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Abstract

Social media plays an important role in alerting and educating the public during disease
outbreaks. By increasing awareness of the disease and its prevention, it can lead to a
modification of behaviour which then affects contact/incidence rates. Social media data
may also be used when formulating, developing and parameterising models. As mobile
technology continues to evolve and proliferate, social media is expected to occupy an
increasingly prominent role in the field of infectious disease modelling to improve
their predictive power. This article presents a review of existing models incorporating
media in general and highlights opportunities for social media to enhance traditional
compartmental models so as to make the best use of this resource in controlling the
spread of disease.

Keywords Compartmental models - Social media - Twitter - Behavioural change
models

1 Introduction

Social media and social networking sites such as Facebook, Instagram, WhatsApp,
Pinterest and Twitter aided by the development of mobile technology have revolu-
tionised the manner and the speed in which information is spread. Recent estimates
indicate that there are more than 3.77 billion global internet users—more than half of
the world’s population (Kemp 2017). Of these, 71% are social network users (Kemp
2017) with the ability to rapidly communicate with hundreds of other people. In
terms of numbers, as of the third quarter of 2017, active Facebook users per month
reached 2.07 billion with the average Facebook user having 155 friends (Knapton
2016), Statista 0118.
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This paradigm shift in the way in which information is communicated has been
utilised in diverse areas other than its familiar use in the marketing and promotion of
products and as a source of market intelligence and customer engagement (Agnihotri
et al. 2016). After the tragic 2013 explosions at the Boston Marathon, the FBI used
online social networks to broadcast information about the suspects leading to their
quick capture. Events such as the Arab Spring, the 2011 UK riots and the subsequent
cleanup effort have also been fuelled by social media and have also demonstrated the
ability of social media to influence collective behaviour (Baker 2012; McGarty et al.
2014).

The Centers for Disease Control and Prevention in the USA used Twitter for updates
and to disseminate strategies for preventing the flu to help slow the spread of HIN1
influenza in 2009, with its network increasing from 2500 followers to 370,000 follow-
ers during the outbreak (Huo and Zhang 2016). YouTube and iTunes were also used
to update and advise 1 million viewers in a similar manner (Merchant et al. 2011).
During the 2014 ebola outbreak, social media was used to educate the public about
Infection Prevention and Control (IPC) measures like barrier protection, hand washing
and early reporting (Carter 2014; Gidado et al. 2015).

These practices—spurned on by social media—may play an important role in lim-
iting the spread of the disease and may deeply influence the epidemic pattern. Apart
from the generally beneficial role of social media in influencing behaviour, a strong
correlation between social media data and actual reports has been found (Aramaki
et al. 2011). This suggests that social media data has the potential to be used as a
proxy to actual disease data and may be used in the detection and tracking of disease
outbreaks.

Researchers are increasingly beginning to consider ways to incorporate social media
into mathematical models. We limit this review of the use of social media in modelling
to compartmental models implemented at the population level as opposed to those
implemented at the individual level (i.e. using an Individual Based Model or Contact
Network). We examine existing models incorporating media in general and highlight
the opportunities for social media to enhance traditional infectious disease models
and discuss challenges which may arise with its burgeoning addition to the infectious
disease modelling suite. This paper is organised as follows: Sect. 2 describes the
inclusion of behavioural aspects to modulate the dynamics of compartmental models
while the use of social media data as an information source for the model is described
in Sect. 3. Some challenges and observations are discussed in Sect. 4, and conclusions
are summarised in Sect. 5.

2 Modelling Behaviour Change: The Dynamic Interaction of Media
Reports and Behaviour Change

The role of human behaviour in mitigating the spread of infectious diseases is not to be
underestimated, and social media is a valuable ally in these control efforts. Moreover,
preventing the spread of disease through information as a form of nonmedical inter-
vention is more economical than treating the disease via pharmaceutical interventions.
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Traditional models employ a static approach to human behaviour—individuals meet
and infect each other at random in what has been termed homogeneous mixing (Man-
fredi and D’Onofrio 2013). However, when people consciously change their behaviour
and attitudes in response to external information such as details on vaccination and
drug therapy or on self-protection measures such as physical distancing and hand
washing, this may affect the rate at which people contact each other or get treatment.
Consequently, this may influence the spread of the disease thus altering the course of
the outbreak (Tchuenche and Bauch 2012).

