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Abstract
Centre-based or cell-centre models are a framework for the computational study of
multicellular systems with widespread use in cancer modelling and computational
developmental biology. At the core of these models are the numerical method used to
update cell positions and the force functions that encode the pairwisemechanical inter-
actions of cells. For the latter, there are multiple choices that could potentially affect
both the biological behaviour captured, and the robustness and efficiency of simulation.
For example, available open-source software implementations of centre-based models
rely on different force functions for their default behaviour and it is not straightforward
for a modeller to know if these are interchangeable. Our study addresses this problem
and contributes to the understanding of the potential and limitations of three popular
force functions from a numerical perspective. We show empirically that choosing the
force parameters such that the relaxation time for two cells after cell division is con-
sistent between different force functions results in good agreement of the population
radius of a two-dimensional monolayer relaxing mechanically after intense cell pro-
liferation. Furthermore, we report that numerical stability is not sufficient to prevent
unphysical cell trajectories following cell division, and consequently, that too large
time steps can cause geometrical differences at the population level.

Keywords Cell-based model · Force function · Numerical method · Monolayer
growth
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1 Introduction

Discrete cell-based models are becoming increasingly popular for simulating tis-
sue mechanics. In contrast to continuum models that average over the cell density,
cell-based models represent each cell individually. Therefore, they readily allow for
incorporating cellular events such as cell division, cell differentiation or cell death,
as well as cell heterogeneity across a population. As a result, these models have been
used to probe biological questions of how the interplay of individual cell behaviour
affects population-level measures (e.g. (Meineke et al. 2001; Li and Lowengrub 2014;
Kursawe et al. 2015; Atwell et al. 2015)).

There are different kinds of cell-based models that can be divided into two general
categories. The first category, so-called on-lattice models, restricts the movement of
the cells to a grid. Cellular automata (Peirce et al. 2004) and cellular Potts (Graner and
Glazier 1992) models are examples. In cellular automata models, cells are typically
restricted to occupy a single lattice site and move between lattice sites according to a
fixed set of rules. In contrast, in cellular Potts models cells are composed of multiple
lattice sites, enabling the cell shape to be resolvedmore realistically. Thewhole system
explores the energy landscape using a Metropolis–Hastings approach. One drawback
of on-lattice models is that they can exhibit grid-related artefacts on structured meshes
due to the directional restriction, e.g. cells can only “push” neighbours along fixed
axes as defined by the underlying grid (Van Liedekerke et al. 2015; Drasdo et al. 2018).

The second category, off-latticemodels, are continuous in space and hence circum-
vent this issue. Again they vary with respect to how detailed the cell shape is modelled.
Centre-based models (CBMs)—also referred to as cell-centre models—track the cell
midpoints over time as cells interact mechanically according to pairwise spring-like
forces (Meineke et al. 2001; Drasdo and Hoehme 2005). In this model, cells are
either represented as overlapping spheres (OS variant), or using a Voronoi tessellation
(Voronoi variant). Vertex models (Fletcher et al. 2014), on the other hand, discretize
the cell boundary instead and evolve the tissue according to interfacial tension and
pressure within the cells. As a result, they can be applied to study complex cellular
behaviour such as cell growth, stretching and deformation (Tamulonis et al. 2011). At
an even higher level of detail and correspondingly higher computational cost, there are
the immersed boundary method (Rejniak 2007) and the subcellular element method
(Newman 2007).

Discrete cell-based models—independent of being on- or off-lattice—can be cou-
pled to PDE models for simulating the concentration of chemical compounds in the
cellular environment or even an ODE model for simulating intracellular dynamics
(Cilfone et al. 2015; Macklin et al. 2016; Ward et al. 2020). An extensive review
of cell-based models for general tissue mechanics can be found in Van Liedekerke
et al. (2015). Additionally, there are several reviews dealing with prominent appli-
cations areas, such as tumour growth (Rejniak and Anderson 2010; Metzcar et al.
2019) and morphogenetic problems (Glen et al. 2019; Fletcher et al. 2017; Tanaka
2015). In Osborne et al. (2017), the authors compare five cell-based frameworks (cel-
lular automata, cellular potts, CBM OS and Voronoi variants and vertex models) with
respect to four common biological problems: cell sorting, monoclonal conversion,
lateral inihibition and morphogen-dependent proliferation. They conclude that each
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model has its preferred application for the study of which it was originally designed,
but that most models can be adapted for all applications with varying effort and com-
putational cost.

In this study, we focus on the centre-based model, in particular the OS variant, to
which we will from now on refer to as CBM or CBM OS when we want to stress
particularities about the latter. CBMs have been successfully applied to a large variety
of biological problems ranging from the simulation of monolayer and spheroid growth
(Drasdo and Hoehme 2005; Galle et al. 2006) to the cellular reorganization in the
intestinal crypt (Meineke et al. 2001). See Van Liedekerke et al. (2018) for a recent
overview. There exist multiple simulation frameworks that implement CBMs, several
of which are open source. All of them tailor to specific needs, but allow for modelling
the core features of CBMs.Chaste is amulti-purpose framework implementing several
cell-basedmodels andCBMs in particular (Cooper et al. 2020;Mirams et al. 2013; Pitt-
Francis et al. 2009). MecaGen is a framework focusing on the coupling between cell
mechanics and gene regulatory networks (Delile et al. 2017). Most recently, PhysiCell
was released in 2018 (Ghaffarizadeh et al. 2018). It aims to simulate up to a million
cells and has been used mainly to model breast cancer (Macklin et al. 2009, 2012;
Hyun andMacklin 2013).Moreover, there exist the closed-source frameworksCellSys
(Hoehme and Drasdo 2010b), EPISIM (Sütterlin et al. 2013) and Biocellion (Kang
et al. 2014).

In general, one can observe the trend of simulating an ever-growing number of cells
in order to realistically describe biological systems. The efficiency of simulations is
critical to this endeavour. Highly efficient schemes not only allow for the simulation
of large-scale systems, but also make systematic inference and model exploration
feasible. Here, the CBM framework, and in particular the OS variant in its simplest
form, strikes an attractive balance between numerical efficiency and the capability
to incorporate cell mechanics and biophysical measurements. The biophysical basis
of cell–cell interactions has been discussed extensively in prior work (Drasdo and
Hoehme 2005; Drasdo 2007; Drasdo et al. 2007), where the Johnson–Kendall–Roberts
(JKR) and extendedHertz theories can provide descriptions founded in physics (Byrne
and Drasdo 2008). However, these force descriptions are computationally expensive
to evaluate, and in practice other, simpler functional forms are considered.

Motivated by the need for robust and efficient simulations, this study focuses on
the complementary question of comparing those force functions used in open-source
frameworks for CBMs. More specifically, we choose the functions used in Chaste,
PhysiCell and MecaGen (Cooper et al. 2020; Ghaffarizadeh et al. 2018; Delile et al.
2017). Given the relatively few numbers of free parameters in these force functions,
we first ask if there are systematic ways to parameterize them such that they result
in indistinguishable macroscopic output for a biologically realistic test problem. We
show that it is sufficient to accurately match the relaxation time of cells after division
in order to observe good agreement of trajectories for the population radius of a mono-
layer relaxing mechanically in two dimensions after a period of intense proliferation.
Based on such a parameterization, we then ask if there are significant advantages and
disadvantages of different force functions from a numerical robustness- and efficiency
point of view.
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Different solution strategies and integration schemes for Vertex Models were dis-
cussed and evaluated in detail in Kursawe et al. (2017). However, to the best of our
knowledge a systematic comparison of different commonly used schemes for CBMs
has not been published. The overwhelming majority of CBM implementations use
the forward Euler method for solving the coupled ODE system for centre positions
(Cooper et al. 2020; Delile et al. 2017; Hoehme and Drasdo 2010a), with PhysiCell
being a notable exception in that it uses the second-order Adams–Bashforth method
(Ghaffarizadeh et al. 2018). Pathmanathan et al. (2009) study mechanical properties
of a tissue simulated with CBMs—both the OS and the Voronoi variants—subject
to compression, tension and shear under a linear spring force and two physics-based
forces, Hertz and Johnson–Kendall–Roberts. Instead of probing the mechanical prop-
erties of a non-proliferating tissue, we are concerned with the interplay between cell
proliferation and the impact of the resulting strong, highly localised forces on the
mechanical relaxation of a growing population. Here, a critical aspect is the poten-
tially large stiffness caused by highly compressed cells right after cell division. A
key contribution of this paper is a comparison of integration schemes for this setting,
taking into account the dependence on the force functions for stability and error.

For simplicity and easier visualization, we restrict ourselves to two-dimensional test
problems.However, it shouldbenoted that due to the simple geometrical representation
of cells in the CBM OS framework as spheres, our study could be readily extended to
three dimensions.

This article is structured as follows. In Sect. 2, we review the key numerical aspects
of CBMs. In Sect. 3, we describe three force functions encountered in popular simula-
tion frameworks and compare their qualitative behaviour for a fixed parameterization.
In Sect. 4, we study their numerical properties with regards to numerical stability and
accuracy in combination with first- and second-order solvers. Lastly, we discuss our
findings and conclusions in Sect. 5.

2 Implementation of Centre-BasedModels

In this section, we review the key numerical assumptions made when implementing
CBMs, namely (i) the update equation for cell positions, (ii) the numerical solution of
this equation, (iii) the way cell connectivity is defined and updated, (iv) how cell-level
events are incorporated into the cell mechanics simulation and (v) how the cell cycle
and cell division events are modelled in particular. In literature and existing software,
there is a considerable variation when it comes to the details of the implementations,
depending on the biophysiology studied and the computational budget. Motivated
by the need to simulate increasingly large systems, we consider the simplest and
computationally cheapest implementations as these tend to be the most scalable. For
this reason, we focus on the OS variant of CBMs, where cell shape is not explicitly
resolved but cells are instead modelled as spheres which can potentially overlap.
Figure 1 illustrates the main idea. As depicted, cell connectivity is defined using a
simple maximum interaction radius.

