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Abstract
We further clarify the relation between detailed-balanced and complex-balanced equi-
libria of reversible chemical reaction networks. Our results hold for arbitrary kinetics
and also for boundary equilibria. Detailed balance, complex balance, “formal bal-
ance,” and the new notion of “cycle balance” are all defined in terms of the underlying
graph. This fact allows elementary graph-theoretic (non-algebraic) proofs of a pre-
vious result (detailed balance = complex balance + formal balance), our main result
(detailed balance = complex balance + cycle balance), and a corresponding result in
the setting of continuous-time Markov chains.

Keywords Chemical reaction network · Arbitrary kinetics · Graph theory · Induced
graph · Mixed graph

1 Introduction

Detailed balance and complex balance are important concepts in chemical reaction
network theory (CRNT). Both principles have been proposed already in the 1870s
and 1880s by Ludwig Boltzmann in the kinetic theory of gases (where complex bal-
ance is called semi-detailed balance) (Boltzmann 1872, 1887). Around 1900, Rudolf
Wegscheider introduced the principle of detailed balance in the field of chemical
kinetics (and obtained the necessary conditions on the rate constants named after
him) (Wegscheider 1901). Only in the 1970s, Horn and Jackson developed the concept
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of complex balance (as a generalization of detailed balance) in modern CRNT (Horn
and Jackson 1972).

Complex-balanced (CB)mass-action systems display remarkably robust dynamics.
If one positive equilibrium is CB, then so is every other equilibrium, which justifies
calling the entire system CB. Moreover, there is exactly one positive equilibrium in
every stoichiometric class (invariant set), and this equilibrium is asymptotically stable
(implied by a strict Lyapunov function) (Horn and Jackson 1972). In various important
cases, it has been shown that positiveCBequilibria are globally stable (Anderson 2011;
Craciun et al. 2013), a property that is conjectured to hold for all CB systems (Horn
1974; Craciun 2015). Finally,mass-action systems that are not CBmay be dynamically
equivalent to CB systems and have all their strong properties (Craciun et al. 2020).

For mass-action kinetics, complex balance has been characterized by Horn (1972),
and explicit conditions on the “tree constants” of the underlying graph have been pro-
vided by Craciun et al. (2009); see also (Johnston 2014; Müller and Regensburger
2014). Detailed balance has been characterized by Feinberg (1989) and Schuster and
Schuster (1989). Feinberg obtains two classes of conditions on the equilibrium con-
stants: γ = r − m + � “circuit conditions” and δ = m − � − s “spanning forest
conditions.” Thereby, δ is the deficiency of the network Feinberg (1972/73), and γ is
the cycle rank (cyclomatic number) of the underlying (undirected) graph (Berge 1962).
That is, r is the number of reversible reactions (pairs of edges), m is the number of
complexes (vertices), � is the number of linkage classes (connected components), and
s is the rank of the stoichiometric matrix. Schuster and Schuster consider “generalized
mass-action kinetics” in the sense that the net reaction rate contains a mass-action fac-
tor (as for enzyme kinetics). They provide “generalized Wegscheider’s conditions” on
the equilibrium constants; in fact, they obtain r − s (= γ +δ) independent conditions.
Finally, Dickenstein and Perez-Millan have shown that, given the circuit conditions
(“formal balance”), the conditions on the tree constants (complex balance) agree with
the spanning forest conditions on the equilibrium constants (detailed balance). That is,
detailed balance is equivalent to complex balance plus formal balance, and the result
can be extended from mass action to “general kinetics” (Dickenstein and Pérez Mil-
lán 2011). For mass action, an alternative proof has been given in van der Schaft
et al. (2015). For stochastic mass action, the stationary distribution of the resulting
continuous-time Markov chain is a product-form Poisson distribution if and only if
the underlying deterministic system is CB (Anderson et al. 2010; Cappelletti andWiuf
2016). If a CB system is also detailed-balanced, then the stationary solution is detailed-
balanced (reversible) (Joshi 2015). For other aspects of detailed and complex balance,
see, e.g., (Müller and Hofbauer 2015; Feliu et al. 2018).

