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Abstract
Despite being similar in structure, functioning, and size, viral pathogens enjoy very
different, usually well-defined ways of life. They occupy their hosts for a few days
(influenza), for a few weeks (measles), or even lifelong (HCV), which manifests in
acute or chronic infections. The various transmission routes (airborne, via direct phys-
ical contact, etc.), degrees of infectiousness (referring to the viral load required for
transmission), antigenic variation/immune escape and virulence define further aspects
of pathogenic lifestyles. To survive, pathogens must infect new hosts; the success
determines their fitness. Infection happens with a certain likelihood during contact of
hosts, where contact can also be mediated by vectors. Besides structural aspects of
the host-contact network, three parameters appear to be key: the contact rate and the
infectiousness during contact, which encode the mode of transmission, and third the
immunity of susceptible hosts. On these grounds, what can be said about the repro-
ductive success of viral pathogens? This is the biological question addressed in this
paper. The answer extends earlier results of the author and makes explicit connection
to another basicwork on the evolution of pathogens. Amathematical framework is pre-
sented that models intra- and inter-host dynamics in a minimalistic but unified fashion
covering a broad spectrum of viral pathogens, including those that cause flu-like infec-
tions, childhood diseases, and sexually transmitted infections. These pathogens turn
out as local maxima of numerically simulated fitness landscapes. The models involve
differential and integral equations, agent-based simulation, networks, and probability.
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1 Introduction

In view of the many incurable and newly emerging viral infections, such as HIV, HCV,
pandemic influenza, dengue, SARS or Ebola, to mention a few, one is interested in
knowing more about the ways harmful viruses can exist in the human host population.
By employing numerical models, we are trying to learn about their basic reproductive
strategies and how these strategies depend on the viral host environment.

Due to the complexity of viral habitats—often located within several host species—
and due to the various transmission routes between hosts, which can involve special
environmental conditions [e.g., temperature (Handel et al. 2013)], there is no consistent
mathematical framework for studying more general virus-related questions. Most of
the literature studies particular infections (Murillo et al. 2013; Fraser et al. 2014)
and often either focuses on between- (Fraser et al. 2007) or on within-host dynamics
(Alizon et al. 2011; Johnson et al. 2012; Handel et al. 2014). However, some articles
follow amore general approach, e.g., combine inter- and intra-host dynamics (Coombs
et al. 2007; Luciani and Alizon 2009; Pepin et al. 2010), discuss involved challenges
(Handel and Rohani 2015; Gog et al. 2015; Lloyd-Smith et al. 2015), or sketch a
unified perspective (Grenfell et al. 2004; Lange and Ferguson 2009;Weitz et al. 2019).
Two of the last three are of particular interest here, covering the viral phylodynamics
of Grenfell et al. (2004) and an epidemiological approach suggested by Lange and
Ferguson (2009). As being far from obvious, one would like to know if the two
approaches lead to the same conclusions.

Translation between different frameworks is usually not straightforward. There-
fore, our first goal aims at establishing interpretation: we want to re-identify concepts
from Grenfell et al. (2004) within the framework of Lange and Ferguson (2009). In
particular, we try to relate the so-called static patterns of Grenfell et al. (2004) and
the infection types of Lange and Ferguson (2009). Besides mathematical structure, a
crucial part of any modeling framework is the involved parameters, which we intend
to compare and re-identify for the two approaches. We expect that, eventually, this
will lead to a similar classification of viruses. Hereby the focus will be on virulent
ones, although we do not explicitly vary virulence in our models. Furthermore, we
aim to reconstruct the infection types of Lange and Ferguson (2009) by suggesting a
minimal set of parameters that allows us to mathematically formulate viral lifestyles
and the fitness optimization behind.

As any form of life, the evolutionary success of viruses correlates with their success
to reproduce. To take this into account, we study viral replication within and between
hosts. Yet, when pursuing the minimalistic approach of Lange and Ferguson (2009),
we only follow one particular pathogen at a time, which—determined by its temporal
load—spreads in the contact neighborhood of one infected individual. That is, we do
not consider multiple infections and thus ignore the interaction between them (Alizon
et al. 2013; Gulbudak and Weitz 2019; Clay and Rudolf 2019). This may characterize
our approach as rather crude and impose implicit assumptions on the modeled system
such as low incidence and a homogeneous host population. Less virulent viruses are
excluded by introducing a stopping condition in the within-host model, which will
restrict the follow-up period to be less than 2 years.
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Following themethods used byLange and Ferguson (2009), we employ differential-
and integral equations, networks, stochasticmodels, and numerical simulations. Based
on the various parameter sets that are involved,we investigate conditions thatmaximize
the reproductive success of the virus, formulated by a version of the basic reproduction
number. The maxima are obtained by systematically testing parameter combinations,
also at the boundary of the considered parameter regions.

2 Background

Before we start, we briefly recall aspects of the two frameworks, Grenfell et al. (2004)
and Lange and Ferguson (2009), that are important here.

2.1 The Phylodynamic Framework

Analyzing the phylodynamics of viruses, the paper by Grenfell et al. (2004) suggests
five so-called static patterns to characterize the net adaptation rate of a viral population
with respect to the host immunity. Pathogen adaptation is understood as the fixation
rate of advantageous mutations in viral epitopes. Based on a simple population genetic
model, this rate is shown to increase with the strength of selection for variants that can
evade immunity. However, one obtains an inverse relationship between the immune
response and the viral population size so that the highest rate of adaptation occurs at
an intermediate level of immunity (Fig. 1). The following patterns and RNA-viruses
are identified:

(1) no effective immune response, no adaptation (HCV in immuno-compromised
hosts, influenza A virus immediately after an antigenic shift);

(2) low immune pressure, low adaptation (rapidly progressing chronicHCVandHIV);
(3) medium immune pressure, high adaptation (antigenic drift in influenza A virus,

intra-host HIV infections);
(4) high immune pressure, low adaptation (HIV in long-term non-progressive hosts);
(5) overwhelming immune pressure, no adaptation (measles and other morbil-

liviruses).