Although several of the available frameworks for simulating CBMs are open and
extensible, their large feature set, their focus on supporting modellers and correspond-
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Fig. 1 Illustration of the main idea of centre-based models, in particular the OS variant. Cell midpoint
positions are tracked and the shape is assumed to be spherical, potentially overlapping with its neighbours.
Cells move according to pairwise mechanical interactions, which can be repulsive (when overlapping) or
adhesive (when non-overlapping but close). We assume that mechanical interactions are limited within a
fixed distance from the cell centre, represented here by the dashed circle. All cells within this radius are
assumed to interact with the cell in the centre

ing code complexity make them less suitable for rapid experimentation with numerical
parameters. Here, we study relatively simple models of cell mechanics with the need
for full control of all numerical settings. Therefore, we developed our own centre-
based code in Python to ensure consistency across the numerical experiments. To
facilitate reproducibility and in the hope that it will be useful for others for simi-
lar studies, the software is publicly available at: https://github.com/somathias/cbmos.
git. This repository contains the CBMOS software, as well as all Jupyter Notebooks
used to generate the plots presented in this manuscript. Unit tests used throughout the
development of this software are also included in this repository. (Note that we use
CBMOS as the name of our simulation code, whereas the spelling “CBMOS” refers to
the general framework of the overlapping spheres variant of the centre-based model.)
The following subsections detail the implementation assumptions we consider in this
study.

2.1 Update Equation for the Cell Positions

Let xi denote the midpoint coordinates of the i th cell and mi its mass. Applying
Newton’s second law to the cell movement we obtain

miai = mi ẍi = Fi , (1)

where ai refers to the acceleration of cell i and Fi to the force acting on it. We assume
that Fi consists of two types of forces. First, a drag force Fdrag

i stemming from the
cell’s friction with the viscous environment is directed against the cell’s direction of
motion. This force is proportional to the cell’s velocity,

Fdrag
i = −ηvi = −ηẋi . (2)
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Here, η denotes the drag coefficient. Secondly, neighbouring cells exert mechanical
forces on the cell. In the simplest case these involve repulsive forces due to limited
cell compressibility, but they usually also include cell–cell adhesion. Interactions are
assumed to be pairwise and symmetric, i.e.

Fcells
i =

∑

j �=i

Fi j , (3)

where the sum runs over all neighbours, excluding the cell itself. Which cells are
considered neighbours depends on the definition of cell–cell connectivity, see Sect.
2.3 below for details. The resulting governing equation for the cell midpoint motion
reads

mi ẍi = −ηẋi +
∑

j �=i

Fi j . (4)

This is a system of second-order ordinary differential equations governing the cell
centre positions, with one equation for each degree of freedom. As the microenviron-
ment for the cells has a very lowReynolds number (the Reynolds number describes the
ratio of inertial to viscous forces) (Purcell 1977), inertial effects such as acceleration
are neglected. This commonly applied “inertialess” assumption, mi ẍi ≈ 0, reduces
the update equation to the system,

ẋi = 1

η

∑

j �=i

Fi j . (5)

Note that the drag coefficient η effectively acts as a scaling of the pairwise force
contributions Fi j . This allows us to (arbitrarily) fix it as η = 1.

For increasing levels of physical realism in the simulations, Eq. (5) might be com-
plemented with additional terms representing friction between cells, repulsive and
adhesive interaction between the cell and the extracellular matrix and cell migratory
behaviour (Drasdo and Hoehme 2005; Van Liedekerke et al. 2015). The force-based
formulation considered here has become the standard way of implementing CBMs and
is favoured over energy-based formulations (numerically studied using Monte Carlo
methods such as the Metropolis algorithm (Drasdo et al. 1995; Byrne and Drasdo
2008)) due to the straightforward interpretation of the time scale and a more intuitive
way of treating custom cell interactions (Van Liedekerke et al. 2015).

2.2 Numerical Methods for Solving the Update Equation

For an initial value problem stated as

ẏ = f (t, y), y(t0) = y0, (6)

a numerical scheme provides an approximation for function values yn ≈ y(tn) at
discrete time points tn , n = 1, ..., N . The simplest numerical scheme, the forward
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Euler method, calculates the next function value by taking a step in the direction of
the current gradient (Griffiths and Higham 2010),

yEulern+1 = yn + Δt f (tn, yn), (7)

where Δt is the step size. If the step size is chosen constant over the time interval
t0 to tN , then Δt = (tN − t0)/N . The forward Euler method is a first-order scheme,
meaning that as long asΔt is sufficiently small, the local error in one single time step is
proportional to Δt2 and the global approximation error at tN thus proportional to Δt .
Roughly speaking, halving the step size for a first-order scheme makes the solution
twice as accurate.

Higher-order schemes improve the convergence rate at the cost of additional func-
tion evaluations. An example is the midpoint rule (Chapra 2012),

ymidpoint
n+1 = yn + Δt f

(
tn + Δt

2
, yn + Δt

2
f (tn, yn)

)
. (8)

The midpoint rule is a second-order method, which means that halving the step size
divides the error by four. Hence, fewer steps are needed to achieve a given accuracy
compared to the forward Euler method, although each single step will be more costly.

Both methods are one-step methods, meaning that they calculate the function value
at the next time point based on the current function value only. Multi-step methods
additionally take past function values into account. One of the simplest two-step meth-
ods is the Adams–Bashforth method (Griffiths and Higham 2010),

yAdams-B.
n+1 = yn + 3

2Δt f (tn, yn) − 1
2Δt f (tn−1, yn−1). (9)

In addition to the order of the scheme, the schemes’ stability is an important charac-
teristic. A numerically unstable solution will oscillate and grow without bounds, even
though the true solution does not. In this case, the step size needs to be reduced to
recover a stable, bounded solution. The stability region depends on both the numerical
scheme and on the ODE problem to be solved, and this imposes an upper bound onΔt
for which the scheme can be used. The forward Euler method has very poor stability
properties and may hence require very small time steps.

2.3 Definition of Cell Connectivity

The right-hand side in Eq. (5) involves the evaluation of pairwise interaction forces for
all cells j = 1, . . . , M in a neighbourhood of the cell with midpoint xi . In the overlap-
ping spheres variant of CBMs that we consider, cell connectivity, i.e. which cells are
allowed to mechanically interact, is defined via a maximum interaction distance (see
Fig. 1). This can be efficiently implemented in two and three dimensions. For a large
number of cells, the naive implementation of checking all K 2 pairwise interactions
in a system with a total number of K cells can be improved by introducing so-called
bounding boxes that keep track of closely located cells (Hockney and Eastwood 1988).
In the absence of these boxes, the computation of pairwise forces is inefficient because
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most of the distances between cells are larger than the maximum interaction distance.
Indeed, for large systems, one cell is in contact with a small number of other cells
compared to the total number of cells. Therefore, dividing the computational domain
into boxes significantly lowers the computational cost of numerical simulations at the
expense of a more complex simulation algorithm that needs to keep the data struc-
ture up-to-date. For the present study, we have chosen to not implement bounding
boxes since they affect the performance per time step, while we are interested in how
force functions and numerical methods affect the total number of time steps in a given
simulation.

It is well known that defining cell connectivity using only distance information
between cells can lead to the problem of collapsing volumes (Pathmanathan et al.
2009). In a densely packed population, newly divided cells can potentially interact
with their next-to-nearest neighbours, resulting in the adhesive forces exerted by their
(many) next-to-nearest neighbours becoming larger than the repulsive forces exerted
by their (few) direct neighbours and thus compressing the overall volume of the pop-
ulation. Different force functions show a varying sensitivity to this issue, the linear
spring being particularly problematic (Pathmanathan et al. 2009).

It is also possible to take topological information into account to ensure that cells
only interact with neighbours with which they are in direct contact, i.e. that no other
cell is located between them. This is done in the Voronoi variant of the CBMs using
a Voronoi tesselation of the cell midpoints where cells are considered in mechani-
cal contact if they share an edge in the associated Delaunay triangulation (Meineke
et al. 2001; Schaller andMeyer-Hermann 2005;Meyer-Hermann 2008; Kennedy et al.
2016). The Voronoi polygons can then also be used to estimate cell shape and volume.
This approach makes the Voronoi variant-CBMmore robust to the issue of collapsing
volumes at an increased computational cost compared to the OS variant (Osborne et al.
2017; Pathmanathan et al. 2009).

2.4 Time-DrivenVersus Event-Driven Simulation

In addition to cell mechanics, a CBM simulation usually consists of a number of
cell events, such as cell division, cell death and potentially subcellular events such
as a transition in cell cycle models. Typically, simulations proceed through a split-
step scheme with fixed time steps for each main model feature (mechanics, molecular
diffusion, cell events etc.)(Ghaffarizadeh et al. 2018). This time-driven approach is a
good way of handling systems with different physics and with different timescales,
but it also introduces an additional level of approximation due to the decoupling of
terms during the time interval that the system is updated with some of the physics
frozen—a splitting error. This error is, in general, hard to estimate.

As an alternative, event-driven simulation methods maintain a list of time points
at which events affecting the system will take place (Meyer 2014). In the context
of the simulation of cellular systems, this allows to simulate the mechanics until the
next event time, apply the corresponding cellular event to the cell population and then
continue with simulating the mechanics. This is possible as long as events can be
scheduled in advance, e.g. by drawing a division time from a suitable distribution at
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cell birth, and do not depend on the current cell or population state. We chose this
latter approach since it accurately resolves the cellular dynamics of the population for
our model problems.

2.5 Cell Cycle Model and Cell Division Implementation

In general, CBMs employ cell-cycle models of varying complexity to model the pro-
liferation of cells, ranging from choosing a uniformly distributed cell cycle duration
to nutrient- or contact-based cell cycle models (Meineke et al. 2001; Drasdo and
Hoehme 2005; Macklin et al. 2012; Atwell et al. 2015). Furthermore, there exist dif-
ferent algorithms for implementing the cell division process itself. Biologically, this
process involves the formation of a contractile actin ring at the division plane of the
mother cell. As this ring contracts, the cell is gradually deformed leading to the forma-
tion of two daughter cells that eventually pinch off into two adhering cells of roughly
half the volume of the mother cell. Since cell shapes are not explicitly modelled in
the CBM, the details of this process cannot be captured directly. Instead, different
types of approximations are employed. A thorough discussion on the various aspects
of cell division algorithms, including a summary of additional commonly modelled
mechanisms in the cell cycle such as contact inhibition and apoptosis, can be found
in Van Liedekerke et al. (2018). We here briefly discuss two approaches.