In this work, we provide new conditions on a complex-balanced equilibrium of a
reversible chemical reaction network to be detailed-balanced. As just stated, a char-
acterization has already been obtained in Dickenstein and Pérez Millán (2011). On
the one hand, we give an elementary graph-theoretic (non-algebraic) proof of the
previous result (without using the conditions on the tree/equilibrium constants for
complex/detailed balance). On the other hand, we show that complex balance plus a
condition significantly weaker than formal balance, namely the absence of directed
cycles in an induced (mixed) graph, is equivalent to detailed balance. The result imme-
diately holds for arbitrary kinetics and also for boundary equilibria. Since our proof
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is based on the induced graph, it can be applied in other settings with an underlying
graph structure. We illustrate this via continuous-time Markov chains.

The work is organized as follows. First, we present the elementary argument (bal-
ance in mixed graphs) that is common to all types of networks. Then, we apply it
to different types of networks (balance in reaction networks and balance in Markov
chains).

2 Balance in Mixed Graphs

The object of the study in this section is a simple mixed graph. Recall that a mixed
graph contains undirected and directed edges, in general, and that a simple mixed
graph does not contain multiple edges (connecting two vertices) or loops (connecting
a vertex to itself).

Let G = (V ,U , D) be a simple mixed graph (with vertices V , undirected edgesU ,
and directed edges D). Explicitly, if two vertices v, v′ ∈ V are connected by an edge,
then v �= v′ and exactly one of the following holds: (v −− v′) ∈ U , (v → v′) ∈ D, or
(v ← v′) ∈ D.

A path is a (finite or infinite) sequence of edgeswhich connect a sequence of distinct
vertices. For finite paths, the first and last vertex may be identical, in which case the
path is a cycle. A path is called directed if it contains only directed edges and all edges
have the same direction (along the path). In other words, a path connecting the vertices
v, v′, v′′, . . . is directed if v → v′ → v′′ → . . . or v ← v′ ← v′′ ← . . .. A path is
called weakly directed if it contains a directed edge and all directed edges have the
same direction.

An edge is called balanced if it is undirected. A vertex is called balanced if the set
of incident edges contains either only undirected edges or a pair of oppositely directed
edges (with respect to the vertex). In other words, a vertex v is balanced if the existence
of v′ with v′ → v implies the existence of v′′ with v → v′′ and vice versa. Note that
v′ �= v′′ by the simplicity of the graph.

G is called edge-balanced/vertex-balanced if every edge/vertex is balanced.

2.1 Finite Graphs

An edge-balanced graph has only undirected edges and therefore is vertex-balanced
and contains no directed cycle. In the following, we show the converse.

Proposition 1 Let G = (V ,U , D) be a finite, simple mixed graph. If G is vertex-
balanced, but not edge-balanced, then it contains a directed cycle.

Proof Assume that G is vertex-balanced and that there exists a directed edge v → v′.
Byvertexbalance forv′, there exists a correspondingdirected edgev′ → v′′. Repeating
this argument, we construct a directed path v → v′ → v′′ → . . . which, by the
finiteness of the graph, eventually yields a directed cycle. ��
The main result used in the following section is the contrapositive of Proposition 1,
which we state as a theorem.
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Theorem 1 Let G = (V ,U , D)be a finite, simplemixed graph. If G is vertex-balanced
and contains no directed cycle, then it is edge-balanced.

2.2 Infinite Graphs

A directed path is called bi-infinite if it connects a bi-infinite sequence of vertices.
Bi-infinite directed paths can be viewed as a “directed cycles of infinite length.”

Proposition 2 Let G = (V ,U , D) be a simple mixed graph. If G is vertex-balanced,
but not edge-balanced, then it contains a directed cycle or a bi-infinite directed path.

Proof Analogous to the proof of Proposition 1. ��
Again, as a main result, we state its contrapositive.

Theorem 2 Let G = (V ,U , D) be a simple mixed graph. If G is vertex-balanced and
contains no directed cycle or bi-infinite directed path, then it is edge-balanced.