Voluntary adaptive change in behaviour is well-documented in true epidemics
(Epstein et al. 2008) and has been incorporated into traditional infectious disease
models to allow for more realistic disease dynamics (Verelst et al. 2016). For exam-
ple, in an epidemiological-economic model, susceptible people may weigh the pros
and cons of reducing contacts to avoid contracting a costly infectious disease (Fenichel
etal. 2011; Morin et al. 2013). These models generally known as behavioural change
models are distinct from models where decision makers make recommendations or
impose new regulations and expect the public to comply with those recommendations
and regulations. Media, by increasing awareness of the disease, plays an important
role in this modification of behaviour generally slowing the spread of disease. As
pointed out in Agaba et al. (2017), Zhou et al. (2019), there are generally three ways
of including this modification of behaviour. We will describe each of these in turn.

2.1 Media Functions

Up to date information about a disease has been shown to play an important role
in reducing its spread (Manfredi and D’Onofrio 2013). When formulating a model,
special consideration must be given to choice of incidence function describing the rate
of flow from non-infected to infected compartments.

The behaviour modification induced by the media may be introduced as a reduction
in the incidence function (via a so-called media function) with the underlying assump-
tion that as the number of infections increases in a population and is reported by mass
media, individuals who are susceptible will become more cautious and initiate pro-
tective measures which will then decrease their susceptibility. Hence, choices for the
media functions are represented by decreasing functions of the number of infected,
exposed or hospitalised people (Cui et al. 2008; Xiao et al. 2013; Sahu and Dhar
2015; Mitchell and Ross 2016; Lu et al. 2017). Common choices for these functions
are a saturated Holling type-II functional response and an exponentially decreasing
functional response as shown in Table 1.

Models introducing an exponential factor have demonstrated a wide variety of
dynamical behaviour, including several endemic equilibria as well as Hopf and tran-
scritical bifurcations. These models include SEI, SIHR and EIH models where the
exponential decrease in the incidence rates is proportional to functions of the number
of infected or exposed or hospitalised people (Tchuenche and Bauch 2012; Cui et al.
2008; Liu et al. 2007). Results from Cui et al. (2008) using a media function e~/ ®
reported the possibility of endemic equilibria as well as multiple outbreaks whose
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Table 1 Forms of the media function term modulating the incidence rate

References Modification factor/media function
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Fig.1 Comparison of media functions for different values of m (m = 0.2 on top and m = 2 at the bottom)

peaks as well as time to secondary peak of the disease decreased with increase in
media influence.

Another popular modification of the incidence rate is reminscent of the Holling
type-1I functional response. While results using this functional response suggest that
media exposure does not affect the basic reproductive number or eliminate the disease,
media coverage is useful in controlling the spread of the disease by delaying the arrival
of the infection (Liu and Cui 2008). Like the exponential function, this function reduces
the transmission rate of the disease when the number of cases is high but eventually
plateaus out as a result of media saturation, so that the contact rate remains constant
regardless of increase in infections.

A comparison of these two media functions is shown in Fig. 1 for values of the media
term m = 0.2 and m = 2. As shown, there may be a sharper decrease in number of
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infected people depending on the strength of the influence of the media term in each
media function before they level off to become asymptotic towards the I-axis. One
criticism of these functions is that in the initial stages of the disease when the number of
infected is low, the public may not modify their behaviour as quickly as these functions
suggest by their rate of decrease. It is only as the number of infectives increases and is
reported by media and people become worried, that a change in behaviour may occur
(Lu et al. 2017). Lu et al. (2017) suggested the use of a media function of the form
Hﬁ to describe this initially slow behaviour.

Collinson and Heffernan (2014) showed that key epidemic measurements used for
planning and preparation peak number of infections, time of peak, end of epidemic and
total number of infections depend on the choice of media function. Using a standard
SEIR model, they generated epidemic curves without and with different media function
and noted that the epidemic curve varied depending on the media function used.
Consequently, though the role of media in influencing contact rate is evident, its
mathematical incorporation into models (via the media function) appears ambiguous
(Mitchell and Ross 2016) and requires a data-driven approach as described in Sect. 3.

2.2 Unaware/Aware and Media Compartments

The second approach entails the introduction of separate compartments representing
the level of disease awareness in each subpopulation with transitions between unaware
and aware individuals in some or all of the disease states (Agaba et al. 2017). These
states may be denoted by unaware susceptible, infected and recovered individuals (S},
I, and R,) and aware susceptible, infected and recovered individuals (S, I, and R,).
Aware and unaware individuals are assigned distinct disease transmission parameters
so that aware individuals may have lower susceptibility of acquiring infection.

Yet media reports can be considered as a distinct entity with its own influence on
disease dynamics. Accordingly, the third way is to represent the media by a separate
compartment, interaction with which results in the movement of unaware susceptibles
to the aware population (Greenhalgh et al. 2015; Misra et al. 2011, 2013; Njankou and
Diane 2017). This interaction may result from standard incidence (Misra et al. 2011,
2013), mass action incidence (Njankou and Diane 2017) or a Holling type-1I functional
form HLM similar to that in Table 1 where the M represents a Media compartment.

