic x = 0 is a decreasing function of the diffusion coefficient d.
This reflects the fact that a higher diffusion coefficient “scatters” more quickly the
infected individuals far from the epicentre. The same mechanism could be at work
for our model SI RT , where the road allows for more infected individuals to move
away from the centre.

5. In a general manner, the SI RT -type of models we introduce here adds a compart-
ment in the population dynamics and fills a gap at an intermediate scale. Indeed,
for instance, most models presently used in monitoring the COVID-19 epidemic
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rely on the detailed analysis of two types of networks: the global network of air
travel or the microscopic socio-economic or family and schools network. As our
analysis shows, the intermediate network of roads and railways plays an important
role in the spatial spreading of epidemics at levels of a region or a country.

This model and its generalizations open the way to many open problems. For
instance, a similar study would have to be carried out when there is diffusion not only
of the infected but also of the susceptibles. This would lead to a system:

⎧⎪⎪⎨
⎪⎪⎩

∂t I − dΔI + α I =βSI (t > 0, x ∈ R, y > 0)
∂t S − dSΔS =−βSI (t > 0, x ∈ R, y > 0)

−d∂y I =μT − ν I (t > 0, x ∈ R, y = 0)
∂t T − D∂xx T =ν I (t, x, 0) − μT (t > 0, x ∈ R, y = 0).

(34)

The model we have presented and analysed in this paper sheds light on the effect
of a road within an environment of slow diffusion for the spreading of epidemics. It
allows us to explain some observations and to uncover various effects. The simplified
structure allows us to carry a fairly complete mathematical analysis. Yet, this model
could lend itself to more practical developments. Indeed, involving a network of roads
should yield more precise results. To take into account roads in amore realistic fashion
in discrete models is an important perspective.
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