As a consequence, if G is vertex-balanced and contains no directed cycle, then it
cannot have a finite number of directed edges.

3 Balance in Reaction Networks

In the following, we denote the positive real numbers by R> and the nonnegative real
numbers byR≥. For a vector x ∈ R

n , we denote its support by supp(x) = {i | xi �= 0}.
For x, y ∈ R

n≥, we define x y = ∏n
i=1(xi )

yi ∈ R≥.
A chemical reaction network (G, y) is given by a finite, simple directed graph

G = (V ,R) and a map y : V → R
n≥. To each vertex i ∈ V , a vector (complex)

y(i) ∈ R
n≥ is assigned. Complexes represent formal sums of n chemical species

which are the left- and right-hand sides of chemical reactions.
As an example, consider the “network” consisting of the single reaction A+B → C ,

involving the three species A, B,C . The underlying graph has two vertices, say 1 and
2, and one edge, 1 → 2, that is, G = ({1, 2}, {1 → 2}). The left-hand side of the
reaction is a formal sum of species A and B, and the right-hand side equals species C ,
that is, they are represented by the complexes y(1) = (1, 1, 0)T and y(2) = (0, 0, 1)T ,
respectively.

A kinetic system (G, y, r) is given by a chemical reaction network (G, y), where
G = (V ,R), and a map r : R → (Rn≥ → R≥). To each edge (i → j) ∈ R, a rate
function (kinetics) ri→ j : Rn≥ → R≥ is assigned.

The resulting dynamical system for the concentrations x ∈ R
n≥ (of n chemical

species) is defined as

dx

dt
=

∑

(i→ j)∈R

(
y( j) − y(i)

)
ri→ j (x). (1)
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Remark For “general kinetics,” it is often assumed that ri→ j (x) > 0 if and only if
supp(y(i)) ⊆ supp(x). Then, x ∈ R

n
> implies r(x) ∈ R

R
> . For mass-action kinetics,

the complexes determine not only the reaction vector y( j)− y(i), but also the reaction
rate

ri→ j (x) = ki→ j x
y(i) for (i → j) ∈ R.

In the following, we consider reversible reaction networks, where the underlying
graphG is symmetric, that is, (i → j) ∈ R if and only if ( j → i) ∈ R. For simplicity,
we often write i j for i → j ∈ R.

3.1 Detailed and Complex Balance

An equilibrium x ∈ R
n≥ of the dynamical system (1) is called detailed-balanced (DB)

if, for every i j ∈ R,

ri j (x) = r ji (x).

That is, for every (reversible) reaction, the forward and backward rates are equal.
An equilibrium x ∈ R

n≥ of the dynamical system (1) is called complex-balanced
(CB) if, for every i ∈ V ,

∑

i j∈R
ri j (x) =

∑

j i∈R
r ji (x).

That is, for every complex, the sums of incoming and outgoing rates are equal.
Obviously, we have the implication

x is DB �⇒ x is CB. (2)

3.2 Formal Balance and Other Variants of Cycle Balance

A directed cycle C ⊆ R is a sequence of edges which connect a cyclic sequence of
distinct vertices (except that the first and last vertex are identical) and which have
the same direction (along the cycle). Reversible reactions are directed two cycles
(connecting two vertices), and all cycle conditions below hold trivially for directed
two cycles.

A state x ∈ R
n≥ (not necessarily an equilibrium) of the dynamical system (1) is

called formally balanced (FB) if, for every directed cycle C ⊆ R,

∏

i j∈C
ri j (x) =

∏

i j∈C
r ji (x),
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cf. (Dickenstein and Pérez Millán 2011). Alternatively, such a state could be called
algebraically cycle-balanced; see also the discussion in the setting of Markov chains
(Cappelletti and Joshi 2018).