In Drasdo and Hoehme (2005), two main phases of division are recognized. A
cell entering the cell cycle first shows spherical growth. Then, when it splits into two
daughter cells, they are treated as a dumbell in which the cells gradually separate
by increasing the distance to each other. Alternatively, cells are treated as a dumbell
directly when they enter the cell cycle and spherical growth and separation happens
simultaneously (Hoehme and Drasdo 2010a). Dumbell formation, although somewhat
close to the biological processes in concept, introduces additional complexity in the
model due to the breaking of spherical symmetry (Drasdo and Hoehme 2005).

A simpler and more commonly used algorithm is to instantaneously place two
newly formed daughter cells of a smaller radius close to each other (with an over-
lap) in the space previously filled by the mother cell (Schaller and Meyer-Hermann
2005). The cells will then relax into mechanical equilibrium with their surroundings
according to the specific force function dynamics used in the simulation, as well as
increase their radius to the size of the former mother cell. This, or close variants of
it, is also the algorithm used in several recent high-performance and parallel imple-
mentations (Harvey et al. 2015; Ghaffarizadeh et al. 2018; Cytowski and Szymańska
2014). Implementation-wise this is a very simple and efficient algorithm. However,
it may lead to locally and transiently high, unphysical force values right after cell
division (Schaller and Meyer-Hermann 2005; Van Liedekerke et al. 2018). This can
be seen as a consequence of the fundamental model assumption underlying the CBM,
i.e. the assumption of pairwise cell interactions not being valid in highly compressed
scenarios (Van Liedekerke et al. 2018). In Van Liedekerke et al. (2019) a multiscale
approach based on deformable cell model simulations is used to correct forces for
highly compressed structures. We will instead investigate how the population level
behaviour is affected if these high local forces are not correctly resolved numerically.
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Fig. 2 Illustration of the cell division steps in our implementation. Left: A cell ready to proliferate. Middle:
Placement of two daughter cells of radius equal to that of the mother cell. The former position of the mother
cell is the shaded region. The distance between the centres of the daughter cells is the initial separation
r0. The cell division direction is chosen randomly. Right: After mechanical relaxation, cell midpoints are
separated by the rest length s

For our numerical study, we consider only cell division events and do not model the
cell cycle explicitly. We adopt the simplified division algorithm detailed above and in
Schaller and Meyer-Hermann (2005), but without accounting for cell growth. At the
beginning of each simulation, we let cells divide instantaneously into two overlapping
daughter cells of volume equal to the mother cell, see Fig. 2. No further subsequent
cell division events take place in our numerical experiments. Note that our simulation
framework alternatively allows for drawing the cell cycle duration according to some
suitable random distribution (e.g. the Erlang distribution as suggested in (Chao et al.
2019)). Furthermore, other simulation frameworks such as PhysiCell and Chaste use
more complexmodels for the cell cycle (Ghaffarizadeh et al. 2018; Cooper et al. 2020).
However, we restrict the present study to a simple fixed cell cycle implementation
specifically tailored to our numerical experiments to be able to more easily interpret
the obtained results.

The cell division direction is chosen randomly according to a uniformdistribution of
the angle. This is in good agreement with experimental data showing that cell division
is oriented towards a random direction in the absence of external signals (Siegrist and
Doe 2006).

3 Cell–Cell Interaction Forces

The cell–cell interaction force Fi j in Eq. (5) describes how cells interact mechanically
and thus determines the biophysical behaviour the model can capture. In this study,
we consider force functions based on the following assumptions:

1. The pairwise force can be written as Fi j = F(‖ri j‖) ri j
‖ri j‖ , where ri j = x j − xi

and F is a scalar force. This means the force acts only in direction of the vector
between cell centres and its magnitude depends only on their distance.

2. There exists a distance between cell midpoints (the rest length s) at which cells
are in equilibrium, i.e. they exert no forces on each other and hence F(s) = 0.

3. Cells have limited compressibility and push each other for centre–centre distances
smaller than the rest length to minimize their overlap, i.e. F(r) < 0 for r < s.

123



Impact of Force Function Formulations… Page 11 of 43 132

4. Forces are either zero or cells exert a pull on each other due to cell–cell adhesion
forces for distances larger than the rest length, i.e. F(r) ≥ 0 for r > s.

5. There exists a maximum interaction range rA beyond which cells do not interact
mechanically with one another, i.e. F(r) = 0 for r ≥ rA.

The simplest force function fulfilling these assumptions is a linear spring, used in early
works by Drasdo and others (Drasdo 2000; Drasdo and Loeffler 2001). For the linear
spring, the force is assumed to be directly proportional to the distance between cell
midpoints, vanishing at the rest length. While this behaviour may be reasonable for
small distances, it results in unphysically strong long-range interactions if extended to
distances larger than the rest length. At the same time, a linear force does not result in
very large repulsive forces when cells are very close, i.e. cells are highly compressible.
This can lead to the problem of collapsing volumes, where a cell population collapses
on itself under strong compression (Pathmanathan et al. 2009). Additionally, the linear
forcewill feature a largediscontinuity at themaximuminteraction rangewhich can lead
to further numerical difficulties. For both these reasons, force functions are favoured
which feature (i) stronger repulsive interactions for cell separation distances close to
zero and (ii) adhesive interactions that vanish for large cell distances. Examples of force
functions with these properties include classical potentials such as the Morse or the
Lennard-Jones potential (Atkins et al. 2018), physicallymotivated force functions such
asHertz (Johnson 1985) and a number ofmathematical functions built by extending the
linear force with different terms. Table 1 summarizes the mathematical equations for
several cell–cell interaction functions used for CBMs and examples of their references
in literature.

Note that our assumptions detailed above do not include a hysteresis effect where
the adhesion between cells depends on whether they were in contact before or not.
Such an effect is modelled by the Johnson–Kendall–Roberts (JKR) model for the
deformation of elastic bodies, which has been confirmed experimentally to be valid
for biological cells under certain conditions (Chu et al. 2005). In addition to exhibiting
a different biomechanical behaviour than what we consider in this study (as detailed
in assumptions 1–5 above), the JKR force is also computationally more expensive
than the other functions listed in Table 1. This is because the JKR force requires the
solution of an implicit equation in order to recover the force for a given centre–centre
distance (Byrne and Drasdo 2008). To decrease the computational requirements, the
JKR can be approximated by a third-order polynomial as done in CellSys (Hoehme
and Drasdo 2010b, c). It would generally be possible to include a kind of simplified
hysteresis effect for the force functions we consider here, by applying an adhesive
force only if cells are moving apart, but not when they are approaching each other. We
leave this approach and its evaluation, along with a comparison to the JKR force, for
future work.

Inwhat followswe focus on the cubic, the piecewise polynomial and the generalized
linear spring force. These pairwise interaction forces are those implemented as default
forces in the open-source software packages MecaGen (Delile et al. 2017), PhysiCell
(Ghaffarizadeh et al. 2018) and Chaste (Cooper et al. 2020), and therefore, it is likely
that these functions are those that modellers new to the field come into contact with
first. In the following subsections we describe the three chosen force functions and
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study if and how they can be parameterized based on pairwise interactions in order
to produce similar biological behaviour at the population level. We will then use this
parameterization as a starting point for a quantitative comparison of key numerical
properties of CBM simulations using these force functions in Sect. 4.

3.1 Description of theMathematical Form of the Force Functions and Their
Parameters

In their respective software packages, these force functions are stated and parame-
terized very differently, so we start by describing each of them within a consistent
notation and parameterization. In what follows, let r denote the centre–centre separa-
tion distance between a pair of cells, s the rest length and rA the maximum (adhesive)
interaction distance. The maximum interaction distance rA and the rest length s are
parameters that relate to the biophysical properties of cells and are treated as fixed
parameters given as initial data to a simulation.

The first of the three force functions we have chosen, the cubic force, combines
a linear spring term with a quadratic term approximating the contact area of two
overlapping spheres. It is used in the software MecaGen (Delile et al. 2017) and can
be written as

Fcubic(r) =
{

μ (r − rA)2 (r − s) if r ≤ rA,

0 otherwise.
(10)

Here, the only free parameter μ denotes the spring stiffness parameter. In order to
ensure differentiability of the force at the rest length, i.e. for r = s, μ has to be
independent of whether cells are overlapping (r < s) or not (s ≤ r < rA). Larger
values ofμ increase the steepness of the repulsive interaction part, making cells behave
more rigidly. At the same time, the magnitude of the adhesive interaction is increased,
see Fig. 3a.

The second force function, the piecewise polynomial force is constructed as the
sum of a positive adhesive and a negative repulsive polynomial, the support of which
overlap, see Fig. 3b. As a default, quadratic polynomials are used in PhysiCell (Ghaf-
farizadeh et al. 2018). We take the same approach, leading to the formula,

Fpwq(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μA

(
1 − r

rA

)2

− μR

(
1 − r

rR

)2

if r ≤ rR,

μA

(
1 − r

rA

)2

if rR < r ≤ rA,

0 otherwise.

(11)

Here, rR denotes the maximum repulsive interaction distance, and μA and μR are the
adhesive and repulsive spring stiffness parameters. Note that in general s < rR < rA
and μA < μR . As stated earlier, we require that F(s) = 0, i.e. that the force vanishes
at the rest length. This effectively fixes the maximum repulsive interaction distance
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(a) (b)

(c) (d)

(f)(e)

Fig. 3 Intensity of the different forces as a function of cell separation distance. (a) Intensity of the cubic
force shown for different spring stiffness values μ. (b–d) Intensity of the piecewise quadratic force. (b)
The repulsive and adhesive polynomials are shown individually. Parameters were chosen as μR = 9.1,
m = 0.21. (c) A fixed ratio m = 0.21 was chosen and different spring stiffness values μR . (d) A fixed
spring stiffness value μR = 8.0 was chosen and different ratios m. In contrast to the cubic and GLS
force, the piecewise quadratic force allows for varying the repulsive and adhesive spring stiffness parameter
independently within a certain range. (e–f) Intensity of the GLS force with (e) different spring stiffness
values μ and (f) μ = 2.0 and different values of the breadth α. For the largest α here (solid line), as well
as in (e), α is chosen according to Eq. (14)

rR as a function of the ratio m = μA
μR

of the adhesive to the repulsive spring stiffness,

rR = s

1 − √
m(1 − s

rA
)
. (12)
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Consequently, the piecewise quadratic function has two free parameters, μR and
m. Figure 3c and d shows the force intensity as a function of cell separation distance
for different parameter combinations. We observe that for a fixed ratio m, increasing
the repulsive spring stiffness μR increases the magnitude of the force, similarly to the
cubic force function (see Fig. 3c). On the other hand, Fig. 3d shows that the piecewise
quadratic force function lets the modeller tune the level of adhesive interaction for a
fixed repulsive strength within a certain range, which is not possible for neither the
cubic nor the generalized linear spring.

