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Abstract
A recent manuscript (Ferguson et al. in Impact of non-pharmaceutical interventions
(NPIs) to reduce COVID-19 mortality and healthcare demand, Imperial College
COVID-19 Response Team, London, 2020. https://www.imperial.ac.uk/media/
imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-
NPI-modelling-16-03-2020.pdf) from Imperial College modelers examining ways to
mitigate and control the spread of COVID-19 has attracted much attention. In this
paper, we will discuss a coarse taxonomy of models and explore the context and
significance of the Imperial College and other models in contributing to the analysis
of COVID-19.
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Infectious disease epidemiologists’ workhorse mathematical model throughout the
twentieth century was the compartmental model, which partitions a population into a
small set of possible disease states, e.g., susceptible (S), infectious (I), and removed
(R), and specifies transition rates among the states. Typical models have three general
properties:

• The rate of transition from a susceptible state, S, to an infectious state, I , is propor-
tional to the product of the number or fraction of people in each, β · S · I .

• The rate of transition out of the infectious state, γ · I , sets a timescale for the model.
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• The overall growth in infections is proportional to the ratio of these transition rates.

Compartmental models reproduce observed features of outbreaks, such as a self-
limiting period of nearly exponential growth to a single peak followed by gradual
decrease as the pool of susceptibles (S) in the population is depleted.

The simplest compartmental models have only a few parameters, and general char-
acteristics of an outbreak are amenable to straightforward mathematical analysis. For
example, consider the so-called S–I–R model:

dS/dt � −βSI ; dI/dt � βSI − γ I ; dR/dt � γ I .

Because the product S · I vanishes when either S or I vanishes, these are fixed
points of the dynamics. That is, when there are no susceptible or infectious people, the
outbreak is over. However, the fixed point at S� 0 is stable, while the one at I� 0 is
unstable. For a disease in which infected people may become immune, a perturbation
out of the state with nobody infected (I� 0) leads eventually to the state with no
susceptibles remaining (S� 0). Deterministic compartmental models have stochastic
cousins such as the Reed–Frost model (Abbey 1952), which allow for the possibility
of stochastic outbreak extinction. In stochastic models, the outbreak may reach the I
� 0 fixed point in finite time without completely exhausting susceptibles (S >0).

Infectious disease outbreaks are essentially chain reactions in which each infec-
tious person turns susceptibles into infecteds. The rate at which new infections occur
is determined by a dimensionless combination of model parameters known as the
reproductive number, R. The reproductive number can be interpreted as the mean
number of people who will be directly infected by a typical infectious person over
the course of illness. When R > 1, disease prevalence increases exponentially. For
example, in the S–I–R model, the equation for I can be rewritten as

d ln I/dt � βS − γ .

At any instant, I is increasing or decreasing exponentially fast, depending on
whether R � βS/γ is greater or less than one. Typically, as in this simple model,
there are three ways to reduce R:

1. Reduce S, the number of susceptibles, usually through prophylaxis;
2. Reduce γ −1, the duration of the infectious period, through treatment;
3. Reduce β, the rate of transmission, through physical or behavioral barriers.

The basic reproductive number, R0, is the reproductive number in a situation
in which the entire population is susceptible and no mitigating interventions are in
place. Although the basic reproductive number is often treated as a biologically deter-
mined characteristic of the pathogen’s transmissibility, it is actually a combination
of biological, environmental, behavioral, and social characteristics, including rela-
tive transmissibility via different pathways (e.g., transmission by airborne droplets vs.
transmission via surfaces or body fluids); local weather’s effects on the ability of the
virus to survive and/or infect new hosts; and the host’s contacts with other potential
hosts. Usually, only a few of these factors are included explicitly in compartmental
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models, limiting their ability to represent mitigating interventions. In particular, social
distancing aims to reduce β by limiting the number of contacts between infectious
and susceptible people in which transmission can occur.

