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Abstract
Asymptomatic individuals in the context of malarial disease are subjects who carry
a parasite load, but do not show clinical symptoms. A correct understanding of the
influence of asymptomatic individuals on transmission dynamics will provide a com-
prehensive description of the complex interplay between the definitive host (female
Anopheles mosquito), intermediate host (human), and agent (Plasmodium parasite).
The goal of this article is to conduct a rigorousmathematical analysis of a newcompart-
mentalized malaria model accounting for asymptomatic human hosts for the purpose
of calculating the basic reproductive number (R0) and determining the bifurcations
that might occur at the onset of disease-free equilibrium. A point of departure of this
model from others appearing in the literature is that the asymptomatic compartment
is decomposed into two mutually disjoint sub-compartments by making use of the
naturally acquired immunity of the population under consideration. After deriving the
model, a qualitative analysis is carried out to classify the stability of the equilibria of
the system. Our results show that the dynamical system is locally asymptotically stable
provided thatR0 < 1. However, this stability is not global, owning to the occurrence
of a sub-critical bifurcation in which additional non-trivial sub-threshold equilibrium
solutions appear in response to a specified parameter being perturbed. To ensure that
themodel does not undergo a backward bifurcation, we demand an auxiliary parameter
denoted Λ < 1 in addition to the threshold constraint R0 < 1. The authors hope that
this qualitative analysis will fill in the gaps of what is currently known about asymp-
tomatic malaria and aid in designing strategies that assist the further development of
malaria control and eradication efforts.
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1 Introduction

Malaria is one of themost lethal and complex parasitic diseases in the world (Gutierrez
et al. 2015; World Health Organization 2019). Throughout human history, malaria has
burdened most regions of our planet and has had a profound impact on human history
and evolution; for example, it has been credited for contributing to the decline of
the Roman Empire (Sallares 2002, p. 14). In 2018, the World Health Organization
(WHO) reported the occurrence of approximately 228 million new cases of malaria
(range 206–258million), which resulted in an estimated 405 thousand disease-induced
deaths (World Health Organization 2019). It was estimated that 67% of these fatalities
were experienced by children under the age of five.

The life cycle of thePlasmodium parasite can be broken down into two separate sub-
cycles: the asexual cycle, occurring in humans (intermediate host) and the sexual cycle
in mosquitoes (definitive host), in which maturity is reached. The sexual cycle begins
when a susceptible mosquito feeds on the blood of an infectious human, ingesting sex-
ual forms of the Plasmodium parasite previously developed in the human body, known
as gametocytes. While in the midgut lumen of the mosquito, these gametocytes fuse
to form diploid zygotes, which grow into elongated ookinetes. The motile ookinetes
burrow into the outer membrane of the mosquito midgut and form ellipsoid shaped
oocysts. Eventually, the oocysts rupture releasing thousands of haploid forms called
sporozoites (Rosenberg and Rungsiwongse 1991). These sporozoites accumulate in
the salivary glands of the mosquito, causing it to become infectious.

The asexual cycle begins when an infectious mosquito bites the host and injects
saliva with anticoagulant agents that keep the wound open, thus allowing a blood meal
and simultaneously injecting sporozoites into the skin (Cowman et al. 2012). The
sporozoites travel through the blood vascular system to the liver where they invade the
cells of the liver, known as hepatocytes. Inside the human, a Plasmodium infection
goes through two cycles: a initial liver (hepatic, or exo-erythrocytic) stage lasting a few
days, followed by a blood (erythrocytic) stage that lasts until the host clears naturally
the infections, receives treatment, or dies.

The hepatic stage begins in the hepatocytes, where a proportion of the sporozoites
undergo a process called pre-erythrocytic or hepatic schizogony, in which they mul-
tiply asexually to produce thousands of haploid daughter cells, known as merozoites.
During this process, schizonts are formed, causing the hepatocytes to rupture. This
allows the merozoites to enter the bloodstream.

The erythrocytic stage begins when free-floating merozoites invade erythrocytes
in a matter of minutes. Inside the erythrocyte, parasites enter the ring stage in which
some mutate into an enlarged ring-shaped form called trophozoites that mature into
schizonts, causing the cell to burst and releasing more merozoites into the blood-
stream. In the case of P. falciparum, this process of invasion and rupture of RBCs
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occurs synchronously every 48h (Mideo et al. 2013). At this point in the sub-cycle,
a small portion of the merozoites, for reasons incompletely understood, develop into
gametocytes, or sexual forms; however, no sexual reproduction occurs inside the host
(John et al. 2006; Yan et al. 2015). The infected human host is now ready to infect
new susceptible mosquitoes, thus completing the Plasmodium life cycle.

The blood stage parasites are responsible for most clinical symptoms associated
with the disease (Arévalo-Herrera et al. 2015; Yazdani et al. 2006). The periodic rup-
turing of the RBCs results in the release of various debri and waste products, which
in turn activate the immune system and cause symptoms such as chills, fatigue, pain,
and fever. The average duration for the infection of an RBC is dependent on the
Plasmodium species. P. falciparum has the interesting pathological effect of seques-
tration, which occurs when infected RBCs containing mature forms of the parasite,
i.e., trophozoites and schizonts, adhere to the walls of small diameter blood vessels,
e.g., the endothelium of capillaries and venules (David et al. 1983). As a result of
sequestration, the microcirculation is reduced and in some cases inflammatory pro-
cesses take place. One of the common complications of this sequestration is cerebral
malaria, which might cause patients to sustain brain injury, resulting in long-term
neuro-cognitive impairment (MacPherson et al. 1985).

A human host is called asymptomatic when it is a carrier for the Plasmodium
parasite, but displays no clinical symptoms.Asymptomatic carriers contribute togame-
tocyte circulation by providing a hidden reservoir for the parasite to take refuge. As
pointed out by Laishram et al. (2012b), asymptomatic infections often go undetected,
resulting in a major source of gametocytes for local mosquito vectors. Accordingly,
asymptomatic carriers contribute to the persistence of malaria transmission within
their localized populations (Bousema et al. 2004). Frequent exposure to the Plasmod-
ium parasites leads to naturally acquired immunity to the symptoms of the disease,
but not necessarily to the parasite, and as a result, it creates asymptomatic carriers in
a given population (Staalsoe and Hviid 1998).

Asymptomatic malaria infections have been reported in various high and interme-
diate transmission areas such as Kenya and Nigeria (Bousema et al. 2004; Eke et al.
2006). Recently, asymptomatic infections have been reported in relatively lowendemic
areas such as Colombia, Ecuador, and theAmazonian region of Brazil (Cucunubá et al.
2008; Coura et al. 2006; Sáenz et al. 2017; Lopez-Perez et al. 2015). There is much
evidence that asymptomatic malaria infections play a fundamental role in malaria
transmission (Lindblade et al. 2013). Disease transmission dynamics may be affected
by the amount of asymptomatic carriers in a given population over a specified time
interval. Indeed, a positive correlation between high transmission and high asymp-
tomatic prevalence has been reported in Nigeria, Senegal, Gabon, and the Amazonian
regions of Brazil (Alves et al. 2002; de Andrade et al. 1995; Dal-Bianco et al. 2007;
Eke et al. 2006).

In accordance with Bruce-Chwatt et al. (1980), we define malaria immunity as the
state of resistance to the infection brought about by all processes which are involved
in destroying the Plasmodia or limiting their multiplication. Natural innate immu-
nity is an intrinsic property of the host. This type of immunity is characterized by
an immediate inhibitory response to the introduction of the parasite which is inde-
pendent of any previous infection. Their are two types of acquired immunity, namely
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active acquired immunity and passive acquired immunity. Active acquired immunity
is defined as an enhancement of the hosts defense mechanism due to previous contact
with the pathogen. Passive acquired immunity is characterized by either the mother to
child transfer of protective antibodies in the pre- or post-natal developmental periods
or by the injection of such antibodies. In this work, we are focused on active acquired
immunity, more specifically a type of immunity that is acquired through means of
exposure.

Humans experience various kinds of active acquired immunity which provide dif-
ferent kinds of protection. Adopting the definitions by Doolan et al. (2009), we define
protection to be objective evidence of a lower risk of clinical disease, indicated by
the absence of fever, that is, the oral temperature does not exceed the threshold 37 ◦C
(Clark and Kruse 1990). Anti-disease immunity is conferred protection against clinical
disease, which affects the overall risk and extent of morbidity associated with a given
parasite density. Anti-parasite immunity is conferred protection against parasitemia,
which affects the parasite density. Premunition provides protection against new infec-
tions by maintaining a generally asymptomatic parasitemia (Koch 1900; Sergent and
Parrot 1935). In this article, we make use of a kind of premunition called naturally
acquired immunity (NAI). As reported byDoolan et al. (2009), in holoendemic regions
across sub-Saharan Africa, most people are continuously infected by P. falciparum,
while the majority of infected adults rarely experience observable disease. This valid
protection against infection is NAI corresponding to P. falciparum.

Mathematical models ofmalaria transmission have been studied by various authors;
for a survey, we refer the reader to Mandal et al. (2011). Model formulations where
partially immune humans are allowed to be infective have been studied by Ngwa
and Shu (2000) and Roop-O et al. (2015). Both of these models accounted for par-
tially immune humans in the recovered compartment. Asymptomatic malaria has also
been previously modeled and studied. Of recent, an asymptomatic malaria model was
introduced by Filipe et al. (2007). This model depends on a state-invariant control
parameter φ, which stands for the proportion of human infections that develop dis-
ease. After letting 1/h denote the mean latent period in humans, the progression rates
from the exposed to the symptomatic and asymptomatic classes were defined to be
the products hφ and h(1−φ), respectively. Additionally, asymptomatic humans were
included in the recovered compartment.

In this article, we depart from the previous models of asymptomatic malaria by
creating explicitly different compartments for symptomatic (Y ) and asymptomatic (A)
subjects, which in addition to susceptibles (S), exposed (E), and recovered (R) yields
the acronym SEYAR. Another important point of departure with respect to previous
models of asymptomatic malaria is that in the SEYAR model (4), the progression rates
corresponding to the symptomatic and asymptomatic human classes are nonlinear
functions of the time-dependent exposed proportion. Therefore, the SEYAR model
does not fall into a sub-class of such models currently appearing in the literature.
Moreover, we do not include the asymptomatic humans in the recovered compartment.
This allows an effective isolation of the effect that asymptomatic carriers have on the
disease transmission dynamics. Unlike other models appearing in the literature, the
recovered human compartment studied in this article does not have an associated
transmission probability, since it does not contribute to mosquito infection.
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The derivation of the SEYAR model (4) hinges on a specific decomposition of the
infected human compartment into twomutually disjoint sub-compartments accounting
for asymptomatic and symptomatic carriers. This decomposition is accomplished by
making use of a nonlinear exposure-dependent NAI function, which is the solution to
the initial-value problem (1) derived in Sect. 2. Although there ismuch in the literature,
the proper inclusion of asymptomatic carriers into the epidemiological modeling of
malaria warrants a formal mathematical understanding.

This manuscript provides a new malarial model accounting for asymptomatic
human hosts in terms of the NAI of the population under consideration and is orga-
nized as follows: Sect. 2 presents the model formulation, Sect. 3.1 covers the issue of
well-posedness of the initial-value problem and provides an analysis of the total popu-
lation dynamics, Sect. 3.2 contains a rigorous study of the local asymptotic stability of
disease-free equilibrium (DFE) for themodelwith amathematical and epidemiological
interpretation of the reproductive threshold, Sect. 4 introduces some modifications of
theSEYARmodel alongwith their corresponding reproductive thresholds and addresses
the impact of the asymptomatic class on the reproductive threshold of the original
model, Sect. 5 is focused on nonlinear stability analysis and provides a classifica-
tion parameter in which its size determines the type of bifurcation undergone by the
dynamical system, Sect. 6 incorporates control measures into the dynamical system,
Sect. 7.1 is focused on a sensitivity analysis of the reproductive threshold arising from
the model, Sect. 7.2 consists of numerical results corresponding to the following three
high transmission sites: Kaduna in Nigeria, Namawala in Tanzania, and Butelgut in
Papua New Guinea, Sect. 8 consists of a summary of the results contained in Sects. 2–
7.2 and a discussion regarding future direction and extensions, “Appendix A” contains
formal proofs of the lemmas and theorems contained in Sects. 2–6, “Summary of
Stability Theorems” of appendix is a summary of the main stability theorems used in
the investigation of the local asymptotic stability of the equilibrium solutions studied
in Sects. 3.2 and 5, and “Parameter Values” of appendix contains tables of numerical
rates corresponding to the high transmission sites studied in Sect. 7.2.

2 Methods: Model Formulation

The formulation of the SEYAR model for the spread of malaria in the human and
mosquito populations begins with dividing the total host–vector population into two
compartments, denoted by NH (t) and NM (t), which stand for the total population
sizes of the humans and mosquitoes, respectively, at a given time t . From this point
on, whenever implied by the context of the discussion, the time t dependency is
suppressed.Assuming a homogeneouslymixed host population,we further decompose
the compartments into the following five epidemiological classes: susceptible human
S, exposed human E , symptomatic human Y , asymptomatic human A, and recovered
human R, so that NH = S + E + Y + A + R. For simplicity of exposition, the
state variable is identified with its corresponding class. For example, when we are
considering a human from class A, it is understood that A is a function and not a class,
in general.
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A point of departure from the usual SEIR models, as studied by d’Onofrio (2002),
Li and Muldowney (1995), Li et al. (1999), Roop-O et al. (2015) and Smith et al.
(2001), resides in the mutually disjoint partitioning of the infected compartment into
two sub-compartments, labeled asymptomatic A and symptomatic Y , i.e., I = Y ∪
A where Y ∩ A = ∅. For the mosquito population, we have the following three
classes: susceptible mosquito MS , exposed mosquito ME , and infected mosquito MI .
Accordingly, the total mosquito population is given by NM = MS + ME + MI .

As mentioned by Filipe et al. (2007), it is known that the infection rates between
human and mosquito populations depend on numerous factors including the human
biting rate of themosquito σ (which is the number of bites per mosquito), transmission
probabilities (to be later defined), and the number of infectious and susceptible of each
species involved. Furthermore, we assume that the average number of mosquito bites
suffered by humans depends on the total sizes of their respective populations in the
community. As a result, the number of bites per human is σ NM

NH
. Therefore, the force

of infection frommosquitoes to humans λSE is defined to be the product of the number
of bites per human, the transmission probability βM from a mosquito in the class MI

to a human in class S, and the probability that a mosquito is infectious MI
NM

, i.e.,

λSE = ωM = σ
NM

NH
βM

MI

NM
= σβM

MI

NH
.

Even though asymptomatic carriers might not get clinically ill, they still could
harbor low levels of gametocytes in their bloodstreams and could to pass the infection
onto mosquitoes (Vinetz and Gilman 2002). When a mosquito from class MS bites a
human from classY , the force of infectionωY is defined as the product of the number of
bites per mosquito σ , the transmission probabilityβY from a human in Y to a mosquito
in MS , and the probability that a human is in the symptomatic class Y

NH
. When a

mosquito from the class MS bites a human from class A, the corresponding force of
infection ωA is the product of the number of bites per mosquito σ , the transmission
probabilityβA from a human in A to a mosquito in MS , and the probability that a
human is in the asymptomatic class A

NH
. As pointed out by Laishram et al. (2012a),

the parasites carried by asymptomatic hosts can be more infectious than those of
symptomatic hosts. One could assume that a typical asymptomatic carrier has a higher
NAI level than a symptomatic, so that βA ≤ βY . Accordingly, the force of infection
from humans to mosquitoes VSE is defined to be the sum of the forces of infection
corresponding to the humans in classes Y and A, i.e.,

νSE = ωY + ωA = σ
(
βY

Y

NH
+ βA

A

NH

)
.

Let νE I = τ , where τ is the reciprocal of the mean duration of the definitive host
latent period.

At a given time t ∈ R+, an individual’s experience of malaria is dependent upon
the degree of naturally acquired immunity that he or she has gained. Effective anti-
parasitic immunity is achieved only after many frequent infections (Carter andMendis
2002; James et al. 1920; Macdonald et al. 1957). This important epidemiological
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observation, in combinationwith the discussion regarding naturally acquired immunity
(NAI) in Sect. 1, implies that the rate of progression λE A from the exposed class E
to asymptomatic class A depends on the proportion of human individuals receiving
sufficient protection from the average NAI accumulated in the population with respect
to natural exposure.

Let u(t) denote the proportion of the human population fully protected by NAI.
Since naturally acquired immunity to the Plasmodium parasite is acquired and accu-
mulates over time in response to frequent exposure, the rate that this proportion of
protected individuals changes depends on the rate that the human population is being
exposed, up to a threshold value. To uncover this exposure dependency, firstly let the
lower and upper protected proportion thresholds be given by ulowand uhigh , respectively.
It should be noted that 0 ≤ ulow< uhigh < 1.