Last but not least, the generalized linear spring (GLS) force as implemented in
Chaste (Cooper et al. 2020) uses a logarithmic force for the repulsive regime. For cell
distances larger than the rest length, it extends this force with a linear spring term
multiplied with an exponential term to ensure decay of the force for large distances.

FGLS(r) =

⎧
⎪⎨

⎪⎩

μ log(1 + (r − s)) if r ≤ s,

μ(r − s) exp(−α(r − s)) if s < r ≤ rA,

0 otherwise.

(13)

Contrary to the cubic and the piecewise quadratic force function, the GLS force is
not constructed in a way that it vanishes for cell separation values larger than the
maximum interaction distance. Instead, the force is just cut off at that value, leading
to a discontinuity at r = rA.

The GLS force has two free parameters, the spring stiffness μ and the parameter α

which controls the width of the exponential decay in the adhesive regime. Similarly
to the cubic function, ensuring differentiability forces the spring stiffness μ to be the
same for the repulsive and the adhesive regime. Figure 3e and f shows the intensity of
the GLS force for different values of μ and α. We observe that as with the other force
functions, increasing the spring stiffness μ leads to stronger repulsive and adhesive
interactions (for a fixed value of α) (see Fig. 3e). Decreasing α for a fixed spring
stiffness valueμ increases the amplitude of the adhesive interactionwhile not affecting
the repulsive interaction (see Fig. 3f). However, it leads to a larger discontinuity at
the maximum interaction distance rA which will affect the numerical properties of the
GLS force as wewill see in Sect. 4.3. It is possible to choose α dependent onμ in a way
to ensure that the magnitude of the force is small at the maximum interaction distance
rA. Requiring e.g. that F(rA) ≤ ε = 10−3 leads to the following expression for α,

α = −1

rA − s
log

(
ε

μ(rA − s)

)
. (14)

Having described the force functions individually, wewill nowmove on to compare
their qualitative behaviour.

3.2 Comparison of the Qualitative Behaviour for a Fixed Relaxation Time

The three studied force functions all have different functional forms and a varying
number of free parameters. A natural question faced by a modeller is to what extent
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Fig. 4 Illustration of cell
centre–centre distances for
populations arranged on (a) a
Cartesian grid and (b) a
hexagonal lattice in a so-called
honeycomb configuration

(a) (b)

the force functions are interchangeable, i.e. whether they will result in simulations
leading to the same biological conclusions given an appropriate parameterization. To
study this, we first use a simple model system consisting of the fundamental unit
of two interacting cells. We then check that slight differences at the level of pairwise
interaction donot have a strong impact on a population levelmetric for twodimensional
planar growth.

Since in this sectionwe are interested in a comparison of the qualitative behaviour of
the force functions and not (yet) their numerical properties, we solve the update equa-
tions for the cell positions by using the numerical solver provided by the solve_ivp
function from the scipy.integrate library (Virtanen et al. 2020). As a default, this func-
tion provides an explicit high-level Runge–Kutta method of order 5(4) (Dormand and
Prince 1980), which for the purposes of this section we assume to accurately resolve
the cellular dynamics.

In all experiments, we (i) let cells have a fixed radius of R = 0.5 cell diameters and
(ii) fixed the rest length s and themaximum interaction distance rA to the samevalue for
all force functions. We chose the rest length to equal one cell diameter, i.e. s = 2R =
1.0 cell diameter. To ensure that a cell configuration placed at Cartesian coordinates
relaxes to a honeycomb-like configuration, but that next-to-nearest neighbours do not
interact at rest, themaximum interaction radius has to be chosen between 2

√
2R ≈ 1.4

and 2
√
3R ≈ 1.7 cell diameters, as illustrated in Fig. 4. We used rA = s + R = 1.5

cell diameters.
To select the remaining free parameters, we assumed that all force functions should

result in the same pairwise relaxation time after cell division. This can be seen as a basic
requirement of interchangeable force functions for a proliferating system. However, it
leads to differences in the transient relaxation dynamics in the repulsive regime, and
also to differences in forcemagnitudes in the adhesive regime. First, we illustrate these
differences. Then, we study their impact on a population level metric for a system of
proliferating cells, the population radius and examine whether the fit can be improved
by changes in the parameterization.

3.2.1 Pairwise Relaxation Dynamics

First, we considered two overlapping cells as they relax to mechanical equilibrium
right after cell division. The cells were placed at a fixed separation distance r0 = 0.3
cell diameters and the system was evolved until the overlap was eliminated due to

123



132 Page 18 of 43 S. Mathias et al.

the repulsive forces (see Fig. 2 for an illustration). Parameters were chosen to ensure
that for all force functions the relaxation time t0 is equal to 1 h. Here, we defined
the relaxation time as the time such that the distance between cells is equal to 99%
of the rest length s. The parameter values were determined numerically using the
minimize function of the scipy.optimize library in combination with our CBMOS
simulation code to calculate the separation distance as a function of the spring stiffness
μ. The resulting parameter values are stated in Table 2. Note that choosing a fixed
relaxation time in this way does not determine the parameter α of the GLS force, as α

only governs adhesive interactions. For the same reason, the choice of α will not affect
the relaxation dynamics. We therefore postpone the discussion on how to choose α

until later in this section when we consider how cells interact in the adhesive regime.
Figure 5a shows the separation in cell diameters as a function of time for the different

force functions. Over time the separation between the cells correctly approaches the
rest length for all force functions. The rate at which the overlap is eliminated, however,
differs between force functions. It decreases fastest for the cubic function and slowest
for the GLS force. This means that cells behave more or less rigidly depending on the
force function, even if they eliminate their overlap completely within the same time
duration (same relaxation time). We will see in Sect. 4.1 that these differences in the
stiffness of the system are reflected in the numerical stability bounds.

Doubling the relaxation time by halving the spring stiffness μ does not change
the qualitative dynamics but scales the time scale, compare Fig. 5a to b. This can
be seen analytically from stating the simple ODE for the distance between a pair of
mechanically relaxing cells after division,

ṙ = −2μF̂(r), (15)

where we have made the dependence on the spring stiffness μ explicit by defining
F̂(r) = 1

μ
F(r). Rescaling time as τ = μt leads to ṙ( t

μ
) = −2F̂(r( t

μ
)), meaning that

increasingμ speeds up the dynamics and decreases the relaxation time. Consequently,
a longer relaxation time decreases the stiffness of the system at the cost of having to
run simulations for a longer time. In the following, we considered the time scale on
which mechanical relaxation happens to be (arbitrarily) fixed as 1 h.

Next, we asked how cells interact in the adhesive regime when parameterized to
have the same fixed relaxation time. As explained above, this parameterization does
not determine the α parameter responsible for tuning the breadth of the adhesive inter-
actions of the GLS force. Instead, we compared two strategies for choosing α. Firstly,
we fit the GLS force to the cubic force in magnitude over the adhesive regime (strategy
#1). Here, our motivation was to make the force functions as qualitatively similar for
adhesive interactions as possible while still ensuring the same fixed relaxation time.
We chose to fit to the cubic force rather than the piecewise quadratic force due to
the simpler mathematical form and smaller number of free parameters of the former.
Since α only affects adhesive interactions, fitting over the complete regimewould have
resulted in the same parameter value. We list this α in Table 2 as α(1). Secondly, we
chose α according to Eq. (14) to ensure that the discontinuity of the GLS force at the
maximum interaction radius is small (strategy #2). We list this α in Table 2 as α(2).
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Table 2 Parameter values for a fixed relaxation time t0 of 1 h after cell division

Parameter Description Value

μcubic Spring stiffness, cubic force 5.7

μR Repulsive spring stiffness, pw. quad. force 9.1

m Ratio of adhesive to repulsive spring stiffness, pw. quad. force 0.21

μA Adhesive spring stiffness, pw. quad. force 1.91

rR Repulsive interaction distance, pw. quad. force 1.18

μGLS Spring stiffness, GLS force 1.95

α(1) Breadth of exponential, GLS force (strategy #1) 7.51

α(2) Breadth of exponential, GLS force (strategy #2) 13.76

Free parameters are printed in bold. The spring stiffness values μcubic, μR and μGLS and the ratio m
have been determined numerically by minimizing the difference between the separation distance r and
99% of the rest length s at t0, i.e. minμ ‖r(t0; μ) − 0.99s‖. Here, the minimization was done using the
minimize function of the scipy.optimize library (Virtanen et al. 2020; The SciPyCommunity 2018), where
the separation distance was evaluated for different spring stiffness values μ using our CBMOS simulation
code. For the cubic and theGLS forces theBFGSalgorithm (Nocedal andWright 2006) and theNelder–Mead
algorithm (Nelder andMead 1965;Wright 1996) were used, respectively. For the piecewise quadratic force,
theminimization was done jointly overμR and the ratiom using the L-BFGS-B algorithm (Byrd et al. 1995;
Zhu et al. 1997). Values were rounded to two decimal values, except for the ratio where they were rounded
to three decimal values. The truncated values were used in the calculation of the remaining parameters and
all subsequent numerical experiments. The adhesive spring stiffness was chosen as μA = m · μR . The
value for rR was chosen according to Eq. (12). The value for α(1) was determined by fitting the GLS force
to the cubic force in magnitude over the adhesive regime with all other parameters fixed as listed in the
table (strategy #1). The alternative value, α(2), was chosen according to Eq. (14)(strategy #2). The values
for rR and α(2) are stated here rounded; however, the exact values were used in the numerical experiments

(a) (b)

Fig. 5 Relaxation dynamics between two cells initially placed at a fixed separation of 0.3 cell diameters.
The parameters have been chosen such that the separation equals 0.99 cell diameters after (a) 1 h and (b)
2 h

Figure 6 shows the intensity of the force functions as a function of cell separation
(left column) and the resulting dynamics of adhering cells placed initially at different
centre–centre distances larger than the rest length (right column). The results for
choosing α according to strategy #1 are shown in the upper row and those for strategy
#2 in the lower row. Note that the force intensities and the separation dynamics shown
for the cubic and the piecewise quadratic forces are the same in both rows, as is the
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force intensity for the GLS force over the repulsive regime, i.e. for r < s. We can
therefore observe in both Fig. 6a and c that the cubic and the piecewise quadratic
force agree well in the repulsive regime, whereas the GLS force agrees less well
for separation values of r < 0.85 cell diameters. Furthermore, the cubic and the
piecewise quadratic forces have a similar maximum intensity in the adhesive regime,
i.e. for r > s, which is attained for slightly smaller cell separation distances for the
piecewise quadrative force than for the cubic force. The piecewise quadratic force then
shows a steeper decrease to zero magnitude at the maximum interaction distance. This
leads to the transient dynamics of adhering cells agreeing well between the cubic and
the piecewise quadratic force for cells placed at separation distances either close to
the maximum interaction distance or closer than roughly 1.3 cell diameters (Fig. 6b,
d). For intermediate separation distances, cells adhere faster when simulated with the
cubic force.