It is important to distinguish between “flattening” the epidemic curve, i.e., reducing
I at all times, and “moving the curve to the right,” i.e., delaying the peak of I . The
impact of the epidemic can be substantially mitigated if the demand for health care
resources does not outstrip the supply. In analogy with firefighting, flattening the curve
accomplishes this by slowing the rate of burn as in a controlled burn. Delaying the peak
works by temporarily extinguishing the flames, perhaps leaving the embers glowing.
Both reduce the effective R, sometimes through the same measures, and the fire will
re-ignite in both when those measures are lifted. The difference lies in the shape of the
epidemic curve afterward. Controlling, but not extinguishing, the burn reduces S and
hence the reproductive numberwhen thefire re-ignites. The overall infection attack rate
AR—the fraction of the population that eventually becomes infected—is typically a
sigmoidal function of R that is not very sensitive toR as long as it is above 1. For exam-
ple, in the S–I–R model, R0 � −ln(1 − AR)/AR (Ball 1983). Hence, flattening the
curve does not significantly reduce the total number of people infected unless medical
countermeasures can be developed during the delay it affords. In contrast, suppression
works by driving infections to the (unstable) I� 0 fixed point. The reproductive num-
ber when control measures are lifted in this case will be the same as before they were
imposed. Suppression may reduce morbidity and mortality substantially, but only if it
is global and simultaneous or continues long enough for pharmaceutical interventions
to be developed.When illness severity depends on demographics, mitigationmeasures
are most efficient when they are demographically targeted; suppression measures are
most efficient when they are spatially and temporally targeted.

Compartmentalmodels canbe elaborated (Hethcote 1994) by expanding thenumber
of disease states (e.g., by adding compartments for exposed (E) or vaccinated (V )) or
by partitioning the population by demographics such as age or location. Such models
are well suited for representing demographically related heterogeneity in the course
of illness or contact rates. The number of transition rates required to specify the model
increases as the square of the number of partitions. At some point, depending on
the modeler, it becomes natural to represent the model as a network of interacting
partitions. Taken to the extreme, each host is in its own partition and the model is
known as an individual-based model (Eubank 2004).

Individual-basedmodels trade off the power to represent heterogeneity against com-
putational complexity and the need for data to calibrate person–person contact rates as
well as etiological parameters. Modelers have generally been slow to adopt individual-
based models because of these challenges; rather, they felt that capturing individual
heterogeneities was unnecessary. However, driven by important heterogeneities in the
risk ofHIV infection and the targeting of interventions, networkmodels and individual-
based models of small populations started to become popular around the turn of the
century (Morris and Kretzschmar 1997; Black and Singer 1987). Individual-based
models can represent not only biological, but also social heterogeneities, which are
increasingly important aspects of pandemics. It is difficult to draw clear conclusions
without such methods because individuals’ circumstances, perceptions, deliberations,
and social conventions are rather centrally causal. Even a single individual’s behavior
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can carry out very important consequences. Hence, due to management of information
and policies affecting individuals’ responses, biologically similar diseases and circum-
stances can have different outcomes that will not be captured by aggregate models.

The importance of developing usefulmodels of infectious disease dynamics became
abundantly clear in 2001 when five anthrax-laced letters were mailed to prominent
senators and to media outlets, killing five people. Worries about bioterrorism led to
increased federal spending and the expansion of federal agencies focused on protect-
ing the public. The 9/11 attacks prompted then Vice President Cheney to propose
vaccinating the entire population of the USA against smallpox. An NIH-sponsored
forum held in 2001 concluded that models could be of great value in assessing the
outcomes of Cheney’s and other strategies to reduce the threat of a smallpox attack
(Kaplan et al. 2002; Halloran et al. 2002; Ferguson et al. 2003; Eubank 2004; Gani and
Leach 2001).There was both optimism and skepticism about how, when, and whether
modeling could be a useful tool for informing policy decisions.

As a result, the NIH National Institute for General Medical Sciences launched,
in 2004, the Models of Infectious Disease Agent Study (MIDAS) to develop com-
putational and mathematical models. An unusual clause in the MIDAS cooperative
agreements stipulated that in the event of a national infectious disease emergency, the
researchers would devote their attention to providing decision support to the Depart-
ment of Health and Human Services. Then, as now, the emergence of a novel, highly
lethal strain of influenza was perceived to be an imminent threat. MIDAS researchers
prepared for their possible roles in an emergency by studying two questions of interest
to pandemic preparedness planners:

1. In the event of an outbreak in, for example, Southeast Asia, should we commit our
resources to containing the outbreak there, or should we reserve them to mitigate
its eventual spread to the USA? (Ferguson et al. 2005; Longini et al. 2005).

2. Given limited supplies of antivirals, how effective would a strategy of targeted,
layered containment (TLC)be in controlling an epidemic in theUSAuntil a vaccine
could be developed? (Halloran et al. 2008). Targeted, layered containment refers
to implementation of several interventions that are individually ineffective, but
potentially effective together.

Three modeling groups examined these questions and came to similar conclusions.
Themodel that Imperial College developedwas used as the basis for the recent analysis
of the dynamics of SARS-CoV-2, the viral agent that causes COVID-19.