The paper also discusses how these patterns and corresponding phylogenetic trees
emerge based on the intra-host dynamics of the pathogen. For more detail, we refer
the reader to the original literature.

2.2 TransmissionMechanisms andViral Evolution

Thework byGrenfell et al. (2004) focuses on the viral population and the host-immune
response. Epidemiological aspects such as transmission and inter-host environment
are less important in their approach. This is different in the approach by Lange and
Ferguson (2009), where infectious diseases are classified into three types (cf. Fig. 2).
Even if the classification is based on antigenic variation (being either A: medium, B:
high, or C: low), epidemiological aspects such as the host-contact rate and the trans-
mission mode are revealed to be closely related. Each infection type corresponds to a
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Fig. 1 Static patterns. The figure is a 90◦-rotated sketch of Figure 2A in Grenfell et al. (2004). It indicates
the locations of the five static patterns (lying on a parabola) in the pathogen parameter space of Grenfell
et al. (2004), which is formed by the immune pressure and the net viral adaptation rate. Furthermore, the
figure indicates the monotonic behavior of the strength of selection (blue) and the viral abundance (red)
with respect to the immune pressure (y-axis) (Color Figure Online)

certain range of contact/transmission rates (A: low, B: medium, C: high). Depending
on that range, each infection type shows a distinct fitness landscape (between-host
reproduction) over pathogen space (Fig. 2, top row). Most interestingly, the infection
types correspond to three evolutionary strategies (Fig. 2, bottom row):

⎧
⎪⎨

⎪⎩

A

B

C

maximizes the

⎧
⎪⎨

⎪⎩

total viral load,

duration of infection,

initial peak load,

(1)

where, to some extent, the fitness landscapes (top rows) resemble the strategic ones
(bottom rows in Fig. 2). The numerical results have been reproduced by Viljoen et al.
(2018); differences regarding the conclusions can be pinpointed to modifications of
the original method (e.g., the missing stopping condition or the utilization of the
Levenberg–Marquardt algorithm, which only finds local extrema and usually not those
at the boundary).

3 Methods

We study a highly simplified scenario of viral replication that includes intra- and inter-
host dynamics (cf. Fig. 3). The link between the two is established by a transmission
model, which, following Lange and Ferguson (2009), leads us to quantifying viral
fitness in terms of a version of the basic reproduction number R0. Despite well-
known limitations of R0 as a fitness measure, referring to the findings of adaptive
dynamics (Mylius and Diekmann 1995; Metz et al. 2008; Dieckmann 2002) but also
to the definition of R0 (Diekmann et al. 1990; Grassly and Fraser 2006; Li et al.
2011), the proposed R0 will be sufficient for recovering the static patterns of Grenfell
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Fig. 2 Infection types. This figure is adopted from Figure 3 in Lange and Ferguson (2009). The top
row shows the fitness landscapes (due to between-host replication, R0) over pathogen space (= antigenic
variation δ × intra-host replication ρ) for flu-like infections (FLI), sexually transmitted infections (STI),
and childhood diseases (ChD). The bottom row shows the corresponding between-host characteristics: total
virus count (� v), duration of infection (D), and the initial peak load (� v×D for the 1st peak), respectively.
The maxima of these surfaces define three evolutionary strategies (or lifestyles, as we also refer to them).
While having the maxima at the same location in pathogen space, the surfaces of the top and bottom rows
are similar too (Color Figure Online)

Fig. 3 Modeling framework. Systematically, for all viruses represented by our pathogen parameter space,
we simulate the within-host evolution and calculate the average load over time v(t). The load curve is
used to define a time-dependent transmission rate, β(v(t)). Based on this rate, the between-host dynamics
is simulated for a totally susceptible host-contact network. The total number of infected individuals then
determines the basic reproduction number R0, our model for viral fitness (Color Figure Online)

et al. (2004) as well as pointing at underlying viral strategies. The intra-host model
involves cells for viral replication and an adaptive immune response. Via mutations,
viral replication includes a stochastic element. The simulation outcome represents
the load of a particular mutable virus in an average host. While, for simplicity, all
host individuals are considered equal, our inter-host model does involve structure of
a contact/transmission network.
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3.1 Viral Fitness Model

In an inter-host context, viral fitness is determined by the success of the virus to repro-
duce while reaching new hosts. This includes viral reproduction within hosts and
transmission to other hosts. Formalized by the viral load, which counts the virions
within one host, and the basic reproduction number, which counts new infections in
a susceptible host population, these two concepts will provide mathematical expres-
sions that can be utilized to define viral fitness. In contrast to many epidemiological
applications that are based entirely on mass-action (Anderson and May 1982), when
modeling network structure in the host population, we use the reproduction number
in a slightly different way.

In epidemiology, the basic reproduction number R0 measures the fitness of an
epidemic (i.e., predicts its survival as long as R0 > 1). Even if epidemiologists do not
use this jargon, an epidemic forms a collective entity of individuals infected with a
particular pathogen. Consequently, reproduction is recordedwith respect to the disease
free equilibrium, imposing a completely susceptible host-population. When studying
the fitness of a virus, we impose complete susceptibility only at the beginning of the
epidemic. During its course, susceptible numbers in the neighborhood of an infected
individual are considered to change. Susceptible hosts form the limited resource that
a particular virus—mediated through the contact behavior of hosts—competes for.