Remark Under quite weak assumptions on the kinetics, formal balance is independent
of the state: With every vertex i ∈ V associate a function fi (x), with every edge
i j ∈ R a function ki j gi j (x), and assume that the reaction rates can be written as
ri j (x) = ki j gi j (x) fi (x). Now, let r(x) ∈ R

R
> . If gi j (x) = g ji (x) for every i j ∈ R

or, even more generally, if
∏

i j∈C gi j (x) = ∏
i j∈C g ji (x) for every directed cycle

C ⊆ R, then formal balance amounts to

∏

i j∈C
ki j =

∏

i j∈C
k ji

for every directed cycle C ⊆ R. For mass action, fi (x) = x y(i) and gi j (x) = 1.
For “generalized mass action” in the sense of reversible enzyme kinetics (Schuster
and Schuster 1989), fi (x) = x y(i), gi j (x) = g ji (x), and hence, ri j (x) − r ji (x) =
gi j (x)(ki j x y(i) − k ji x y( j)). In both cases, formal balance only depends on the rate
constants (for x ∈ R

n
>).

Formal balance is defined by equations for directed cycles. We introduce two other
variants of cycle balance which are defined by inequalities and which are weaker than
formal balance.

A state x ∈ R
n≥ of the dynamical system (1) is called strongly cycle-balanced

(sCycB) if, for every directed cycle C ⊆ R, either ri j (x) = r ji (x) for all i j ∈ C or
there exist i j ∈ C and i ′ j ′ ∈ C with

ri j (x) < r ji (x) and ri ′ j ′(x) > r j ′i ′(x).

A state x ∈ R
n≥ of the dynamical system (1) is called cycle-balanced (CycB) if, for

every directed cycle C ⊆ R, there exist (not necessarily distinct) i j ∈ C and i ′ j ′ ∈ C
with

ri j (x) ≤ r ji (x) and ri ′ j ′(x) ≥ r j ′i ′(x).

For arbitrary kinetics, we have the implications

x is DB �⇒ x is FB
�⇒ �⇒

(∗)
�⇒

x is sCycB �⇒ x is CycB.

(3)

Thereby, implication (∗) holds for r(x) ∈ R
R
> . All other implications hold for

r(x) ∈ R
R≥ (possibly involving zero reaction rates), that is, for all x ∈ R

n≥.
The implication “x is FB ⇒ x is CycB” is obvious if r(x) ∈ R

R
> . Otherwise,

consider a directed cycle C ⊆ R and ri j (x) = 0 for some i j ∈ C . Now, “x is
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FB” implies r j ′i ′(x) = 0 for some i ′ j ′ ∈ C , and hence, 0 = ri j (x) ≤ r ji (x) and
ri ′ j ′(x) ≥ r j ′i ′(x) = 0, that is, “x is CycB.” All other implications are obvious.

Remark For “general kinetics,” where ri j (x) > 0 if and only if supp(y(i)) ⊆ supp(x),
in particular, for mass-action kinetics, implication (∗) in (3) holds for x ∈ R

n≥.
To see this, first note that the sign of ri j (x) is determined by supp(y(i)) and hence by

vertex i only. If supp(y(i)) ⊆ supp(x), we write ri∗(x) > 0 (meaning that ri j (x) > 0
for all j with i j ∈ R); otherwise, we write ri∗(x) = 0.

Obviously, implication (∗) in (3) holds for x ∈ R
n
>. It remains to consider a directed

cycle C ⊆ R with ri j (x) = 0 for some i j ∈ C . If ri ′ j ′(x) = 0 for all i ′ j ′ ∈ C (and
hence ri ′∗(x) = 0 for all vertices i ′ in C), then also r j ′i ′(x) = 0 for all i ′ j ′ ∈ C ,
and both “x is FB” and “x is sCycB.” Otherwise, ri ′ j ′(x) > 0 for some i ′ j ′ ∈ C . In
particular, there is a path j1 → i1 → . . . → i� → j� ⊆ C involving the complexes
il with ril∗(x) = 0 for l = 1, . . . , � and the (not necessarily distinct) complexes
j1 and j� with r j1∗(x) > 0 and r j�∗(x) > 0. Hence, 0 = ri1 j1(x) < r j1i1(x) and
0 = ri� j� (x) < r j�i� (x), and both “x is FB” and “x is sCycB.”