Let ε := E
NH

, upon assuming that the initial NAI protected proportion is given by
the lower threshold u(0) := ulow , these epidemiological principles lead to the following
initial-value problem (IVP) being posed

{
u̇ = (uhigh− u)ε̇,

u(0) = ulow .
(1)

Notice that the time derivative on both sides of the differential equation (1) is an
unusual formulation. It is explained by the fact that the rate of the human population
fully protected byNAI u̇ is dependent upon the rate that the population is exposed to the
pathogen ε̇. For example, if ε̇ increases or decreases, then it stands to epidemiological
reason that u̇ should increase or decrease.

By making use of the integrating factor L = e
∫ t
0 ε̇(s)ds := eε−ε0 , it follows that

˙(Lu) = L ε̇uhigh ,

Lu = ulow+ (L − 1)uhigh ,

u = L−1ulow+ (1 − L−1)uhigh ,

u = eε0−εulow+ (1 − eε0−ε)uhigh .

Upon rearranging terms and invoking a slight abuse of notation, to emphasize the
exposure ε dependency of u, the solution is represented by the following equation:

u(ε) = eε0−ε(ulow− uhigh) + uhigh . (2)

In the above, the symbol ε0 := ε(0) stands for the initial exposed proportion of
the human host population. The function NH is positive for all t ∈ R+; thus, it
directly follows that ε ∈ C1

b(R+). In general, care should be taken to ensure that the
progression rate is mathematically well defined and epidemiologically sensible, i.e.,
a singularity should not arise and it should be non-negative. Provided that x is such
that ε ∈ C1(R+), then clearly the progression rate will not experience a singularity.
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Besides the trivial singularity issue covered above, care must be taken to ensure
the non-negativity of the nonlinear progression rate u. As a result, the solution to the
IVP (1) implicitly imposes an additional constraint upon the initial data of the SEYAR
model (4). The constraint is listed below in Lemma 1, which is proven in “Appendix.”

Theorem 1 (Initial data constraint for the SEYARmodel) Let ϑ be defined as follows:

ϑ := ln

(
uhigh

uhigh − ulow

)
. (3)

Toensure the non-negativity of u, the initial data are required to satisfy the inequality
E0 ≤ ϑN0.

Let the eight-dimensional vector of functions x = (S, E,Y , A, R, MS, ME , MI )
T

be such that ε ∈ C1(R+) and ϑ be defined as in Theorem 1. The nonlinear progression
rate u is well defined in a mathematical and epidemiological sense.

Define λE A = γ u(ε) where γ is the reciprocal of the mean duration of the human
latent period. It is a direct consequence thatλEY = γ (1−u(ε)), so thatλE A+λEY = γ .
Since the naturally acquired immune proportion will grow in response to exposure,
the rate of progression from the exposed class E to asymptomatic class A should
increase, warranting the choice of λE A. Furthermore, as the exposure rate increases,
λE A will eventually be maximized. This is consistent with the observation that the
average amount of asymptomatic human hosts in a population should increase after
frequent exposure over a sufficient time period. When the exposed proportion is equal
to zero over a prescribed time interval, it follows that u = eε0(ulow− uhigh) + uhigh over
the interval. This quantity is a sum consisting of the upper threshold and a negative
scaled difference of the lower and upper thresholds. If this infimum is achieved, then
the progression rate λE A will be minimal. This is due to the fact that if there is little
exposure, then there is little NAI developed in the population, so that the rate of
progression from E to Y will be maximal. Moreover, the progression rate from E to
Y should decrease as the exposure rate increases.

If the population under consideration is free of malaria, then no immunity should
be present and it is possible that uhigh = 0. In this scenario, we set ulow= 0. As a result,
u = 0 for all time and it follows that λE A = 0. Thus, the progression rate from the
exposed human class to the asymptomatic class is nullified. However, as the purpose
of this article is to model asymptomatic malaria, it is assumed that malaria is present
in the population.

These assumptions give rise to the following SEYAR model IVP (4), depicted in
Fig. 1, describing the dynamics of malaria disease transmission in the human and
mosquito populations:
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R

Y A

E

S

ME

MS

MI

ξH

ξH

ξH

ξH

ξH

ξM

ξM

ξM
δ

ΩH ΩM

λRS νSE

νEI

λSE

λEY λEA

λY R λAR

ωY

ωA

ωM

Fig. 1 This figure is a schematic diagram of a malaria model including an asymptomatic compartment.
The solid lines represent progression from one compartment to the next, while the dotted stand for the
human–mosquito interaction. Humans enter the susceptible compartment either through birth or migration
and then progress through each additional compartment subject to the rates described above (Color figure
online)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = ΩH + λRS R −
(
σβM

MI
NH

+ ξH

)
S,

Ė = σβM
MI
NH

S − (γ + ξH )E,

Ẏ = γ (1 − u(ε))E − (ξH + δ + λY R) Y ,

Ȧ = γ u(ε)E − (λAR + ξH ) A,

Ṙ = λAR A + λY RY − (λRS + ξH ) R,

ṀS = ΩM −
(
ξM + σβY

Y
NH

+ σβA
A
NH

)
MS,

ṀE = σ
(
βY

Y
NH

+ βA
A
NH

)
MS − (ξM + τ) ME ,

ṀI = τME − ξMMI ,(
S0, E0,Y0, A0, R0, MS0 , ME0 , MI0

)T ∈ R
8+ such that ε0 ≤ ϑ,

(4)

where u andϑ are defined by Eqs. (2) and (3), respectively. For convenience, themodel
parameters are summarized in Table 1. All of the parameters are strictly positive, with
the exception for the disease-induced death rate δ, which is allowed to be non-negative.
The naturally acquired immune proportion will increase or decrease, depending on the
rate that the human population is being exposed. Hypothetically, as the rate of exposure
increases or decreases, this proportion should grow or shrink up to a threshold value.
This epidemiological behavior is quantified by the solution to the IVP (1). Assume
ulow = 0.5, as above, and that it is possible for at most ninety percent of the population
to acquire sufficient protection through means of natural exposure, i.e., uhigh = 0.9.
Then, the initial exposed proportion ε0 can be assumed to take any value in the interval
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Table 1 Model parameters

Parameter Description Dimension

ΩH Recruitment rate of humans humans × time−1

ΩM Recruitment rate of mosquitoes mosquitoes × time−1

ξH Natural mortality rate of human time−1

ξM Natural mortality rate of mosquito time−1

βA Probability of disease transmission from asymptomatic human to a
susceptible mosquito

n/a

βY Probability of disease transmission from symptomatic human to a
susceptible mosquito

n/a

βM Probability of disease transmission from infected mosquito to
susceptible human

n/a

γ The intermediate host mean latent period time−1

τ The definitive host mean latent period time−1

δ Disease-induced death rate for humans time−1

σ Human biting rate of mosquito time−1

λAR Asymptomatic human recovery rate time−1

λYR Symptomatic human recovery rate time−1

λRS Temporary immunity loss rate in humans time−1

u(ε) Exposure-dependent NAI protected proportion n/a

ulow ,uhigh Lower and upper NAI protected thresholds n/a

[
0, ln

(
uhigh

uhigh−ulow

)]
= [0, ln ( 94

)] ≈ [0, 0.81]. In other words, one can assume at most

81%of the human population to be initially exposed.On the other hand, if onemodifies
the above assumptions so that the initial naturally acquired immune proportion is
ulow = 0.1, then ε0 ∈ [0, ln ( 98

)] ≈ [0, 0.12], so that at most 12% of the human
population can be assumed to be initially exposed.

3 Model Analysis

3.1 Well-Posedness and Feasible Region

Although assuming that Φ ∈ C1 provides sufficient regularity to ensure that system
(5) is well posed, this work is primarily concerned with the stability of the system near
equilibrium points. This requires additional regularity assumptions on the vector field
Φ in order to invoke a variation of the center manifold theorem, proven by Castillo-
Chavez and Song (2004). Consequently, from now on, it is necessary to assume that
Φ ∈ C2 ⊂ C1, that is, it is at least twice continuously differentiable. Moreover, to
be reasonable in an epidemiological sense, the functions under consideration should
posses a bounded first derivative, that is, they should be members of the classC1

b(R+).
From this point on, the model is studied in the more regular (smaller) function space
C2(R8+) ∩C1

b(R
8+). In light of the mathematical and epidemiological well-posedness
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of the IVP (1) and structure of the underlying vector field, the additional C2 regularity
will be inherited by the solution x.

To this end, let x = (S, E,Y , A, R, MS, ME , MI )
T , so that xi is the i th component

of the eight-dimensional vector x ∈ C2(R8+) ∩ C1
b(R

8+) and we rewrite (4) in the
following compact form: {

ẋ(t) = Φ (x(t)) ,

x(0) = x0.
(5)

Theorem 2 (Existence theory of the SEYARModel) There exists a sufficiently regular
unique solution x to the SEYAR model IVP (5) that can be continued to a maximal
time interval. Additionally, x depends continuously on the initial data x0 and model
parameters involved.

For the proof of the above theorem, the reader is referred to “Proof of Theorem 2
(See Page 11)” of appendix. The dynamics of the total population are given by the
following decoupled system:

{
ṄH = ΩH − ξH NH − δY ,

ṄM = ΩM − ξMNM .
(6)

Due to the non-homogeneous term δY , the asymptotic behavior of the human pop-
ulation is more delicate. For the human population, we have the following theorem
which provides a tighter lower bound on the attracting region for the model. In the
absence of infection, the long-time behavior of NH is trivial, that is, the total human
population converges to the equilibrium population density, as in the mosquito pop-
ulation. In the case of an infectious disease with disease-induced death rate as in
Eq. (6), one would expect the population to converge to a smaller quantity, as there
is a disease-induced death rate δ adding to the natural death rate ξH . The long-time
population size will be smaller, as it has to account for the additional disease-induced
deaths suffered by symptomatic individuals. Listed below is the theorem concerning
the feasible region of model (6).

Theorem 3 (Feasible region of the SEYARmodel)Let (NH , NM ) be the solution of sys-
tem (6) emanating fromTheorem 2,with corresponding initial data (NH (0), NM (0)) ∈
R
2+. Define the following compact sub-space

Γ :=
{
x ∈ C2(R8+) ∩ C1

b(R
8+): NH ∈

[
α,

ΩH

ξH

]
, NM = ΩM

ξM

}
,

where α := max
(
0, ΩH−δ‖Y‖∞

ξH

)
. Then, Γ is a forward invariant attractor for system

(6).

For the proof of the above theorem, the reader is referred to “Proof ofTheorem3 (See
Page 12)” of appendix.Mathematically speaking, Theorem3 reduces the complexity of
the analysis involved regarding the long-term dynamics of the system by allowing the
replacement of a potentially unbounded (epidemiologically unreasonable) space with
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the smaller (epidemiologically reasonable) compact sub-space Γ . If we let Lt = eξH t

denote an exponential multiplier, then the solution for the total dynamics of the human
population is given by

NH (t) = L−t NH (0) + ΩH

ξH
(1 − L−t ) − δL−t ∗ Y (t).

The instantaneous rate of occurrence of death, i.e., the force of mortality ξH , is
assumed to be constant. As a result, the probabilities of living and dying up to t days
are given by e−ξH t and

(
1 − e−ξH t

)
, respectively. Assuming that NH (0) = 0, the

above solution says that the total population NH (t) at time t is given by the weighted
product of the carrying capacity ΩH

ξH
and the distribution of humans that are left after

those that have died due to natural causes
(
1 − e−ξH t

)
, minus a weighted average of

humans that have died due to symptomatic infections. The later quantity is captured
by the non-homogeneous forcing term − δL−t ∗ Y (t), given by a convolution with
the inverse multiplier. Since convolution is a smoothing operation, this emphasizes
the fact that we are subtracting a “smoothing average” over past time of the humans
which have died from symptomatic infections. A straightforward calculation yields
the following differential inequality:

ṄH ≤ 0, if NH ≥ ΩH

ξH
.

From an epidemiological view point, the above inequalities imply that if the total
population NH breaches its carrying capacity, then the weighted average of fatal
symptomatic infectionsmust increase to stabilize the populationback to a healthy level.

In an epidemiological setting, one can define the term δ‖Y‖∞ to be the potential
maximum disease-related death of the human population. If ΩH > δ‖Y‖∞, then
it directly follows that α = ΩH−δ‖Y‖∞

ξH
. In this case, the above theorem provides a

tighter lower bound for the feasible region corresponding to the dynamical system (6).
In practice, the disease-induced death rate for humans δ is sufficiently small (and in
some cases negligible), so that this inequality is satisfied.

In the previous variants of malaria models appearing in the literature, e.g., SIR,
SEIR, SEIRS, etc., the quantity 0 is listed as the lower bound; however, this is unrea-
sonable since the populations under consideration usually do not go extinct, unless
ΩH = δ‖Y‖∞. If the maximum impact the disease is capable of having on the pop-
ulation is less than the recruitment rate, then their will always be accumulation over
long time. For other members of the SIR model class, the lower bound would be the
same except with Y replaced by I . In the case of an infectious disease, there will be
additional disease-induced deaths, so that the total human populationwill not converge
to the equilibrium population density.

3.2 Reproductive Threshold and Disease-Free Equilibrium

This section is focused on deriving a threshold value that characterizes the local
asymptotic stability of the underlying dynamical system (4). This value, called the
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reproductive threshold, provides a way to estimate the reduction in transmission inten-
sity required to eliminate malaria through vector-based control (Smith et al. 2007).
The basic reproductive numberR0 corresponding to a givenmodel is a threshold value
which represents the average amount of new infections produced by a typical infec-
tious individual in a completely susceptible population, at a disease-free equilibrium.
This quantity is equal to the reproductive threshold for a class of simplified population
models.

Disease-free equilibrium (DFE) points are solutions of a dynamical system corre-
sponding to the case where no disease is present in the population. Define the diseased
classes to be E,Y , A, ME , and MI . Notice that R is not considered to be a diseased
class, as the asymptomatic class A has been effectively removed, cf. Roop-O et al.
(2015). As a result, individuals in the R compartment are considered to be temporarily
immune, but not infectious. After determining the DFE of system (4), this threshold
value is used to address its local asymptotic stability. Upon equating the right-hand
side of (4) to zero and solving, we arrive at the following unique DFE:

xd f e =
(

ΩH

ξH
, 0, 0, 0, 0,

ΩM

ξM
, 0, 0

)T

.

Lemma 1 (Local asymptotic stability of the DFE for the SEYAR model) Define the
following quantity:

R0 :=
√

σ 2τγΩMξHβM

ξ2M (γ + ξH )(τ + ξM )ΩH

(
βAUlow

λAR + ξH
− βY (Ulow− 1)

λY R + ξH + δ

)
, (7)

where Ulow := eε0(ulow− uhigh) + uhigh . Then, the DFE xd f e for the SEYAR model (4) is
locally asymptotically stable provided that R0 < 1 and unstable ifR0 > 1 in Γ .

For the proof of Lemma 1, the reader is referred to “Proof of Corollary 1 (See
Page 18)” of appendix. A verification of the reproductive threshold R0 (7) is pro-
vided in the electronic supplementary material. Lemma 1 is proven by utilizing the
next-generation method developed by Van den Driessche and Watmough (2002). The
threshold value (7) has major epidemiological implications on the underlying dynami-
cal system (4). To gain a deeper insight into the qualitative information encoded in this
important quantity, we decompose it in the form of an epidemiological meaningful
product in order to analyze each factors contribution:

R0 = σ

√
ΩM

ΩH

√
τ

τ + ξM

√
γ

γ + ξH

√
ξH

ξM

√
βM

ξM

√
βAUlow

λAR + ξH
− βY (Ulow− 1)

λY R + ξH + δ
,

:= σ

6∏
i=1

√
ri .