The basic reproduction number is defined by the number of secondary infections
in a totally susceptible population caused by one initially infected individual and, as
employed here, through direct transmission. The initially infected host is supposed to
carry the virus to which we intend to assign a fitness value. The secondary infections
that are relevant for the viral fitness only represent a subset of individuals that are
affected by the epidemic. Initially, the contact neighborhood of the one infective
individual only contains susceptibles, S(0) = N − 1, but, later on, it also contains
screened individuals (i.e., non-susceptible individuals that were infected earlier on by
secondarily infected individuals).

When modeled by mass-action, the growth of the number of infections resulting
from one infective individual, I (0) = 1, is given by I ′(t) = β(t) S(t) I (0). Integration
over time then yields R0.

R0 =
∫ D

0
β(t) S(t) dt . (2)

In practice, onemust introduce a cut-off as an upper time limit. This cut-off is modeled
by the first entering time, D = inf{t > 0 | v(t) ≤ v0}, capturing the time (referred to as
duration of infection) when the viral load v(t) falls below a critical value v0. It is crucial
to employ a stopping time here, from amathematical but also an epidemiological point
of view. Namely, we are interested in modeling harmful viruses, which are present at
sufficiently high loads, inducing strong immune responses and destroying significant
numbers of target cells; we are not interested in learning about viruses that are tolerated
by the host at low loads. In our simulations, D turned out to be shorter than 2 years.
Without a load threshold, as pointed out by Viljoen et al. (2018), an unlimited duration
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of infection may favor only a single infection type [type B, referred to as milker-like
in Viljoen et al. (2018)].

It is important to note that our viral fitness measure (2) coincides with the basic
reproduction number as defined in epidemiology only locally. Local refers to the
environmental parameters (e.g., the size of the contact neighborhood). Formal prob-
lems arise when the transmission mode and hence network parameters change. Then
one must redefine these parameters and, as a consequence, R0 values might differ
drastically [cf. Fig. 5A in Lange and Ferguson (2009)].

3.2 Intra-host Model

For the viral dynamics within the host, we apply one of the simplest compartmen-
tal models (Lange and Ferguson 2009) that involves multiple viral strains, adaptive
immune responses, and target cells that provide the resource for viral replication;
see Fig. 4a. In part, replication is assumed to lead to mutations (governed by a Pois-
son process of rate μρ) and to the creation of novel strains (at frequency δ). The vast
majority of the mutations, however, is assumed to be detrimental to the virus. The anti-
genic appearance of the virus (modeled through a loci-allele structure as illustrated
in Fig. 4b) varies between different strains. Mutations are not supposed to change
intra-host parameters, except for δ, ρ. Primarily, immunity is directed toward one spe-
cific strain, although it is assumed to provide cross-protection from other antigenically
close strains. Mathematically, the immune response (toward strain i) is modeled via a
function,

yi (x) =
∑

k≤n

xk · [
1 − (1 − χ) �ik

]

+ + ε > 0, (3)

that accumulates all the available amounts xk of specific immunity weighted by the
antigenic distance (�ik = # non-coinciding loci of strains i and k; cf. Fig 4b). This
function depends on a cross-immunity parameterχ ∈ [0, 1]; in this paper it is supposed
to cover innate immunity ε as well. The bracket denotes the positive part (i.e., [ · ]+ =
(| · | + · )/2).

Between mutation events that lead to novel strains, the time evolution of viral
loads vi , of specific immunity xi , and of target cells c is modeled by a system of
asymptotically linear ODEs,

dvi
dt

= (1 − μ) ρ v+
i (c) − σ v−

i (x), (4a)

dxi
dt

= ξ (x0 − xi ) + ζ x+
i (vi ), (4b)

dc

dt
= γ (c0 − c) − ρ c−(v). (4c)

Novel strains j , produced by a Poisson process of rate δμρ, are introduced by a set of
two new equations (e.g., with index j) and initial values (v j (0) = 10, x j (0) = 1).
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Fig. 4 Within-host replication. a The replication of viral strain i into multiple identical copies (about ν1)
and the mutant strain i + 1. Before specific immunity develops, there is a cross-reactive immune response
from the earlier strain i . Cross-reactive immunity is exerted based on the loci-allele structure indicated in
(b). Its strength depends on the antigenic distance between the involved strains; cf. Eq. (3). The distance
is associated with the number of mutations required to transform one strain into the other (Color Figure
Online)

The response to the virus is based on the following interaction terms (that model)

v+
i (c) = vi · hv/ν1(c) (replication of strain i depending on the available target cells),

(5a)

v−
i (x) = vi · yi (x) (removal of strain i due to the immune response), (5b)

x+
i (vi ) = xi · hη(vi ) (activation of specific immunity to strain i), (5c)

c−(v) = c · hc(v/ν1) (target cell depletion due to infection); (5d)

the involved rates are listed in Table 1. Hill functions ha(b) = b
a+b ∈ [0, 1] are

employed to scale the virus production according to the available target cells and to
implement a load-dependent immune response. Target cell depletion is derived entirely
from virus production, c− = 1

ν1

∑
i v

+
i . To further illustrate the resulting interactions,

we point out when they behave linearly,

v+
i (c) = vi if c � v/ν1 (target cell number is large), (6a)

x+
i (vi ) = xi if vi � η (strain-specific viral load is high), (6b)

c−(v) = c if v � ν1c (viral load is high). (6c)