As stated above, the two new variants of cycle balance are weaker than formal
balance, in general. They allow elementary graph-theoretic proofs of a previous result
and of a new result which holds for arbitrary kinetics and boundary equilibria; see
Theorem 3.

Algorithmically, all variants of cycle balance (including formal balance) are equally
costly: the most expensive step is the identification of all cycles in the underlying
graph. For mass action (or “generalized mass action” in the sense of reversible enzyme
kinetics Schuster and Schuster 1989) and positive states, formal balance only depends
on the rate constants. In this case, also (strong) cycle balance does not depend on the
state, which may allow to determine the directions of the net reactions; see Example 1.

3.3 The Induced Graph

Given a reversible reaction network, defined by a finite, simple directed graph G =
(V ,R), and a state x ∈ R

n≥, the induced graph Gx = (V ,U , D) is a finite, simple
mixed graph (with vertices V , undirected edges U , and directed edges D) defined as

(i −− j) ∈ U if (i → j) ∈ R and ri j (x) = r ji (x),

(i → j) ∈ D if (i → j) ∈ R and ri j (x) > r ji (x).

The induced graph contains at most one edge between any two vertices, and hence,
cycles in Gx connect three or more vertices.

Let x ∈ R
n≥ be a state of the dynamical system (1) and Gx be the induced graph.

From the definitions in Sect. 2, we have the implications

x is DB ⇐⇒ Gx is edge-balanced,
x is CB �⇒ Gx is vertex-balanced,
x is sCycB ⇐⇒ Gx does not contain a weakly directed cycle,
x is CycB ⇐⇒ Gx does not contain a directed cycle.

(4)
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Note that the second implication is not an equivalence; see Remark 1.

3.4 Main Results

As stated in the introduction, it was shown in Dickenstein and Pérez Millán (2011)
that detailed balance is equivalent to complex balance plus formal balance. We prove
that detailed balance is equivalent to complex balance plus cycle balance.

Proposition 3 Let x ∈ R
n≥ be an equilibrium of the dynamical system (1). If x is CB

and CycB, then it is DB.

Proof By the implications (4) and Theorem 1:

x is CB and CycB �⇒ Gx is vertex-balanced
and does not contain a directed cycle�⇒

x is DB ⇐� Gx is edge-balanced

��
The above result is new and stronger than the existing result: first, it holds for

x ∈ R
n≥; and second, formal balance is stronger than cycle balance, see (3). However,

the main advantage from our perspective is its elementary proof, which is entirely
graph-theoretic and does not involve any algebraic argument; in particular, it does not
assume mass-action kinetics.

To summarize, given complex balance, detailed balance is equivalent to all variants
of cycle balance. The result holds for x ∈ R

n≥, that is, also for boundary equilibria.

Theorem 3 Let x ∈ R
n≥ be a complex-balanced (CB) equilibrium of the dynamical

system (1). The following statements are equivalent:

– x is detailed-balanced (DB).
– x is formally balanced (FB).
– x is strongly cycle-balanced (sCycB).
– x is cycle-balanced (CycB).

Proof By the implications (3) and Proposition 3. ��
Remark 1 Only the second implication in (4) is not an equivalence. In order to obtain
an equivalence, we define x ∈ R

n≥ to be weakly complex-balanced (wCB) if Gx is
vertex-balanced. Then, “x is wCB ⇔ Gx is vertex-balanced,” and Proposition 3 and
Theorem 3 also hold if the CB equilibrium is replaced by a wCB equilibrium.

Example 1 Consider the reversible cyclic network G� : A � B � C � A and
assume that the (isolated) network follows the laws of thermodynamics. Adding the
exchange reactions A � 0 � C (putting G� in a flow reactor) yields the network G,
which contains two independent cycles; see the left diagram.
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G :

A

0 B

C

Gx :

A

0 B

C

Both networks, G� and G, have deficiency zero: δ� = 3 − 1 − 2 = 0 and δ =
4 − 1 − 3 = 0, respectively. For simplicity, assume mass-action kinetics.