Due to the above lemma and in an epidemiological setting, it is desirable to have
the reproductive threshold below unity. Listed below is the size contribution and bio-
logical description for each of the factors. The first factor is σ , which stands for the

123



42 Page 14 of 55 J. B. Aguilar, J. B. Gutierrez

human biting rate. This factor is usuallymuch less than unity due to the fact that female
anopheline mosquitoes generally transmit fewer than 100 sporozoites per bite (Pon-
nudurai et al. 1991). As malaria is a mosquito borne disease, the agent Plasmodium
will spread at a much slower rate, provided less vectors are introducing it into human
hosts. Owning to the monotonicity of the square root function, it is sufficient focus on
the size of each ri .

i The term r1 = ΩM
ΩH

is the ratio of the mosquito and human recruitment rates.
The population density of anopheles mosquitoes is a function of proximity to
breeding sites. A study in the urban settings of Dakhar in 1998 (Trape et al.
1992) reports an average mosquito population density of 10.4 mosquito/room
in general, and specifically 1.6 Anopheles/room during the rainy season; these
counts correspond to mosquitoes collected after indoor pyrethrum spray and do
not account for outdoor mosquito activity. These numbers seem to indicate that the
population ofAnophelesmosquitoes is larger than the population of humans in that
urban setting. Likewise, a study in a rural area of Sudan in a 4 km2 area inhabited by
approximately 800 people reported a mosquito population in the range 135,000–
330,000 mosquitoes (Costantini et al. 1996). Combined, these studies suggest that
in an endemic site, the quotient r1 is greater than unity. As the human andmosquito
recruitment rates rank high on the sensitivity hierarchy of many epidemic models
appearing in the literature, it is no surprise that this term is problematic with respect
to the overall size of the threshold.

ii The term r2 = τ
τ+ξM

is the reciprocal of the mosquito latent period τ divided by
itself plus the mosquito mortality rate ξM . This quantity is bounded above by one
and is monotonically decreasing with respect to ξM . It follows that the larger the
mosquito death rate is, the smaller r2 will be.

iii The first fully human-dependent term r3 = γ
γ+ξH

is comprised of the reciprocal of
the human latent γ period divided by itself plus the human mortality rate ξH . As
in the case of r2, this quantity is always less than one and monotonically decreases
with respect to the human mortality rate. This is consistent with the fact that
the fewer hosts there are for the parasite to invade, the less infections will arise.
However, since increasing ξH is not practical, this terms offers no control overR0.

iv The term r4 = ξH
ξM

is the ratio of the human andmosquito death rates. This particular
quantity is always less than one as the mosquito death rate is much higher than the
human death rate.

v The term r5 = βM
ξM

is the ratio of the mosquito-to-human transmission probability
βM and the mortality rate of the mosquito population ξM . This quantity will be
less than one provided βM < ξM . In the case of a population with a relatively
high vector transmission probability, the vector death rate must be large enough to
make r5 less than one. This implies a restriction on the size of βM . It will be shown
in Sect. 5 that if βM breaches a certain threshold, then sub-threshold endemic
equilibria can emerge.

vi The second fully human-dependent term is given by the following equation:

r6 = βAUlow

λAR + ξH
− βY (Ulow− 1)

λY R + ξH + δ
.
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The quantity r6 is a difference of ratios consisting of asymptomatic and symp-
tomatic vital dynamics, along with transmission, recovery, and disease-induced
death rates, weighted with a distribution consisting of the lower and upper NAI-
rate threshold of the human population scaled by an exponentiation of the initial
exposure rate. For simplicity of exposition, we assume that the initial exposed
proportion is zero, i.e., ε0 = 0, so thatUlow = ulow . If the initial exposed proportion
is not equal to zero, then initially,Ulow < ulow and the reproductive threshold will be
larger under parameter configurations to be specified shortly. Under such a con-
figuration, upon initial exposure, there will be more symptomatic individuals, but
as exposure increases, less humans will die as naturally acquired immunity will
begin to develop in the overall population. However, the following discussion is
unaffected by this minor detail. As a result, the human-dependent factor is taken
to be:

r6 = ulowβA

λAR + ξH
− (ulow− 1)βY

λY R + ξH + δ
.

Let the low and high thresholds be such that ulow > 0 and uhigh < 1, respectively, and
define the following compact sub-interval Tu := [ulow , uhigh ] ⊂ (0, 1) consisting
of various NAI protected proportions corresponding to a given population. When
subjected to a certain parameter restriction, the sizes of the quantities ulow= u(0)
and r6 are inversely related, i.e., the larger ulow is, the smaller r6 will be, resulting in
a relatively smallerR0. Hence, an additional way to control the size ofR0 arises,
provided the parameters are such that this inequality restriction, to be mentioned
below, holds. However, aswewill see, if the parameters are such that this inequality
reversed, then they are directly related.

Let C0 := σ
∏5

i=1
√
ri , C1 := βA

λAR+ξH
, and C2 := βY

λY R+ξH+δ
and define T ⊂

R
+ ∪ {+∞} to be an ordered subset of the nonnegative extended real numbers.

In addition, let u solve Eq. (2) and denote {u(t) ∈ Tu |t ∈ T } to be the set of NAI
protected proportions experienced by a population over a prescribed, possibly
infinite, time interval indexed with t and consider the following function:

R0(u(t)) := C0

√
(C1 − C2)u(t) + C2.

Subject to a given parameter configuration, the type of monotonicity obeyed by
R0(u(t)) is dependent on the sign of the nonzero combination of parameters
C1 − C2. These observations motivate the following definition which classifies
the configuration space of the model based on how the asymptotic dynamics of
the corresponding population responds with respect to the NAI accumulated in
response to the rate of exposure.

Definition 1 (Configuration space) The SEYAR model (4) is said to possess a Y -
dominant configuration if C1 − C2 > 0 and an A-dominant configuration, provided
that C1 −C2 < 0. Upon the trivial case that C1 −C2 = 0, the system is said to have a
null-configuration. Additionally, we refer to a system possessing such a configuration
as either A-, Y -, or null-configured. A given human population is called A-,Y -, or
null-dominant, provided that its corresponding configuration is.
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Although r6 is always positive, the combination of parametersC1−C2 need not be.
The positiveness of r6 is a result of how the transmission probabilities are weighted
by the NAI protected proportion. If the system is null-configured, then R0(u(t)) :=
C0

√
C2 and it is locally asymptotically stable, provided that C0 < 1 and βY <

λY R + ξH + δ, i.e., a high vector death rate, and the symptomatics are recovering or
dying out at a faster rate than they are transmitting. Consider the case of an A-dominant
configuration, i.e.,

βA

βY
<

λAR + ξH

λY R + ξH + δ
. (8)

As mentioned in Sect. 2, in the formulation of the SEYAR model (4), we do not
assume an ordering on the asymptomatic and symptomatic transmission probabilities
βA and βY , respectively. However, provided that asymptomatic carriers transmit at a
lower rate than that of symptomatic, the left-hand side of the above inequality is less
than unity. Moreover, if asymptomatic individuals recover faster than symptomatic,
provided the disease-induceddeath rate δ and recovery rates are such thatλAR > λY R+
δ, then the right-hand side of the above inequality is greater than unity and inequality
(8) is satisfied. In an epidemiological setting, such a configuration corresponds to
holoendemic regions across sub-SaharanAfrica. In such regions, themajority of people
are continuously infected byP. falciparum, but only a small proportion display clinical
symptoms (Águas et al. 2008). The high level of naturally acquired immunity present
in the population allows them to live their daily lives feeling healthy despite a relatively
high blood-parasite density (Doolan et al. 2009).

Analytically speaking, in the case of an A-dominant configuration, provided that
the mosquito mortality rate ξM can be made large enough so that the term C0 compro-
mised of fractionalmultipliers is sufficiently small, thenR0(ut ) achieves itsmaximum
R0(ulow) at the low NAI threshold ulow and decreases to its infimum as the high
NAI threshold uhigh is approached. Moreover, since the ordered set T is a subset
of a separable metric space, we can extract an ordered countable subset and form
the partition {ulow = u(t1) < · · · < u(tn) < u(tn+1) < · · · } of the compact sub-
interval Tu . In this case, the corresponding values of R0(u(t)) obey the following
descending order {R0(ulow) > · · · > R0(u(tn)) > R0(u(tn+1)) > · · · }. This is
consistent with the fact that as a given population acquires natural immunity through
exposure, the disease will start to spread at a slower rate. Conversely, if the sys-
tem has a Y -dominant configuration, i.e., C1 − C2 > 0, then the monotonicity is
reversed.

In mathematical terminology, provided σ < 1, one can always find a large enough
ξM to make C0 < 1. In this case, the factor that will cause R0 to breach unity is
r6. From an epidemiological standpoint, regardless of the size of vector transmission
probability βM or human biting rate σ , if enough mosquitoes are dying to significantly
slow the disease transmission dynamics, then C0 < 1 and, as a result, the size of the
reproductive threshold R0 will be determined by r6 which depends on the human
immune systems response to the Plasmodium parasite. This attests to the fact that in
such vector transmitted diseases, the reproductive threshold will be lower in response
to vector elimination up to a point and the factor allowing the disease to persist under
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Fig. 2 This figure is a schematic diagram of an asymptomatic malaria model without a recovered compart-
ment. The solid lines represent progression from one compartment to the next, while the dotted stand for the
human–mosquito interaction. Humans enter the susceptible compartment either through birth or migration
and then progress through each additional compartment subject to the rates described above (Color figure
online)

such low vector activity lies in the intricate relationship between the parasite and host.
This delicate relationship is captured by the term r6.

4 Variations of the SEYARModel and the Impact of the Asymptomatic
Class

This section is primarily concerned with introducing somemodifications of the SEYAR
model and their corresponding reproductive thresholds.

4.1 Elimination of the R Compartment in the SEYARModel

As mentioned earlier, premunition refers to instances when infected hosts carry low
parasitemias that confer immunity to the symptoms of the disease.When these individ-
uals are infectious, they are able to transmit the parasite to the mosquitoes; thus, they
belong to the A compartment. In addition to showing no symptoms, some individuals
exhibiting premunition are unable to transmit the parasite; these hosts are considered
part of the R compartment. We consider next the scenario when sterilizing immunity
via premunition is negligible, thus eliminating the need for an R compartment.

Corollary 1 (Local asymptotic stability of the DFE for the SEYAR model without an
R compartment) The reproductive threshold of the dynamical system corresponding
to Fig. 2 is structurally the same as that of dynamical system corresponding to Fig. 1.
The only difference resides in the relabeling of the terms λAR, λY R to λAS, λY S,
respectively.
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Fig. 3 This figure is a schematic diagram of the SEYAR malaria model including relapse rates. The solid
lines represent progression from one compartment to the next, while the dotted stand for the human–
mosquito interaction. Humans enter the susceptible compartment through recovery, birth, or migration and
then progress through each additional compartment subject to the rates described above. The new solid
lines have been highlighted to emphasize the model modification (Color figure online)

A verification of Corollary 1 is provided in the electronic supplementary material. For
the proof, the reader is referred to “Proof of Corollary 1 (See Page 18)” of appendix.

4.2 Including Relapse Rates in the SEYARModel

During the course of P. vivax and P. ovale human infections, a number of sporozoites
stay in the hepatocytes in a dormant stage for a variable amount of time ranging from
weeks to years. This stage of infection is known as the hypnozoite stage and is not
observed in P. falciparum, P. malariae, or P. knowlesi. It is unclear what causes a
hypnozoite to become active, but when it does, it causes a relapse of the disease.

In order to properly account for such biological behavior, relapse rates are included
into the SEYAR model. The asymptomatic and symptomatic human relapse rates are
denoted by λRA and λRY , respectively. This slight adjustment yields the P. vivax and
P. ovale version of the SEYAR model shown in Fig. 3.

The model parameters and initial data restrictions are the same as in the original
model. Moreover, the results of the mathematical analysis concerning the issues of
well-posedness and nonlinear stability are similar to those of the original model. For
example, the results regarding the LAS of the DFE for the above model variation are
exactly the same as in the original model.

Corollary 2 (Local asymptotic stability of the DFE for the SEYAR model including
relapse rates) The dynamical system corresponding to Fig. 3 has the same reproductive
threshold as the original dynamical system corresponding to Fig. 1.
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A verification of Corollary 2 is provided in the electronic supplementary material.
For the proof, the reader is referred to “Proof of Corollary 2 (See Page 20)” of
appendix.

Therefore, the modified system has the same reproductive threshold as the original.
This is due to the fact that the sub-matrices of the Jacobian F and V , resulting from
the block matrix partitioning technique utilized in the next-generation method, are
unaffected by this minor modification. The results regarding the LAS of the DFE
corresponding to the new system are inherited from the original.

The above modification attests to the delicate relationship between the compart-
mentalized modeling of infectious diseases and the next-generation approach. As we
have seen in the above example, multiple compartmentalizedmodels result in the same
reproductive threshold.

4.3 The Impact of the Asymptomatic Class on the Reproductive Threshold

The goal of this section is to investigate how the reproductive threshold arising from the
SEYAR model behaves in the case where asymptomatic carriers are not transmitting
the disease. The natural parameter space of the SEYAR model corresponding to the
reproductive threshold is

Θ :=
{
(ΩH ,ΩM , ξH , ξM , βA, βY , βM , γ, τ, δ, σ, λAR, λYR,Ulow) ∈ R

14
>0

}
,

where R
n
>0 := {x ∈ R

n : xi > 0 for i = 1, . . . , n}. The set Θ consists of all possi-
ble positive, epidemiologically reasonable, parameter values for the SEYAR model in
which the reproductive threshold depends upon. Although the disease-induced death
rate δ is allowed to be non-negative, the analysis presented in this section is unaffected
by this minor detail. Under this formalization, neglecting the disease transmission and
recovery rates of asymptomatic human hosts on the reproductive threshold formally
corresponds to restricting the model to the following A-nullified parameter configu-
ration space Θ̃ , defined as follows:

Θ̃ :=
{
(ΩH ,ΩM , ξH , ξM , βY , βM , γ, τ, δ, σ, λYR,Ulow) ∈ R

12
>0 : βA = λAR = 0

}
.

Consider a typical element Θ0 ∈ Θ listed below:

Θ0 =
(
ΩH0 ,ΩM0 , ξH0 , ξM0 , βA0 , βY0 , βM0 , γ0, τ0, δ0, σ0, λAR0 , λYR0 ,Ulow0

)
.

In a similar fashion, the dual element Θ̃0 ∈ Θ̃ corresponding to the symptomatic
class Y is given as follows:

Θ̃0 =
(
ΩH0 ,ΩM0 , ξH0 , ξM0 , βY0 , βM0 , γ0, τ0, δ0, σ0, λYR0 ,Ulow0

)
.
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The dual element Θ̃0 is comprised of the same fixed parameter configuration as
described by Θ0, but with the asymptomatic progression rates specified above set
equal to zero. To emphasize the asymptotic dynamic influence of the asymptomatic
class A on the reproductive threshold R0 (7) arising from the SEYAR model (4),
subject to a given fixed parameter configuration, the following notation is employed

RA := R0

∣∣∣
Θ0

. By denoting RY := R0

∣∣∣
Θ̃0

, the size relationship between the two

quantities RA and RY is captured below in the following theorem.

Theorem 4 (Impact of the asymptomatic class on the reproductive threshold) LetR0
be the threshold quantity (7) arising from Lemma 1 and consider the following fixed
parameter configuration vectors Θ0 ∈ Θ and Θ̃0 ∈ Θ̃ , corresponding to the SEYAR

model (4), defined as above. DenoteRA := R0

∣∣∣
Θ0

andRY := R0

∣∣∣
Θ̃0

, then it follows

that RY < RA.

This theorem means that R0 increases when there are asymptomatic individuals
capable of transmitting the disease. The proof of the above theorem is located in “Proof
of Theorem 4 (See Page 21)” of appendix. The above inequality is strict. Therefore,
neglecting to account for asymptomatic carriers results in an underestimation of the
reproductive threshold. To demonstrate the theoretical estimate provided in Theorem
4, the numerical values ofRA andRY , along with the entomological inoculation rate
(E I R) and parameter configuration space classifications, introduced via definition (1)
in Sect. 3.2 are presented in Table 3 of Sect. 7.2. These numerical values correspond to
the following three high transmission sites: Kaduna inNigeria, Namawala in Tanzania,
and Butelgut in Papua New Guinea. The parameter values associated with each site
are listed in “Parameter Values” of appendix.

Previously, it was shown that R0 can be written in the following form:

R0 = σ

6∏
i=1

√
ri , (9)

where each term
√
ri is defined as in Sect. 3.2. Care needs to be taken when arbitrarily

substituting zero parameter values into the reproductive threshold R0 (9). Clearly, if
the human biting rate σ = 0 or mosquito-to-human transmission probability βM = 0,
then it follows that R0 = 0. These quantities effectively nullifying the reproductive
threshold stand to epidemiological reason and correspond to the following scenarios,
respectively: (1) no mosquitoes are biting humans, and (2) mosquitoes are not trans-
mitting the disease. Furthermore, if both the asymptomatic βA and symptomatic βY

transmission probabilities are equal to zero, then the reproductive threshold will be
identically zero, as infected humans are not transmitting the disease to susceptible
mosquitoes.

