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Abstract
Multi-type infection processes are ubiquitous in ecology, epidemiology and social sys-
tems, but remain hard to analyze and to understand on a fundamental level. Here, we
study a multi-strain susceptible-infected-susceptible model with coinfection. A host
already colonized by one strain can becomemore or less vulnerable to co-colonization
by a second strain, as a result of facilitating or competitive interactions between the
two. Fitness differences between N strains are mediated through N 2 altered suscep-
tibilities to secondary infection that depend on colonizer-cocolonizer identities (Ki j ).
By assuming strain similarity in such pairwise traits, we derive a model reduction
for the endemic system using separation of timescales. This ‘quasi-neutrality’ in trait
space sets a fast timescale where all strains interact neutrally, and a slow timescale
where selective dynamics unfold. We find that these slow dynamics are governed by
the replicator equation for N strains. Our framework allows to build the community
dynamics bottom-up from only pairwise invasion fitnesses between members. We
highlight that mean fitness of the multi-strain network, changes with their individual
dynamics, acts equally upon each type, and is a key indicator of system resistance to
invasion. By uncovering the link between N -strain epidemiological coexistence and
the replicator equation, we show that the ecology of co-colonization relates to Fisher’s
fundamental theorem and to Lotka-Volterra systems. Besides efficient computation
and complexity reduction for any system size, these results open new perspectives
into high-dimensional community ecology, detection of species interactions, and evo-
lution of biodiversity.

Keywords Multi-strain SIS model · Coinfection · Slow-fast dynamics · Weak
selection · Competition-cooperation · Multispecies coexistence · Invasion fitness
network
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1 Introduction

Oneof the fundamental questions in ecology and evolutionary biology is the generation
andmaintenance of biodiversity (Gause 1934;MacArthur 1967; Tilman 1987;Hubbell
2001). Many theoretical approaches consider multi-species interactions with classi-
cal Lotka-Volterra systems (Pascual and Dunne 2006; Mougi and Kondoh 2012) or
with evolutionary game theory models (Nowak and May 1992; Traulsen and Nowak
2006), where the interplay between cooperation and competition is key. Typically
where population structure is involved, for example in multi-strain infectious disease
epidemiology (Kucharski et al. 2016), and in high-dimensional spaces of diversity,
analysis can become prohibitive, and computational simulations are often adopted
instead (Cobey and Lipsitch 2012a; Bottomley et al. 2013; Nurhonen et al. 2013).

However, several analytical advances have been made to study antigenic diversity
and coexistence in multi-strain pathogens. These methods were based on simplifying
high-dimensional SIR models with strain-specific and cross-immunity interactions
(Gog and Grenfell 2002; Gupta and Anderson 1999; Lin et al. 1999; Ferguson et al.
1999); prominent features of immunizing infections such as influenza, dengue or
malaria. In contrast, diversity and interactions arising among strains through co-
colonization (or co-infection), implying simultaneous carriage of two or more strains,
have received less mathematical attention on the SIS modeling spectrum (Adler and
Brunet 1991). Theoretical multi-strain SIS models have advanced analytically by
either neglecting coinfection (Martcheva 2009), modeling typically only 2 strains
when incorporating this process (Lipsitch 1997; Gjini et al. 2016; Gjini and Madec
2017), or collapsing strain interactions to a single mean-field parameter to focus on
other traits, e.g., virulence (van Baalen and Sabelis 1995; Mosquera and Adler 1998;
Alizon 2013a). More recently, coinfection SIS dynamics between 2 and 3 interacting
diseases, under the additional effects of host contact structure, have been modeled
(Hébert-Dufresne and Althouse 2015; Chen et al. 2017; Pinotti et al. 2019), uncov-
ering strong effects of cooperation between diseases. Thus, SIS coinfection models
under the interplay of cooperative and competitive interactions, among an arbitrary
number of interacting entities, remain undeveloped. Consequently, our understand-
ing of how such interactions may promote realistic coexistence processes within and
between microbial species (Bogaert et al. 2011; Dunne et al. 2013; Shrestha et al.
2013; Cohen et al. 2008; Abdullah et al. 2017), and how they may link with empirical
data (Lipsitch et al. 2012) and interventions (Weinberger et al. 2011), remains limited.

In this paper, we address this gap. Inspired by the epidemiology of multi-strain
SIS infectious diseases, we develop a conceptual framework for thinking about co-
colonization (co-infection) in high-dimensional interaction space. To increase our
understanding of coexistence in such multi-type interacting systems, there is a need
to expand our analytical power over a larger and more realistic resolution of diver-
sity (higher number of interacting entities N ). There is a need to study cooperation
and competition under the same framework. Finally, there is a need to simplify the
mathematics underlying such systems, in order to enable key biological principles
and features to emerge, before adding more complexity or diversity layers. Here, we
provide a fundamental advance on these three fronts. We model co-colonization inter-
actions as a route to coexistence.We uncover an analytically tractable model reduction
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for an SIS system with N similar strains interacting in co-colonization. We show how
this method enhances our understanding of cooperation and competition within the
same formalism, exposing the role of mean-field values as well as variation around
the mean for multi-strain dynamics.

In particular, we show that by assuming small differences in altered susceptibil-
ities to co-colonization between N types, an explicit reduced system emerges via a
timescale separation. This decomposes the total dynamics into a fast (neutral) and
a slow (non-neutral) component, driven by variation in co-colonization traits. Thus,
we extend the approach presented for N = 2 (Gjini and Madec 2017). We derive an
analytic solution for N strain frequencies over long time in a changing fitness land-
scape, which corresponds to the replicator equation from game theory (Taylor and
Jonker 1978; Weibull 1997; Hofbauer and Sigmund 2003). Multi-strain epidemiolog-
ical competition can be very complex, but our model reduction helps to simplify these
dynamics, increases predictability, and highlights the role of key parameters for link-
ing between coinfection epidemiology and eco-evolutionary feedbacks (Lion 2018).
When written in terms of pairwise invasion fitnesses between strains, this model pro-
vides quantitative insights into system resilience to invasion and relates explicitly with
adaptive dynamics (Metz et al. 1992).

Although the system is treated in an epidemiological spirit,1 parallels and con-
ceptual analogies with other contexts can be easily drawn, where N similar types
(species/strains/propagules), in a homogeneous mixing scenario, compete for free and
singly occupied niches via generic colonizer-cocolonizer interactions.Co-colonization
processes appear in many diverse ecological communities, from plant and marine
ecosystems to infectious diseases: two species encountering and interacting locally in
a unit of space or resource. How each entity, when colonizer, alters the local ‘environ-
ment’ for a second co-colonizer entity, is the abstract phenomenon modeled here; this
could exhibit asymmetries, randomness, and particular numerical structures, ranging
from facilitation to competition. Special cases for low dimensionality may be tractable
analytically, but the entangled network that arises between N 2 such interacting pairs
in co-colonization encounters, and its consequences for global N -type coexistence
remain elusive. Here, we shed light on how the net behavior of such a system with
multiple members emerges from pairwise outcomes in co-colonization. Our frame-
work and findings should contribute both to a fundamental question about the structure
of systems and to a significant mathematical challenge.