For the isolated network G�, there exists a complex-balanced equilibrium x� ∈ R
3
>

(implied by δ� = 0) which is detailed-balanced (implied by thermodynamics) and
hence formally balanced. For any x ∈ R

3
>, the condition for formal balance is given

by kA→B kB→C kC→A = kA→C kC→B kB→A. Hence, any state x ∈ R
3
> is formally

balanced and, by (3), (strongly) cycle-balanced. That is, any mixed graph G�
x , induced

by G� and x , does not contain a (weakly) directed cycle, and the same holds when G�
is seen as a subnetwork of G; see below.

For the full network G, there exists a complex-balanced equilibrium x ∈ R
3
>

(implied by δ = 0). Assume that x is not detailed-balanced, in particular, that the
mixed graph Gx , induced by G and x , does not have C −− 0 −− A as a subgraph.
By complex balance (for the complex 0), Gx has C → 0 → A (or, alternatively,
A → 0 → C) as a subgraph; see the right diagram. By Theorem 3, x is not cycle-
balanced, that is, there exists a directed cycle in Gx . By the argument above, the
subgraph G�

x is not a (weakly) directed cycle.

infeasible,
(weakly) dir.

subgraphs G�
x :

A

B

C

A

B

C

A

B

C

A

B

C

The only feasible subgraph G�
x is C ← A → B → C ; see again the right diagram

above. The induced graph Gx contains the directed cycles 0 → A → C → 0 and
0 → A → B → C → 0 which involve the exchange reactions (in agreement with
thermodynamics).

Remarkably, all edges of the induced graph (all directions of the net reactions) can
be determined without computing the complex-balanced equilibrium.

4 Balance in Markov Chains

The argument in Sect. 2 has been developed for the application to reaction networks
(RNs). However, owing to the abstractness of the result, it is easily applicable in any
settingwith an underlying graph structure.We illustrate this viaMarkov chains (MCs),
a widely used class of stochastic models with a naturally associated graph.
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A continuous-time MC is a random process on a countable state space, where
a measure (in particular, a distribution) on the set of states is determined by the
initial measure and the transition rates (via the Kolmogorov forward equations).
For a formal definition, see, e.g., Norris (1998). In a natural way, states can be
viewed as vertices of a directed graph whose edges represent transitions with pos-
itive rates.

We denote the set of states (vertices) by V and the transition rate from state x ∈ V
to state y ∈ V by q(x, y). Further, we introduce the set of transitions (edges) T , that
is, (x, y) ∈ T if q(x, y) > 0. In the following, we require that q(x, y) > 0 implies
q(y, x) > 0 for all x, y ∈ V . That is, we consider MCs where the associated simple,
directed graph G = (V , T ) is symmetric. Such MCs are analogous to reversible RNs,
however, we do not refer to them as “reversible” since this term is reserved for another
notion; see below.

A measure μ on the countable set V assigns a nonnegative real or infinity to each
subset of V . Here, we consider only σ -finite measures where μ({x}) < +∞ for all
x ∈ V . Following standard convention, we drop the curly brackets and write μ(x) for
μ({x}). If ∑

x∈V μ(x) = 1, then μ is a distribution. A measure μ is stationary if, for
all x ∈ V ,

∑

(x,y)∈T
μ(x)q(x, y) =

∑

(y,x)∈T
μ(y)q(y, x).

A stationarymeasure of aMC is analogous to a complex-balanced equilibrium of an
RN in the sense that, for every state, the sums of incoming and outgoing “probability
flows” are equal. Finally, a measure μ is reversible (detailed-balanced) if, for all
(x, y) ∈ T ,

μ(x)q(x, y) = μ(y)q(y, x).

Clearly, the notions of detailed balance in RNs and MCs are analogous.
Given a MC with associated symmetric, simple, directed graph G = (V , T ) and a

measure μ, the induced graph Gμ = (V ,U , D) is a simple, mixed graph defined as

(x −− y) ∈ U if (x, y) ∈ T and μ(x)q(x, y) = μ(y)q(y, x),

(x → y) ∈ D if (x, y) ∈ T and μ(x)q(x, y) > μ(y)q(y, x).