However, it is implied that while one (or possibly all) of such parameter values may
be equal to zero, the other parameter values in which the threshold depends on will
be such that it is well defined. This problem is primarily due to the inclusion of vital
dynamics for the human and mosquito populations into the dynamical system (4). For
example, if one lets the human recruitment rate ΩH = 0 or the mosquito mortality
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rate ξM = 0, then a singularity occurs and R0 ceases to be well defined. Although
the mosquito mortality rate being equal to zero is unreasonable in an epidemiological
sense, as all mosquitoes experience death, it is informative to study how this param-
eters size effects R0, as in general, it is desirable to increase such a parameter when
introducing control measures into the system. This attests to the subtle fact that after
including vital dynamics into a given compartmentalized infectious disease model,
one cannot expect to obtain qualitative information about the reproductive threshold
in the absence of vital dynamics by simply setting the corresponding terms equal to
zero. To properly study the asymptotic behavior of suchmodels without vital dynamics
included, one would have to go back to the original model derivation and not include
them from the beginning, then proceed to calculate the threshold arising from the
modified system.

i Consider the following fixed parameter configuration vector Θ1 ∈ R
13
>0 defined as

follows:

Θ1 :=
(
ΩH0 ,ΩM0 , ξH0 , βA0 , βY0 , βM0 , γ0, τ0, δ0, σ0, λAR0 , λYR0 ,Ulow0

)
.

Then, by Eq. (9) and the fact that the square root function is uniformly continuous
on [0,+∞) (so that the limit can be taken inside), it follows that

lim
ξM→+∞R0

∣∣∣
Θ1

= σ

√
r01r

0
3r

0
6 ·
√

lim
ξM→+∞

τ0ξH0βM0

ξ2M (τ0 + ξM )
,

= σ

√
r01r

0
3r

0
6 · 0,

= 0,

where the superscripts appearing above each appropriate i th term denote the fact
that these quantities are fixed and thus invariant under the limit operation.

There exists a natural number ξMn0
∈ N such that for all ξMn ≥ ξMn0

, it fol-
lows that R0 ∈ [0, 1). This qualitative observation can be interpreted as follows:
Provided a scenario such that all of the associated model parameters are fixed
epidemiologically reasonable quantities, if control measures sufficient to increase
the vector death rate are introduced into the model, then the corresponding repro-
ductive threshold arising from the model will be lowered and eventually fall below
unity. This is consistent with the discussion in Sect. 3.2.
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ii In a similar fashion, consider the following fixed vectors (Θ2,Θ3) ∈ R
13
>0 × R

13
>0,

defined as follows:

Θ2 :=
(
ΩH0 , ξH0 , ξM0 , βA0 , βY0 , βM0 , γ0, τ0, δ0, σ0, λAR0 , λYR0 ,Ulow0

)

and

Θ3 :=
(
ΩM0 , ξH0 , ξM0 , βA0 , βY0 , βM0 , γ0, τ0, δ0, σ0, λAR0 , λYR0 ,Ulow0

)
.

Then, it follows that

lim
ΩM→+∞R0

∣∣∣
Θ2

= σ

6∏
i=2

√
r0i ·

√
lim

ΩM→+∞
ΩM

ΩH0

,

= +∞,

and

lim
ΩH→0+ R0

∣∣∣
Θ3

= σ

6∏
i=2

√
r0i ·

√
lim

ΩH→0+
ΩM0

ΩH
,

= +∞.

The above analysis demonstrates how R0 behaves with respect to the human and
mosquito recruitment rates. As we will see in Sect. 7.1, if a given population,
e.g., the three sites from which the parameter values are taken for this work, has a
relatively small human recruitment rate and relatively large mosquito recruitment
rate, then the factor r1 will dramatically contribute to the size ofR0. For example,
in the case of the Kaduna site r1 ≈ 14,762,941.18. The fractional multipliers
ri for i = 2, 3, 4 will reduce the resulting size of this quantity, as they are all
strictly less than unity. Further reduction in the size of the remaining quantity in
the decomposition of R0 depends on the terms σ , r5, and r6. These remaining
factors will lower the resulting threshold provided that the mosquitoes are biting
a relatively small amount of humans per unit time and transmitting less than they
are dying off. Additionally, the asymptomatic and symptomatic human hosts need
to be transmitting at a sufficiently low rate. For this reason, we must introduce
control measures which both reduce the various disease transmission probabili-
ties involved and increase the vector death rate.

Setting the parameters τ and γ equal to zero obviously results in R0 = 0. However,
these scenarios are not considered as the mosquito and human latent periods τ and
γ are considered to be intrinsic properties of the vector and host, respectively. More-
over, these specific terms only appear in the factors

√
ri for i = 2, 3 which are strictly

bounded above by unity. Additionally, we do not consider the bizarre cases that the
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human mortality rate ξH = 0 or mosquito recruitment rate ΩM = 0. Although both
cases result in effectively nullifying the threshold quantityR0, humans are not immor-
tal and the mosquito recruitment rate is usually relatively large. Letting this particular
parameter value be equal to zero would imply the epidemiologically unreasonable
scenario that there are no mosquitoes present in the region being considered. Neither
do we consider the qualitative behavior ofR0 if ξH is sufficiently large, as introducing
a human transmission-blocking control measure which also increases the human death
rate of a given population is not an ethical control method. It is important to note that
emphasis is made on the terms which are related to utilized control measures, i.e., the
measures which have an effect on the mosquito death rate and the various transmission
probabilities involved. Control measures will be formally introduced and covered in
Sect. 6.

5 Endemic Equilibria and Bifurcation Analysis

An endemic equilibrium occurs when disease persists in the population. For this rea-
son, endemic equilibrium (EE) points are equilibrium points where some of the state
variables corresponding to the infected classes are positive. Most epidemic models
exhibit a dichotomy in terms of bifurcations that occur at the thresholdR0 = 1, namely
super-critical (forward) and sub-critical (backward). These have drastically different
epidemiological implications. A forward bifurcation happens when R0 crosses unity
from below and, as a result, a small positive asymptotically stable super-threshold
equilibrium appears and the disease-free equilibrium losses its stability. Backward
bifurcation happens when R0 < 1 and a small positive unstable sub-threshold equi-
librium appears, while the disease-free equilibrium and a larger positive equilibrium
are locally asymptotically stable.

From an epidemiological viewpoint, a forward bifurcation is more desirable as it
results in the reproductive number being below unity to be sufficient to ensure that an
epidemic does not occur. In the presence of a backward bifurcation, the reproductive
number being below unity is no longer sufficient, as sub-threshold endemic equilibria
can arise in response to perturbations of specific parameters.

Due to the presence of the term e−ε = ∑∞
n=0

(−1)n

n!
(

E
NH

)n
, one cannot obtain a

closed-form expression for the endemic equilibrium solutions of system (4). However,
we turn to a variant of the center manifold theorem, introduced by Castillo-Chavez and
Song (2004), to show the existence of non-trivial equilibrium solutions of the SEYAR
model (4) near the DFE. This section is focused on the nonlinear stability analysis
corresponding to the SEYARmodel. More precisely, the following theorem concerning
its bifurcation behavior is proven.

Theorem 5 (Bifurcation analysis for the SEYAR model) Let R0 = 1 and the positive
quantities η1 and η2 be defined as follows:

η1 := Z6Q2 + τ 2Z1Q2
1Q

2
4

K1ξM

(
1 + K2

K4
+ K3

K5
+ Q0

)
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+ τ Z2K2

K4K7

(
λRSQ0

K6
+ 1 + Q0

)
+ τ Z3K3

K5K7

(
λRSQ0

K6
+ 1 + Q0

)

+ τ Z7Q4Q1K2

ξMK4
+ τ Z5Q4Q1K3

ξMK5
+ 2τ Z2K 2

2

K 2
4K7

+ 2τ Z3K 2
3

K 2
5K7

,

η2 := τ Z2K1K2

K4K6K7
+ τ Z3K1K3

K5K6K7
+ τ Z4K2K3

K4K5K7
+ Z6Q3,

where the terms labeled Ki , Qi , and Zi , for 1 = 1, . . . , 7, are defined in “Appendix”.
If the parameter Λ is defined as

Λ := η2

η1
, (10)

then the SEYAR model (4) exhibits a sub-critical bifurcation, provided that Λ > 1,
and super-critical bifurcation, provided Λ < 1.

The formal proof of the above theorem can be found in “Proof of Theorem 5 (See
Page 25)” of appendix. Moreover, a verification of the entries of the Jacobian and
Hessian evaluated at the DFE is provided in the electronic supplementary material.
As previously mentioned, Theorem 5 is proven by making use of an application of
the center manifold theorem (Castillo-Chavez and Song 2004), adapted to the case
of nonlinear dynamical systems. As in the case of most malaria models appearing
throughout scientific literature, the type of bifurcation experienced by the system
is completely determined by the sign of the a-term (18), listed in the appendix as
Theorem 7. In the case of the SEYAR model (4) a ∝ (η2 − η1), resulting in a size
constraint on Λ. In an epidemiological setting, it is desirable for the bifurcation, if it
exists, to be super-critical, i.e., forward. Theorem 5 tells us that if one wants to avoid
the case of a sub-critical bifurcation from occurring, we must demand the quantity
Λ < 1 in addition toR0 < 1.

6 Incorporating Control Measures into the SEYARModel

The entomological inoculation rate (EIR) is a meaningful epidemiologic predictor that
serves as a good measure of malaria intensity in a given region (Killeen et al. 2000).
In 2007, Smith et al. estimated the reproductive number for 121 African populations.
These estimates can be found in Figure 2 (Smith et al. 2007, p. 0534), where two
numerical plots are displayed in which the reproductive number estimates are com-
pared with the entomological inoculation rate of the populations under consideration.
One plot corresponds to heterogeneous biting and transmission-blocking immunity
taken into account in the parameter estimates and the other without. In both cases,
the quantities were shown to be directly proportional, that is, regions with a relatively
large (small) EIR also have a relatively large (small) reproductive number. In other
words, regions with relatively large EIR values of each region also have relatively
largeR0 values. In areas with largeR0, it is unlikely that one single control measure
will be sufficient to stop the disease expansion (Smith et al. 2007).
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In practice, vaccine-conveyed immunity is not one hundred percent effective. This
fact is accounted for by the vaccine efficacy V f , which denotes the percentage of pro-
tection each vaccinated individual has. If Vp denotes the proportion of the population
that has been vaccinated, i.e., the vaccine coverage, the product V f Vp stands for the
fraction of the population under consideration that is protected, so that the remaining
proportion (1 − V f Vp) is not directly protected, with respect to vaccine-conveyed
immunity. As a result, vaccination controls are incorporated into the model by defin-
ing the weight v̄ := (1 − V f Vp). Therefore, the control-modified progression rates
are given by the following equations:

{
λ̃E A := v̄γ u(ε),

λ̃EY := v̄γ (1 − u(ε)).

Insecticide-treated nets (ITNs) are the most prominent malaria preventive mea-
sure for large-scale deployment in highly endemic areas such as sub-Saharan Africa
(Lengeler 2004). ITNs are nets coated with synthetic pyrethroid insecticides. Many
studies have shown them to both kill and repel mosquitoes. In a recent study, a regres-
sion analysis of the protective efficacy on the transmission intensity, as measured by
the EIR, was performed at the following four different endemic regions of Africa:
Burkina Faso, The Gambia, Ghana, and Kenya. It was noted that the protective effi-
cacy was lower in areas with a higher EIR, which was consistent with the original
hypothesis that relative impact is lower in areas with higher entomological inocula-
tion rates (Lengeler 2004). Moreover, in the case of homogeneous biting, 99.95% ITN
coverage was predicted to be necessary (Smith et al. 2007).

Regarding the ITN coverage, let the symbol ρ f denote the protective efficacy, i.e.,
the percentage reduction in malaria episodes due to bed net usage. Upon letting ρp

be the proportion of ITN usage, i.e., the percentage decrease in transmission due to
the employment of ITNs, then the reduction in mosquito-to-human transmission is
captured by the multiplier (1 − ρ f ρp). Additionally, let ξITN denote the maximum
ITN-induced death rate for the mosquito population. Following (Agusto et al. 2013),
it is assumed that ITN usage reduces the effective human-to-mosquito effective con-
tact probabilitiesβA and βY and increases the mosquito mortality rate ξM . Thus, the
effects of ITN usage on the disease transmission dynamics of the SEYAR model (4)
are accounted for by the following modification:

⎧⎪⎨
⎪⎩

β̃A := (1 − ρ f ρp)βA,

β̃Y := (1 − ρ f ρp)βY ,

ξ̃M := ξM + ρ f ρpξITN .

Therefore, the resulting control-modified variant of the SEYARmodel (4) expanded
in the original model parameters is
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = ΩH + λRS R −
(
σβM

MI
NH

+ ξH

)
S,

Ė = σβM
MI
NH

S − (γ + ξH )E,

Ẏ = (1 − V f Vp)γ (1 − u(ε))E − (ξH + δ + λY R) Y ,

Ȧ = (1 − V f Vp)γ u(ε)E − (λAR + ξH ) A,

Ṙ = λAR A + λY RY − (λRS + ξH ) R,

ṀS = ΩM −
(
ξM + ρ f ρpξITN + σ(1 − ρ f ρp)βY

Y
NH

+ σ(1 − ρ f ρp)βA
A
NH

)
MS,

ṀE = σ(1 − ρ f ρp)
(
βY

Y
NH

+ βA
A
NH

)
MS − (ξM + ρ f ρpξITN + τ

)
ME ,

ṀI = τME − (ξM + ρ f ρpξITN)MI .

Assuming that the initial exposed proportion is zero, i.e., ε0 = 0, the corresponding
vaccination control-modified reproductive threshold Rv̄

0 is given by the following
formula:

Rv̄
0 =

√
σ 2τγΩMξHβM (1 − ρ f ρp)v̄

(ξM + ρ f ρpξITN)
2(γ + ξH )(τ + ξM + ρ f ρpξITN)ΩH

×
√(

βAulow

λAR + ξH
− βY (ulow − 1)

λY R + ξH + δ

)
. (11)

7 Sensitivity Analysis and Numerical Results

7.1 Sensitivity Analysis

Uncertainty is usually present in data collection and presumed parameter values. In
this section, a sensitivity analysis is applied to classify the parameters which have the
highest impact on the reproductive threshold R0. This provides a way to determine
which parameter values should be targeted by intervention strategies. A parameter
with a relatively large sensitivity index should be estimated with precision, while a
parameter with a relatively small sensitivity index does not require as much effort.

Let Θ be defined as in Sect. 4.3, then it is of trivial consequence thatR0 ∈ C1(Θ).
Due to this fact and that we have an explicit expression for R0 of the SEYAR model
(4), we arrive at the following definition.

Definition 2 (Sensitivity index of the reproductive threshold (Chitnis et al. 2008)) Con-
sider the reproductive threshold R0 ∈ C1(Θ) given by Eq. (7) in Sect. 3.2, and let
{ei : 1 ≤ i ≤ 14} be the canonical basis in R

14. For ρ̃ ∈ Θ define ρi := 〈ei , ρ̃〉,
where 〈·, ·〉 denotes the inner product in 14-dimensional Euclidean space, then the
normalized forward sensitivity index ofR0 with respect to the parameter ρi is defined
by the following differential equation:

Υ R0
ρi

:= ∂R0

∂ρi
× ρi

R0
.
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The normalized forward sensitivity index provides a way to quantify the relative
change in the given expression when the parameter changes. The sensitivity index is
well defined, provided that R0 is at least in C1 with respect to each parameter ρi .

The analytic formulas for the sensitivity indices are complex and do not offer
much qualitative insight; as a result, we evaluate the indices at the parameter values
corresponding to each location. Table 2 contains the sensitivity indices of R0 for the
SEYAR model (4) evaluated at the parameter values given in “Parameter Values” of
appendix. The parameters are ordered from the most sensitive to the least.

A verification of the numerical entries in Table 2 is provided in the electronic supple-
mentary material. The sensitivity analysis conducted on the reproductive threshold of
the model above shows that the most sensitive parameters are the mosquito mortality
rate ξM and the human biting rate σ . Conversely, the least sensitive is the disease-
induced death rate for humans δ. The sensitivity indices listed in the above tables
can be viewed as growth measurements of the reproductive threshold with respect to
the parameter under consideration. Furthermore, the result of the sensitivity analy-
sis shows that mosquito parameters are most important, which is consistent with the
classic model of Ross–Macdonald; however, the magnitude of the sensitivity indices
varies due to the reconfiguration of the compartments in our model, and the addition
of new parameters.