The paper is organized as follows. In Sect. 2, we present the model. In Sect. 3.1,
we outline the key technical steps leading to the slow-fast decomposition for the
N−strain system. In Sect. 3.2, we provide an equivalent representation in terms of
the pairwise invasion fitness network between strains, and highlight the key quantities
of our replicator equation. In Sect. 3.3, we show how this model reduction can be
used to understand collective N−strain dynamics, by illustrating special interaction

1 While strictly speaking, infection elicits a specific immune responsewhereas colonization does not, typical
SIS models for non-immunizing (usually bacterial) infections, still adopt the term infection, more as an
epidemiological paradigm (Adler and Brunet 1991; Mosquera and Adler 1998; Alizon 2013a). Throughout
the paper, for consistency, we will favor the term co-colonization, to highlight the avirulent and non-
immunizing aspects of the infectious entities, but this N strain SIS co-infection model should apply in
wider settings.
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structures among strains in the system. In Sect. 3.4, we link the strain frequencies back
to the epidemiological variables, highlighting emergent principles and the validity of
our approximation.

2 TheModel: N-Strain SIS Dynamics with Co-colonization

We consider a multi-strain infectious agent, transmitted via direct contact, following
susceptible-infected-susceptible (SIS) dynamics, with the possibility of simultaneous
colonization by two strains (coinfection). The model follows the structure of our pre-
vious study (Gjini and Madec 2017), but here the number of strains is N . With a set
of ordinary differential equations (Fig.1a), we describe the proportion of hosts in sev-
eral compartments: susceptibles, S, hosts colonized by one strain Ii , and co-colonized
hosts Ii j that carry strains from two colonization episodes. Among co-colonized hosts,
our model includes also dually-infected hosts with the same strain, Iii , and I j j , as in
Gjini et al. (2016); Gjini and Madec (2017), motivated by previous theoretical and
evolutionary studies arguing for an unbiased relative fitness structure between any
two strains (van Baalen and Sabelis 1995; Alizon 2013a), although there are other
models that omit this class (Adler and Brunet 1991; Lipsitch 1997). Clearance rate γ

is assumed equal for single- and co-colonization episodes. This may be seen to reflect
strain-transcending immunity, or other mechanisms of within-host growth limitation,
that bring hosts back to the susceptible state without making them immune. Recruit-
ment rate of susceptible hosts, r , equals the mortality rate from all compartments
(r = d), so that total population size is constant. The parameter r may also reflect the
per capita growth rate of the host, which is the same for all hosts, with all newborn
hosts susceptible. We have:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = r − S
N∑

j=1

Fj − dS + γ (1 − S),

İi = Fi S − Ii

N∑

j=1

Ki j Fj − (d + γ )Ii , 1 ≤ i ≤ N

˙Ii j = Ii Ki j Fj − (d + γ )Ii j , 1 ≤ i, j ≤ N

(1)

where Fi = β
(
Ii + ∑N

j=1
1
2 (Ii j + I ji )

)
gives the force of infection of strain i . We

assume that hosts colonized with two strains i and j , Ii j , transmit either with equal
probability. Further, we assume equivalence in transmission β and clearance rate γ ,
between strains, similar to previous formulations for N =2 (Gjini et al. 2016;Gjini and
Madec 2017). All infected hosts have the same rate of total transmission to susceptible
hosts, so from co-infected hosts, each type is transmitted at half the rate it would be
from a singly infected host (and type does not affect transmission rate). Note that this
implicitly assumes a weak interaction at the within-host level, because if the strains
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Fig. 1 Model summary diagram. a Co-colonization model structure. Hosts move from susceptible to singly
colonized state, and from singly colonized to co-colonized state. Clearance happens at equal rate for single
and co-colonization.Co-colonization rate by strain j of singly colonized hostswith i is altered by a factor Ki j

relative to uncolonized hosts. There are 1+N+N2 states for hosts in the system.bComplex epidemiological
dynamics can be represented in two interrelated timescales. Assuming that pairwise interaction coefficients
in co-colonization can bewritten as: Ki j = k+εαi j , the global compartmental dynamics can be decomposed
into a fast and slow component. On the fast time-scale (o(1/ε)), strains follow neutral dynamics, driven by
mean-field parameters, where total prevalence of susceptibles S, singly infected hosts, I and dually infected
hosts, D, are conserved. On a slow time-scale, εt , complex non-neutral dynamics between strains takes
place, depicted here by the constituent variations within the blue and green. These non-neutral dynamics
are here explicitly derived, and yield an explicit closed equation for strain frequency dynamics, reducing
the model from O(N2) to N dimensions (Color figure online)

were transmitting independent of each other, co-colonized hosts would transmit each
strain at exactly the same rate as the corresponding singly colonized hosts.

Strain diversity is manifested only in how current colonization modulates acquisi-
tion of a second strain. Any two strains interact via co-colonization coefficients Ki j ,
which denote relative factors of altered susceptibilities to host co-colonization by strain
j when already colonized by i . Thus, Ki j > 1 indicates that prior colonization with
i facilitates co-colonization with j , while Ki j < 1 describes that prior colonization
with i hampers co-colonization by j . For more details on the parameters see Table S1.

Since we model N closely-related entities, we can write each co-colonization coef-
ficient as: Ki j = k + εαi j , where 0 ≤ ε << 1 (Gjini and Madec 2017). When ε = 0,
Ki j = k for all strain pairs, thereby leading to a system with identical strains in how
they interact upon co-colonization. When ε > 0, k reflects a suitable common refer-
ence (benchmark for all strains), and αi j , which can be positive or negative, represent
deviations from that reference for all strain pairs. This will form the basis of our model
reduction framework, and system decomposition into smaller sub-systems.

We use separation of time-scales, to understand global system dynamics (Fig.1b).
It is not clear a priori neither which variables are the fast ones and the slow ones in
our system, nor how they change over time. Substituting Ki j by k + εαi j in (1) and
re-arranging leads to an explicit system formulation with ε. After a series of math-
ematical manipulations, we obtain a tractable slow-fast formulation of the dynamics
(see Supplementary Material 2 for details). We then analyze the case of ε = 0, leading
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to perfect symmetry between strains in co-colonization (Ki j ≡ k), and the case of
ε > 0, describing realistic deviations from neutrality.