Wenow turn to theGLS force. Let us first consider strategy #1 for choosingα. In Fig.
6a, we observe that while all three force functions are similar in maximum amplitude
in the adhesive regime, the separation values for which the maximum is attained agree
better between the GLS and the piecewise quadratic forces. On the other hand, the
cubic and the GLS forces start off with a similar decrease; however, the GLS force
does not decrease to zero at the maximum interaction distance, but is discontinuous
with a jump of about 0.02 (for the given parameterization). For separation values close
to the rest length, the transient dynamics of adhering cells for the GLS force agree
well with those for the other two force functions (Fig. 6b). For intermediate separation
values, the transient dynamics generated with the GLS force agree well with those
generated using the cubic force. However, we observe that due to the differences
in force magnitude and slope close to the maximum interaction value, the transient
dynamics differ qualitatively for the three force functions for cells placed just within
interaction distance of one another. More specifically, for cells that initially were
placed just 0.01 cell diameters from the maximum interaction distance, the use of the
GLS force results in these cells touching each other after 5 h. The dynamics of those
cells simulated with the cubic and the piecewise quadratic forces, on the other hand,
remain close to the maximum interaction distance for even longer time scales.

We can recover the robustness of the transient dynamics to small perturbations of
the maximum interaction value for the GLS force by changing the parameterization
strategy for α to strategy #2 as seen in Fig. 6d. In this case, the force intensity is small
at the maximum interaction radius (Fig. 6c). However, this leads to the GLS force
having a much lower maximum intensity in the adhesive regime which is attained also
for much smaller separation values than the maxima for the cubic and the piecewise
quadratic forces. As a result, the transient dynamics for adhering cells differ qualita-
tively between the GLS force and the other two forces over a large range of separation
values.

In the next section, we will turn to investigate how these qualitative differences
between the forces—and in particular between the parameterization strategies for α

for separation values close to themaximum interaction value—affects a freely growing
monolayer under compression fromhighproliferation,where the repulsive interactions
play the major role, but adhesion between next-to-nearest neighbours is also present.

123



Impact of Force Function Formulations… Page 21 of 43 132

(a) (b)

(c) (d)

Fig. 6 (a) Intensity of the different force functions as a function of cell separation distance for the adhesive
regime. (b) Relaxation dynamics between adhering cells under the different force functions. Two cells
are initially placed at different distances within the maximum interaction distance of 1.5 cell diameters.
Different linestyles correspond to different initial separation distances between the two cells. Parameters
for both (a) and (b) have been chosen such that the force functions have the same relaxation time of 1 h
after cell division as listed in Table 2

3.2.2 Impact of the Parameterization on the Radius of a Monolayer Population
Relaxing After Intense Proliferation

As discussed in the previous subsection, calibrating the force functions to agree on the
mechanical relaxation time is a simple and computationally cheap procedure. But since
the parameterization is based on a summary statistic, the forces disagree quantitatively
both in the strongly compressed repulsive regime and in the adhesive regime. The
timescale for which the forces show large disagreement in the repulsive regime is
relatively short compared to the relaxation time. As can be seen in Fig. 6a and c the
force functions agree well in the repulsive regime at a separation of 0.85 cell diameters
or more. In Fig. 5, we see that this separation is reached in less than the first 30% of the
total relaxation time for both the shorter and longer relaxation times. The disagreement
in the adhesive regime is larger, especially when α is chosen according to strategy #2.
In this section, we investigate how these disagreements affect the relaxation of a small
growing monolayer. As we are interested in how the force functions compare when
modelling mechanical relaxation due to proliferation of the tissue, we choose a setting
of high compression by letting all cells divide simultaneously.
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In Fig. 7, we show force intensities for five (main) parameterization strategies (left
column) and corresponding simulation results for the population level radius of a
growing monolayer in two dimensions (middle and right columns). In each panel,
we show data for both (sub-)parameterization strategies for choosing the α parameter
for the GLS force (denoted by “GLS, α(1)” and “GLS, α(2)”). In the middle column,
we initialised 19 cells arranged in a honeycomb pattern. We then let all cells divide
simultaneously at the beginning of the simulation and tracked the population radius
over 10 h (in-simulation time). During this time, the resulting monolayer of 38 cells
relaxed to a mechanical equilibrium configuration. Figure 8 shows an illustration of
the procedure. For the right column, we did the same procedure for an initial honey-
comb pattern of 37 cells, resulting in a final population size of 74 cells, approximately
doubling the number of cells in our first experiment. This was done in order to empir-
ically check the robustness of our results to the size of the growing monolayer. In both
cases, the population radius was calculated by taking the maximum distance of any
cell to the centroid of the population and adding the radius R of a single cell. The
exact parameter values used for the different parameterization strategies are listed in
Table 3. Note that fitting over the complete regime or only over the repulsive regime
results in nearly identical parameters (see discussion below).

First of all, we note that our experiments showed that independently of the exact
parameterization used, all three forces are robust to the issue of collapsing volumes dis-
cussed in Pathmanathan et al. (2009), since in no case the population radius decreases
to values smaller than that of the initial configuration (see all subplots of Fig. 7).

Secondly, we observe that matching relaxation times after cell division results in
good agreement for all force functions on the population level metric despite large
force discrepancies present in the highly compressed regime, as can be seen in Fig.
7a, b and c. Empirically, this seems to hold true independently of the actual size of the
monolayer, as the curves agree very well for both monolayer sizes of initially 19 and
37 cells. Interestingly, the agreement for the GLS force is better when using strategy
#2 for choosing α (discontinuity in GLS force small at maximum interaction value)
than when using strategy #1 (forces agree well in intensity over the adhesive regime).

Fitting the force functions by minimizing the discrepancy in force intensity over
the repulsive regime works well for the cubic and the piecewise quadratic forces
but results in larger differences in population radius for the GLS force due to large
force discrepancies in the medium-to-low compressed regime (see Fig. 7d and e).
This holds true independently of which sub-parameterization strategy we choose for
α. The (main) parameterization strategy of fitting the forces in intensity over the
adhesive regime again results in worse agreement (Fig. 7g and h). Unsurprisingly, the
agreement between the GLS force and the cubic and piecewise quadratic forces is
better when using strategy #1 for α, than when using strategy #2. Nevertheless, the
agreement is worse than for other main parameterization strategies. We also attempted
to fit over the complete regime, i.e. both repulsive and adhesive, (Fig. 7j and k) but
saw no improvement compared to fitting only over the repulsive regime. This can be
explained by the fact that in our experimental set-up, where the monolayer relaxes
after intense proliferation, most interactions will be of the repulsive kind.

Finally, we parameterized the functions by fitting to the actual population radius for
the monolayer of initially 19 cells, Fig. 7m and n. The strategy here was to numerically
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fit the population radius obtained from simulations using the piecewise quadratic and
GLS forces to the population radius averaged over 10 simulations with the cubic force.
Interestingly, this approach resulted in similar force parameters to those obtained by
matching relaxation times, compare Tables 2 and 3. Again, the agreement is better
when using strategy #2 for choosing α than when using strategy #1. The increase
in computational time needed to do the same numerical optimization procedure for
the experimental set-up of initially 37 cells prohibited us from doing so. Instead we
checked how the parameters from the smaller monolayer transferred to the larger
monolayer in Fig. 7o. In contrast to when fitting to the relaxation time, the population
radius does not agree well between the different forces for this case.

In conclusion, for the initial stages of two-dimensional monolayer growth, the three
force functions we consider can all result in close macroscopic readouts (in this case
the population radius) for translations of parameters such as repulsive spring stiffness.
In this sense, they can be seen as interchangeable from amodelling perspective, at least
for themodel systemwe consider where repulsive interactions dominate over adhesive
ones. Interestingly, fitting to the relaxation time leads to better agreement than when
transferring parameters obtained from fitting directly to the population radius from a
smaller to a larger population. In the case of the GLS force, we obtained this good
agreement when choosing the α parameter such that the discontinuity was small at
the maximum interaction value (strategy #2). This indicates that for model systems
under high compression where repulsive interactions play the major role, robustness
to small perturbations in the maximum interaction radius is more important than good
agreement between force intensities in the adhesive regime. Therefore, we chose to
continue using strategy #2 in all subsequent numerical experiments, unless explicitly
stated otherwise.

Having established a way of effectively parametrizing the three forces using the
simple pairwise metric of relaxation time, we now turn to discuss how the forces
compare numerically. We will see that the fact that the force intensities differ in
the highly compressed regime can have an impact on the numerical solution of the
equations of motion.