Now, letμ be ameasure of aMC andGμ be the induced graph. From the definitions
in Sect. 2, we have the implications

μ is reversible ⇐⇒ Gμ is edge-balanced,
μ is stationary �⇒ Gμ is vertex-balanced.

An application of Theorem 2 immediately yields the following result.
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Theorem 4 Let G be the graph associated with a continuous-time Markov chain,
where q(x, y) > 0 if and only if q(y, x) > 0. Let μ be a stationary measure. If the
induced graph Gμ does not contain a directed cycle or a bi-infinite directed path, then
μ is a reversible measure.

Its contrapositive is useful to state. If a stationary measure is not reversible, then the
induced graph contains a directed cycle or a bi-infinite directed path. See Examples 2
and 3.

Example 2 Consider again the reversible cyclic network A � B � C � A, but
this time with stochastic mass-action kinetics. The corresponding rate constants are
specified as edge labels in the graph below.

A

C B

1

2

1

2

1

2

The (infinite) graph G = (V , T ) associated with the Markov chain is given by V =
Z
3≥, q ((a, b, c) → (a − 1, b + 1, c)) = 2a, q ((a, b, c) → (a + 1, b − 1, c)) = b,

q ((a, b, c) → (a − 1, b, c + 1)) = a, etc.
For the deterministic system, x = (1, 1, 1) is a complex-balanced, but not detailed-

balanced equilibrium. For the stochastic system, the stationary (necessarily “complex-
balanced”) distribution π : Z3≥ → R is given by the product form

π(a, b, c) = e−3

a! b! c! ,

cf. Anderson et al. (2010). Since this stationary distribution is not reversible (detailed-
balanced), the induced graph Gπ must have a directed cycle or a bi-infinite directed
path. Indeed, the (infinite) induced graph can be decomposed into directed cycles (con-
necting three vertices), as shown in the graph below. The corresponding net probability
flows between states are specified as edge labels.

(a, b, c + 1)

(a + 1, b, c)

(a, b + 1, c)

e−3

a! b! c!

e−3

a! b! c!

e−3

a! b! c!
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Example 3 Let q ∈ (0, 1). Consider a Markov chain given by V = Z, q(x, x + 1) =
2q−|x | and q(x, x − 1) = q−|x | for x ∈ Z, and q(x, x ′) = 0 otherwise. Obviously,
there are no directed cycles in the associated graphG, except for the trivial two cycles.
A stationary distribution on Z is

π(x) = π(0)q |x |

with normalization constant π(0) > 0. However, this distribution is not reversible
(detailed-balanced), since π(x)q(x, x + 1) �= π(x + 1)q(x + 1, x) for any x ∈ Z.
Hence, the induced graph Gπ has directed edges x → x + 1 for x ∈ Z. The induced
graph is vertex-balanced, but not edge-balanced, in particular,Gπ contains a bi-infinite
directed path.

Since q(x, y) > 0 if and only if q(y, x) > 0 and there are no (non-trivial) cycles,
there must be a reversible stationary measure on Z as well. In fact,

ρ(x) = ρ(0)

{
(2q)x if x ≥ 0
( q
2

)−x if x < 0

is such a measure. For q < 1
2 , it is finite and hence a distribution (for some nor-

malization constant ρ(0) > 0). The induced graph Gρ is both vertex-balanced and
edge-balanced.

Since there exist two different stationary distributions π �= ρ, the Markov chain is
not positive recurrent.

Finally, we summarize similarities and dissimilarities in the settings of RNs and
MCs in a table.

Chemical reaction network
with mass-action kinetics

Continuous-time
Markov chain

Variable Species concentrations x Probability measure μ

Function on vertex i Monomial x y(i) μ(i)
Function on edge i j Rate constant ki j Transition rate q(i, j)
Product function on edge i j Reaction rate ki j x

y(i) Probability flow μ(i) q(i, j)

Vertex balance Complex-balanced
equilibrium

Stationary measure

Edge balance Detailed-balanced
equilibrium

Reversible measure

Cycle conditions Formal balance, cycle balance Kolmogorov cycle conditions
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