3 Results

3.1 From Epidemiology to Strain Frequencies with Slow-Fast Dynamics

Fast Timescale: Neutral Dynamics and Balancing of Aggregated Variables

In order to obtain a simpler representation for such a general N strain system, we use
the following aggregation of variables:

Ji = Ii + 1

2

N∑

j=1

(Ii j + I ji ), I =
N∑

i=1

Ii , D =
N∑

i=1

N∑

j=1

Ii j , and T = I + D, (2)

for the fraction of hosts transmitting strain i in the population, and the prevalence of
single, double and overall colonization, respectively. Total prevalence satisfies T =∑

i Ji and the forces of infection are: Fi = β Ji . With the notations (2), and denoting
m = γ + r=γ + d (clearance+natural mortality), the system (1) can be rewritten as:

{
Ṡ = m(1 − S) − βST ,

Ṫ = βST − mT ,
(3)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

İi = β Ji S − mIi − β Ii

N∑

j=1

Ki j J j

J̇i = (βS − m)Ji + β
2

N∑

j=1

(
K ji Ji I j − Ki j J j Ii

)
,

, 1 ≤ i ≤ N ,

(4)
˙Ii j = Ii Ki jβ J j − mIi j , 1 ≤ i, j ≤ N (5)

This system of 2 + 2N + N 2 equations, now displays a convenient structure, that we
exploit for our analysis: i) First, we describe the block (3) of 2 equations (S, T ) that do
not depend on Ki j . ii) Next, we study the block (4) of 2N equations (Ii , Ji ), which is
the most complicated. iii) Lastly, we deal with the block (5) of the N 2 equations of Ii j ,
which is simple once the dynamics of Ii and Ji are known (see SupplementaryMaterial
2 for details). Clearly, if the basic reproduction number R0 = β

m > 1, then there is an

endemic equilibrium,whereby (S, T ) →
(

1
R0

, 1 − 1
R0

)
(Dietz 1993). R0 denotes how

many new colonization episodes a typical colonized host causes in a totally susceptible
population, over their entire infectious period; in our case R0 is equal for all strains.We

thus reduce the system to the invariant manifold (S, T ) = (S∗, T ∗) ≡
(

1
R0

, 1 − 1
R0

)
.

It assumed that S and T have already reached their steady-state values S∗ and T ∗.
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Once it is known that (Ii , J j ) → (I ∗
i , J ∗

j ), then the N 2 equations for co-colonization

compartments imply Ii j → β
m I ∗

i Ki j J ∗
j . Thus, once the dynamics of the second set of

equations are explicit, so are the dynamics of co-colonization variables, and ultimately
of the entire system.

Based on the strain similarity principle,which assumes similar coefficients in co-
colonization interactions between strains, we write: Ki j = k+ εαi j , where 0 ≤ ε <<

1. Replacing these in (4), and re-arranging, we obtain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

İ = m(T ∗ − I ) − βkT ∗ I − εβ

N∑

i=1

N∑

j=1

Iiαi j J j

İi = m(Ji − Ii ) − βkT ∗ Ii − εβ Ii

N∑

j=1

αi j J j

J̇i = βk
2 (I Ji − Ii T ∗) + εβ

2

N∑

j=1

(
I jα j i Ji − Iiαi j J j

)

, (6)

where 1 ≤ i ≤ N , and I = ∑
I j .

Neutral System

If ε = 0, thenweobtain theNeutralmodel, where all strain co-colonization coefficients
are equal (Ki j ≡ k). The first equation in system (6) gives the time dynamics of single
colonization prevalence in the system

I (t) = I ∗ + e−t(m+βkT ∗)(I (0) − I ∗) → I ∗ := mT ∗

m + βkT ∗ .

Co-colonization prevalence is simply derived as: D∗ = T ∗ − I ∗. Next, fixing I = I ∗,
yields the N uncoupled linear systems:

(
İi
J̇i

)

=
(−(m + βkT ∗) m

−βkT ∗
2

βk I ∗
2

) (
Ii
Ji

)

= A0

(
Ii
Ji

)

. (7)

Matrix A0 has the two eigenvalues 0 and −ξ = tr(A0) < 0. By defining Hi and zi
from the eigenvectors of A0 as:

(
Hi

zi

)

=
(
2T ∗ I ∗
D∗ T ∗

)−1 (
Ii
Ji

)

,
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that is

Hi = I ∗T ∗

2(T ∗)2 − D∗ I ∗

[
Ii
I ∗ − Ji

T ∗

]

and zi =
(
Ii
I ∗

)

+ 2(T ∗)2

2(T ∗)2 − D∗ I ∗

(
Ji
T ∗ − Ii

I ∗

)

,

(8)

we have Ḣi = −ξHi and żi = 0. Thus on the fast time-scale Hi → 0 and zi
remains constant. The quantity Hi measures the difference between the part occupied
by strain i in single colonization ( IiI ∗ ) versus the part of strain i in total carriage

( Ji
T ∗ ). Thus, Hi → 0 means that, on the fast timescale, the proportion of strain i in
single colonization, tends to equalize the proportion of strain i in overall colonization
( IiI ∗ − Ji

T ∗ → 0). This implies it also tends to be equal to the proportion occupied by
strain i in co-colonization:

∑
j �=i Ii j/2 + Iii = Di/D∗. Because Hi = 0 is the only

equilibrium, we infer that after the fast dynamics zi may be expressed as:

zi = Ji
T ∗ = Ii

I ∗ = Di

D∗ . (9)

Although it is not clearwhether to use Ji/T , Ii/I , or Di/D to define strain frequencies,
as time progresses, these definitions limit to the same quantity zi , with

∑
zi = 1.

Slow Dynamics: Emergence of the Replicator Equation for Strain Frequencies

Now, that we have zi with a clear meaning, in terms of strain frequencies, we can
analyze the system for ε > 0 (See Supplementary Material 3). We find that on the
slow timescale τ = εt , strain frequencies, zi , obey explicit dynamics on P = {(zi )i ∈
[0, 1]N ,

∑N
i=1 zi = 1}:

d

dτ
zi = �zi

⎛

⎝
N∑

j=1

[
μ(α j i − αi j ) + α j i

]
z j − q(z)

⎞

⎠ , 1 ≤ i ≤ N , (10)

where the constants �,μ > 0 are explicit functions of the global steady state
(T ∗, I ∗, D∗) of the neutral model:

� = βT ∗ I ∗D∗

2(T ∗)2 − I ∗D∗ ; μ = I ∗

D∗ = 1

k(R0 − 1)
,

and q(z) is a quadratic term given by:

q(z) =
∑ ∑

1≤κ, j≤N

ακ j zκ z j .

Equation 10 is a replicator equation for N strains (Taylor and Jonker 1978; Weibull
1997;Hofbauer andSigmund2003).Bydenoting A = (

αi j
)

1≤i, j≤N andM = μ(AT−
A) + AT , and using the fact that zT (AT − A)z = 0 we have q(z) = zT Az = zT Mz
so that the equivalence becomes clearer:
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Table 1 Keymodel quantities in terms of basic reproduction number R0 and reference interaction coefficient
in co-colonization k

Symbol Interpretation Features

R0 Basic reproduction number R0 = β/(γ + r) > 1

k Reference interaction coefficient
between types in co-colonization
(e.g., mean of Ki j )

k

{
< 1 : competition,

> 1 : cooperation

S∗ Equilibrium prevalence of
susceptibles

S∗ = 1
R0

I∗ Equilibrium prevalence of singly
colonized hosts

I∗ = R0−1
R0[1+k(R0−1)]

D∗ Equilibrium prevalence of
co-colonized hosts

D∗ = (R0−1)2k
R0[1+k(R0−1)]

μ Ratio between single and
co-colonization

μ = I∗
D∗ = 1

(R0−1)k

� Rate of slow dynamics for strain
frequencies

� = β

(

1 − 1
R0

)(
μ

2(μ+1)2−μ

)

Ii j Co-colonization prevalence with i
and j

Ii j = kR0[1 + k(R0 − 1)]Ii I j

d

dτ
zi = �zi

(
(Mz)i − zT Mz

)
, 1 ≤ i ≤ N . (11)

At this stage, we can apply quasi-stationarity methods (Tikhonov 1952; Lobry and
Sari 1998, 2005; Hoppensteadt 1966) to show that the solution of the full system tends
to the solution of the slow-fast representation as ε → 0.