4 Numerical Properties of Three Popular Force Functions

Given a parameterization of the various force functions that results in similar popula-
tion level behaviour, it is interesting to study the properties of the numerical solution
of the corresponding ODE (6). In particular, we are interested in differences in the
error as the system approaches equilibrium for given time step sizes Δt , since this
directly affects the simulation efficiency for any implementation of a CBM simulator.
The large force gradients right after cell divisions (when cells might overlap to a large
extent) causes the ODE system to be stiff. Commonly used explicit schemes such as
the forward Euler method are simple to implement and avoid the expensive solution of
large systems of nonlinear equations needed for implicit methods. However, explicit
methods struggle with stiff systems because the time step will be forced to take small
values in order to ensure stability and accurate resolution of the transient solution. We
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 7 Plot showing force intensities for four parameterization strategies (left column) and corresponding
simulation results for the population level radius of a growing monolayer in two dimensions of initially
19 cells (middle column) and of initially 37 cells (right column). In both settings each cell divided at the
beginning of the simulation, doubling the number of cells to 38 cells (middle column) and 74 cells (right
column), respectively. The population radius for each time point was calculated as r = R + maxi ‖xi −
1
K

∑K
i=1 xi‖2, where R = 0.5 cell diameters is the radius of a single cell and K denotes the total number

of cells. The population radius was then averaged over 10 simulation runs with different random seeds.
(a)–(c) Fit to relaxation time, (d)–(f) fit over repulsive range, (g)–(i) fit over adhesive range, (j)–(l) fit over
complete range, (m)–(n) fit to population radius for 38 cells, (o) population radius for 74 cells using the
parameter values fit to a population radius for 38 cells as shown in (m) and (n). The individual parameter
values used can be found in Tables 2 and 3
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Fig. 8 Illustration of a monolayer growing and relaxing under intense proliferation. Initially, 19 cells are
placed in a honeycomb arrangement (left). Then, all cells are simultaneously let to divide (middle). The
resulting population of 38 cells is mechanically relaxed to equilibrium and the population radius tracked
over the process (right). Note that due to adhesive forces present the equilibrium state can include slight
overlaps between cells. The procedure is done similarly for an initial placement of 37 cells (not shown)

are primarily concerned with differences in the numerical properties depending on the
force function chosen.

Similarly to the structure of Sect. 3, we start by examining the numerical stability
for the case of pairwise relaxation dynamics in Sect. 4.1 and then relate this to the
population level behaviour in Sect. 4.2. Motivated by our findings that ensuring only
stability is insufficient, we then perform a convergence study in Sect. 4.3 where we
compare first and second-order solvers.

4.1 Requiring Numerical Stability is Not Enough to Prevent Unphysical
Trajectories After Cell Division

The forwardEulermethod is the numerical schemeusedmost often inCBMimplemen-
tations. Therefore, we started by studying the effect of the time step on the pairwise
relaxation dynamics of cells after division, when simulated with this method. We
followed the same experimental set-up as in Sect. 3.2.1, but now used our own imple-
mentation of the forward Euler method to numerically solve the update equation for
the cell positions, as given in Eq. (7). Here, we were free to vary the time step Δt as
necessary.

We show the relaxation dynamics for the three force functions and different time
steps in Fig. 9.We observe three types of behaviours of the numerical solution depend-
ing on the time step size. Firstly, if the time step is too large, the movement of the cells
centres in one time step can be so large so that cells immediately separate and remain
far from each other, independent of the duration of the simulation. This behaviour
can be seen in Fig. 9d for the cubic and the piecewise quadratic forces. The reason is
that the centre–centre distance exceeds the adhesion threshold. Secondly, for smaller
time steps, we can observe dynamics where the cells overshoot but adhere and we
eventually recover the correct separation distance at equilibrium (Fig. 9b for the cubic
force, Fig. 9c for the cubic and piecewise quadratic forces and Fig. 9d for the GLS
force). Numerically, this corresponds to a stable solution for a time step Δt smaller
than a threshold Δt∗stab. However, this behaviour leads to unphysical cell trajectories
after division. Therefore, it is important that the time step is small enough to ensure
monotone, smooth and accurate relaxation of daughter cells following the division of
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themother cell. This third behaviour can be seen in Fig. 9a for all three force functions,
in Fig. 9b for the piecewise quadratic and the GLS force and in Fig. 9c only for the
GLS force. From a numerical viewpoint, this desired behaviour ensuring physically
realistic cell trajectories can only be observed for time steps below a certain threshold
Δt∗mono. The exact thresholds for this critical time step are force function (and solver)
dependent.

For the case of pairwise relaxation after cell division using the forward Euler
method, as we consider here, the thresholds for monotonicity and stability can be
calculated as

Δt∗mono = r0 − s

2F(r0)
and Δt∗stab = r0 − s

F(r0)
. (16)

Note that the monotonicity threshold is exactly half the stability threshold. These
bounds can be derived as follows. Applying the forward Euler method, Eq. (7), to the
update equation for the case of pairwise relaxation, Eq. (15), the expression for the
iterates rn reads,

rn+1 = rn − 2Δt F(rn). (17)

To ensure stability, we require that the difference between the rest length s and the cell
separation distance r is decreasing in absolute value for subsequent iterates, i.e. that

|s − rn+1| ≤ |s − rn|, (18)

(see also e.g. (Ascher and Petzold 1998) for a standard derivation of the (absolute)
stability restrictions on the forwardEulermethod). Themonotonicity bound is obtained
by further requiring that the difference between the rest length s and the cell separation
distance r is positive for all iterates meaning that the iterates rn do not overshoot, i.e.

0 ≤ s − rn . (19)

Since in our case the pairwise interaction force F is negative and monotonically
increasing for separation distances smaller than the rest length, i.e. for r < s, the
bound will be determined by the restriction on Δt in the first step and hence will
depend on the initial separation distance r0 between cells after division. This means
that we obtain Eq. (16) by evaluating Eq. (17) for n = 0 and plugging it into Eqs. (19)
and (18).

Δt∗mono implies an upper limit on the error in the transient phase for pairwise relax-
ing cells in order to ensure physical division trajectories. When comparing different
numerical schemes, this limit will be met for different Δt∗mono. The error, and hence
Δt∗mono, depends both on the relaxation time (stiffness) and the local truncation error
of the scheme. The force function chosen directly affects the stiffness of the system.
Table 4 lists the threshold values for the three force functions. When fitted to have the
same relaxation time, the GLS force allows for larger time step sizes than the piece-
wise quadratic force. The cubic force function has the smallest, i.e. the most restrictive
bounds.
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(a) (b)

(c) (d)

Fig. 9 Stability of the numerical solution for the relaxation dynamics between daughter cells under different
force functions. (a) Δt = 0.025h, (b) Δt = 0.075h, (c) Δt = 0.1h, (d) Δt = 0.2h. Note that the legend
shown in panel (a) is valid for all panels. For reference, the dotted curves correspond to an accurate solution
(less than 1% relative error) calculated using Δt = 0.005h

Table 4 Table containing the monotonicity bounds Δt∗mono and stability bounds Δt∗stab for the relaxation
dynamics of pairwise overlapping cells when solved using the forward Euler method in combination with
the different force functions

Force function Δt∗mono Δt∗stab
Cubic 0.0609 0.1218

Pw. quad. 0.0912 0.1823

GLS 0.1491 0.2982

The values were obtained by evaluating Eq. (16) for r0 = 0.3 cell diameters and the force parameters
according to Table 2 (using α(2)) and are given in hours

In Fig. 10, we studied the dependence of the stability and monotonicity bounds
on the free parameters of the three force functions. We observed that the qualitative
dependence of the bounds on the spring stiffness parameter agrees across all three
forces. However, the parameter point corresponding to a consistent relaxation time of
1 h is situated very differently on the curves, resulting in large quantitative differences
in the threshold values for our parameterization.

This points to another related, important practical consideration for a modeller,
namely that the numerical properties for any scheme will depend on the physical
parameters of the force function. When conducting e.g. parameter sweeps to study
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(a) (b)

(c) (d)

Fig. 10 Stability and monotonicity bounds on Δt given by Eq. (16) as a function of force function param-
eters. The stars highlight the parameter values for which the force functions agree on a relaxation time of
1 h. (a) Cubic force, (b) GLS force, (c) piecewise quadratic force, fixed ratio m = 0.21, (d) piecewise
quadratic force, fixed repulsive spring stiffness μR = 9.1

(a) (b)

Fig. 11 Comparison of themonotonicity boundΔt∗mono (c.f. Eq. (16)) as a function of (a) the spring stiffness
μ, respectively, μR and (b) the relaxation time for the different forces. The stars highlight the parameter
values for which the forces agree on a relaxation time of 1 h as given in Table 2 (using α(2)). For the
piecewise quadratic force, the ratio was fixed as m = 0.21
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the sensitivity of some metric of interest, it is important to remember this since if the
same time step is used and it is too large, one can easily end up in situations where one
starts violating the monotonicity condition. Figure 11a quantifies this by plotting the
monotonicity threshold Δt∗mono as a function of the spring stiffness parameter for the
three force functions in a single plot. As can be seen, all force functions show the same
qualitative behaviour as μ is varied. Since the spring stiffness μ scales inversely with
the relaxation time t0 (compare with the discussion in Sect. 3.2.1), the dependence of
Δt∗mono on the relaxation time is linear, as shown in Fig. 11b.

We can conclude that requiring stability of the numerical solution is insufficient
for ensuring that cell trajectories are physically correct after division. Furthermore,
we observed that the three forces put different restrictions on the time step size, with
the GLS force allowing for the largest step sizes while still qualitatively correctly
resolving the dynamics for daughter cells after division. We now move on to relate
our findings for this case of pairwise interaction to the population level behaviour of
a monolayer population under intense proliferation.

4.2 Too Large Step Sizes can Lead to Geometrical Differences at the Population
Level

In the previous section, we studied the case of pairwise interactions between cells.
These bounds will not hold exactly for more complex systems because the underlying
ODE system to be solved is more involved. Similarly to Sect. 3, we here empirically
relate the findings for the pairwise case to the case of simulating the positions of
cells and the population radius of a monolayer population. Although it is unclear how
to precisely relate the two cases mathematically, one can expect that not ensuring
physicality of the trajectories of the daughter cells after cell division will have an
impact on the population level behaviour.

The three upper rows of Fig. 12 show an example realisation of a monolayer pop-
ulation relaxing to a mechanical equilibrium after simultaneous cell divisions for
different time steps under the three force functions. The leftmost column corresponds
to an accurate solution at tend = 10 h, and the other two columns show the population
for larger time step values at the same end time. We note that all chosen time steps lie
within the stability bounds calculated for the pairwise relaxation case in the previous
section, but not all lie within the monotonocity threshold (compare with Table 4).
The random seed was fixed across time steps and force functions for this experiment,
resulting in consistent cell division vectors. This means that all observed differences in
the geometrical configurations are purely due to the accuracy of the numerical solution
and to potential differences in the force functions.