Under opposite conditions, each of these terms vanishes. In particular, v+
i (c) = 0 if

c � v/ν1, which reflects saturation effects caused by the limited number of target
cells. In the virus-free equilibrium, all the interaction terms vanish and the system of
ODE decouples: vi = 0, xi = x0, c = c0.
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Table 1 Fixed parameters Symbol Parameter

c0 (108) Initial/max resource

v0 (10) Initial/min viral load

x0 (1) Initial/min immunity

α̂ (10−5) Upper infectiousness bound

γ (1) Replenishment of resource

ε (0.25/σ ) Innate immunity

ζ (0.8) Growth of immunity

η (103) Saturation of immunity

μ (0.1) Mutation rate

ν1 (103) Virions per resource unit

ξ (0.3) Decline of immunity

σ (10−3) Clearance due to immunity

ϕ (0.25) Cliquishness

χ (0.4) Cross-immunity

Values we used are given in brackets. Time units are always days

3.3 Transmission Dynamics

According to our fitness definition, we need to study viral transmission between hosts.
As motivated in Sect. 3.1, we assume that the rate of transmission depends on the viral
load v of the transmitting (average) host. A simple model is given by an exponential
law [cf. Fig. 1 in Lange and Ferguson (2009)],

β = β̂ · (1 − e−α v) (7)

whereα represents a load-dependent infectiousness parameter and β̂ the load-saturated
transmissibility (transmission rate per capita). This coefficient,

β̂ = κ λ

N
, (8)

which is taken with respect to a reference population, is formed by the product of
the contact rate κ and the likelihood λ of transmission per contact over the average
number N of individuals in the contact neighborhood of a single host. The parameters
α, β̂, and N encode the mode of transmission. Typical values are given in Table 2 and
Fig. 6.

As a consequence of within-host dynamics and time-dependent viral load v(t), the
transmission rate is also a function of time, β(t). Its initial value corresponds to the
viral load at the time of infection, t = 0.
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Table 2 Transmission
parameters

Infection type lg (β̂ × days) N R0 T /days

ChD C − 1 15 15 10

STI B − 2 3 6 200

FLI A − 3 400 2 5

Exemplary values of the transmissibility β̂ for three infection types
(cf. Fig. 2), estimated in accordance with values for a single host’s
neighborhood size N , the basic reproduction number R0 = T ×N×β̂,
and themean infectious period T . Note that these values are all ballpark
figures because, even for the same infection, R0 is known tovaryhugely
(Guerra et al. 2017; Delamater et al. 2019)

3.4 Host Network

The viral dynamics between hosts is modeled most realistically on a network, where
potential hosts represent the nodes linked to each other via potential contacts. A par-
ticular fraction of contacts (λ, specific to the infection) transmits the virus from one
to another host. To quantify the reproductive fitness of the virus, we study the trans-
mission network only for the contact neighborhood of one initially infected host. For
this neighborhood, consisting entirely of susceptibles at the beginning, we determine
the changing number of susceptibles over time and calculate the basic reproduc-
tion number (2), defined similarly to an effective reproductive number suggested for
time-depending transmission rates and systematically varying numbers of susceptibles
(Grassly and Fraser 2006). We do not explicitly consider intermediate hosts or vectors
here, but neither we exclude them; mass-action can provide an effective description
(Lange 2016).

Different from a simple mass-action model, the mathematical formalism describ-
ing a network incorporates a cliquishness parameter ϕ, which quantifies the number
of contacts between members of the considered network-neighborhood. Including a
network structure is crucial. Network contacts help spreading the virus through the
neighborhood and, as a consequence, effectively lower the number of susceptibles
in that neighborhood. Being similar to the screening of charges in a solvent (Debye
and Hückel 1923), we refer to this phenomenon as screening effect (cf. Fig. 5);
in ecology the effect is also known as self-shading (Messinger and Ostling 2013).
The phenomenon cannot be modeled via a modified mass-action coupling alone, yet
screening seems to be necessary for obtaining type C infections [cf. Fig. 4 in Lange
and Ferguson (2009)].

In the contact neighborhood of the initially infected host, the spread of the virus can
be described in terms of two compartments, representing real-valued numbers (i.e.,
normalized densities) of susceptible S and infective individuals I . The generation of
infected individuals (at time t) is given by

I ′(t) = S(t) β(t) + ϕ S(t)
∫ t

0
dτ1 β(t − τ1) I

′(τ1) (9a)
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Fig. 5 Screening effect. The Sketch illustrates the reduced number (4 < 5) of susceptibles (red) in the
contact neighborhood of one infected individual (red dots), caused by one secondary infection in the host
network (ϕ �= 0). The screened individual (blue) cannot be infected by the initially infected individual
anymore. This reduces the basic reproductive number in comparisonwith an idealistic network-free scenario
(ϕ = 0) (Color Figure Online)

+ ϕ2 S(t)
∫ t

0
dτ2 β(t − τ2) S(τ2)

∫ τ2

0
dτ1 β(τ2 − τ1) I

′(τ1) + · · · , (9b)

where the listed terms model transmissions from the initial host, secondary hosts
(infected by the initial host at time τ1), tertiary hosts (infected by secondary hosts at
time τ2), etc. All these terms represent mass-action coupling, and stochastic effects
are ignored here. Transmissions from secondary hosts are weighted by the network
parameter ϕ, tertiary hosts by its square ϕ2, etc. The involved convolution products,

(β ∗ I ′)(s) =
∫ s

0
dτ β(s − τ) I ′(τ ) =

∫ s

0
β(s − τ) dI (τ ), (10)

provide load-weighted transmission rates (at time s, originating from new infections
before s). According to the mass-action law, these terms are multiplied by the numbers
of susceptibles S(s) in Eq. (9).