Equation 10 shows how the ultimate competition between N strains is driven by
asymmetries in co-colonization interactions (the α’s), as well as by average quantities,
such as R0 and k, appearing within � and μ. With this expression, the strain selection
occurring in the slow time scale, becomes entirely explicit. A summary of key model
quantities in terms of mean field parameters R0 and k is given in Table 1.

In the frequency equation for each strain (10), there is a common term q(z), which
changes over time. This term represents the evolving impact of all the strains on their
‘common environment’, which in turn modifies their own fitness landscape. A more
explicit way to interpret q(z) is in terms of relative change in ‘effective’ mean inter-
action coefficient between all extant types in the system, which if negative, indicates
a global trend toward more pairwise inhibition in co-colonization coefficients, and if
positive, indicates a global trend toward more pairwise facilitation. Formally in our
system, we obtain this mean co-colonization trait dynamics as:

k̄effective(t) = k + εq(z).
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3.2 Strain Frequency Dynamics in Terms of Pairwise Invasion Fitnesses

Rewriting the replicator equation in terms of pairwise invasion fitnesses (Metz et al.
1992; Geritz et al. 1998; Meszéna et al. 2005), we uncover an equivalent very useful
representation of the biological game dynamics among strains. Let λ j

i be the exponen-
tial growth rate of strain i evaluated when introduced at the trivial endemic equilibrium
of the strain j alone. If the fitness λ

j
i > 0, strain i will invade j , and viceversa, if

λ
j
i < 0, strain i cannot invade j . By considering the rate of growth of strain i in an

endemic equilibrium set by j ( d
dτ
zi in Eq. (10) in the special case where all zκ = 0

for κ �= j), we find the exact formulation of pairwise invasion fitness, in our model,
is given by:

λ
j
i = α j i − α j j + μ(α j i − αi j ). (12)

The first term in the invasion fitness quantifies the extent to which strain j facilitates
strain i in co-colonization, and adds to the invasion fitness for strain i . The second
term in the invasion fitness quantifies the extent to which resident strain j facilitates
itself, and detracts from the fitness of invader strain i . The last term in the invasion
fitness has to do with transitions from pure single colonization I j (resident) to mixed
co-colonization Ii j (resident + invader). Recall that once in the mixed co-colonization
compartment Ii j , either strain can be transmittedwith equal probability. The difference
(α j i −αi j ) quantifies the extent towhich strain j facilitates strain i (α j i ), and the extent
to which strain i facilitates strain j (αi j ). The relative benefit of i from this effect will
be amplified with higher opportunity for co-colonization in the system (i.e., higher
μ = I ∗/D∗). Notice that αi i does not appear in the invasion fitness of i because by
definition, strain i is initially rare.

After some algebra (see Supplementary Material 3), the strain frequency dynamics
of system (10) can be recast in terms of invasion fitnesses:

d

dτ
zi = �zi ·

⎛

⎝
∑

j �=i

λ
j
i z j −

∑ ∑

1≤κ �= j≤N

λκ
j z j zκ

⎞

⎠ . (13)

Ultimately, it is this matrix �= (λ
j
i )1≤i, j≤N that defines all ‘edges’ of the rescaled

interaction network between N strains. Each edge corresponds to a sub-system with
N = 2, whose dynamics we have analyzed in detail in Gjini and Madec (2017). For
λ21λ

1
2 �= 0, in the N = 2 co-colonization model, there are only four possible outcomes

between 2 strains (edge linking 1 and 2): i)λ21 > 0, λ12 > 0 : stable coexistence of 1 and
2; ii) λ21 < 0, λ12 < 0: bistability of 1-only and 2-only, also known as a priority effect;

iii) λ21 > 0, λ12 < 0: 1-only competitive exclusion; iv) λ21 < 0, λ12 > 0: 2-only compet-
itive exclusion; similar to the classical competitive Lotka-Volterra model (Lotka 1926;
Volterra 1926). Now, by knowing all pairwise invasion fitnesses between each couple
of strains, via expression (13) we can reconstitute the ultimate dynamics of the full
system with N types and co-colonization. The pairwise traits in the emergent expres-
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sion are related to the original co-colonization traits, but now capture the essence of
competition dynamics between different strains; invasion fitness (Metz et al. 1992;
Geritz et al. 1998; Meszéna et al. 2005).

The entire dynamics of the N -strain ‘game’ can now be recapitulated based only on
knowledge of the pairwise invasion network between each two ‘players’, allowing for
bottom-up understanding. The global fitness of each strain in the system, depends not
only on its own individual fitness and frequency at any time, but also on the fitnesses
and frequencies of all other strains. Such interdependence can lead to a multitude of
outcomes, as already recognized in replicator equation studies (Nowak and Sigmund
2004; Cressman and Tao 2014).

For illustration, in Fig. 2 and in Supplementary Movie S1, we provide an example
of our modeling framework and the coexistence dynamics that arise among a number
of strains (here N = 6) for an arbitrary co-colonization interaction matrix K . In order
to distinguish between the two levels of interaction among strains, we use the terms
colonizer and co-colonizer strain when referring to Ki j , i.e., co-colonization interac-
tions at the single host level, and the terms resident and invader strain when referring
to λ

j
i in pairwise invasion at the epidemiological level. Another combination of param-

eters, leading to a limit cycle for N = 6, is illustrated in Supplementary Figure S1 and
Supplementary Movie S2. These examples demonstrate that even weak asymmetries
between apparently similar types, in altered susceptibilities to co-colonization, have
the potential to generate rich and hierarchical collective behavior over long time.

Key Quantities of this Replicator Equation:2,� andMean Fitness Q

In compact form, our N -strain frequency dynamics (13) can be written as:

d

dτ
zi = �zi · (

(�z)i − zt�z
)
, i = 1, · · · , N ,

by denoting the pairwise invasion fitness matrix � = (λ
j
i )i, j , and using vector nota-

tion. Usually in the classical replicator equation, � = 1 because time is scaled
arbitrarily. In contrast, in our derived replicator equation here, we have an explicit
‘clock’ for the frequency dynamics, set by the constant � (Table 1). The tempo of
multi-strain “motion” on the slow timescale toward an equilibrium is determined by
this pre-factor, which depends specifically on their absolute transmission rate β, but
also nonlinearly on mean-field traits R0 and k, via the conserved aggregated quantities
T ∗, I ∗, D∗ (see Supplementary Figure S2). Note that � can be rescaled arbitrarily
up to a multiplicative constant, factored out of matrix �, shifting the effective speed
of non-neutral dynamics between types in the system. The second critical constant
μ = I ∗

D∗ = 1
k(R0−1) , in this replicator equation (within the � entries), represents the

ratio between single- and co-colonization prevalence in the neutral system, and is a
crucial factor that amplifies the net effect of asymmetry in co-colonization interactions
in the system, and consequently, the dynamic complexity ofmultiple strain frequencies
(Gjini and Madec 2020).

