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Abstract
Asymptotic approximations of the first three cumulants of the quasi-stationary distri-
bution of the stochastic power law logistic model are derived. The results are based
on a system of ODEs for the first three cumulants. We deviate from the classical
moment closure approach by determining approximations without closing the system
of equations. The approximations are explicit in the model’s parameters, conditions
for validity of the approximations are given, magnitudes of approximation errors are
given, and spurious solutions are easily detected and eliminated. In these ways, we
provide improvements on previous results for this model.

Keywords Asymptotic approximations · Quasi-stationary distributions · Logistic
model

1 Introduction

Westudy a stochastic version of the power law logisticmodel. Logisticmodels are used
as models for the size of a population with density-dependent growth. This means that
the net growth rate per individual is a decreasing function of the population size. The
simplest decreasing function is the linear one. It leads to the classical logistic model,
whose deterministic version was studied by Verhulst already in 1838. The stochastic
version of this model has been studied extensively, as shown by Nåsell (2017). More
general deterministic power law logistic models have been discussed by Banks (1994)
and by Tsoularis and Wallace (2002), while stochastic versions of such models are
treated by Matis et al. (1998), by Renshaw (2011), and by Bhowmick et al. (2016).

Themodel thatwedealwith is aMarkovChainwithfinite state space and continuous
time, and with an absorbing state at the origin. It can also be described as a finite-
state birth-death process. Two model formulations are given in Sect. 2. They are
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mathematically equivalent, but with different parameters. The maximum population
size N is an important parameter in the second one of the two formulations. This
formulation is basic for our work, since N serves the role of being the large parameter
for which asymptotic approximations of various quantities can be derived.

The state variable X(t) of either of the two formulations is interpreted as the num-
ber of individuals in a population. Ultimate extinction of this variable is a fact for this
model. This means in particular that the stationary distribution of X(t) is degenerate
with probability one at the origin. A related and important random variable XQ(t)
is defined by conditioning X(t) on non-extinction. The stationary distribution of this
conditioned random variable is the so-called quasi-stationary distribution (QSD). The
QSD is important for the information it gives about the long-term behavior of a surviv-
ing population. Our main goal is to derive approximations of the first three cumulants
of the QSD.

Our approach toward this goal resembles the well-known moment closure method
in the sense that both are based on a system of ODEs for the first few (three) cumulants.
This system of ODEs is not closed: the number of unknown functions (cumulants) is
larger than the number of equations. This fact has caused all practitioners of moment
closure to introduce an approximating assumption that leads to closure of the system
of ODEs. The method is used widely, as shown by the recent review paper by Kuehn
(2016). However, it is also known to possess several weaknesses. The first of these
weaknesses is that no condition for validity of the resulting approximation is available,
a second one is that the magnitude of the approximation error can not be evaluated,
a third one is that it often leads to spurious solutions that require large efforts to
eliminate, and a fourth one is that the dependence of the approximating expressions
on the model’s parameters is not known. An early basic paper in the area was written
by Whittle (1957). The desirability of closing the system of ODEs for the cumulants
cannot be denied. It is indeed a necessity if the goal is to derive exact expressions for
the cumulants. However, it is important to realize that closure is not necessary if one
is satisfied with approximate results, as we are in this paper.

Wedonot usemoment closuremethods at all. Instead,we apply the alternativemath-
ematical method introduced in Nåsell (2017). Thus, we base our work on a system
of ODEs for cumulants, just as is done by practitioners of moment closure. However,
we avoid the step that leads to closure of the system of ODEs, since the ad hoc nature
of this step is the cause of several weaknesses of the moment closure method. Our
alternative is to search for asymptotic approximations. This requires the reparameter-
ization that accompanies the second one of the two model formulations of Sect. 2. To
proceed with our approach, we also need information about the orders of magnitude
(in terms of N ) of the cumulants that appear in the system of ODEs. We motivate our
assumptions in this regard with numerical evaluations. The method that we use avoids
the weaknesses associated with moment closure methods.