To obtain an equation that only involves susceptibles, we replace I ′ by −S′ based
on the assumption that the size of the contact neighborhood of the initially infected
host does not change over time,

N ′ = S′ + I ′ = 0. (11)

The substitution is applied to Eq. (9) and, to save computation time, only secondary
hosts (9a) are considered. The resulting equation,

S′ = − (
β − ϕ β ∗ S′) S, (12)

which models the time evolution of susceptibles in the contact neighborhood of the
initially infected, is solved numerically starting with S(0) = N − 1. The resulting
function, S(t), is then used to calculate the basic reproduction number (2).

There is no need to introduce further compartments. Recovered individuals, for
example, are modeled by infectives with low viral load. However, one may include
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replacement of individuals in the contact neighborhood. Its influence on possible
infection types has been studied by Lange and Ferguson (2009) (Fig. 4).

Note that individuals usually live in various contact networks at the same time.
This explains why, even if employing a viral fitness measure, an adult infected with
an STI can be infected with flu at the same time. In our model, different networks and
corresponding infections are treated separately, although they could coexist within
one host.

3.5 On the Choice of the Viral Fitness Model

In modern approaches, evolution is studied as a game of invasion requiring a winning
trait to represent an evolutionary stable strategy (Smith and Price 1973).When looking
at viral evolution from such a perspective, the concept of fitness seems questionable
and sometimes even obsolete (Gyllenberg and Service 2011). In adaptive dynamics
(Geritz et al. 1998), for instance, one evaluates the success of an invading viral strain
(with trait θ = θinv) in replacing a resident strain based on the reproduction of the new
strain at equilibrium densities of the resident strain (S = Sres, I = Ires). Reproduction
of the resident strain is given by R(S = Sres, I = Ires, θ = θres) = 1, which means
that invasion is successful whenever R(S = Sres, I = Ires, θ = θinv) > 1.

Unfortunately, for the questions we like to answer, there are conceptual chal-
lenges inherent in adaptive dynamics. Those are the proposed equilibrium and the
assumed knowledge of the dynamical system. Consider dengue, for example, where
one observes circulating strains and no static equilibrium. The precise dynamics is
not known either (Lange 2016), and dengue is just one particular infection in a large
set of infections that we would like to include. In fact, we do not know how to tackle
invasion problems in such a general setting, where one would have to consider sev-
eral invasions based on unknown dynamics and possibly not even at equilibrium. For
now, we can only test which set of strains reproduces best in a given environment.
We propose that network effects and the initial period after infection are of particular
importance (Georgieva et al. 2019), leading to a classification similar to the one by
Grenfell et al. (2004). However, even if nature agrees with our predictions relying on
basic reproduction, it remains a scientific task to trace back invasion histories.

Under certain conditions, the concept of maximizing R0 leads to the same conclu-
sions as adaptive dynamics (Cortez 2013). For usual SIR-compartment models, the
basic reproductive number R0(θ) depending on a single trait parameter θ has been
shown to provide a fitnessmeasure if reproduction at equilibrium R(S̄, Ī , θ) can be fac-
torized into R0(θ) and a function g(S̄, Ī ) that exclusively depends on the equilibrium
values S̄, Ī (and not on θ ), i.e., if R(S̄, Ī ) = g(S̄, Ī ) R0(θ). The inequalitiesmentioned
above show that R0(θinv) > R0(θres) implies R(Sres, Ires, θinv) > R(Sres, Ires, θres) =
1.

This idea appears to be applicable to our network model as well. Our network is
defined locally employing SI-dynamics, as explained in the previous section, with
parameters characterizing the neighborhood of one infected individual. Underlying
this approach, we assume that local parameters (e.g., the neighborhood size N ) can
be scaled up to the whole population (given by N̂ = N/ϕ, approximately), where
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each infected individual in the population experiences the same dynamics as the one
studied in its neighborhood. (For topological reasons, the size of the whole population
is inversely related to the cliquishness parameter ϕ.)

For the reproduction at equilibrium, R(S̄, Ī , θ) = 1, onewill alwaysfind anumber S̄
depending on the trait θ , for which g(S̄, Ī ) = 1/R0(θ) = S̄/N̂ = ϕ S̄/N . In analogy to
usual SIR-compartmentmodels, S̄would define an estimate of the equilibrium number
of susceptibles in the whole population and ϕ S̄ an estimate for the corresponding
number in the neighborhood. Note that the susceptibles in the neighborhood have
been quantified by the network topology, but the expression is plausible with respect
to the network dynamics as well. Namely, to keep Eqs. (9) and (12) invariant, S needs
to be scaled with the inverse of ϕ, i.e., the product ϕ S̄ is likely a constant and, as
required by Cortez (2013), the function g does not explicitly involve the trait θ .

3.6 Fitness Maxima

In our setting, the basic reproduction number as defined in (2) is assumed to encode
viral fitness. It is evaluated for two sets of parameters (two each), R0(β̂, α; δ, ρ),
referred to as pathogen space (δ, ρ) and transmission space (β̂, α). These spaces are
supposed to capture different types of viral pathogens.

To determine the types that we assume are favored by evolution, we search for
parameter values,

δ̂(β̂) = arg max
δ

(

max
α≤α̂,ρ

R0(β̂, α; δ, ρ)

)

, (13)

as indicated for the antigenic variation δ (cf. Fig. 6), that maximize viral fitness,

R̂0(β̂) = max
α≤α̂

max
δ,ρ

R0(β̂, α; δ, ρ). (14)

The antigenic variation is of particular importance; It offers a natural classification
leading to three infection types (referred to as A,B,C; cf. Fig. 6).