Without loss of generality, attention is turned to the Kaduna location. Concerning
Kaduna, an increase in ξM by 10%will result in a decrease inR0 by 12.75%. Similarly,
an increase in σ by 10% will cause a 10% increase inR0. Also, it is worth noting the
asymptomatic recovery and effective contact probabilitiesλAR and βA are relatively
less sensitive than the symptomatic human-related terms λY R and βY . Furthermore,
an increase in ΩM by 10% results in an increase of R0 by approximately 5%, and

Table 2 Sensitivity indices of
R0

Parameter Kaduna Namawala Butelgut

ξM − 1.27500 − 1.250000 − 1.291666

σ + 1.00000 + 1.000000 + 1.000000

ΩM + 0.50000 + 0.500000 + 0.500000

βM + 0.50000 + 0.500000 + 0.500000

ΩH − 0.49999 − 0.500000 − 0.499999

βY + 0.49369 + 0.493906 + 0.493975

Ulow − 0.48739 − 0.487812 − 0.487951

λY R − 0.37495 − 0.389920 − 0.395175

ξH + 0.30742 + 0.332370 + 0.341059

τ + 0.27499 + 0.250000 + 0.291666

γ + 0.07364 + 0.063490 + 0.060000

βA + 0.00630 + 0.006093 + 0.006024

λAR − 0.00610 − 0.005935 − 0.005877

δ − 0.00001 − 0.000007 − 0.000006

This table contains the sensitivity indices ofR0 evaluated at Kaduna,
Namawala, and Butelgut
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a 10% decrease in ΩH will cause a 5% increase in R0. These point-wise numerical
observations are consistent with the qualitative analysis presented in Sect. 4.3.

The hierarchy of sensitivity that the SEYAR model parameters obey is common
among many compartmentalized homogeneous population malaria models appearing
in the literature, e.g., Chitnis et al. (2008) and Roop-O et al. (2015). The two most
sensitive parameters correspond to the vector population. These parameters have the
property that one is directly proportional to the reproductive number, while the other
is inversely proportional.

Increasing the mosquito death rate will also reduce the human biting rate, as the
average mosquito life span is shortened. This is beneficial from a practical standpoint,
as the parameter which is desirable to increase has the additional effect of decreasing
the parameter that is desirable to decrease. Theoretically, this aids in the designing of
programs for disease control, as it isolates the parameters that should be targeted for
reduction by intervention strategies. Insecticide-treated bed nets and indoor residual
spraying are among the most common methods used for such purposes. In Sect. 6,
these control measures are incorporated into the model.

7.2 Numerical Results

Displayed below is a table containing numerical values for the following:

(i) the parameter configuration space classification C1 −C2, introduced via Defini-
tion 1 in Sect. 3.2,

(ii) the EIR corresponding to each location,
(iii) the reproductive threshold accounting for asymptomatic carriers R0, given by

Eq. (7),
(iv) the reproductive threshold neglecting asymptomatic carriersRY , as discussed in

Sect. 4.3.

These numerical values correspond to the following three high transmission sites:
Kaduna in Nigeria, Namawala in Tanzania, and Butelgut in Papua New Guinea. The
parameter values associatedwith each site are listed in “ParameterValues” of appendix.

A verification of the numerical threshold quantities presented in Table 3 is provided
in the electronic supplementary material. One should observe that the sizes of the
reproductive thresholds for the three sites under consideration are consistent with
the sizes of the corresponding entomological inoculation rate values. Regions with a
relatively large EIR value also have relatively largeR0 values. Asmentioned in Sect. 6,
in areaswith large reproductive thresholds, it is unlikely that one single controlmeasure
will be sufficient to stop the disease expansion.

Additionally, the threshold quantities R0 = RA and RY obey the theoretical
estimate provided in Theorem 4. Therefore, neglecting to account for asymptomatic
carriers results in an underestimation of the reproductive threshold corresponding to
each location. The theoretical estimate provided in Theorem 4 holds for all possible
positive epidemiologically reasonable quantities. Furthermore, the numerical entries
displayed in Table 2 of Sect. 7.1 and those listed in Table 3 are point-wise evaluations.

There have been reports which indicate that asymptomatic carriers in a given pop-
ulation may transmit the disease at a higher rate than the symptomatic (Vallejo et al.
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Table 3 EIR and threshold quantities

Site Classification EIR R0 RY

Kaduna A-dominant/ − 6.00a 120b 393.05e 390.56f

Namawala A-dominant/ − 6.24a 329c 68.38e 67.96f

Butelgut A-dominant/ − 6.32a 517d 81.12e 80.63f

a These quantities are calculated from Definition 1 in Sect. 3.2
b This value was taken from Service (1965)
c This value was taken from Smith et al. (1993)
d This value was calculated by Killeen et al. (2000), using data obtained from the following sources (Burkot
et al. 1988; Graves et al. 1990)
e These quantities were calculated from Eq. (7) assuming that the initial exposed proportion is zero, i.e.,
ε0 = 0
f These quantities were calculated by setting the asymptomatic progression rates equal to zero

2016). In this case, the sensitivity hierarchy will possess a different ordering and the
size differences in the threshold quantities displayed above will be larger.

8 Conclusions and Discussions

This study clearly shows that the existence of asymptomatic individuals results in
a strict underestimation of R0 and provides the means to quantify this influence. It
also provides the means to study NAI as the factor that drives asymptomaticity. As
mentioned by Doolan et al. (2009), the exploration of NAI is key to the rational devel-
opment and deployment of vaccines and other malaria control methods corresponding
to any given population at risk. Therefore, it is a necessary foundation upon to build
strategies of eradication by any means.

The SEYAR model (4) accounts for the impact that the exposure-dependent natu-
rally acquired immune proportion has on asymptomatic carriers and malaria disease
transmission dynamics. Through making use of the IVP (1), the infected compartment
I is effectively decomposed into two mutually disjoint sub-compartments accounting
for symptomatic and asymptomatic individuals. This results in a model which does
not fall into a sub-class of the type studied by Filipe et al. (2007).

Current asymptomatic models appearing in the literature are formed by inserting
a state-invariant constant control parameter or a sum of transcendental expressions
involving various state-invariant immunity acquisition rates. The SEYAR model is
derived by a separation through means of the NAI proportion of a population which
depends on exposure through Eq. (2). After deriving the model and addressing the
issues of well-posedness and stability analysis, a nonlinear stability analysis is per-
formed in which the bifurcation behavior of the model is characterized. A sensitivity
analysis is carried out, and generalized control measures are introduced in the model.
Moreover, numerical values of various quantities discussed throughout this work are
provided for the following three high transmission sites: Kaduna inNigeria, Namawala
in Tanzania, and Butelgut in Papua NewGuinea. A brief summary of highlights drawn
from the conclusions of this work is presented in the form of a list below:
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1. In Sect. 3.1, it was shown that the SEYAR model (4) is mathematically and epi-
demiologically well posed, provided the initial data satisfied suitable regularity
assumptions. Additionally, in Theorem 3, a mathematically precise and epidemio-
logically reasonable lower bound for the feasible region of themodelwas provided.

2. In Lemma 1 of Sect. 3.2, the SEYAR model (4) was shown to satisfy the threshold
condition. Moreover, R0 was decomposed into a product to properly analyze the
size contribution of each factor involved. Provided that the mosquito mortality
rate ξM can be made large enough so that the term C0 compromised of fractional
multipliers is sufficiently small, i.e., C0 < 1, then the size of R0 is completely
determined by the human-dependent factor r6, defined in Sect. 3.2, which consists
of a weighted difference of vital dynamics with the NAI proportion, recovery, and
death rates. Motivated by the monotonic behavior ofR0, a formal characterization
of the parameter configuration space was introduced via Definition 1.

3. In Sect. 4.1, a modification was made to the SEYAR model which accounts for the
case when sterilizing immunity via premunition is negligible, thus eliminating the
need for an R compartment.Moreover, in Sect. 4.2, relapse rates are introduced into
the model and the corresponding reproductive threshold is calculated. In Sect. 4.3,
an estimate is provided which characterizes the impact that the asymptomatic class
has on the reproductive threshold. More precisely, it was shown that neglecting
asymptomatic carriers results in an underestimation of the threshold.

4. In Sect. 5 use is made of Theorem 7 to show the existence of non-trivial sub-
threshold equilibrium solutions near theDFE.More precisely, it was shown that the
bifurcation experienced by the SEYARmodel (4) is forward or backward depending
on the size of an auxiliary threshold parameterΛ defined by (10). As it is desirable
for no endemic equilibrium states to arise whileR0 < 1, we impose the additional
requirement that Λ < 1.

5. In Sect. 6, control measures are incorporated into the SEYAR model (4).
6. In Sect. 7.1, a sensitivity analysis is conducted on the reproductive number of the

model for parameter configurations corresponding to high transmission settings.
Additionally, a table was provided which contains the sensitivity indices of R0
with respect to each parameter. An ordering of the parameters from the most
sensitive to least revealed that the most sensitive parameters were the mosquito
mortality rate ξM and human biting rate σ . The least sensitive was the disease-
induced human death rate δ. Additionally, the asymptomatic recovery rate λAR

and the transmission probabilityβA were shown to be relatively less sensitive than
the symptomatic human-related terms λY R and βY .

7. In Sect. 7.2, numerical results corresponding to the three high transmission sites
mentioned above are provided. The numerical values of the threshold quantities
were shown to be consistent with the theory presented in Sect. 4.3. As the sites of
interest are high transmission areas with relatively high entomological inoculation
rates, the reproductive thresholds were shown to be comparably large.

As directions of future research, it will be interesting to apply themethod of decom-
posing the infected compartment by means of the related rate IVP (1) in Sect. 2 to
other infectious diseases where asymptomatic individuals play a fundamental role in
the disease dynamics. Additionally, it will be informative to consider extensions of
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the SEYAR model formed by incorporating the other kinds of immunity mentioned
in the introduction. Furthermore, it will be beneficial to introduce additional control
measures into the models such as aerial fogging and a time-dependent treatment rate
of symptomatic carriers. An important direction for future exploration is the study of
P. vivax and P. falciparum co-infection.

In conclusion, the SEYAR model (4) has provided us with a precise mathematical
understanding of the relationship between the exposure-dependent nature of NAI and
asymptomatic malaria disease transmission dynamics.
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A Appendix

This section of the appendix contains formal proofs of the lemmas and theorems
presented in Sect. 3. Listed below is an overview of the notation and mathematical
framework utilized in the proofs. For an in-depth look into the function classes utilized
in this work, and many other closely related topics in the field of harmonic analysis,
the reader is referred to Fabec and Ólafsson (2014) and Grafakos (2008).

A.1 Notation andMathematical Framework

Firstly, let R+ := {x ∈ R : x ≥ 0} be the space of nonnegative real numbers and
dt denote the Lebesgue measure for any complex-valued measurable function ϕ. The
L1(R+) norm of ϕ is defined as

‖ϕ‖1 :=
∫ ∞

0
|ϕ|dt .

Extensive use is made of the space of essentially bounded functions L∞(R+) char-
acterized by the following norm:

‖ϕ‖∞ = ess sup
t∈R+

|ϕ| := inf {B > 0 : dt({t ≥ 0 : |ϕ| > B}) = 0} .
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Analogous to the case of the essential supremum, the essential infimum is defined
as

ess inf
t∈R+

‖ϕ‖ := sup {B > 0 : dt({t ≥ 0 : |ϕ| < B}) = 0} .

Some of the proofs require at least a bounded first derivative; however, a general
ϕ ∈ C1(R+) is not bounded. Due to this fact, we need to restrict our analysis to a
smaller space possessing a higher degree of regularity. The most natural space to turn
to is the sub-space denoted C1

b(R+) ⊂ C1(R+). This is the Banach space of bounded
continuous functions whose first derivative is also bounded, endowed with the norm

C1
b(R+) := {ϕ ∈ C1(R+) : ‖ϕ‖C1

b
:= ‖ϕ‖∞ + ‖ϕ̇‖∞ < +∞}.

The convolution of two functions is defined as ϕ1 ∗ ϕ2(t) = ∫ t0 ϕ1(τ )ϕ2(t − τ)dτ .
Whenever ϕ1 ∗ ϕ2(t) ∈ L1(R+), the integral is finite and, as a result, well defined.

A.2 Proofs

A.2.1 Proof of Theorem 1 (See Page 8)

Proof The continuous composition of functions u(t) = (u ◦ ε)(t) solves the IVP (1)
for all ε ∈ C2(R+) in the solution space. By the non-negativity of ε, if the initial data
ε0 are such that

eε0(ulow− uhigh) + uhigh ≥ 0,

then the solution u ∈ C2(R+) is non-negative for all t ∈ R+. The above inequality is
satisfied, provided ε0 ≤ ϑ for ϑ defined by Eq. (3) in Sect. 2. ��

A.2.2 Proof of Theorem 2 (See Page 11)

Proof The functions under consideration represent bounded, continuous, smoothly
varying, nonnegative biological quantities. Consequently, it is reasonable to assume
that x ∈ C1

b(R+). This reasoning combined with the fact that the vector field Φ ∈ C1

is locally Lipschitz implies the existence of a unique solution x. Moreover, the solution
x depends continuously on the initial data and model parameters and can be continued
to a maximal time interval (Smale et al. 2003). ��

A.2.3 Proof of Theorem 3 (See Page 12)

Proof The case for the mosquito population is trivial, viz.

lim
t→+∞ NM (t) = ΩM

ξM
.
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For the human population, let Lt = e
∫ t
0 ξHds = eξH t , so that

˙(Lt NH ) = LtΩH − δLtY ,

Lt NH (t) = NH (0) +
∫ t

0
LsΩHds − δ

∫ t

0
LsY (s)ds,

= NH (0) + ΩH

(
eξH t

ξH
− 1

ξH

)
− δ

∫ t

0
eξH sY (s)ds.

Therefore, the explicit solution is given by

NH (t) = e−ξH t NH (0) + ΩH

ξH

(
1 − e−ξH t)− δ

∫ t

0
e−ξH (t−s)Y (s)ds,

or in operator form

NH (t) = L−t NH (0) + ΩH

ξH
(1 − L−t ) − δL−t ∗ Y (t).

After passing to the limit, it follows that

lim
t→+∞ NH (t) = ΩH

ξH
− δ lim

t→+∞ L−t ∗ Y (t). (12)

In the absence of symptomatic infection, i.e., Y = 0, it follows that L−t ∗Y (t) = 0,
so that

lim
t→+∞ NH (t) = ΩH

ξH
.

As expected, NH asymptotes to the equilibrium population density of the human
population. If symptomatic infection occurs in the population, by Hölder’s inequality
it follows that

L−t ∗ Y (t) ≤ ‖Y‖∞‖L−(t−s)‖1,
= ‖Y‖∞

∫ t

0
e−ξH (t−s)ds,

= ‖Y‖∞
[
1

ξH
− e−ξH t

ξH

]
,

where the right-hand side of the above inequality is finite due to the assumption that
Y ∈ C2(R+) ∩ C1

b(R+) ⊂ L∞(R+). By letting t → +∞, we arrive at the following
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estimate for the forcing term

lim
t→+∞ L−t ∗ Y (t) ≤ ‖Y‖∞

ξH
.

The above estimate in combination with (12) yields the following lower bound

lim
t→+∞ NH (t) ≥ ΩH

ξH
− δ

‖Y‖∞
ξH

.

Therefore,

lim
t→+∞ NH (t) ∈

[
ΩH − δ‖Y‖∞

ξH
,
ΩH

ξH

]
.

Due to the restriction NH ∈ R+ for all t ∈ R+, it follows that

lim
t→+∞ NH (t) ∈

[
α,

ΩH

ξH

]
,

where α is defined in the statement of the theorem. Furthermore, for system (6) we
have that

ṄH ≤ ΩH − ξH NH = ξH

(
ΩH

ξH
− NH

)
.

Combining the above observation with a similar argument for NM yields

{
ṄH ≤ 0, if NH ≥ ΩH

ξH
,

ṄM ≤ 0, if NM ≥ ΩM
ξM

.
(13)

Inequalities (13) imply that if the solution leaves the region Γ , then its derivative
will instantaneously become negative, forcing it back to Γ . Moreover, if xi (0) = 0
for any 1 ≤ i ≤ 8 in system (5), then it directly follows that ẋi ≥ 0. Therefore, all
trajectories tend to Γ and are forward invariant. Due to this fact, it is sufficient to study
the dynamics of the system on the smaller compact sub-space Γ . ��

A.2.4 Proof of Lemma 1 (See Page 14)

Proof Firstly, we order the compartments so that the first five correspond to infected
individuals and denotew = (E,Y , A, ME , MI , R, S, MS)

T . The corresponding DFE
is

wd f e =
(
0, 0, 0, 0, 0, 0,

ΩH

ξH
,
ΩM

ξM

)T

.