As can be seen by comparing the simulations in the leftmost columns (Fig. 12a,
d and g), we observe an almost identical positioning of the cells for the piecewise
quadratic and GLS forces, with only slight differences from the cubic force for an
accurately resolved simulation. To quantify this, the relative differences in centre
positions between simulations using the GLS and the piecewise quadratic forces are
2.9% and between the GLS and cubic forces 3.1%. These simulations were computed
with a small time stepΔt = 0.005 h, leading to a relative discretization error in centre
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positions of 0.5%for the cubic force and slightly less for the piecewise quadratic (εrel =
0.4%) and the GLS forces (εrel = 0.3%). This illustrates that the parameterization
strategy we have chosen, i.e. to match the pairwise relaxation time, also results in
very similar dynamics even on the level of centre positions for initial stages of a two-
dimensional monolayer growth given an accurate enough numerical solution to the
equations of motion.

On the other hand, we observe relatively large geometrical deviations from the
well-resolved case for all three force functions as we increase the time step sizes, but
like in the pairwise case, the sensitivity depends a lot on the force function (Fig. 12c, f,
i). Consistent with the fact that it had the strictest threshold for dynamics of pairwise
relaxing cells, these geometrical differences are biggest for the cubic force function
(Fig. 12a–c), and again, the GLS force is most robust to variations in the time step
(Fig. 12g–i) with the piecewise quadratic force falling in between (Fig. 12d–f). This
is more easily seen in Fig. 12j–l where we show the population radius as a function of
time for different step sizes for each of the force functions. Again, the radius is most
sensitive to the time step under the cubic force.

In summary, the experiment in this section illustrates that the consequences on pop-
ulation level behaviour can be substantial if the time step is not chosenwith care.Again,
we emphasize that for an accurate numerical solution (leftmost column), simulations
with all three force functions—if appropriately parameterized—result in geometrically
very close solutions, while the sensitivity to the time step size differs substantially.

4.3 Convergence Study for First- and Second-Order Explicit Methods

In order to quantify the effect of the time step, we conducted a convergence study for
each of the three experimental set-ups we have considered until now: (i) relaxation of
overlapping cells after cell division simulated until T = 1 h, (ii) pairwise dynamics of
closely adhering cells, initially placed at a distance of 1.15 cell diameters and simulated
until mechanical relaxation at T = 3 h and (iii) mechanical relaxation of two small
proliferating monolayers of initially 19 and 37 cells simulated until T = 4 h. We
considered the forward Euler method, the midpoint method and the Adams–Bashforth
method. The forward Euler method—used in the majority of CBM software—is first
order, as confirmed by the convergence graphs. Themidpoint and the Adam-Bashforth
methods are commonly used second-order schemes, where the latter is also the default
solver in the PhysiCell software (Ghaffarizadeh et al. 2018).

Figure 13 shows the relative error in the numerical solution as a function of time
step, force function and numerical scheme in log-log plots. For a discrete time step
Δt , we computed the relative error as

εrel = ‖yΔt − yref‖2
‖yref‖2

. (20)

Here, yref is a gold standard reference solution computed with a very small time
step for the respective force function. We used Δtref = 1 × 10−5 h for case (i),
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 12 Impact of the time step size on the geometrical shape of a population and its radius. First row: 2D
plots of a monolayer population simulated with the cubic force simulated for 10 h with the forward Euler
method and different time step sizes, (a) Δt = 0.005 h, (b) Δt = 0.075 h and (c) Δt = 0.1 h. Second
row: same set-up simulated with the piecewise quadratic force. Third row: same set-up simulated with the
GLS force. All time step values lie within the stability region of the forward Euler method for all three
force functions. The last row shows the radius of a monolayer population over time. Initially the population
consisted of 19 cells arranged in a regular honeycomb pattern. All cells divided simultaneously once at the
beginning of the simulation (cell division vectors were consistent across time steps and force functions due
to the random seed being fixed). Then, the population was allowed to relax to a mechanical equilibrium
configuration. Results are averaged over 10 simulation runs. The force function used was (j) the cubic force,
(k) the piecewise quadratic force and (l) the GLS force
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Δtref = 1×10−4 h for case (ii), and Δtref = 5×10−4 h for case (iii). We interpolated
the coarser solution yΔt down to the fine time grid used for yref.

As can be seen in Fig. 13, all three tested schemes show the expected convergence
rate—first-order for the forward Euler method and second-order for the midpoint and
the Adams–Bashforth methods—for all three test cases, i.e. for the pairwise relaxation
case (Fig. 13a–c), for relaxation in the adhesive regime (Fig. 13d–f) and for the centre
positions in two monolayers of different sizes (Fig. 13g–i, j–l), provided Δt is chosen
small enough. The errors are larger overall for the repulsive part than for the adhesive
one. This means that if we choose a time step that accurately resolves the transient
repulsive regime we do not need to worry about the adhesive regime. This holds for
all solvers and all force functions.

From the convergence study, we can draw some conclusions about the computa-
tional efficiency associated with the numerical methods and force functions. As can
be seen, both second-order methods allow for approximately 4–5× larger time steps
than the forward Euler method at a relative error level of 1%, and up to approximately
10× at 0.1%. This is a substantial difference that is likely to lead to computational
efficiency improvements in a state-of-the art implementation, even if two force func-
tion evaluations are needed at each time step rather than a single one for the forward
Euler method. The midpoint method shows slightly better properties than the Adams–
Bashforthmethod for large time steps. For this parameterization of the force functions,
which results in close two-dimensional monolayer dynamics, the GLS force allows
for up to 3–4× larger time steps with all solvers compared to the piecewise quadratic
force, which in turn allows for 2× larger time steps than cubic. This is consistent with
the observations in the previous section and is a consequence of the faster asymp-
totic drop-off in force for the cubic force (it behaves more rigidly than the piecewise
quadratic force which in turn leads to more rigid cells than GLS).

In summary, assuming we want the relaxation dynamics after cell division resolved
to a relative error of 1% in our simulation, the difference in time step between choosing
the GLS force function and the midpoint method versus the cubic force and forward
Euler method is an order of magnitude in our experiments. However, it will lead to
almost identical simulations of the radius of a growing monolayer. This highlights
the fact that substantial computational savings can be expected if force and numerical
method are chosen carefully.

We note here that there are of course other differences between the force functions
that might affect a modellers choice, such as the degree of flexibility with which
repulsion and adhesion can be chosen independently of each other. We also note that it
is in general hard or impossible to a priori relate the error for the simple pairwise case
to more complex summary statistics of simulations of large, complex systems. For
this reason, a good recommendation for choosing the time step a priori is to choose
it such that the error in pairwise relaxation is small, since it is likely that the case of
two cells undergoing transient relaxation from a highly compressed state represents
the worst-case behaviour in a complex tissue simulation since there are no balancing,
opposite forces from surrounding cells.

From a pure numerical robustness point of view, the GLS force shows some advan-
tages over the piecewise quadratic and the cubic force in our experiments; however,
here there are situations that need to be treated carefully. Recall that after comparing the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 13 Impact of time step size on the relative error for the different combinations of forces and numerical
solvers tested on the three model problems (i)–(iii). (a–c) Convergence study for the relaxation experiment
(i), initial separation 0.3 cell diameters, (d–f) convergence study for adhering cells (ii), initial separation
1.15 cell diameters, (g–i) convergence study for a monolayer population of 38 (initially 19) cells and (j–l)
convergence study for a monolayer population of 74 (initially 37) cells (iii). The numerical solver used was
(a, d, g, j) the forward Euler method, (b, e, h, k) the midpoint method and (c, f, i, l) the Adams–Bashforth
method. The axes of the plots are in logarithmic scale. The dotted lines show a linear (for plots (a, d, g, j))
and a quadratic function (all other plots) to facilitate observation of the convergence order

effect of two different strategies for choosing its parameter α on the transient dynamics
of adhering cells and their impact on the population-level behaviour in Sect. 3.2, we
had chosen α such that we ensure a smooth drop-off to zero in force magnitude at the
adhesive cut-off rA (strategy #2), as this provided a better agreement of the population
radius. Figure 14 shows the convergence of the forward Euler, the midpoint and the
Adams–Bashforth methods for the GLS force when we instead chose α independently
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(a) (b) (c)

Fig. 14 Convergence study for a monolayer population consisting initially of 19 cells. The parameter α of
the GLS force was chosen independently of the spring stiffness μ as α = 7.51 by fitting force intensities
over the adhesive regime (strategy #1 in Sect. 3.2.1). The numerical solver used was (a) the forward Euler
method, (b) the midpoint method and (c) the Adams–Bashforth method. The axes of the plots are in
logarithmic scale. The dotted lines show a linear (plot (a)) and a quadratic function (plots (b) and (c)) to
facilitate observation of the convergence order.

of the spring stiffness parameter μ as α = 7.51 according to strategy #1. As can be
seen, this choice of parameter leads to a loss of second-order convergence for both
the midpoint and the Adams–Bashforth methods. This is because of the discontinuity
in the force at the maximum interaction distance rA. This illustrates that in particular
when considering the use of higher-order methods, care needs to be taken to assure
sufficient smoothness of the force function. The higher the order of the method, the
more smoothness is needed.