Despite the many trait parameters the fitness function is optimized for, effec-
tively there is only one viral trait required to be imported from the intra-host model
(cf. Sect. 3.5); Fig. 6 suggests that θ = lg α. Testing maxima for the environmental
parameter β̂ appears to be sufficiently general as well . The cliquishness parameter ϕ,
for example, as being another environmental parameter, can be expressed in (12) by
the neighborhood size N , to which it is inversely related, ϕ ∝ 1/N , approximately.
(This follows from the fact that simultaneous scaling of S and ϕ keeps Eq. (12) invari-
ant.) Further parameters, such as cross-immunity χ and the infectiousness bound α̂

(both encoding viral traits), represent generic scenarios for a wide range of values.
They are kept fixed when deriving our first result, the static patterns. Their influence
on the pathogenic lifestyle is investigated afterwards, forming our second result.
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Fig. 6 Fitness and antigenic variation. The figure illustrates the definition of the three infection types
(A,B,C) based on antigenic variation (medium,high, low) and maximal fitness. The lower left-hand side
panel shows the fitness landscape on transmission space, maxδ,ρ R0(β̂, α; δ, ρ). The corresponding top
panel indicates the fitnessmaxima R̂0(β̂) for the simulated transmissibilities β̂ (black dots). The lower right-
hand side panel shows the antigenic variation (lg δ) over transmission space (β̂, α). Here, the gray curve
δ̂(β̂) selects the δ-values that correspond to fitness maxima. These δ-values are shown in the corresponding
top panel; they suggest a three-type classification (Color Figure Online)

4 Results

Applying the model outlined above, one can straightforwardly reconstruct the static
patterns of Grenfell et al. (2004). Furthermore, one can identify three parameters
that—when adjusted appropriately—lead to the three infection types introduced by
Lange and Ferguson (2009). This is demonstrated in the following two subsections.

4.1 Reconstruction of the Static Patterns

We assume that the pathogen space of Grenfell et al. (2004) (cf. Sect.2.1) can be
identified with ours via the following two correspondences,

1 / immune pressure ∼ intra-host reproduction, ρ, (15a)

net viral adaptation rate ∼ antigenic variation, δ, (15b)
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where “∼” encodes positive correlation. Our first parameter, the intra-host reproduc-
tion, defines the reaction of the immune system to the virus, whereas our second
parameter, the antigenic variation, already coincides with the one utilized by Grenfell
et al. By maximizing the basic reproduction number (Eq. (2)) over these two param-
eters, and keeping all other parameters fixed,1 we obtain a β̂-depending curve that
represents maximal values of viral fitness in pathogen space,

β̂ �→ arg max
(δ,ρ)

R̂0(β̂). (16)

This curve (black, in left-hand side panels of Fig. 7) resembles the parabola of Grenfell
et al. (2004) (Fig. 1), which defines five static patterns (cf. the right-hand side of Fig. 7).
We therefore hypothesize that the five patterns (numbered 1, . . . , 5) are positively
correlated with the transmissibility β̂ (cf. left-hand side panels in Fig. 7). In Grenfell
et al. (2004), the five patterns have not been associated with inter-host concepts or a
particular parameter. Within our framework, the transmissibility β̂ offers a natural
scale for labeling these patterns. By changing the value of β̂, one can shift between
patterns.

Furthermore, we are able to reconstruct the viral abundance and the strength of
selection over the range of the static patterns (or, equivalently, the immune pressure;
cf. right-hand side panels in Fig. 7). Here the following correspondences are employed,

viral abundance ∼ mean viral load (= v̄), (17a)

strength of selection ∼ ratio of effective to total number of strains (= #eff/#tot),
(17b)

where the effective number of strains is associated with load-weighted strain-
frequencies, #eff = ∑

i v̄i#i , and #tot = ∑
i #i . For the viral abundance, we obtain a

jump between the patterns 3 and 4 (or, equivalently, between lg β̂ = −2 and −1.5, as
indicated by a dotted line in the top left panel of Fig. 7). This discontinuity is visible
as well in the maximized fitness curve on the left-hand side panels (indicated by a
dotted line again).

To associate the five static patterns and the three infection types in a more conceiv-
able way, we have re-computed the fitness landscapes over pathogen space (Fig. 2,
top row) for two more transmissibilities (Fig. 8). Those then correspond to the two
remaining static patters, even if it turns out to be difficult to associate these extra land-
scapes with exactly one of our three infection types. Nevertheless, the transmissibility
β̂ is seen again to be a natural parameter here.

1 Here we refer to the infectiousness bound α̂, cross-immunity χ , and other intra-host parameters. In our
numerical simulations, they are assigned with values from Table 1.
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Fig. 7 Reconstructed static patterns. The top panels show the mean viral load [called abundance in Grenfell
et al. (2004)] over the pathogen space (left) and thefitnessmaximumover transmissibility (right). The bottom
panels show the ratio of effective to total strain numbers [representing the strength of selection in Grenfell
et al. (2004)] over the pathogen space (denoted as in Grenfell et al. (2004); left) and the fitness maximum
over transmissibility (right). In all four diagrams, the black data points (produced by numerical simulation)
coincide. In comparison with Grenfell et al. (2004), five static patterns are identified with particular (ranges
of) transmissibility (top and button, right) (Color Figure Online)

4.2 Natural Parameter Space

In addition to the transmissibility β̂, it is beneficial to also examine the dependence
of the viral fitness on cross-immunity χ and on the infectiousness bound α̂. Therefore
we study the mapping