Following the next-generation method, system (4) is rewritten in the following form:

ẇ = Φ (w) = F (w) − V (w) ,
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where F := (F1, . . . ,F8)
T and V := (V1, . . . ,V8)

T , or more explicitly

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ė
Ẏ
Ȧ
ṀE

ṀI

Ṙ
Ṡ
ṀS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σβM
MI
NH

S
0
0

σ(βY Y+βA A)
NH

MS

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(γ + ξH )E
−γ (1 − u(ε)) E + (ξH + δ + λY R) Y

−γ u(ε)E + (λAR + ξH ) A
(ξM + τ) ME

−τME + ξMMI

−λAR A − λY RY + (λRS + ξH ) R

−ΩH − λRS R +
(
σβM

MI
NH

+ ξH

)
S

−ΩM +
(
ξM + σ(βY Y+βA A)

NH

)
MS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In addition, the matrix V admits the decomposition V = V− − V+, where the
component-wise definition is inherited. Biologically speaking:Fi is the rate of appear-
ance of new infections in compartment i , V+

i stands for the rate of transfer of
individuals into compartment i by any other means and V−

i is the rate of transfer
of individuals out of compartment i . It is easy to see that F ,V−,V+ satisfy assump-
tions (i)–(v) in Theorem 6. As mentioned in the beginning of Sect. 3.1, to study the
stability of the equilibrium points, we assume that each of the above vector fields is at
least twice continuously differentiable. DefineUlow := eε0(ulow− uhigh)+ uhigh , and let F
and V be the following sub-matrices of the Jacobian of the above system, evaluated
at the solution wd f e

F =
(

∂Fi
∂x j

∣∣∣
wd f e

)

1≤i, j≤5
=

⎛
⎜⎜⎜⎜⎝

0 0 0 0 σβM

0 0 0 0 0
0 0 0 0 0
0 σβY

ΩM
ΩH

ξH
ξM

σβA
ΩM
ΩH

ξH
ξM

0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

and

V =
(

∂Vi
∂x j

∣∣∣
wd f e

)

1≤i, j≤5
=

⎛
⎜⎜⎜⎜⎝

(γ + ξH ) 0 0 0 0
γ
(
Ulow− 1

)
(ξH + δ + λY R) 0 0 0

−γUlow 0 (λAR + ξH ) 0 0
0 0 0 (ξM + τ) 0
0 0 0 −τ ξM

⎞
⎟⎟⎟⎟⎠

.

V−1 =

⎛
⎜⎜⎜⎜⎜⎝

(γ + ξH )−1 0 0 0 0
− γ (Ulow−1)

(γ+ξH )(ξH+δ+λY R )
(ξH + δ + λY R)−1 0 0 0

γUlow
(γ+ξH )(λAR+ξH )

0 (λAR + ξH )−1 0 0
0 0 0 (ξM + τ)−1 0
0 0 0 τ

ξM (ξM+τ)
ξ−1
M

⎞
⎟⎟⎟⎟⎟⎠
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and FV−1 is given by the following matrix:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 σβM τ
ξM (ξM+τ)

σβM
ξM

0 0 0 0 0
0 0 0 0 0

σγΩM ξH
(γ+ξH )ΩH ξM

(
βAUlow

λAR+ξH
− βY

(
Ulow−1

)
ξH+δ+λY R

)
σβY ΩM ξH

(ξH+δ+λY R )ΩH ξM

σβAΩM ξH
(ξH+λAR )ΩH ξM

0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let I denote the 5 × 5 identity matrix, so that the characteristic polynomial P(λ)

of the matrix FV−1 is given by

P(λ) = det
(
FV−1 − λI

)
,

= λ3

(
λ2 −

(
σ 2τγΩMξHβM

ξ2M (γ + ξH )(τ + ξM )ΩH

(
βAUlow

λAR + ξH
− βY (Ulow− 1)

λY R + ξH + δ

)))
.

The solution set {λi }1≤i≤5 is given by

{
0, 0, 0,±

√
σ 2τγΩMξHβM

ξ2M (γ + ξH )(τ + ξM )ΩH

(
βAUlow

λAR + ξH
− βY (Ulow− 1)

λY R + ξH + δ

)}
.

Therefore, the reproductive threshold for the SEYAR model (4) is given by

R0 := ρ
(
FV−1

)
,

= max
1≤i≤5

{λi },

=
√

σ 2τγΩMξHβM

ξ2M (γ + ξH )(τ + ξM )ΩH

(
βAUlow

λAR + ξH
− βY (Ulow− 1)

λY R + ξH + δ

)
.

The proof of the lemma regarding the local asymptotic stability (LAS) of the DFE
wd f e corresponding to the SEYAR model (4) is now complete after invoking Theorem
(6) in “Summary of Stability Theorems” of appendix. ��

A.2.5 Proof of Corollary 1 (See Page 18)

Proof Let the DFE vd f e be defined as

vd f e =
(
0, 0, 0, 0, 0,

ΩH

ξH
,
ΩM

ξM

)T

.
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A straightforward calculation shows that the sub-matrices F and V of the Jacobian
evaluated at the DFE vd f e corresponding to Fig. 2 are given by

F =
(

∂Fi
∂x j

∣∣∣
vd f e

)

1≤i, j≤5
=

⎛
⎜⎜⎜⎜⎝

0 0 0 0 σβM

0 0 0 0 0
0 0 0 0 0
0 σβY

ΩM
ΩH

ξH
ξM

σβA
ΩM
ΩH

ξH
ξM

0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

and

V =
(

∂Vi
∂x j

∣∣∣
vd f e

)

1≤i, j≤5
=

⎛
⎜⎜⎜⎜⎝

(γ + ξH ) 0 0 0 0
γ
(
Ulow− 1

)
(ξH + δ + λY S) 0 0 0

−γUlow 0 (λAS + ξH ) 0 0
0 0 0 (ξM + τ ) 0
0 0 0 −τ ξM

⎞
⎟⎟⎟⎟⎠

.

Therefore, the proof directly follows as in Corollary 2. ��

A.2.6 Proof of Corollary 2 (See Page 20)

Proof A straightforward calculation shows that the sub-matrices F and V of the Jaco-
bian evaluated at the DFE wd f e corresponding to Fig. 3 are given by

F =
(

∂Fi
∂x j

∣∣∣
wd f e

)

1≤i, j≤5
=

⎛
⎜⎜⎜⎜⎝

0 0 0 0 σβM

0 0 0 0 0
0 0 0 0 0
0 σβY

ΩM
ΩH

ξH
ξM

σβA
ΩM
ΩH

ξH
ξM

0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

and

V =
(

∂Vi
∂x j

∣∣∣
wd f e

)

1≤i, j≤5
=

⎛
⎜⎜⎜⎝

(γ + ξH ) 0 0 0 0
γ
(
Ulow− 1

)
(ξH + δ + λY R) 0 0 0

−γUlow 0 (λAR + ξH ) 0 0
0 0 0 (ξM + τ) 0
0 0 0 −τ ξM

⎞
⎟⎟⎟⎠ .

The reproductive threshold R0 := ρ
(
FV−1

)
for any given compartmentalized

infectious diseasemodel is completely determined by thematrices F andV . Therefore,
it is of trivial consequence that the models corresponding to Figs. 1 and 3 possess
identical reproductive thresholds, given by (7) arising from Lemma 1. ��

A.2.7 Proof of Theorem 4 (See Page 21)

Proof Let Θ0, Θ̃0, RA, and RY be defined as in the statement of the theorem. Addi-

tionally, denote the following quantities r06 := r6
∣∣∣
Θ0

, C0
1 := C1

∣∣∣
Θ0

, C0
2 := C2

∣∣∣
Θ̃0

and
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C0
0 := C0

∣∣∣
Θ0

= C0

∣∣∣
Θ̃0

, where the terms r6 and Ci for i = 0, 1, 2 are defined as in

Sect. 3.2. By the monotonicity of the square foot function, it follows that

RA := R0

∣∣∣
Θ0

= C0
0

√
r06 > C0

0

√
r06 −Ulow0

C0
1 = C0

0

√(
1 −Ulow0

)
C0
2 = R0

∣∣∣
Θ̃0

:= RY .

��

A.2.8 Proof of Theorem 5 (See Page 25)

Proof If we consider the dynamical system ẋ = g(x, ω), where ω is a bifurcation
parameter and the vector field g isC2 in both x andω, then the disease-free equilibrium
can be viewed as the manifold (xd f e;ω) where the local stability of xd f e changes at
the point (xd f e;ω�). Nowwe shall investigate the existence and stability of non-trivial
equilibrium states in a neighborhood of the bifurcation point. We focus on the disease-
free equilibrium xd f e and study the occurrence of a transcritical bifurcation atR0 = 1.
SinceR0 consists of the square root of a complicated combination of parameters, it is
not practical to use as a bifurcation parameter. However, observe that R0 = 1 if and
only if

βM = ξ2MΩH (γ + ξH )(τ + ξM )(λAR + ξH )(λY R + ξH + δ)

σ 2τξHΩM
(
γUlowβA(λY R + ξH + δ) − γ (Ulow− 1)βY (λAR + ξH )

) ,

:= β�
M .

In lieu of Lemma 1, it follows that xd f e is locally asymptotically stable when
βM < β�

M and unstable if βM > β�
M . Thus, the combination of parameters β�

M is a
bifurcation value. To simplify the notation, we rewrite system (4) as ẋ = g(x, βM )

where x = (S, E,Y , A, R, MS, ME , MI )
T so that xi is the i th component of x and

g = (g1, g2, g3, g4, g5, g6, g7, g8)T , or more explicitly

g1 = ΩH + λRSx5 −
(

σβM
x8∑5
i xi

+ ξH

)
x1,

g2 = σβM
x8∑5
i xi

x1 − (γ + ξH )x2,

g3 = γ (1 − u(ε)) x2 − (ξH + δ + λY R) x3,

g4 = γ u(ε)x2 − (λAR + ξH ) x4, (14)

g5 = λARx4 + λY Rx3 − (λRS + ξH ) x5,

g6 = ΩM −
(

ξM + σβY
x3∑5
i xi

+ σβA
x4∑5
i xi

)
x6,
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g7 = σ

(
βY

x3∑5
i xi

+ βA
x4∑5
i xi

)
x6 − (ξM + τ) x7,

g8 = τ x7 − ξMx8.

Denote J (xd f e, β�
M ) to be the Jacobian of g evaluated at theDFE xd f e and threshold

β�
M . Thus, J (xd f e, β�

M ) is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ξH 0 0 0 ε 0 0 −σβ�
M

0 −(γ + ξH ) 0 0 0 0 0 σβ�
M

0 γ (1 −Ulow ) −(δ + λY R + ξH ) 0 0 0 0 0
0 γUlow 0 −(λAR + ξH ) 0 0 0 0
0 0 λY R λAR −(λRS + ξH ) 0 0 0
0 0 − σβY ξHΩM

ΩH ξM
− σβAξHΩM

ΩH ξM
0 −ξM 0 0

0 0 σβY ξHΩM
ΩH ξM

σβAξHΩM
ΩH ξM

0 0 −(τ + ξM ) 0
0 0 0 0 0 0 τ −ξM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we invoke the following positive change of variables

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1 = γ + ξH ,

K2 = γ (1 −Ulow),

K3 = γUlow ,

K4 = δ + λY R + ξH ,

K5 = λAR + ξH ,

K6 = λRS + ξH ,

K7 = τ + ξM ,

then β�
H can be written as

β�
M = ξ2MΩH K1K4K5K7

σ 2τξHΩM (βAK3K4 + βY K2K5)
.

As a result, J (xd f e, β�
M ) can be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ξH 0 0 0 ε 0 0 − ξ2MΩH K1K4K5K7
στξHΩM (βAK3K4+βY K2K5)

0 −K1 0 0 0 0 0
ξ2MΩH K1K4K5K7

στξHΩM (βAK3K4+βY K2K5)

0 K2 −K4 0 0 0 0 0
0 K3 0 −K5 0 0 0 0
0 0 λY R λAR −K6 0 0 0
0 0 − σβY ξHΩM

ΩH ξM
− σβAξHΩM

ΩH ξM
0 −ξM 0 0

0 0 σβY ξHΩM
ΩH ξM

σβAξHΩM
ΩH ξM

0 0 −K7 0
0 0 0 0 0 0 τ −ξM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Due to the equivalency of the two conditions R0 = 1 and βM = β�
M , it fol-

lows that J (xd f e, β�
M ) contains information of the linearized system evaluated at

the disease-free equilibrium and threshold value. Utilizing the machinery covered
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in “Summary of Stability Theorems” of appendix below, the Jacobian evaluated at
the threshold value, i.e., J (xd f e, β�

M ), has a zero simple eigenvalue with all others
having negative real parts. Therefore, the hypothesis of Theorem 7 is satisfied. We
proceed by calculating the a and b terms (18) and (19) appearing in Theorem 7.
In observance of the conclusions in the theorem, it follows that the SEYAR model
(4) will undergo a super-critical bifurcation if a > 0 and b > 0 and a sub-critical
bifurcation if a < 0 and b > 0. The main ingredients in calculating a and b are
the generalized right and left eigenvectors of the matrix J (xd f e, β�

M ) and their cor-
responding nonzero Hessian entries, evaluated at the DFE xd f e. In this fashion, we
let w = (w1, w2, w3, w4, w5, w6, w7, w8) and vT = (v1, v2, v3, v4, v5, v6, v7, v8)

T

be right and left generalized eigenvectors of J (xd f e, β�
M ), respectively. Since J is not

symmetric, the left and right generalized eigenspaces are not equivalent. Solving the

equations Jw = 0 and
(
vT J

)T = J T v = 0, where Di ∈ R>0 for i = 1, 2, yields

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1
w2
w3
w4
w5
w6
w7
w8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= D1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ελARK3K4+ελY RK2K5−K1K6K4K5
K 2
6 K4K5

1
K2
K4
K3
K5

λY RK2K5+λARK3K4
K4K5K6

−σξHΩM (βY K2K5+βAK3K4)

ΩH ξ2MK4K5
σξHΩM (βAK3K4+βY K2K5)

ξMΩH K4K5K7
στξHΩM (βAK3K4+βY K2K5)

ξ2MΩH K4K5K7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1
v2
v3
v4
v5
v6
v7
v8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= D2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
στξHΩM (βAK3K4+βY K2K5)

ξMΩH K1K4K5K7
στβY ξHΩM
ΩH ξMK4K7
στβAξHΩM
ΩH ξMK5K7

0
0
τ
K7

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For system (14), the nonzero partial derivatives of g evaluated at xd f e are

∂2g1
∂x8∂x2

= ∂2g1
∂x8∂x3

= ∂2g1
∂x8∂x4

= ∂2g1
∂x8∂x5

= σβMξH

ΩH
,

∂2g2
∂x8∂x2

= ∂2g2
∂x8∂x3

= ∂2g2
∂x8∂x4

= ∂2g2
∂x8∂x5

= −σβMξH

ΩH
,

∂2g3
∂x2∂x2

= 2γ ξHeε0

ΩH
(ulow− uhigh),

∂2g4
∂x2∂x2

= 2γ ξHeε0

ΩH
(uhigh− ulow),

∂2g6
∂x3∂x1

= ∂2g6
∂x3∂x2

= ∂2g6
∂x3∂x5

= σβY ξ2HΩM

Ω2
H ξM

,
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∂2g6
∂x4∂x1

= ∂2g6
∂x4∂x2

= ∂2g6
∂x4∂x5

= σβAξ2HΩM

Ω2
H ξM

,

∂2g6
∂x3∂x3

= 2
∂2g6

∂x3∂x1
,

∂2g6
∂x4∂x4

= 2
∂2g6

∂x4∂x1
,

∂2g6
∂x6∂x3

= −σβY ξH

ΩH
,

∂2g6
∂x6∂x4

= −σβAξH

ΩH
,

∂2g6
∂x3∂x4

= σξ2HΩM (βY + βA)

ξMΩ2
H

,

∂2g7
∂x3∂x1

= ∂2g7
∂x3∂x2

= ∂2g7
∂x3∂x5

= −σβY ξ2HΩM

Ω2
H ξM

,

∂2g7
∂x4∂x1

= ∂2g7
∂x4∂x2

= ∂2g7
∂x4∂x5

= −σβAξ2HΩM

Ω2
H ξM

,

∂2g7
∂x3∂x3

= 2
∂2g7

∂x3∂x1
,

∂2g7
∂x4∂x4

= 2
∂2g7

∂x4∂x1
,

∂2g7
∂x6∂x3

= σβY ξH

ΩH
,

∂2g7
∂x6∂x4

= σβAξH

ΩH
,

∂2g7
∂x3∂x4

= −σξ2HΩM (βY + βA)

ξMΩ2
H

,

∂2g1
∂x8∂βH

= −σ,
∂2g2

∂x8∂βH
= σ.