The other key quantity in the N -strain frequency dynamics (13) is the quadratic
term Q(τ ) = zt�z = ∑∑

κ< j λ
κ
j z j (τ )zκ(τ ), which couples all individual strain

123



142 Page 12 of 26 S. Madec, E. Gjini

Fig. 2 Example dynamics of ourmodel for N = 6.aThematrix of interaction coefficients in co-colonization
(K ), generated randomly, with mean k = 1, and standard deviation ε = 0.1. b The corresponding pairwise
invasion fitness matrix (�) has been computed and visualized for assumed R0 = 2. c The multi-strain
network where each edge displays the outcome of pairwise invasion between any couple of strains, and the
direction of grey edges denotes the winner in competitive exclusion. d Slow frequency dynamics resulting
from these qualitative and quantitative interactions among entities (Eq. 13). A dynamic display of the
trajectory is shown in Supplementary Movie S1 (Color figure online)

fitnesses. Indeed, if we define the mean invasion fitness of strain j , by summing over
his relative ‘success’ on any other member:

λ̄ j (τ ) =
∑

κ �= j

λκ
j zκ(τ ),
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then Q reads:

Q(τ ) =
N∑

j=1

λ̄ j (τ )z j (τ ). (14)

Hence, this overall common feedback represents the global mean fitness of the system
where the dynamic average is taken with respect to pairwise invasion. This sum over
all extant pairs in the system reflects the mean ‘pairwise invasibility’ of the system
as a whole, changing over time with strain frequencies z j (τ ), zκ(τ ). Upon closer
inspection of (13), information on the resilience of a group of strains may be derived
from the sign of Q: if Q > 0 then each existing strain’s net growth is reduced within
the group, but the overall community is more resistant to invasion by a new outsider
strain, and viceversa, if Q < 0, then each existing strain grows more within the group,
but the overall community would inevitably be also more vulnerable to invasion by
invader strains. The effect of Q on the frequency dynamics illustrates, in this system,
the exact role of environmental feedback on eco-evolutionary processes (Lion 2018),
highlighting the adaptive fitness landscape where selection in interaction trait space
unfolds.

3.3 Special Pairwise Invasion Structures Among N Strains

Next, we show how the uncovered model reduction can be used to gain deeper
biological insight on the multi-strain co-colonization system. Special structures of
co-colonization interactions K typically yield one of the canonical cases of the inva-
sion fitness matrix � (Table 2), which are easier to understand analytically with our
replicator equation (13). We thus consider a few special cases for the invasion fitness
matrix between strains, leading to special collective dynamics and mean fitness of
the system (see Supplementary Material 4). Special cases of Q in λ

j
i space are more

straightforward to analyze than special cases in Ki j trait space, because for each λ
j
i

representation (see Eq. 12), there is an infinite set of co-colonization interaction K
matrices, leading to the same pairwise invasion network between strains. The follow-
ing special invasion structures are illustrated in Fig. 3:

i. Symmetric matrix A symmetric λ
j
i structure between strains in mutual invasion

leads to a general feature of the dynamics whereby Q always increases over time
(Fig. 3a). This case, namely the replicator equation for doubly symmetric games,
is formally equivalent to the continuous time model of natural selection at a single
(diploid) locus with N alleles, known as Fisher’s fundamental theorem of natural
selection (Fisher 1958; Price 1972; Edwards 1994). In this case, it can be shown
that the populationmeanfitness increases over time,with the rate of change inmean
fitness equal to the trait variance at any point (see S4 for full verification of this
feature also in ourmodel). In our context, whereλ

j
i denote pairwise invasion fitness

between any two strains, the increase in mean fitness during selective dynamics
among N strains, implies that when pairwise invasion ‘games’ are symmetric, the
system becomes more resistant to invasion by outsider strains over time. And this
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Table 2 Link between the structure of the co-colonization interaction matrix K and the pairwise invasion
fitness matrix �

Co-colonization interaction matrix K = (Ki j ) Pairwise invasion fitness matrix � = (λ
j
i )

•Symmetric (general) • General

Ki j = K ji λ
j
i = α j i − α j j

•Symmetric (special 1) •Symmetric

Ki j = K ji and Kii = k λ
j
i = λij = αi j

•Symmetric (special 2) •Invader-driven
Ki j = K ji = Kii + K j j − k λ

j
i = αi i

•Symmetric (diagonal) •Resident-driven
Ki j = k if i �= j λ

j
i = −α j j

•Colonizer-driven •Anti-symmetric

Ki j = ki λ
j
i = −λij = μ(α j − αi )

•Cocolonizer-driven •Anti-symmetric

Ki j = k j λ
j
i = −λij = (μ + 1)(αi − α j )

•Anti-symmetric • Anti-symmetric

1
2

(
Ki j + K ji

) = k λ
j
i = −λij = 2μα j i

Special structures of K yield one of the canonical cases of�, and thus relate to different types ofmulti-strain
dynamics (see Fig. 3). Recall that for co-colonization interaction we have Ki j = k+ εαi j , and for pairwise

invasion fitness we have λ
j
i = μ(α j i −αi j )+α j i −α j j ,whereμ = I∗/D∗ is the single to co-colonization

prevalence ratio. This formula may be inverted as: αi j = μ
2μ+1

(
λ
j
i + αi i

)
+ μ+1

2μ+1

(
λij + α j j

)
. Note that

a given matrix �—and then a given dynamics—is reached by an infinite set of matrices K

is a robust mathematical property, conserved also when the system is close to this
case.

ii Invader-driven invasion In this case, columns of � are equal, meaning it’s differ-
ences in ‘attack rates’ (invasiveness) of types that are defining their hierarchical
dynamics (Fig. 3b). Mean fitness Q again evolves over slow time, reflecting the
selection occurring in the multi-type system, and again tends to increase toward
positive values, suggesting coexistence is more likely, although in special cases
competitive exclusion may occur.

iii. Resident-driven invasion In this case,multi-strain dynamics are driven by variation
in ‘defense’ or invasability (rows of � are equal), and the principle of competitive
exclusion (with possible multi-stability) applies more often, whereby the weakest
strains are excluded, and only the best ‘defender’ of its territory (equilibrium
when alone) survives. Competitive exclusion obviously implies Q should tend to
0, verified in Fig. 3c. In exceptional cases, coexistence may also be possible in this
case (see S4 for details).