The results of these two studies were promising, but somewhat controversial at the
time. The first study indicated that containment at the source was likely to succeed
if outbreaks were detected early enough. Although the necessary global surveillance
system did not exist, it seemed feasible. The TLC study indicated that a combination
of thorough case detection and quarantine with isolation of contacts, careful targeting
of antivirals, and aggressive social distancing measures adopted sufficiently early
in an outbreak could, with high probability, slow the spread of disease enough so
that health care resources would not be overwhelmed before sufficient quantities of
pharmaceuticals could be manufactured and distributed.

Controversy centered on the feasibility of implementing aggressive social distanc-
ing measures, which included self-isolation, quarantine, and liberal leave policies at
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work. A 2004 Institute of Medicine panel considered the question, reaching equivocal
conclusions, including that existingmodelswere very promising but inadequate, at that
time, to determine the impact of widespread social distancing measures (Mahmoud
2006; Hatchett et al. 2007; Markel et al. 2008).

What’s different now? Significantly, models have become more sophisticated, both
computationally and in their relevance to policy decisions. The TLC models and
results are certainly applicable to the current COVID-19 outbreak, although there
are important differences:

• Not only is no vaccine available for SARS-CoV-2, but also no existing antivirals
are known to be effective in treating illness or reducing transmissibility. The social
distancing part of TLC is the only part relevant to the current COVID-19 epidemic.

• Unlike the influenza virus, SARS-CoV-2 is an emerging pathogen, not a novel
variant of a well-known human pathogen. This has implications for public percep-
tions, development of diagnostic tests, and medical countermeasures. Moreover,
the demographics of the illness, such as variations in the severity of illness, from
asymptomatic to those requiring ventilator support, are almost unknown.

• The organization of society is rapidly changing due to near-universal access to
high-bandwidth telecommunications and social media, affecting both the ability to
communicate how to implement social distancing correctly and the dissemination
of false information.

A beneficial result of these differences is that social distancing measures whose
practicality was suspect then have been widely adopted today even in the absence
of—or sometimes in opposition to—official guidance. School closings, community
programs to support vulnerable people, state and county policies to require social dis-
tancing, aswell as business and government support for telecommuting arewidespread
around the world.

Unfortunately, the lack of testing capacity and our poor understanding of variations
in the severity of illness have made early case detection, isolation of infectious people,
and quarantine of their contacts impossible. Thus, the brunt of suppressing COVID-19
falls on social distancing and the associated efforts to manage and control individual
and population behaviors. There is no doubt that sufficient social distancing can sup-
press an outbreak of a droplet-borne respiratory disease. However, there is also no
doubt that society could not continue to function if everyone withdrew to the home
for the several weeks necessary for complete suppression. Indeed, the very notion of a
society assumes that personal survival does not depend solely on individual decisions.

The Imperial College study addresses the question: If complete suppression is
not feasible, what is the best strategy combining incomplete suppression and con-
trol that is feasible and leads to acceptable outcomes? The authors consider a strategy
which cycles betweenmaximumandminimumsocial distancing. Theirmost important
assumptions are about the effectiveness of social distancing for reducing the repro-
ductive number, the rate of case ascertainment, and the amount of infection before
detection. The Imperial team, as usual, has taken great care to calibrate parameters of
the disease model. To be sure, calibration has been hampered by the lack of testing,
especially our poor understanding of the prevalence of asymptomatic infection, but the
Imperial College team makes reasonable assumptions. However, the model’s reliance
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on a simplified picture of social interactions limits its extensibility to counterfactuals.
The general nature of conclusions based on such a model can be expected to be similar
to those of a simple compartmental model.

The Imperial team’s results are bleak, but they are consistent with other models
that make similar assumptions (medRxiv 2020). The TLC study did not consider
how and when to lift intervention measures, so the questions addressed by this study
demonstrate important progress. They appear to have been influential in convincing
policy-makers in the UK and the USA of the threat posed by COVID-19. They have
stimulated discussion of novel mitigation strategies, although, once again, there is
skepticismabout the feasibility of on-again and off-again interventions. Such strategies
not only depend on effective communication and adherence, but also on the premise
of zero delay between sensing (e.g., ICU occupancy) and reacting (social distancing).
The natural delay between imposing restrictions and seeing a drop in confirmed cases
(as seen inWuhan) will create social hysteresis loops. Also, it will be difficult for most
officials to relax controls in the certain knowledge that many people will be infected.

Despite the progress, one must ask: Why we are still using models developed
15–20 years ago?