Due to the fact that the parameter βM only appears in system (14) twice, the calcu-
lation of the b term is less involved. Indeed, for b we have

b =
8∑

i,k=1

vkwi
∂2gk

∂xi∂βH

(
xd f e, β�

M

)
,

= v1w8
∂2g1

∂x8∂βM

(
xd f e, β�

M

)+ v2w8
∂2g2

∂x8∂βM

(
xd f e, β�

M

)
,

= σv2w8,

= σ 2τξHΩM (βAK3K4 + βY K2K5)

ξMΩH K1K4K5K7
v8w8,

= σ 3τ 2ξ2HΩ2
M (βAK3K4 + βY K2K5)

2

ξ3MΩ2
H K1K 2

4K
2
5K

2
7

w2v8,

= σ 3τ 2ξ2HΩ2
M (βAK3K4 + βY K2K5)

2

ξ3MΩ2
H K1K 2

4K
2
5K

2
7

D1D2,

> 0. (15)
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Since Di ∈ R>0 for i = 1, 2, it follows that b is always positive; hence, the
bifurcation behavior of system (14) is completely determined by the sign of a. To
simplify the pending calculation, we invoke the following change of variables:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1 = σβM ξH
ΩH

,

Z2 = σβY ξ2HΩM

Ω2
H ξM

,

Z3 = σβAξ2HΩM

Ω2
H ξM

,

Z4 = σξ2HΩM (βY+βA)

ξMΩ2
H

,

Z5 = σβAξH
ΩH

,

Z6 = 2γ ξH eε0

ΩH
(uhigh− ulow),

Z7 = σβY ξH
ΩH

,

Q0 = λY RK2K5+λARK3K4
K4K5K6

,

Q1 = βY K2K5+βAK3K4
K4K5K7

,

Q2 = στξHΩMβY
ΩH ξMK4K7

,

Q3 = στξHΩMβA
ΩH ξMK5K7

,

Q4 = σξHΩM
ΩH ξM

,

so that the generalized eigenvectors can be written as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1
w2
w3
w4
w5
w6
w7
w8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= D1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λRSQ0−K1
K6

1
K2
K4
K3
K5

Q0

− Q4Q1K7
ξM

Q4Q1
τQ4Q1

ξM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1
v2
v3
v4
v5
v6
v7
v8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= D2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
τQ4Q1

K1

Q2
Q3
0
0
τ
K7

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In view of the relatively strong regularity assumptions mentioned in the beginning

of Sect. 3.1 and natural symmetry of the system, it follows that ∂2gk
∂xi ∂x j

vkwiw j =
∂2gk

∂x j ∂xi
vkw jwi for all 1 ≤ i, j ≤ 8. Furthermore, ∂2gk

∂xi ∂x j
vkwiw j = 0 for k = 1, 5, 6, 8,

since ∂2g8
∂xi ∂x j

= 0 for all 1 ≤ i, j ≤ 8 and vk = 0 for k = 1, 5, 6. As a result, the terms
that contribute to the sum correspond to k = 2, 3, 4, 7. Thus, a can be written as

a =
8∑

i, j,k=1

vkwiw j
∂2gk

∂xi∂x j

(
xd f e, β�

M

)

= 2

[
v2w8w2

∂2g2
∂x8∂x2

(
xd f e, β�

M

)+ v2w8w3
∂2g2

∂x8∂x3

(
xd f e, β�

M

)
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+ v2w8w4
∂2g2

∂x8∂x4

(
xd f e, β�

M

)+ v2w8w5
∂2g2

∂x8∂x5

(
xd f e, β�

M

)

+ v3w
2
2

∂2g3
∂x2∂x2

(
xd f e, β�

M

)+ v4w
2
2

∂2g4
∂x2∂x2

(
xd f e, β�

M

)

+ v7w3w1
∂2g7

∂x3∂x1

(
xd f e, β�

M

)+ v7w3w2
∂2g7

∂x3∂x2

(
xd f e, β�

M

)

+ v7w3w5
∂2g7

∂x3∂x5

(
xd f e, β�

M

)+ v7w4w1
∂2g7

∂x4∂x1

(
xd f e, β�

M

)

+ v7w4w2
∂2g7

∂x4∂x2

(
xd f e, β�

M

)+ v7w4w5
∂2g7

∂x4∂x5

(
xd f e, β�

M

)

+ v7w
2
3

∂2g7
∂x3∂x3

(
xd f e, β�

M

)+ v7w
2
4

∂2g7
∂x4∂x4

(
xd f e, β�

M

)

+ v7w6w3
∂2g7

∂x6∂x3

(
xd f e, β�

M

)+ v7w6w4
∂2g7

∂x6∂x4

(
xd f e, β�

M

)

+ v7w3w4
∂2g7

∂x3∂x4

(
xd f e, β�

M

) ]

= 2

[
− Z1v2w8w2 − Z1v2w8w3 − Z1v2w8w4 − Z1v2w8w5 − Z6v3w

2
2

+ Z6v4w
2
2 − Z2v7w3w1 − Z2v7w3w2 − Z2v7w3w5 − Z3v7w4w1

− Z3v7w4w2 − Z3v7w4w5 − 2Z2v7w
2
3 − 2Z3v7w

2
4 + Z7v7w6w3

+ Z5v7w6w4 + Z4v7w3w4

]

= 2

[
Z7v7w6w3 + Z5v7w6w4 + Z4v7w3w4 + Z6v4w

2
2 −

(
Z1v2w8w2

+ Z1v2w8w3 + Z1v2w8w4 + Z1v2w8w5 + Z6v3w
2
2 + Z2v7w3w1

+ Z2v7w3w2 + Z2v7w3w5 + Z3v7w4w1 + Z3v7w4w2

+ Z3v7w4w5 + 2Z2v7w
2
3 + 2Z3v7w

2
4

)]
. (16)

Upon grouping positive terms and simplifying, the right-hand side of the above
expression can be written as:

2D2
1D2

[
− τ Z7Q4Q1K2

ξMK4
− τ Z5Q4Q1K3

ξMK5
+ τ Z4K2K3

K4K5K7
+ Z6Q3

−
(
Z6Q2 + τ 2Z1Q2

1Q
2
4

K1ξM

(
1 + K2

K4
+ K3

K5
+ Q0

)

+ τ Z2K2

K4K7

(
λRSQ0 − K1

K6
+ 1 + Q0

)
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+ τ Z3K3

K5K7

(
λRSQ0 − K1

K6
+ 1 + Q0

)
+ 2τ Z2K 2

2

K 2
4K7

+ 2τ Z3K 2
3

K 2
5K7

)]

= 2D2
1D2

[
τ Z2K1K2

K4K6K7
+ τ Z3K1K3

K5K6K7
+ τ Z4K2K3

K4K5K7
+ Z6Q3 −

(
Z6Q2

+ τ 2Z1Q2
1Q

2
4

K1ξM

(
1 + K2

K4
+ K3

K5
+ Q0

)
+ τ Z2K2

K4K7

(
λRSQ0

K6
+ 1 + Q0

)

+ τ Z3K3

K5K7

(
λRSQ0

K6
+ 1 + Q0

)
+ τ Z7Q4Q1K2

ξMK4
+ τ Z5Q4Q1K3

ξMK5

+ 2τ Z2K 2
2

K 2
4K7

+ 2τ Z3K 2
3

K 2
5K7

)]

= 2D2
1D2(η2 − η1)

= 2D2
1D2(

η2

η1
− 1)η1,

where

η1 := Z6Q2 + τ 2Z1Q2
1Q

2
4

K1ξM

(
1 + K2

K4
+ K3

K5
+ Q0

)

+ τ Z2K2

K4K7

(
λRSQ0

K6
+ 1 + Q0

)
+ τ Z3K3

K5K7

(
λRSQ0

K6
+ 1 + Q0

)

+ τ Z7Q4Q1K2

ξMK4
+ τ Z5Q4Q1K3

ξMK5
+ 2τ Z2K 2

2

K 2
4K7

+ 2τ Z3K 2
3

K 2
5K7

,

η2 := τ Z2K1K2

K4K6K7
+ τ Z3K1K3

K5K6K7
+ τ Z4K2K3

K4K5K7
+ Z6Q3.

Since (Di , ηi ) ∈ R>0 ×R>0 for i = 1, 2, it follows that the sign of a is completely
dependent on the size of the quantity η2

η1
. Therefore, define

Λ := η2

η1

to arrive at the following dichotomy

{
a < 0 ⇐⇒ Λ < 1,

a > 0 ⇐⇒ Λ > 1.

This completes the proof concerning the bifurcation analysis of model (4). ��
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A.3 Summary of Stability Theorems

The goal of this section of the appendix is to provide the reader with a brief collection
and overview of the theorems that are widely used in determining the stability of the
equilibrium points for nonlinear dynamical systems. The first theorem will be needed
in order to determine the local asymptotic stability of the DFE corresponding to the
SEYAR model, while the second is used to investigate the existence of non-trivial sub-
threshold equilibrium states of the model. In the setting of dynamical systems, one
cannot usually pinpoint a solution exactly, but only approximately. As a result, an
equilibrium point must be stable to be physically meaningful. A stable equilibrium
point of a system is a solution x� with the property that if for every open ball B(x�, ε)

of radius ε, centered at x�, there is a δ < ε, such that if every solution x with initial
data x(0) ∈ B(x�, δ), remains in B(x�, ε) for t > 0. In other words, if the initial
data start in B(x�, δ), then the flow map φ(t, x) of the model remains in B(x�, ε) for
eternity. An equilibrium point x� is said to be asymptotically stable, if in addition to
the above, there is a δ > 0 such that

lim
t→+∞ x(t) = x�.

Provided an epidemiological model can be grouped into n homogeneous compart-
ments, the local asymptotic stability of the equilibrium states can be established by
utilizing the next-generation method, appearing in Van den Driessche and Watmough
(2002). By making use of the center manifold theorem (John and Philip 1997), Van
den Driessche andWatmough provided a simple prescription for determining the local
asymptotic stability of DFE points of a given system. This criterion is given in terms
of the reproductive number R0 of the system which acts as a threshold value. This
effectively relatesR0 to the DFE of the system. As a result, this has proven to be very
useful in disease control. To cast the above discussion into a mathematical frame-
work, we let x = (x1, . . . , xk)T ∈ R

k+ and define the space of disease-free states for
the compartmental model to be X := {

x ∈ R
k+ : xi = 0 for i = 1, · · · ,m, m < n

}
.

Then, for Φ ∈ C2(Rk), we form the following dynamical system:

ẋ(t) = Φ (x(t)) = F (x(t)) − V (x(t)) , (17)

where V = V− − V+.

Theorem 6 (Van den Driessche and Watmough 2002) Define R0 = ρ
(
FV−1

)
and

consider the disease transmission model given by (17) such that Φ satisfies the follow
criteria:

i If x ≥ 0, then so are F , V+, and V−,
ii If x = 0, then V− = 0,
iii If i > m, then Fi = 0,
iv If x ∈ X, then Fi = V+ = 0, for all 0 ≤ i ≤ m,
v If F(x) = 0, then all eigenvalues of DΦ(x�) have negative real parts.

If x� is a DFE for (17), then x� is locally asymptotically stable provided R0 < 1 and
unstable ifR0 > 1.
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The above theorem is proved by making use of the following lemma.

Lemma 2 If x� is a DFE of system (17) and Φ satisfies assumptions (i)–(v), then the
derivatives DF(x�) and DV(x�) can be partitioned as follows:

DF(x�) =
(
F 0
0 0

)
and DV(x�) =

(
V 0
J3 J4

)
,

where F and V are defined as:

F =
(

∂Fi
∂x j

∣∣∣
x�

)
1≤i, j≤m

and V =
(

∂Vi
∂x j

∣∣∣
x�

)
1≤i, j≤m

.

In the above matrix partitioning, F is non-negative, V is an invertible M-matrix,
and J3, J4 are sub-matrices of the Jacobian associatedwith various transmission terms.
This theorem provides a convenient epidemiological interpretation of the reproductive
thresholdR0 corresponding to a given dynamical system in the SIR family. Addition-
ally, due to the partitioning of the Jacobianmentioned above, the stability of the system
is determined by det

(
FV−1 − λI), where I is the identity matrix. If the matrix F

containing transmission probabilities and contact rates is set to zero, then all eigenval-
ues of −V have negative real part. As a result, the stability, or lack of, experienced
by the system in question depends on the entries of F . Due to this reason, the bifur-
cation parameters are chosen from the entries of F . In the case that the transmission
probabilities are relatively high, an endemic could occur and additional non-trivial
equilibrium can arise. Regarding the SEYAR model, besides the human biting rate σ ,
the only possible parameters are the transmission probabilitiesβY , βA and βM . From
a epidemiological perspective, we have more control over the mosquito-to-human
transmission probabilityβM . Due to this reason, βM is chosen as the parameter for the
bifurcation analysis. One could perform a similar analysis for βY and βA; however, all
of the transmission probabilities involved are related through the reproductive number
R0 of the model. As a result, the analysis would be similar.

Let s(A) and ρ(A) stand for the spectral abscissa and radius, respectively. The
proof of Theorem 6 hinges on M-matrix theory. A matrix B is said to have the Z -sign
pattern, provided all of its off diagonal entries are non-positive. If B = sI − P , where
P ≥ 0. If s > ρ(P), then B is a non-singular M-matrix; if s = ρ(P), then B is a
singular M-matrix. This observation is then combined with a linear algebra lemma,
which we restate below for convenience of the reader. To this end, they make use of
the following argument: define J1 := F − V , then V is a non-singular M-matrix and
F is non-negative. It follows that −J1 := V − F has the Z -sign pattern. By the non-
negativity of FV−1, it is a direct consequence that−J1V−1 := I−FV−1 also has the
Z -sign pattern. Now we apply Lemma 3 with H = V and−J1 := V − F , to conclude
that −J1 is a non-singular M-matrix if and only if I − FV−1. Also, since all of its
eigenvalues have magnitude bounded above by ρ(FV−1), we have that I−FV−1 is a
non-singular M-matrix if and only if ρ(FV−1) < 1. Therefore, s(J1) < 0 if and only
ifR0 < 1. Through making use of a similar argument in combination with Lemma 6
of Appendix A, found in Van den Driessche and Watmough (2002), they arrive at the
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following trichotomy, establishing R0 as a threshold parameter

⎧⎪⎨
⎪⎩

s(J1) < 0 ⇐⇒ R0 < 1,

s(J1) = 0 ⇐⇒ R0 = 1,

s(J1) > 0 ⇐⇒ R0 > 1.

Lemma 3 Let H be a non-singular M-matrix and assume that B and BH−1 have
the Z-sign pattern. Then, B is a non-singular M-matrix if and only if BH−1 is a
non-singular M-matrix.

In Sect. 5 use is made of the following variant of the center manifold theorem specif-
ically adapted to the case of bifurcation analysis for nonlinear systems. The utility
of this theorem resides in the classification of the bifurcation due to the sign of the
parameters a and b, defined below.

Theorem 7 (Castillo-Chavez and Song 2004) Consider the following dynamical sys-
tem with real parameter ω:

ẋ = f (x, ω), f : R
n × R → R, and f ∈ C2(Rn × R).

Without loss of generality, we assume that x = 0 is an equilibrium point for
the above system for all ω, i.e., f (0, ω) ≡ 0 for all ω. Provided that the following
assumptions are satisfied:

I A = Dx f (0, 0) =
(

∂ fi
∂x j

(0, 0)
)
is the linearization matrix of the system around

the equilibrium point 0 with ω evaluated at 0. Zero is a simple eigenvalue of A,
and all remaining eigenvalues have negative real part. Non-trivial null space of
dimension one.

II The matrix A has a right eigenvector w and left eigenvector v corresponding to
the zero eigenvalue.

Let fk denote the kth component of f and

a =
n∑

i, j,k=1

vkwiw j
∂2 fk

∂xi∂x j
(0, 0) , (18)

b =
n∑

i,k=1

vkwi
∂2 fk
∂xi∂ω

(0, 0) . (19)

Then, the local dynamics around the equilibrium point 0 are completely determined
by the signs of a and b. More precisely,

i a > 0, b > 0. When ω < 0 such that |ω| � 1, 0 is locally asymptotically stable
and there exists a positive unstable equilibrium; when 0 < ω � 1, 0 is unstable
and there exists a negative locally asymptotically stable equilibrium.

ii a < 0, b < 0. When ω < 0 such that |ω| � 1, 0 is unstable; when 0 < ω � 1, 0
is locally asymptotically stable and there exists a positive unstable equilibrium.
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iii a > 0, b < 0. When ω < 0 such that |ω| � 1, 0 is unstable and there exists a
locally asymptotically stable negative equilibrium; when 0 < ω � 1, 0 is stable
and a positive unstable equilibrium exists.

iv a < 0, b > 0.Whenω changes sign, 0 changes its stability from stable to unstable.
As a result, a negative unstable equilibrium becomes positive and locally asymp-
totically stable. In particular, if a > 0 and b > 0, then a backward bifurcation
occurs at ω = 0.