iv. Antisymmetric matrix This is the case when λ
j
i = −λij and the propensity for

complex coexistence dynamics between strains is very high (Fig. 3d). Q is exactly
zero in this case, corresponding to zero-sum-games in evolutionary game theory
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Fig. 3 Canonical pairwise invasion structures (�) between N types and collective dynamics evolution. We

generated random � matrices, with λ
j
i entries in the range [−1, 1], from 6 special cases, and simulated

multi-type dynamics (N = 10, � = 1) under many realizations of the model (13), starting from random
initial conditions on the slowmanifold, for each case. Q is the mean fitness term in the system (the common
‘environment’ for all types) changing differently depending on the pairwise invasion fitness matrix. In the
third column, the thin blue lines indicate Q evolution for each realization, the thick blue line indicates
Q evolution for the zi dynamics shown in the second column, and the thick red line depicts the mean
over all 30 realizations. a Symmetric matrix. This corresponds to the same dynamics captured by Fisher’s
fundamental theorem. b Invader-driven fitnesses (‘hierarchical attack’). Large potential for coexistence.
c Resident-driven fitnesses (‘hierarchical defense’). Large potential for competitive exclusion. d Anti-
symmetric invasion fitnesses. Q is exactly zero over all time and there is large potential for complex
multi-strain behavior. e Almost-antisymmetric invasion fitnesses. Maintenance of potential for complex
dynamics (e.g., limit cycles) leading to periodicity (but positivity) in Q. f Random mutual invasion. Rich
model behavior is possible. On average coexistence is more likely, but increases as well as decreases in Q
over a single realization are possible (Color figure online)
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(Hofbauer and Sigmund 2003). Like in the classical prey-predator Lotka-Volterra
system, there exists a unique center surrounded by a family of cycles (Chawanya
and Tokita 2002). This type of oscillatory coexistence between multiple strains is
structurally unstable.

v. Almost-antisymmetric In this case, a small perturbation of the pure anti-symmetric
structure in mutual invasion fitnesses disrupts the center leading to a stable or an
unstable node. This gives rise to positive and periodic Q, where limit-cycles,
heteroclinic cycles or chaos are more likely for multi-strain coexistence.

vi. Random mutual invasion In this case, which is the most general case, captured by
our framework, the dynamics of Q(z) can be arbitrary, and increase or decrease
over the same realization of multi-strain dynamics, thus encapsulating dynamic
shifts in ’environment quality’, and unpredictable emergent dynamics of mean
fitness over time (Fig. 3e).

While an exhaustive exploration of all possible structures falls beyond the scope of
this paper, the rules of thumb outlined above, linking co-colonization interactions K
with pairwise invasion fitness structures �, and system dynamics (Table 2, Fig. 3) can
be a useful starting point for deeper biological investigation of particular host-microbe
or interaction network scenarios.

For example, when co-colonization coefficients Ki j display a row-wise or column-
wise structure (see Lipsitch et al. (2012) for such hypotheses in pneumococcus),
invoking a strain-specific definition of this trait, for N = 2 the principle of com-
petitive exclusion applies, but for general number of strains N , such special case of
our model, where each edge of the network denotes competitive exclusion, collapses
to the Q = 0 case (antisymmetric invasion matrix above) and complex coexistence
dynamics, of an odd number of strains, are expected (Chawanya and Tokita 2002).
In practice, perfect identity across all rows/columns of K is too strict a criterion, and
in reality, any small deviation from such extreme scenario should lead to an almost
anti-symmetric pairwise invasion fitness structure.

3.4 From Explicit Strain Dynamics Back to Epidemiological Variables

Next, we link strain frequencies back to the original epidemiological system with N
strains, given by the SISmodel with co-colonization interactions (1), assuming the Ki j

and the global epidemiological parameters are known.The key framing Ki j = k+εαi j ,
needed for the model reduction, is mathematically non-unique, and can be applied
with respect to any reference k, provided that the resulting ε is small. However, one
convenient choice is to define k as the average of the original co-colonization matrix
entries Ki j :

k =
∑

i, j Ki j

N 2 , (15)

and to define ε, as the root mean square distance of each Ki j from their mean k:
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ε =
√∑

i, j (Ki j − k)2

N 2 , (16)

thus representing the standard deviation of the Ki j traits in the pool of N available
strains. The direction of deviation from neutrality (bias) for the interaction between
strain i and j is then obtained as:

αi j = Ki j − k

ε
, (17)

whereby A = (
αi j

)

1≤i, j≤N is the normalized interaction matrix, with ‖A‖2 =
√∑

i, j α
2
i j = N . This matrix A, and the ratio μ, determine the pairwise invasion

fitness matrix (Eq. 12), which then drive the non-neutral dynamics (Eq. 13). Pro-
vided ε is small, the behavior of our approximation (10) describes very well the
long-term dynamics of the original system (1). To recover the original variables from
our approximation, we have a ‘conservation law’, reminiscent of other conservation
laws in ecology (Hubbell 2001), for global quantities:

S(t) = S∗ := m

β
= 1

R0
, T (t) = T ∗ := 1 − S∗ = 1 − 1

R0
,

I ∗(t) := mT ∗

m + βkT ∗ = T ∗

1 + R0kT ∗ , D∗(t) = T ∗(t) − I ∗(t) (18)

namely, the total prevalence of uncolonized hosts S, total prevalence of colonized
hosts T , and respective prevalences of single and dual colonization, I and D. Further,
to obtain strain-specific single colonization, and co-colonization prevalences in the
system, we find:

Ii (t) := I ∗zi (τ ), Ii j (t) = D∗zi (τ )z j (τ ). (19)

where the slow time scale is τ = εt , and the strain frequencies zi (τ ) verify
∑

i zi (τ ) =
1 and follow explicit dynamics (13) (for details see also Table 1).

The reconstitution of the epidemiological variables from the replicator equation
exposes two special features of the multi-strain dynamics: (i) the zi variables, describ-
ing relative strain frequencies in the host population, tend to necessarily equalize in
single and co-colonization (Fig. 4a); (ii) the prevalence of co-colonization with strains
i and j (Fig. 4b), is proportional to the product between single prevalences of i and
j in the population (Ii j ∼ Ii I j ), thus confirming the Ii j and I ji equivalence in this
model. These two quasi-neutrality principles, are preserved on the slow timescale,
independently of strain identities and for all time, and moreover, independently of
dynamic complexity. Thus, these two features can be used as a quasi-neutrality test
for high-dimensional interacting systems when multi-strain prevalence data are avail-
able.
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Fig. 4 Illustration of invariant principles for strain coexistence on the long timescale. a Strain frequencies
tend to equalize in single and co-colonization, for all strains and for all time when reaching the slow
manifold (9). b Prevalence of co-colonization Ii j tends to scale with the product of strain prevalences in
single colonization (Ii , I j ), for all strain pairs and for all time, during the slow dynamics (Table 1). This
example is simulated using a random matrix K , with N = 10. Each trajectory corresponds to a given strain
in the system (a), or a given strain pair (b). An example for N = 20 is shown in Supplementary figure S3
(Color figure online)

Interpreting the Prevalence of Mixed Co-colonization

The fact that prevalence of co-colonization with strains i and j in this system, involves
a product between single prevalences of i and j in the population (Ii j ∼ Ii I j ), even
though the strains are interacting, is contrary to the independence closure assump-
tion under a purely statistical perspective, adopted heuristically in epidemic models
(Kucharski et al. 2016). As we show here, depending on epidemiological details, the
feedbacks between interacting strains may mathematically lead to overall multiplica-
tive effects between individual and dual strain prevalences in colonization, with an
explicit pre-factor determined nonlinearly by R0 and k:

Ii j = kR0[1 + k(R0 − 1)]Ii I j . (20)