4.4 Comparison of Execution Times for First- and Second-Order Explicit Methods

To summarize our findings from the previous section, we should in general be able
to expect computational efficiency gains of using a second-order solver such as the
midpoint or the Adams–Bashforth method over the forward Euler method (unless
we allow for quite large errors in the pairwise relaxation dynamics (around 10%
or higher)). Their second-order convergence means that this advantage grows the
more well resolved we want our simulation to be. To get a feel for the gain, we
lastly compared execution times for first- and second-order solvers. Figure 15 shows
the wall clock time for the simulation of a monolayer of 400 cells for the different
combinations of forces and numerical solvers. As in our other experiments, all cells
divided simultaneously at the beginning of the simulation. The time step sizes were
chosen to satisfy a relative accuracy of εrel = 10−3 and are stated in Table 5 along with
the number of steps of that size necessary to simulate the mechanical relaxation of the
monolayer for 4 h in-simulation time.Weobserve significant gains of using the second-
order midpoint and Adams–Bashforth methods for all three force functions compared
to using the forward Euler method. For example, using the piecewise quadratic force
and the midpoint method required less than 20 seconds, whereas using the same force
and the forward Euler method took more than 40 seconds, i.e. double the time. Again,
the cubic force performed slightly worse than the GLS and the piecewise quadratic
forces, due to needing smaller time steps to resolve to the same accuracy (compare
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Table 5 Time step Δt and number of steps N required for resolving the trajectories of a monolayer of 400
cells until time tfinal = 4 h for a relative accuracy of εrel = 10−3 for the different combinations of forces
and numerical solvers

Forward Euler Midpoint Adams–Bashforth

Cubic force Δt = 0.0050, N = 800 Δt = 0.0238, N = 169 Δt = 0.0191, N = 210

Pw. quad. force Δt = 0.0063, N = 635 Δt = 0.0373, N = 108 Δt = 0.0373, N = 108

GLS force Δt = 0.0122, N = 328 Δt = 0.0582, N = 69 Δt = 0.0582, N = 69

Fig. 15 Average execution time for a relaxing monolayer initially consisting of 400 cells for a relative
accuracy of εrel = 10−3 for the different combinations of forces and numerical solvers. All cells divided at
the beginning of the simulation. The monolayer then relaxed to mechanical equilibrium until time tfinal =
4 h. EF—the forward Euler method, MD—the midpoint method, AB—the Adams–Bashforth method. One
hundred simulations were run for each case and the error bars are one standard deviation around the mean
value

with Table 5). We stress that these gains can be expected to be even larger for a
high-performance implementation.

5 Discussion and Conclusion

In this paper, we have systematically studied to what extent the choice of the pairwise
interaction force inCBMOSsimulations affects the numerical robustness and accuracy
of simulations.Wehave also introduced an empiricalwayof calibrating different forces
to give a similar population-level behaviour for two-dimensional monolayer growth
where repulsive interactions between cells dominate over adhesive ones.

The motivation for our study was twofold. Firstly, when engaging in modelling
projects using open-source tools such asMecaGen, PhysiCell and Chaste, the question
naturally arises to what extent the different default forces used—cubic, piecewise
quadratic or GLS—will lead to any significant difference in the results. We focused
on these three forces, because in our opinion they are those a modeller new to the
field might come in contact with most easily. Secondly, given the assumption that the
force functions are interchangeable from a modelling perspective, we were interested
in whether their detailed form and implementation could have a significant impact on
the simulation efficiency.

123



Impact of Force Function Formulations… Page 37 of 43 132

To study these questions, we considered the simplest possible implementation of a
centre-based model (as described in Sect. 2). All code, tests and Jupyter Notebooks
necessary to reproduce our study are available on GitHub. There are many more phys-
ically realistic and intricate implementations of neighbourhood definitions, the cell
cycle and cell proliferation. However, this simple formulation is still widely adopted
since it is most computationally efficient. This is important for a CBM because the
target cell counts in simulations can be in the millions or higher, at least in the case
of high-performance and parallel implementations. Our study focused on how the
force function choice and the numerical solver affect the total number of time steps
necessary to achieve a given accuracy in cell trajectories. Therefore, we did not aim
to quantify nor optimise the performance per individual time step (e.g. we did not
implement bounding boxes as discussed in Sect. 2.3), since such per-time-step opti-
misations would have benefitted all our studied configurations equally. Instead, the
implementation was optimised to allow easy control of the numerical aspects of the
simulation.

To be able to quantitatively compare numerical properties we focused on twomodel
systems. The first was the pairwise relaxation dynamics following the placement of
two cells with an overlap r0, as considered similarly in the supplementary information
of the PhysiCell software (Ghaffarizadeh et al. 2018). The second was the mechanical
relaxation of a two-dimensional monolayer after intense proliferation. By asking that
all three force functions we considered should result in the same (or rather very close)
population radius,we could parameterize all forces to agree qualitatively. Interestingly,
matching the pairwise relaxation times resulted in almost the same population-level
dynamics for two different monolayer sizes. Future work should check if this still
holds true for spheroid growth in three dimensions. Based on this parameterization,
we could conclude that from a purely numerical efficiency point of view, there can be
significant performance differences between the studied force functions if the objective
is to simulate the same population-level metric.

The above parameterization based on the pairwise relaxation time did not determine
the α parameter of the GLS force due to this force having two different functional
forms in the repulsive and the adhesive regime. Instead, we compared two sub-
parameterization strategies for α. In the first, strategy #1, we fit the GLS force in
intensity to the cubic force over the adhesive regime. In the second, strategy #2, we
chose α depending on the spring stiffness such that the discontinuity of the GLS force
was small at the maximum interaction distance. Both strategies resulted in qualita-
tively different transient dynamics for adhering cells (see Fig. 6). Interestingly, when
studying how the fit to relaxation time transferred to the population level behaviour,
the agreement in population radius was better for strategy #2. Future work should
study if this holds true for more dispersive model systems where adhesive interactions
dominate over repulsive forces. Moreover, the choice of strategy #2 also led to better
numerical properties, see Fig. 14 and the discussion below.

An important assumption considered in the present work concerns the orientation
of cell division. In all our simulations, the axis crossing the centres of two daughter
cells upon cell division was chosen randomly. In some biological situations, however,
cells tend to divide according to a specific direction. This mechanism plays a vital role
in several biological processes, and especially in morphogenesis (Wyngaarden et al.
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2010; Kaucka et al. 2017). There exist several computational models belonging to
the cell-based type which study the mechanisms underlying oriented cell division and
their role in embryogenesis and morphogenesis (Delile et al. 2017; Gord et al. 2014).
These models show that the tissue elongates in the direction in which cells tend to
divide. We did not study the impact of the force function formulation on this specific
question because it was out of the scope of the present work. However, we expect that
choosing large time steps would significantly increase the extent to which the tissue
will be elongated.

Our study complements both the literature on comparisons of different types of
CBMs (Osborne et al. 2017; Pathmanathan et al. 2009) and other careful evaluations
of numerics for one particular force function (Ghaffarizadeh et al. 2018). One central
issue we focused on is the possible overshoot for too large time steps for highly
compressed cells right after cell division due to unphysically large force magnitudes.
This problem is well known in the CBMmethods developer community and different
ways of dealing with it have been suggested (Van Liedekerke et al. 2018; Schaller and
Meyer-Hermann 2005). Since the solution does not necessarily become numerically
unstable and obviously wrong (see Fig. 12), there is a real risk for misinterpretations
of results, not only quantitatively (which would be less of an issue given the large
uncertainties in the model and the many model assumptions), but also qualitatively.
An example of this are the clear differences in the visual appearance of the geometry,
for example, a more loose structure with diffuse borders in Fig. 12c) caused by time
steps violating themonotonicity threshold. There is a risk for attributing this difference
to the physical parameters of the model. We contributed here with a quantitative,
numerical analysis of this problem for the model problem of two cells relaxing right
after cell division. In particular, we show how to compute limits on the time step
to ensure a monotone solution without overshoot and compare such limits for the
three force functions under study. Again, we emphasize that even for the forward
Euler method—the dominating scheme used in implementations to solve the functions
of motion—these limits are accuracy-based and not based on the formal numerical
stability of the solution. In fact, for the forward Euler method this monotonicity bound
is half as large as the stability bound.

In comparing errors and convergence with two commonly used second-order
schemes, we found it likely that second-order schemes, such as the Adams–Bashforth
method used in PhysiCell (Ghaffarizadeh et al. 2018) should provide a computational
gain in high-performance implementations even if they require a more expensive
update step. The gain becomes larger and larger the more accurately cell trajectories
need to be resolved but outperforms the forward Euler method in our experiments even
for modest accuracy requirements. Of the forces we considered, the GLS force used
in Chaste (Cooper et al. 2020) has the best numerical robustness properties and leads
to the lowest discretization errors, both for first- and second-order solvers. The cubic
force function was most sensitive to changes in numerical parameters and required
overall smaller time steps than both the piecewise quadratic and the GLS forces.

However, as seen in Sect. 4.3, care needs to be taken with the GLS force to choose
parameters to preserve second-order convergence for second-order schemes. In gen-
eral, sufficient smoothness of the force is a requirement for higher-order convergence
and would likely become an issue also for the piecewise polynomial force for e.g.
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Runge–Kutta schemes unless the degree of the polynomial is chosen to match the
order of the scheme (Ghaffarizadeh et al. 2018). We also note here that the challenge
is to resolve the transient solution right after cell division and while a higher-order
scheme allows for larger time steps than the forward Euler method, another possible
approach to improve efficiency is time step adaptivity (Schaller and Meyer-Hermann
2005; Van Liedekerke et al. 2018; Atwell 2016). In such a setting it could be inter-
esting to consider switching between implicit and explicit schemes during the course
of a simulation. In general, however, it is unlikely in our opinion that using (only)
higher-order implicit schemes would be beneficial for large systems, due to the sub-
stantial increase in cost per time step. One way to think about this is that we show (for
the examples that we consider) that the time step is not necessarily governed by the
numerical stability of the scheme. Instead accuracy requirements and requirements
posed by maintaining a physically realistic solution force time steps to be smaller than
the stability bound. This suggests that the potential benefits of using implicit schemes
might not be realized.

To conclude, it is not possible to make a firm statement about what combination of
force function and solver to use as a default based only on our study, since there are both
qualitative and quantitative aspects to that question. For example, from a qualitative
point of view, the piecewise quadratic force used in PhysiCell (Ghaffarizadeh et al.
2018) permits greater flexibility to vary the repulsive and adhesive spring stiffness
parameters independently of each other, which is a very good feature for parametric
studies. Other physics-based force functions not studied here such as the extended
Hertz force (Drasdo et al. 2007) have the advantage of experimentally measurable
parameters. The GLS force is the least flexible when it comes to the ability to be tuned
to match dynamics of other force functions and it changes functional form in the
adhesive regime. Finally, there are many important considerations when choosing a
force function, such as physical realism, modelling flexibility, ease of implementation,
etc. However, given a specification of those requirements, we demonstrated here that
the difference in time steps for a given accuracy could easily be as big as an order of
magnitude for a highly resolved simulation purely dependent on the specifics of the
force choice.
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