The a and b terms appearing in the above theorem depend on generalized eigenvec-
tors, i.e., zero entries are allowed. In the proof of Theorem 7, the a and b terms arise
from a differential equation obtained from a parameterization of a one-dimensional
center manifold c(t) given by

ċ = a

2
c2 + bωc.

Observe how a transcritical bifurcation occurs in the above equation at ω = 0 and
can be classified according to the signs of the a and b terms, defined above. These terms
dependon theKronecker product of generalized eigenvectors and entries of theHessian
evaluated at the DFE. As pointed out by Castillo-Chavez and Song (2004), negative
components of the generalized eigenvectors are permitted through a modification of
Theorem 7. The essence of the argument hinges on the fact that the theorem can still
be applied; one only has to compare the negative entries of the eigenvectors with their
corresponding entries of the nonnegative equilibrium of interest. Therefore, one has to
consider the original parameterization of the center manifold, prior to the coordinate
change where the DFE is assumed to be zero. Notice how the negative entries in the
generalized eigenvectors calculated in Sect. 5 correspond to the positive entries of the
DFE of interest.

A.4 Parameter Values

Presented below are tables of numerical rates corresponding to the following three
high transmission sites: Kaduna in Nigeria, Namawala in Tanzania, and Butelgut in
Papua New Guinea. The data have been collected from multiple sources, all of which
are noted in the footnotes. Due to the additional prevalence of P. vivax in Butelgut, the
corresponding data represent combined estimates of both species (Killeen et al. 2000).
The data for the other sites exclusively correspond to the P. falciparum species. There
are a variety of vector species that inhabit these sites. The data listed here correspond to
the dominant vector species of the area being considered. The dominant vector species
of each site is listed in the footnotes. Furthermore, as mentioned in Sect. 2 and reported
by Laishram et al. (2012a), the parasites carried by asymptomatic human hosts can
be more infectious than those of symptomatic. For the parameter values displayed
in “Parameter Values” of appendix, we invoke the assumption that the asymptomatic
carriers corresponding to each site transmit at a lower rate than that of the symptomatic
and that asymptomatic individuals recover faster than symptomatic, i.e., βA < βY and
λAR > λY R .
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Table 4 contains demographic data for the countries that each site is contained
in. These numerical values are used to calculate the recruitment rates of the human
populations ΩH corresponding to each region under consideration (Tables 5, 6, 7).

Table 4 Human population data

Country Life expectancy Birth rate Migration rate Source

Nigeria 53.02 37.64 − 0.22 Central Intelligence Agency (2015)

Tanzania 61.71 36.39 − 0.54 Central Intelligence Agency (2015)

Papua New Guinea 67.03 24.38 0.00 Central Intelligence Agency (2015)

The human population data displayed in Table 4 are from the Central Intelligence Agency (CIA).ΩLE ,ΩBR ,
and ΩMR denote the life expectancy, birth rate, and migration rate of the population under consideration.
Life expectancy is measured in years. The birth rate entries appearing in column 3 of the above table are
crude birth rates. The crude birth rate measures the average quantity of live births during a year, per 1000
people, and is given in units of total births per 1000 people per year. The migration rates are net migration
rates, which measure the difference of immigrants and emigrants in a given population over the span of a
year, and are given in units of humans per year, per 1000 people

Table 5 Kaduna

Parameter Dimension Value Source

ΩH Humans × days−1 1.02 × 10−4 Central Intelligence Agency (2015)a

ΩM Mosquitoes × days−1 1505.82 Killeen et al. (2000)b

ξH days−1 0.019 Central Intelligence Agency (2015)c

ξM days−1 0.11 Molineaux et al. (1979) and Chitnis et al. (2008)d

βA n/a 0.048 Assumede

βY n/a 0.48 Chitnis et al. (2008)f

βM n/a 0.032 Killeen et al. (2000)g

γ days−1 0.11 Chitnis et al. (2008)h

τ days−1 0.09 Killeen et al. (2000) and Craig et al. (1999)i

δ days−1 1.66 × 10−6 World Life Expectancy (2016)j

σ days−1 0.42 Killeen et al. (2000)k

λAR days−1 0.6 Assumedl

λY R days−1 0.06 Assumedm

λRS days−1 5.48 × 10−4 Chitnis et al. (2008)n

ulow n/a 0.5 Assumedo

a The human recruitment rate is obtained from the entries in the first row of Table 4 and the weighted sum
formula ΩH = (ΩBR + ΩMR )/365.25/1000 = (37.64 − 0.22)/365.25/1000 ≈ 1.02 × 10−4

b The daily vector emergence rate is measured in units of new adult female mosquitoes per day. Thus, it
is given by dividing the entry in row six column four of Table 3 in Killeen et al. (2000, p. 541) by the
normalizing quantity 365.25, i.e., ΩM = (0.55 × 106)/365.25 ≈ 1505.82
c The average natural human mortality rate is calculated by dividing the entry listed in row one column two
of Table 4 into unity, i.e., ξH = 1/ΩLE = 1/53.02 ≈ 0.019
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Table 5 continued

d The dominant vector species of Kaduna at the time the field measurements were taken was An. gambiae
(Service 1965). Let ΩL stand for the average An. gambiae life expectancy, which is dependent upon the
region under consideration. The data provided byMolineaux et al. (1979) and appearing in row nine column
one of Table A.3 in Chitnis et al. (2008, p. 19) correspond to An. gambiae activity in Nigeria. Due to this,
we select the entry contained in row one column nine, so that ΩL = 9. Therefore, the average daily An.
gambiae mosquito mortality rate is ξM = 1/ΩL = 1/9 ≈ 0.11
e The assumption is made that the rate of transmission from asymptomatic humans to susceptible
mosquitoes is one-tenth the transmission probability corresponding to symptomatic humans, i.e., βA =
0.048
f We adopt the convention utilized by Chitnis et al. (2008), where an estimate of 0.48 will be used for high
transmission areas and an estimate of 0.24will be used for low. Kaduna is a high transmission area; thus, we
let βY = 0.48. An alternate choice would be to choose the average value of the parameters corresponding
to the dominant species of parasite. The average value of the parameters appearing in rows one through
five in column one of Table A.6 in Chitnis et al. (2008, p. 21) is approximately 0.36. The origin of the
parameters used in this calculation is Thomson et al. (1957), Boyd (1949) and Draper (1953)
g The effective daily vector-to-human contact rate is obtained by dividing the value in row two column
four of Table 3 in Killeen et al. (2000, p. 541) by ΩL . Thus, βM = 0.29/ΩL = 0.29/9 ≈ 0.032
h The human latent period γ̃ , measure in days, corresponding to P. falciparum infection is taken from row
three column one in Table A.7 in Chitnis et al. (2008, p. 21). The range 9–10 is given. The average value
is then chosen, i.e., γ̃ ≈ 9.5. It follows that the average duration of the intermediate host latent period is
γ = 1/γ̃ = 1/9.5 ≈ 0.11. The parameter source is Molineaux and Gramiccia (1980)
i Let τ̃ denote thePlasmodium incubation period, i.e., the number of days required for parasite development.
Thus, by using the entry in row nine column three of Table 2 in Killeen et al. (2000, p. 539), it follows
that the average duration of the definitive host latent period is τ = 1/τ̃ = 1/11.6 ≈ 0.09. Technically,
this parameter was calculated from the mean and median temperatures listed in the original source (Craig
et al. 1999)
j Themalaria death rates are taken fromWorld Life Expectancy (2016) and are given in units of per 100, 000
people per year. As in the case of the human demographic data listed in Table 4, these rates correspond
to the overall country that the region is contained in. Using the data provided by World Life Expectancy
(2016), it follows that δ = 60.46/365.25/100, 000 ≈ 1.66 × 10−6

k The average human biting rate is estimated by dividing the entry in row one column four of Table 3 in
Killeen et al. (2000, p. 541) by ΩL . More precisely, we have that σ = 3.8/9 ≈ 0.42
l,m For the purpose of numerical simulations, we assume that asymptomatic carriers transmit malaria to
a lesser extent than symptomatic carriers and recover faster. Due to this, we assume that the recovery rate
λY R for symptomatic individuals is one-tenth the rate λAR of asymptomatic individuals. Let the quantity
1/λ denote the average duration of the human infectious period, provided that the individual has had no
treatment. IfΩI stands for the average duration of the P. falciparum infectious period in humans, we select
the average of the entries appearing in row four column one of Table A.9 in Chitnis et al. (2008, p. 21), so
that ΩI = 18. Therefore, λY R ≈ λ = 1/ΩI = 1/18 ≈ 0.06, and it follows that λAR = 0.6. The original
source of the parameter value is Bloland and Williams (2002)
n The temporary immunity loss rate λRS is such that 1/λRS is equal to the average duration of the human
immune period. As in Chitnis et al. (2008), we assume that the immune period lasts for an average of 5
years in areas of high transmission and 1 year in areas of low transmission. For Kaduna, it follows that
λRS = 1/(5)365.25 ≈ 5.48 × 10−4

o This baseline assumption is due to the fact that the population under consideration is A-dominant
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Table 6 Namawala

Parameter Dimension Value Source

ΩH humans × days−1 9.82 × 10−5 Central Intelligence Agency (2015)a

ΩM mosquitoes × days−1 4928.13 Killeen et al. (2000)b

ξH days−1 0.016 Central Intelligence Agency (2015)c

ξM days−1 0.09 Molineaux et al. (1979) and Chitnis et al. (2008)d

βA n/a 0.048 Assumede

βY n/a 0.48 Chitnis et al. (2008)f

βM n/a 0.002 Killeen et al. (2000)g

γ days−1 0.11 Chitnis et al. (2008)h

τ days−1 0.09 Killeen et al. (2000) and Craig et al. (1999)i

δ days−1 1.16 × 10−6 World Life Expectancy (2016)j

σ days−1 0.13 Killeen et al. (2000)k

λAR days−1 0.6 Assumedl

λY R days−1 0.06 Assumedm

λRS days−1 5.48 × 10−4 Chitnis et al. (2008)n

ulow n/a 0.5 Assumedo

a From Table 4, it follows that ΩH = (36.39 − 0.54)/365.25/1000 ≈ 9.82 × 10−5

b By utilizing the data provided in Table 3 in Killeen et al. (2000, p. 541), it follows that ΩM = (1.8 ×
106)/365.25 ≈ 4928.13
c The average natural human mortality rate is calculated in a similar fashion, as in the case of Kaduna, by
utilizing the data provided in Table 4
d The dominant vector species of Namawala at the time the field measurements were taken was An. gambiae
(Smith et al. 1993). The data provided by Gillies and Wilkes (1965) and appearing in row six column one
of Table A.3 in Chitnis et al. (2008, p. 19) correspond to An. gambiae activity in Tanzania. Using these
data, it follows that ΩL = 11.26. Therefore, the average daily An. gambiae mosquito mortality rate is
ξM = 1/11.26 ≈ 0.09
e As previously mentioned, the asymptomatic human-to-susceptible mosquito transmission probability is
assumed to be βA = 0.048
f Since Namawala is a high transmission area, we let βY = 0.48
g By dividing the value in row two column five of Table 3 in Killeen et al. (2000, p. 541) by ΩL , it follows
that βM = 0.017/11.26 ≈ 0.002
h The average duration of the intermediate host latent period is taken to be γ = 1/γ̃ = 1/9.5 ≈ 0.11.
The parameter value γ̃ is taken from row three column one in Table A.7 in Chitnis et al. (2008, p. 21). The
average value is then chosen, i.e., γ ≈ 9.5. The original parameter source is Molineaux and Gramiccia
(1980)
i By using the entry in row eight column four of Table 2 in Killeen et al. (2000, p. 539), it follows that the
average duration of the definitive host latent period is τ = 1/11.6 ≈ 0.09
j By the data provided by World Life Expectancy (2016), it follows that δ = 42.42/365.25/100, 000 ≈
1.16 × 10−6

k By using the data in row one column five of Table 3 in Killeen et al. (2000, p. 541), we have that
σ = 1.5/11.26 ≈ 0.13
l As in the previous table, the recovery rate pertaining to asymptomatic individuals is assumed to be
λAR = 0.6
m The average of the entries appearing in row four column one of Table A.9 in Chitnis et al. (2008, p. 21)
is selected, so that ΩI = 18. Therefore, λY R ≈ λ = 1/ΩI = 1/18 ≈ 0.06. The original source of the
parameter value is Bloland and Williams (2002)
n As Namawala is a high transmission area, the temporary immunity loss rate is taken to be λRS =
1/(5)365.25 ≈ 5.48 × 10−4

o This baseline assumption is due to the fact that the population under consideration is A-dominant
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Table 7 Butelgut

Parameter Dimension Value Source

ΩH humans × days−1 6.67 × 10−5 Central Intelligence Agency (2015)a

ΩM mosquitoes × days−1 4106.78 Killeen et al. (2000)b

ξH days−1 0.015 Central Intelligence Agency (2015)c

ξM days−1 0.14 Molineaux et al. (1979) and Chitnis et al. (2008)d

βA n/a 0.048 Assumede

βY n/a 0.48 Chitnis et al. (2008)f

βM n/a 0.006 Killeen et al. (2000)g

γ days−1 0.11 Chitnis et al. (2008)h

τ days−1 0.1 Killeen et al. (2000) and Craig et al. (1999)i

δ days−1 1.03 × 10−6 World Life Expectancy (2016)j

σ days−1 0.14 Killeen et al. (2000)k

λAR days−1 0.6 Assumedl

λY R days−1 0.06 Assumedm

λRS days−1 5.48 × 10−4 Chitnis et al. (2008)n

ulow n/a 0.5 Assumedo

a From Table 4, it follows that ΩH = (24.38 − 0.00)/365.25/1000 ≈ 6.67 × 10−5

b By utilizing the data provided in Table 3 in Killeen et al. (2000, p. 541), it follows that ΩM = (1.5 ×
106)/365.25 ≈ 4106.78
c Similarly, the average natural human mortality rate is calculated by utilizing the data provided in Table 4
d The dominant vector species of Butelgut at the time the fieldmeasurementswere takenwasAn. punctulatus
(Burkot et al. 1988). The data provided by Peters and Standfast (1960) and appearing in row thirteen column
one of Table A.3 in Chitnis et al. (2008, p. 19) correspond to An. punctulatus activity in Papua New Guinea.
Using these data, it follows thatΩL = 7.1. Therefore, the average daily An. punctulatusmosquito mortality
rate is ξM = 1/7.1 ≈ 0.14
e As previously demonstrated, the asymptomatic human-to-susceptiblemosquito transmission probability is
assumed to be βA = 0.048
f Since Butelgut is a high transmission area, we let βY = 0.48
g By dividing the value in row two column six of Table 3 in Killeen et al. (2000, p. 541) by ΩL , it follows
that βM = 0.042/7.1 ≈ 0.006
h The average duration of the intermediate host latent period is taken to be γ = 1/γ̃ = 1/9.5 ≈ 0.11.
The parameter value γ̃ is taken from row three column one in Table A.7 in Chitnis et al. (2008, p. 21). The
average value is then chosen, i.e., γ ≈ 9.5. The original parameter source is Molineaux and Gramiccia
(1980)
i By using the entry in row eight column five of Table 2 in Killeen et al. (2000, p. 539), it follows that the
average duration of the definitive host latent period is τ = 1/9.6 ≈ 0.1
j By the data provided by World Life Expectancy (2016), it follows that δ = 37.57/365.25/100,000 ≈
1.03 × 10−6

k By using the data in row one column six of Table 3 in Killeen et al. (2000, p. 541), we have that
σ = 0.99/ΩL = 0.99/7.1 ≈ 0.14
l Due to similar reasoning as above, the recovery rate pertaining to asymptomatic individuals is assumed
to be λAR = 0.6
m The average of the entries appearing in row four column one of Table A.9 in Chitnis et al. (2008, p. 21)
is selected, so that ΩI = 18. Therefore, λY R ≈ λ = 1/ΩI = 1/18 ≈ 0.06. The original source of the
parameter value is Bloland and Williams (2002)
n As Butelgut is a high transmission area, the temporary immunity loss rate is taken to be λRS =
1/(5)365.25 ≈ 5.48 × 10−4

o This baseline assumption is due to the fact that the population under consideration is A-dominant
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