As an example, we reference SIS models by (Misra et al. 2011; Greenhalgh et al.
2015) in Fig. 2. The susceptible population is divided into two subclasses—an aware
susceptible and an unaware susceptible with the inclusion of a compartment M (¢)
representing the number of media awareness campaigns. The growth rate of this
compartment is assumed to be proportional to the number of infective individuals
%—At” = wul — poM where p denotes the implementation of rate of awareness pro-
grams and o the depletion rate of awareness programs due to ineffectiveness, social
problems in the population and similar factors.

Just as in the first approach where awareness programs run by media campaigns
induce behavioural changes in the susceptibles, interaction with the M class will result
in an “aware” class of susceptibles who may not interact with the infected class (Misra
et al. 2011) or if they do, with reduced contact dependent on the media compartment
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Fig.2 Effect of the inclusion of media compartment in an SIS model

(Greenhalgh et al. 2015). Some researchers (Liu et al. 2018; Greenhalgh et al. 2015)
have included a time delay in the media compartment to highlight the differences in the
dynamics of information and disease spread. This time delay may account for the lag
between cases of disease occurring and mounting awareness programs (Greenhalgh
etal. 2015) or the way information is spread via social media—not always directly but
also by users forwarding tweets (Liu et al. 2018). Results from these modelling efforts
generally confirm that media coverage can have a significant impact on the epidemic,
such as delaying the peak and reducing the severity of the outbreak (Misra et al. 2011)
and if multiple time delays are included may produce hopf bifurcations (Greenhalgh
et al. 2015).

2.3 Combining Approaches

The above models considered the effects of media either as a reduction in the trans-
mission rate of the disease (as a function of the number of infections—media function
in Table 1) or by an interaction of susceptibles with a compartment which included
the dynamics of media coverage (i.e. a media compartment as shown in Fig. 2). Some
researchers have combined these two approaches by including the dynamics of media
coverage (the number or percentage of tweets that report the disease for instance) in
the media function (Pawelek et al. 2014; Huo and Zhang 2016; Zhou et al. 2019).
Recently, (Zhou et al. 2019) have investigated which factor—awareness of the
number of infections or awareness of media reports, will have a greater influence
on individual behaviour during an infectious disease outbreak, in an optimal control
problem designed to seek the optimal reporting intensity of information to minimize
the number of infected individuals (and costs). They adeptly combined the first and
third approaches by formulating two new media functions similar to those in Table 1
which are functions of both the number of infected individuals and the intensity of mass
media (obtained from a mass media compartment M). These functions f1(/, M) =
e~ =M and (1, M) = m where «; are constants resulted in a modified
incidencerate f; 8S1,i = 1, 2. Inasimilar manner to the model described in Fig. 2, the
interaction with the media compartment M (inherent in the f; (I, M) terms) resulted
in an exposed/susceptible aware compartment. Numerical simulations found that the
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epidemic curve did not depend on the media functions fj and f> and that the awareness
of the number of infections will lead to greater reductions in the peak magnitude and
the total number of infections.

3 Social Media Data as an Information Source for Models

Apart from its use in encouraging behaviour change, reports of symptoms and disease
status shared in social media posts may be useful in detecting and even predicting
the course of an epidemic. One of the earliest models (Pawelek et al. 2014) to utilise
data from Twitter in a SE [T compartmental model (with an exponentially decreasing
media function similar to that in Table 1) was able to reproduce the peaks of both
the percentage of tweets and that of surveillance data showing number of infections.
The percentage of tweets which included phrases like “have flu”, “have the flu”,
“have swine flu”, and “have the swine flu” was used to parameterise and develop
the mathematical model with the result that Twitter was found to have a significant
influence on the emergence and spread of the disease. Since a Hopf bifurcation can
occur, the model suggested the possibility of multiple outbreaks of influenza. However,
the researchers noticed that the peak of the predicted percentage of tweets emerged
later than the predicted peak of infectious people and concluded that although Twitter
may not be useful as an early warning system, it may instead provide a good real-time
assessment of the current outbreak.

Mitchell and Ross (2016) also used surveillance data in conjunction with Twitter
data—flu-related tweets using phrases containing phrases such as “have flu”, “have
the flu”, “have swine flu” and “have the swine flu"—as a proxy for an individual
engaging with media about an influenza outbreak in a SEETIR model (suscepti-
bleexposedinfectedrecovered with media, with two compartments for exposed and
infected individuals). They combined this data and traditional surveillance data to
determine a media function f;, = 1 — m/I where m is a parameter to be fitted. Model
results using this media function as well as those in Table 1 were compared with
surveillance data, and this new functional response was found to generally result in a
better fit.