(χ, α̂) �→ (
δ̂(χ, α̂; β̂), ρ̂(χ, α̂; β̂); β̂

)
, (18a)
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Fig. 8 Static pattern versus infection types. For five transmissibilities β̂, fitness landscapes R0(δ, ρ) are
plotted over pathogen space (3D and via contour) and associated with static patterns and infection types.
For two of the transmissibilities (bold), the infection type is not clearly differentiated (between A–B and
B–C, marked by “?”). They likely correspond to the static patterns (2) and (4) (Color Figure Online)

Fig. 9 Parameter space. a Hue values (red ∼ α̂, green ∼ 1/α̂, blue ∼ χ ) that uniquely depend on cross-
immunity χ and the infectiousness bound α̂. b The mapping (18) from parameter- to pathogen space; points
of the same color—representing the same parameter values (χ, α̂)—are connected by a thin line (Color
Figure Online)

illustrated in Fig. 9b, which assigns values of the two parameters (χ, α̂)—encoded by
color (Fig. 9a)—to points in pathogen space that maximize R0,

(
δ̂, ρ̂

)
(χ, α̂; β̂) = arg max

(δ,ρ)

R̂0(χ, α̂; β̂), (18b)

where R̂0(χ, α̂; β̂) = maxα≤α̂ maxδ,ρ R0(χ, α̂; β̂, α; δ, ρ). The dependence on the
transmissibility β̂ is captured by a third dimension, erected over pathogen space (δ, ρ).

Numerical simulations for our (relatively large) parameter space, which cover the
within-host dynamics and the transmission network, are hugely time-consuming. They

123



54 Page 18 of 23 A. Lange

Fig. 10 Extrapolation and extremal parameter pairs. aThe eight panels show the fitnessmaxima in pathogen
space for seven transmissibilities β̂ and a cumulative combination of them; the colors uniquely represent
parameter pairs (χ, α̂) as defined in Fig. 9a. The average (̂δ, ρ̂)-values—taken over the 6 × 4 parameter
pairs (χ, α̂)—are indicated by black dots; in the cumulative panel, they are connected by black lines. b
Intensity-weighted average locations of the four extreme parameter pairs (χ, α̂) are shown in pathogen space
(red, green, violet, cyan in Fig. 9a). Each of the seven quadrilaterals corresponds to one transmissibility
(lg β̂ = −3.5, . . . , −0.5). The quadrilaterals change their orientation about halfway, when the fitness
maxima over β̂ show a discontinuity (cf. Fig. 7) (Color Figure Online)

restrict the parameter pairs (χ, α̂)—feasible to consider—to be a small number (=
6× 4). 2 Instead of enlarging this number by increasing the computation power/time,
we decided to proceed by locally extrapolating the simulation results. That is, we
blur the image points of the mapping (18) by “enlarging” these points, so that they
become colored circles. At the same time we decrease the intensity of their unique
color toward outer radii. As a consequence, colors of nearby circles mix according to
their red-green-blue content, and we obtain colored patches in pathogen space where
the color content corresponds to a unique (χ, α̂)-parameter combination. The result
of that extrapolation is shown in Fig. 10a.

Complementing the extrapolation, we examine the most extreme (χ, α̂)-parameter
combinations, the corners in Fig. 9a. Here one makes an interesting observation; see
Fig. 10b. The discontinuity between the patterns 3 and 4 (cf. Fig. 7) results in a change
of orientation:

for the patterns

{
1, 2, 3

4, 5
, which correspond to

{
low

high
transmissibility β̂,

(19a)

high values of cross-immunity χ lie at

{
(high, high)

(low, low)
values of (δ, ρ). (19b)

In contrast, the values of the infectiousness bound α̂ that maximize viral fitness do not
jump in pathogen space: high values of α̂ always lie at (high, low) values of (δ, ρ).

By linear combinations of the parameter content (illustrated by the red-green-blue
mixingof colors inFigs. 10, 11), the results above canbeused to roughly reconstruct the

2 Then the simulation runs only take a few hours on a PC.
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Fig. 11 Infection type reconstruction. a The eight panels show the fitness maxima in pathogen space for
seven transmissibilities β̂ and a cumulative combination of them; the colors uniquely represent parameter
pairs (χ, α̂) as defined by the correspondences (20). The average (̂δ, ρ̂)-values (taken over all colors) are
indicated by black dots, which in the cumulative panel are connected by lines. b The infection types A,
B, C (colored blue, red, green, resp.) are located in pathogen space, as well as the static patterns (1,…,5)
and the transmissibility β̂; the resulting color distribution is approximated well by the cumulative diagram
“lg β̂ = −3.5, . . . , −0.5” in (a) (Color Figure Online)

infection types of Lange and Ferguson (2009) in terms of three modeling parameters,
χ, α̂, β̂. These parameters (i.e., their combined values) are supposed to represent
lifestyles. Based on the color code for antigenic variation (cf. Fig. 6), we propose the
following simple dependencies,

fitness of type B ∼ α̂, (20a)

fitness of type A ∼ 1/(̂α · β̂), (20b)

fitness of type C ∼ β̂ · χ, (20c)

whereχ, α̂ contribute hue values as seen in Fig. 10a and defined in Fig. 9a, andwhere β̂

provides an intensity weight in accordance with (19). The resulting color distribution,
i.e., the “mixture” of lifestyles over pathogen space, is shown in Fig. 11; the similarity
of the color content in (a) and (b)—corresponding to the right- and left-hand side
expressions in (20), respectively—is clearly visible.