In particular, empirical co-occurrence of two strains less than expected by chance
(Ii j < Ii I j ) is always an indicator of average competitive interactions in co-
colonization, namely k < 1. However, empirical co-occurrence of two strains more
than expected by chance (Ii j > Ii I j ) can be an indicator of competition or cooper-
ation in co-colonization, depending on R0: if R0 is small (low overall prevalence),
such phenomenon would be compatible with mean cooperation (k > 1), whereas if
R0 is large (high overall prevalence), such phenomenon would be compatible with
competition in co-colonization (k < 1), lending support to context dependence in the
inference of strain interactions (Coyte and Rakoff-Nahoum 2019).
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Accuracy and Computation Efficiency of the Approximation

Finally, to test the quality of the slow-fast approximation with respect to the origi-
nal system, we verify that the error between the two is small. This is made precise
via numerical simulations (Figure S4), where the neutral model is shown to be a
good approximation of the original system in a fast time-scale, o(1/ε), and the slow-
dynamics reduction a good approximation on the longer time-scale (εt). Numerically,
we find that the approximation remains valid even for values of ε that are not too
small (e.g., ε ∈ (0.1, 0.3)). Using the fast-slow decomposition for this model is also
advantageous in terms of efficient computation of dynamics for an arbitrary number
of strains N (Figures S5–S6). For example, when increasing the number of strains
from 2 to 50, the average time it takes to compute dynamics in the original system
increases from 45 sec. to 5 min, whereas using the slow dynamics approximation,
the time of computation increases only from 10−2 to 0.5 sec. While reinforcing the
validity of our method, the quality and speed of this model reduction are two important
features could aid parameter inference frameworks for epidemiological time-series in
high-dimensional multi-strain systems (Shrestha et al. 2011; Gjini et al. 2016).

Overall this multi-strain model, the slow-fast decomposition, and the key features
outlined above provide a crucial foundation for the full characterization of conservative
multi-strain SIS dynamics with interactions in co-colonization. Our conceptual and
analytical framework emphasize that a closer integration between different temporal
scales on one hand, and demographic vs. selective processes on the other, is possible
for understanding multi-type communities.

4 Discussion

Recent approaches in theoretical epidemiology are increasingly addressing the eco-
evolutionary feedbacks between infectious disease dynamics and the diversity of
co-circulating strains (Gog andGrenfell 2002;Day andGandon2006;Berngruber et al.
2013). In this study, we have linked epidemiology and evolution in a new context, by
considering an endemicmulti-strain systemwith diversity encoded exclusively in pair-
wise interactions upon coinfection and altered susceptibilities to coinfection between
strains. Starting from an SIS compartmental model with singly and co-infected hosts
(and no virulence), through a timescale separation, we obtained a model reduction,
which maps explicitly the variation in pairwise strain interactions (Ki j ) to a closed
replicator equation (Eq. 10) governing strain frequency dynamics. We investigated
how co-colonization interaction coefficients, be they cooperative or competitive on
average (k below/above 1) and with arbitrary among-strain variation (αi j ), drive coex-
istence in a system with N similar types. We find that it is not whether strains compete
or cooperate in co-colonization that defines their success, but rather how much, and in
which way, their mutual and polarized competition or cooperation deviates from the
mean, and how this is modulated by the dynamism of the system.

The classical replicator equation in evolutionary game theory has a long history of
study (Taylor and Jonker 1978; Weibull 1997; Hofbauer and Sigmund 2003). Here,
however, in contrast to assuming it heuristically a priori (e.g., (Allesina and Levine
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2011)),wehavederived it frombasic aggregation and timescale principles in an explicit
biological context. The replicator equation is mathematically related to Lotka-Volterra
systems (Lotka 1926; Volterra 1926), namely the continuous replicator equation on N
types is topologically equivalent to the generalized Lotka–Volterra equation in N − 1
dimensions (Bomze 1983, 1995; Hofbauer and Sigmund 2003). Thus, by uncovering
replicator dynamics at the heart of our multi-strain SIS system with co-colonization,
we offer new avenues of methodological and theoretical cross-fertilization between
ecology, epidemiology and evolution.

From Pairwise Invasion to Collective Coexistence

We have demonstrated that the collective dynamics of the N -strain system can be
expressed entirely in terms of mutual invasion fitnesses of each pair of strains (Eq. 13).
This is a novel and important finding that links mathematically pairwise outcomes to
emergent community dynamics. Our results suggest that a bottom-up approach can
be applied to understand and exactly predict community structure. In a recent experi-
mental study, investigating assembly rules in microbial communities (Friedman et al.
2017), survival in three-species competitions was predicted by the pairwise outcomes
with an accuracy of 90%. Yet, a similar level of accuracy in competitions between sets
of seven or all eight species was harder to obtain, and required additional information
regarding the outcomes of the three-species competitions. Despite their use of the
generalized Lotka-Volterra framework, and our use of a multi-type SIS model, the key
to obtain N -dimensional dynamics may be in exploiting the full nonlinear coupling
between pairwise invasion fitnesses, made explicit here, in the replicator equation. For
example, empirical measurement of λ

j
i from pairwise invasion experiments among

similar species may be fed into the N -dimensional replicator equation to anticipate
their collective coexistence dynamics in silico. It would be straightforward to then
test model predictions with the actual multi-species experiments. A key quantitative
feature of our framework is that ‘edges’ between any two species in the network are
not just resolved in terms of final outcome (coexistence, bistability, exclusion) but in
terms of the actual magnitude of the initial growth rate during invasion, which holds
more subtle information.

Environmental Feedback fromHigher-Order Interactions

Higher-order interactions are expected to emerge whenever the presence of an addi-
tional species changes the interaction between two existing species, and can impact
on the maintenance of diversity (Billick and Case 1994). In our co-colonization sys-
tem, modeling explicitly strain interactions with two types of resources: susceptibles
S and singly colonized hosts I , a certain type of higher-order interactions arise nat-
urally because of the indirect effects that altered susceptibilities between any pair i
and j in co-colonization have on suppressing or augmenting the available resources
Ii and I j for the rest of the community, and thus when summed, contribute to mean
fitness among everybody in the system. In this entangled network, the multiple types
modulate their common environment through the changing term Q in (13), which can

123



Predicting N-Strain Coexistence from Co-colonization... Page 21 of 26 142

mean ‘deterioration’ of the environment if Q > 0 or ‘amelioration’ of the environment
if Q < 0. This does not necessarily imply that strains become more cooperative or
competitive in epidemiological co-colonization, as the dynamics of the mean suscep-
tibility to co-cocolonization at the single host level, depending on q (in Eq. 10), can
be different from the dynamics of mean fitness Q at the level of the strain system.

Our expression for strain frequency evolution (13) makes it also explicit that ‘envi-
ronmental deterioration’ may be seen as a cost for the existing collective (since it
reduces each strain’s rate of growth), but it serves as a protective mechanism against
invasion by an outsider strain, and viceversa: ‘amelioration’ may on one hand seem
like it benefits all strains, but on the other it also benefits any outsiders, which eventu-
ally may invade more easily. Central to these insights is having made explicit in this
particularmodel the dependence on environmental dynamics of the selective dynamics
between types (Lion 2018), both in invasion fitness trait space (λ j

i ), and in cocolo-
nization trait space (αi j ). How strain diversity exactly shapes the system property Q
(Hooper et al. 2005), and how Q in turn shapes diversity remains to be studied in the
future.