Researchers are increasingly beginning to consider other ways to incorporate social
media data into mathematical models. Traditionally, epidemiology has been based on
data collected by public health agencies through health personnel in hospitals, doctors’
offices and out in the field. These data are generally presented as a time series of cases
for a geographic region or for a demographic and may be difficult to collate or to obtain
and analyse in a timely manner. Conversely, social media (Facebook, Twitter, LinkedIn,
Instagram, Snapchat, Pinterest and Reddit) is abuzz with real-time information—all
stored electronically and often in an accessible form.

A strong correlation between social media data and actual reports has been found
(Aramaki et al. 2011). This suggests that social media data have the potential to be
used as a proxy to actual disease data and may be used in the detection and tracking of
disease outbreaks (Eysenbach 2009). Also, by analysing how people communicate and
share health-related information, facets of a transmission/disease process not captured
by this traditional surveillance such as behaviour, perception and awareness (Althouse
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et al. 2015) may be identified—especially at the beginning of an outbreak when epi-
demiological data are scarce. This information may prove useful when formulating
and developing a model, especially when time is of the essence.

4 Social Media: Some Unique Features

With its increasing popularity, modellers are beginning to consider the dynamic effect
of social media as distinct from traditional media sources. While the incorporation
of media in mathematical models is increasingly being adapted for social media, it is
important to recognise some important features of social media.

Unlike other traditional forms such as the newspaper, television or radio, social
media allow a participatory exchange of information that is almost real-time (Yates
and Paquette 2011) and user friendly, both of which contribute to its ease and rapidity
of spread. As aresult, information and experiences are continuously being shared and
re-shared resulting in a more rapid modification of behaviour during the infectious
disease outbreak.

Though this information spread may result in positive behaviour change, social
media has also been implicated in fear mongering and misinformation (misleading,
false and deceptive information). Recent examples include the 2014 Ebola outbreak
(Towers et al. 2015; Fung et al. 2014), the recent Zika epidemic (Chandrasekaran
et al. 2017) and the 2020 Covid-19 pandemic. The misinformation may negatively
impact and undermine disease control efforts especially for emerging diseases such
as Covid-19 where public health officials are dependent on behavioral measures such
as quarantine, isolation and social distancing to reduce disease spread until a cure is
found.

Attempts have been made to incorporate this “anti-information” into models. Huo
and Zhang (2016) explored the use of twitter to negatively affect the mitigation of
an influenza epidemic as a result of behaviour change after reading tweets about
influenza (Huo and Zhang 2016). They divided the media compartment 7'(¢) in two
compartments—7 (¢) and 7> (¢) representing the number of tweets that provide posi-
tive and negative information about influenza at time 7, respectively. This was used to
modify the contact rate given by SIe~*T1+72 where « and § represent parameters.

As social media becomes an increasingly dominant aspect of our lives with 2.56
billion global mobile social media users in 2017 (equaling 34% penetration) (Kemp
2017), its influence on the mathematical modelling of infectious disease cannot be
ignored. The most common assumption when modelling the transmission dynamics
of infectious diseases is homogenous mixing, i.e. the population mixes uniformly
at random and each infectious individual (regardless of age, geographic location,
etc.) has the same probability of coming in contact with any susceptible individual
in the population. However, despite increased penetration, the population of social
media users are a specific sample of the population where individuals must have an
internet connection and be relatively tech savvy—these are characteristics of a younger
demographic group (Jurdak et al. 2015). Thus, social media data may represent a
population that is heterogeneous and age-stratified.
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5 Conclusion: A Data-Driven Approach to Modeling

Traditional infectious disease models treat human behaviour as a fixed phenomenon
that does not respond to disease dynamics—this we know is not the case. Systems
containing an infectious disease spreading by biological contagion as well as a social
contagion concerning the disease (a coupled ““ disease-behaviour” system) can exhibit
dynamics that do not occur when the two subsystems are isolated from one another
(Bauch and Galvani 2013).

Social media represents a novel forum by which behavioural reactions can be
observed and incorporated into the disease modelling process. Regardless of its verac-
ity, it has been shown to play a role in influencing the population’s perception of risk
and behaviour during the course of the outbreak (Fung et al. 2015). Despite some
limitations and concerns, as mobile technology continues to evolve and access to
smart devices proliferates, social media is expected to occupy an increasingly promi-
nent role in the field of disease modelling. Accordingly, a better understanding of the
behavioural change induced by social media can strengthen mathematical modelling
efforts and assist in the development of public policy so as to make the best use of this
increasingly ubiquitous resource in controlling the spread of disease.
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