It is not difficult to explain how these relations, Eqs. (20), have been obtained.
The infectiousness bound α̂ (occurring only in Eqs. 20a and b) selects between the
types A and B: if low (i.e., if high loads are required for transmission), type A (i.e.,
FLI) is favored; if high (i.e., if low viral loads are sufficient), type B (i.e., STI) is
favored. According to (19), both these types are favored by rather low transmissibility
β̂. Cross-immunity χ (scaled blue; cf. Fig. 9a) favors two patches in pathogen space
(cf. Fig. 10a). The one with high transmissibility β̂ corresponds to type C (i.e., ChD),
the other we do not really know. It might represent vector-born infections (Lange and
Ferguson 2009), but it is not type C. Fortunately, this does not matter as in Fig. 11a
the blue color is switched off at low transmissibility β̂ (cf. Eq. 20c). If α̂, χ are kept
fixed, as in Sect. 4.1, only the transmissibility selects the infection type in (20): A for
low-, C for high-, and hence, B for medium β̂-values.
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5 Discussion

Summarizing these last results, we have proposed amathematical framework equipped
with various sets of parameters that allows for predicting different types and lifestyles
of viral pathogens. Types refer to the antigenic variation, lifestyles to the evolutionary
strategy and corresponding parameter values that maximize fitness (cf. Figs. 2, 8). The
parameter sets—forming so-called pathogen- and transmission spaces—cover intra-
and inter-host dynamics, including a simple host-contact/transmission network. Three
parameters are necessary for the reconstruction of the observed types/lifestyles: the
infectiousness bound α̂ and the transmissibility β̂, which restrict the possible modes
of transmission, and the cross-immunity parameter χ . The relations (20) establish
fitness definitions (Fig. 11a) for the three infection types of Lange and Ferguson
(2009) (cf. Fig. 11b). These relations were obtained by visual inspection (comparison
of Fig. 11a, b); they could be refined by using statistical tools.

Furthermore, referring to the results presented earlier in the paper, we have given
an epidemiological interpretation of the static patterns in the phylodynamic theory of
Grenfell et al. (2004). We claim that the transmissibility β̂ is of particular impor-
tance. By only adjusting its value, transitions between the five static patterns and,
correspondingly, the three infection types are possible. Explicitly, this means that the
transmissibility and, more general, the contact behavior determine the lifestyle of
the considered pathogens. The transmissibility β̂ offers a natural (epidemiological)
parameterization of the hand-sketched parabola by Grenfell et al. The similarity of
the functional dependencies expressed by that parabola (Fig. 1) and the transmissi-
bility curve β̂(̂δ, ρ̂) in Fig. 7—obtained strictly by the numerical methods outlined in
Sect. 3—is convincing.

Despite these promising first results, there are many ways in which our approach
could be improved. Besides the static patterns, Grenfell et al. discuss phylogenies for
different viruses. These phylogenies should be reproducible by our framework, at least
to some extent. The intra-host model (Sect. 3.2) generates phylogenies, which could
straightforwardly be used for chronic infections. Though one must recall that practi-
cally, by introducing a lower load threshold, we effectively trace chronic infections
only for 2 years and, in doing so, likely ignore less virulent strains that are tolerated
by the host. Acute infections are problematic as well, perhaps even more so as genetic
information is not transferred from one to another host in the current intra-host model.

Color-mixing, as utilized for the reconstruction of infection types, is another can-
didate for improvement. It is sufficient when dealing with three parameters and three
infection types. For larger numbers, as required in more detailed settings (cf. Fig. 8),
one needs other tools. Although less intuitive, one could keep the finite approximation
and modify the linear algebra behind.

More parameters and dimensions would come into play when considering:

(i) amore involved and tunable networkmodelwithmultiple/intermediate hosts (Read
and Keeling 2003; Lewis et al. 2008; Hartlage et al. 2016), including indirect
transmissions via vectors, air, water, foot, or smear infection (Ferguson et al. 1999;
Ssematimba et al. 2012);
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(ii) further parameters (not only δ, ρ) to be varied by mutation, most importantly
infectiousness α (Herfst et al. 2012);

(iii) reassortment (Fuller et al. 2013), possibly as a combination of (i) and (ii);
(iv) more variable durations of infection (Viljoen et al. 2018) (via fine tuned load

thresholds v0, fading immunity, etc.), which would allow for more diverse chronic
infections (Klenerman and Hill 2005);

(v) virulence (Alizon et al. 2009), possibly via a variable rate ρ of target cell depletion;
(vi) a variable initial viral dose/load (Li and Handel 2014) and the phenomenon of

T-cell exhaustion (Wherry et al. 2003; Wherry and Kurachi 2015).

Except for (ii) and parts of (i), (iv), and (vi), the suggested extensions will not
be easy to realize within the presented framework. (iv) and (v) would involve elon-
gated time scales, possibly multiple generations of hosts where co-evolution becomes
important (Levin 1996; Rehermann 2009). In fact, (iv) has recently been investigated
in the limiting case of vanishing thresholds (v0 = 0) by Viljoen et al. (2018), which
resulted in a smaller variety of infection types. When including virulence (v) or other
interaction with the host-environment, one must reconsider the fitness definition via
R0 (Dieckmann 2002) and possibly also investigate coexisting strains and re-infection
of partially immune hosts (Georgieva et al. 2019). Not only to support (iii), the models
would have to be more realistic, especially at the intra-host and transmission level,
regarding the involved microbiological processes. But also at the inter-host level, one
may try to employ dynamical and more structured networks to improve our under-
standing of viral lifestyles and evolution.
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