Invariant Principles in N-Type Co-colonization

As known from frequency-dependent selection in evolutionary games, the final
outcome among N players can be complex, represent a non-fitness-maximizing equi-
librium and include oscillations and chaos (Nowak and Sigmund 2004; Cressman
and Tao 2014). Yet, here we find invariant principles emerging in non-equilibrium
multi-type dynamics: The first one being about the dominance of types in single and
co-colonization, which is expected to be equal, and the second one being about the
co-colonization prevalences as a function of single colonization prevalences of strains
(Figure 4, Supplementary Figure S6). These could be used as a practical test for
quasi-neutrality, when strain prevalence data are available. Our recapitulation of co-
colonization dynamics from strain frequencies sheds new analytical light on pathogen
interactions and their epidemiological manifestation (Kucharski et al. 2016), provid-
ing the link between within-host co-occurrence and population-level prevalences of
strains. While independence underpins a majority of methods for detecting pathogen
interactions from cross-sectional survey data ( e.g., Valente et al. 2012; Cobey and Lip-
sitch 2012b), it is being recognized that even simple epidemiological models challenge
the underlying assumption of statistical independence (Hamelin et al. 2019). Studies
are showing that even if pathogens do not interact, other epidemiological feedbacks
can induce positive correlation between their prevalences, which leads the proportion
of co-infected hosts to be higher than multiplication would suggest.

Along similar logic, our results clearly expose that even if pathogens interact (e.g.,
via altered susceptibilities to coinfection), multiplicative effects between their preva-
lences emerge in co-colonization, but with an explicit pre-factor dependent on overall
transmission and mean interaction coefficient. This invites a revision of methods to
identify interactions between pathogens in endemic systems from cross-sectional data,
based on a deeper mathematical understanding of underlying feedbacks and context-
dependence (Coyte and Rakoff-Nahoum 2019).
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Extensions and Outlook

In our system, at most two microbial strains can concurrently infect a host. Extension
to higher multiplicity of infection (MOI) could be of interest in the future, starting
from the current setup, or taking advantage of previous frameworks (Adler and Brunet
1991). The transmission and clearance rates of all strains in our model were assumed
equal, unlike other multi-strain SIS models (Thieme 2007; Martcheva 2009; Bichara
et al. 2014), because our aimwas to focus on coinfection, coexistence, and the pairwise
interaction matrix between strains. In an ongoing work, we show that relaxing this
assumption, within the same model structure, leads to the same replicator equation
with invasion fitnesses. But each pairwise invasion fitness, in that case, becomes a
combination of deviations from neutrality in all traits (unpublished). Accounting for
asymmetry in other traits and coinfection requires us to specify in the model, besides
overall transmission in singly and co-infected hosts (here assumed equal), additional
features such as the transmission rate of each of the coinfecting strains in mixed
infection classes and their clearance rate. It is likely that several model structures,
or perturbations, branching out of the core and simple formulation analyzed in this
paper, can lead to similar replicator equation-like dynamics in less dimensions, but
this requires further mathematical investigation.

Past theoretical work has considered vulnerability to co-infection modeling it as a
single mean-field parameter (Alizon 2013a). Others have studied how this trait at the
host-pathogen interface impacts disease persistence (Gaivão et al. 2017), coexistence
and vaccination effects (Lipsitch 1997; Gjini et al. 2016), and how it contributes to
diversity in other traits, e.g., virulence (Alizon et al. 2013) and antibiotic resistance
(Davies et al. 2019).With the here-proposed analytical framework, exploration of such
processes, indirectly affected by co-colonization, could be enhanced and generalized
to higher number of strains.

However, increasing structural complexity in the model is likely to increase the
intrinsic dynamic complexity of the system, independently of the number of strains.
For example, Gaivão et al. (2017) relax the assumption of equal clearance and trans-
mission rates from single and dual colonization, and find the criteria under which
these asymmetries enhance endemic persistence. By obtaining a backward bifurca-
tion near R0 = 1, they highlight that sufficiently higher reproductive value of the
parasite in multiply-infected hosts can enable parasite persistence, and in such case,
the mean-field susceptibility to co-colonization (k) gains a vital importance.

Sequential clearance of each strain from co-colonized hosts is also a relevant and
important model extension, instead of the direct clearance assumed in our model. As
noted also by Gjini et al. (2016) and Gjini and Madec (2017), this feature would cause
the independence of total carriage from co-colonization parameters (1−1/R0 here) to
break down. This would give rise to bidirectional feedbacks between strain selection
in co-colonization trait space and overall prevalence, which in the current framework
only act in one direction: from total prevalence to strain selection via μ in λ

j
i and the

parameter � in Eq. (13).
Inevitably, the deterministic formulation adopted here does not allow to explore

stochastic effects in selection, which in the quasi-neutral limit may become increas-
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ingly important (Constable and McKane 2018; Kogan et al. 2014). Noise-induced
selection may happen during the fast (neutral) time-scale of the dynamics, where
strains should behave as equivalent. This would be interesting for the future.

Evenwithin our simplifying assumptions, there is a lot of complex dynamics for dif-
ferent N and different matrix structures that we have not addressed in this very model,
includingmultistability, limit cycles and chaos.Yet, our results thus far open promising
avenues. The wider and more complete ecological picture of co-colonization, as well
as the gradients in diversity-stability regimes in coexistence are the focus of another
study (Gjini and Madec 2020). A natural next step is harnessing more parallels with
the classical Lotka–Volterra model (Lotka 1926; Volterra 1926; Mougi and Kondoh
2012; Friedman et al. 2017). Like for the Lotka–Volterra system, many mathematical
results for general and special cases of the replicator equation already exist (Hofbauer
and Sigmund 2003; Sandholm 2010; Cressman and Tao 2014), and these would carry
over automatically in the multi-strain setting studied here. Importantly, the power of
the replicator equation, which describes strain frequencies over time, lies in the explicit
characterization of the mean fitness of the collective. Furthermore, the derivation we
provide here has direct parameters coming from the biology of multi-strain coloniza-
tion. This should enable clear translation to fitness (Metz et al. 1992) and expand the
quantitative insights for multi-species competition beyond binary payoffs (Allesina
and Levine 2011).

In summary, althoughmotivated by infectious disease transmissionwith altered sus-
ceptibilities in co-colonization (Gjini et al. 2016; Gjini and Madec 2017), the global
contagion dynamics captured here provide compelling parallels and invite applications
in other systems. The coinfection model could be applied to study mechanistically
coexistence in microbial consortia, plant ecology, opinion propagation dynamics, and
other multi-type systems where colonizer-cocolonizer interactions matter. Thanks to
its abstraction and simplicity, this model with its closed replicator equation for strain
frequencies offers a new bridge between population dynamics in epidemiology, com-
munity ecology, and Darwinian evolution.
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