The timely nexus of the MIDAS program, commodity high-performance com-
puting, the development of network science as a recognizable discipline, and the
widespread adoption of distributed sensors like mobile GPS devices (a.k.a. smart
phones) led to a burgeoning interest in epidemiological modeling. Individual-based
models provide a high-resolution, mechanistic explanation of the reproductive number
that can support principled modeling of the impacts of hypothetical social distancing
strategies. However, marshalling the available evidence into a scalable, customizable
model that is easy for non-computer specialists to use and that addresses a wide range
of questions about a variety of strategies remains a challenge. Only a few of the exist-
ing efforts in this area have so far been able to bring the most powerful models to bear
on COVID-19, but there are indications that more will be available in the coming days.

MIDAS is still in existence as of this writing, though the emergency clause has
been dropped from its charter. The program has successfully nucleated a consortium
of collaborating epidemiological modelers accustomed to playing an active role in
decision support (Lofgren et al. 2014).CDChas now reachedout to a stable ofmodelers
to develop well-characterized models that inform CDC’s policy decisions. Contagions
of all sorts—economic, social, and infectious disease—are among the most urgent
issues of our time. The government should re-emphasize research into contagion in its
sociotechnical context in a renewed, invigorated, and broadened MIDAS-style thrust
for the future.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of interest

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included

123



Commentary on Ferguson, et al., “Impact of Non… Page 7 of 7 52

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abbey H (1952) An examination of the Reed–Frost theory of epidemics. Hum Biol 24(3):201
Ball F (1983) A threshold theorem for the Reed–Frost chain-binomial epidemic. J Appl Probab

20(1):153–157
Black FL, Singer B (1987) Elaboration versus simplification in refining mathematical models of infectious

disease. Annu Rev Microbiol 41(1):677–701
Eubank S, Guclu H, Kumar VA,MaratheMV, Srinivasan A, Toroczkai Z,WangN (2004)Modelling disease

outbreaks in realistic urban social networks. Nature 429(6988):180–184
Ferguson NM, Keeling MJ, Edmunds WJ, Gani R, Grenfell BT, Anderson RM, Leach S (2003) Planning

for smallpox outbreaks. Nature 425(6959):681–685
Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke

DS (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature
437(7056):209–214

Ferguson NM, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, Bhatia S, Boonyasiri
A, Cucunubá Z, Cuomo-Dannenburg G, Dighe A (2020) Impact of non-pharmaceutical interven-
tions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College COVID-19
Response Team, London, March, 16. https://www.imperial.ac.uk/media/imperial-college/medicine/
sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf

Gani R, Leach S (2001) Transmission potential of smallpox in contemporary populations. Nature
414(6865):748–751

Halloran ME, Longini IM, Nizam A, Yang Y (2002) Containing bioterrorist smallpox. Science
298(5597):1428–1432

Halloran ME, Ferguson NM, Eubank S, Longini IM, Cummings DA, Lewis B, Xu S, Fraser C, Vullikanti
A, Germann TC, Wagener D (2008) Modeling targeted layered containment of an influenza pandemic
in the United States. Proc Natl Acad Sci 105(12):4639–4644

Hatchett RJ, Mecher CE, Lipsitch M (2007) Public health interventions and epidemic intensity during the
1918 influenza pandemic. Proc Natl Acad Sci 104(18):7582–7587

Hethcote HW (1994) A thousand and one epidemic models. In: Levin SA (ed) Frontiers in mathematical
biology. Springer, Berlin, pp 504–515

Kaplan EH, Craft DL, Wein LM (2002) Emergency response to a smallpox attack: the case for mass
vaccination. Proc Natl Acad Sci 99(16):10935–10940

Lofgren ET, Halloran ME, Rivers CM, Drake JM, Porco TC, Lewis B, Yang W, Vespignani A, Shaman J,
Eisenberg JN, Eisenberg MC (2014) Opinion: mathematical models: a key tool for outbreak response.
Proc Natl Acad Sci 111(51):18095–18096

Longini IM, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DA, Halloran ME (2005)
Containing pandemic influenza at the source. Science 309(5737):1083–1087

Mahmoud A (2006) Modeling community containment for pandemic influenza: a letter report. Committee
on modeling community containment for pandemic influenza, Institute of Medicine

Markel H, Stern AM, Cetron MS, Theodore E (2008) Woodward award: non-pharmaceutical interventions
employed by major American cities during the 1918–19 influenza pandemic. Trans Am Clin Climatol
Assoc 119:129–138 (discussion 138–142)

medRxiv, the preprint server for health sciences (2020) COVID-19 SARS-CoV-2 preprints from medRxiv
and bioRxiv. https://connect.medrxiv.org/relate/content/181

Morris M, Kretzschmar M (1997) Concurrent partnerships and the spread of HIV. Aids 11(5):641–648

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
https://connect.medrxiv.org/relate/content/181

	Commentary on Ferguson, etal., “Impact of Non-pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand”
	Abstract
	References