Methods for numerical evaluations of the QSD and of the associated cumulants are
discussed in Sect. 3. Our approach is different from what has been used by previous
workers on this model. Results of numerical evaluations are used to motivate forms
of basic assumptions that are made for determining asymptotic approximations of the
first few cumulants of the QSD and also for checking the orders of magnitude of the
errors of the approximations that we derive.
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Sections 4 and 5 study the two random variables X(t) and XQ(t), respectively.
We give a system of first-order ODEs for the first 3 cumulants of the unconditioned
random variable X(t) in Sect. 4. The same system of equations is shown in Sect. 5
to provide an approximation for the system of ODEs of the first 3 cumulants of the
conditioned random variable XQ(t) in a particular parameter region. This means that
approximations of the cumulants of the QSD in this region are found as critical points
of the system of ODEs. Asymptotic approximations of the coordinates of the critical
points of this system of ODEs are derived in Sect. 6. They serve to give asymptotic
approximations of the first 3 cumulants of the QSD. These results hold for small
positive integer values of the parameter s that describes the power of the population
size n that gives the decreasing function of the population size that reflects the density
dependence of the net birth rate of the model. An extension of these results to arbitrary
positive values of s, both integer and non-integer, is proposed in Sect. 7. Comparisons
are made in Sect. 8 with published results that also deal with the cumulants of the
QSD of the same model. The paper ends with some concluding comments in Sect. 9.

2 Model Formulation

The stochastic power law logistic model is a model for the size of a population with
density-dependent growth. It is formulated as a birth-death process {X(t), t ≥ 0}. The
hypotheses of the model are summarized in the descriptions of the population birth
rate λn and the population death rate μn as functions of the state n of the process. The
formulation given byMatis et al. (1998) takes the following form: the population birth
rate equals

λn =
{

(a1 − b1ns)n, n ≤ (a1/b1)1/s,

0, otherwise,
(1)

and the population death rate is

μn = (a2 + b2n
s)n. (2)

The state space appears to be unbounded and equal to {0, 1, 2, . . . }. The parameters
a1, b1, a2, b2, s are all assumed to be positive. This model formulation takes its form
from the similarmodel introduced byBartlett (1957) for the special case of theVerhulst
logistic model where s = 1.

We shall use a different formulation, where

λn = μR0

(
1 −

( n

N

)s)
n, n = 0, 1, . . . , N , (3)

μn = μ
(
1 + α

( n

N

)s)
n, n = 0, 1, . . . , N . (4)

The state space of the process in this formulation is finite and equal to {0, 1, 2, . . . , N }.
The parameter space contains the five parameters N , R0, α, μ, and s. Among these, N
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is a large positive integer that represents the maximum population size, R0 is a positive
dimensionless threshold parameter, α is a nonnegative dimensionless parameter, μ is
a positive death rate with dimension inverse time, and s is a positive dimensionless
number. This model formulation is an extension from the formulation of the logistic
Verhulst model, corresponding to s = 1, given by Nåsell (2017). An advantage of this
formulation over the previous one is that dimensions and biological interpretations of
the parameters are known.

Under the assumption that the initial distribution is supported on the state space,
the process remains there for all time, since μ0 = 0 and λN = 0. The origin is seen
to be an absorbing state, since both λ0 and μ0 are equal to zero. Absorption at the
origin corresponds to extinction of the population. To study a surviving population,
we introduce the conditioned random variable X (Q)(t) by conditioning X(t) on the
event X(t) > 0. Thus,

P{X (Q)(t) = k} = P{X(t) = k|X(t) > 0}, k = 1, 2, . . . , N . (5)

The state space of the conditioned random variable X (Q)(t) differs from that of X(t)
in one respect: The origin can be reached by X(t), but not by the conditioned random
variable X (Q)(t). Thus, the state space of the latter one of these random variables is
equal to {1, 2, . . . , N }. Stationary distributions of the two random variables are vastly
different. The stationary distribution of X(t) is degenerate with probability one at the
origin, while the stationary distribution of the conditioned random variable X (Q)(t)
is the important quasi-stationary distribution (QSD), supported on the state space
{1, 2, . . . , N }.

We shall use the second of the two model formulations in this paper. An important
reason for this is that the second formulation contains a parameter N that can take large
values. The presence of such a parameter is essential for the formulation of asymptotic
approximations. Another advantage of the second formulation is that it gives informa-
tion about dimensions of parameters and state variables. Such information is of value
for biological interpretations of all quantities that appear in the study of the model.

The two formulations of the stochastic power law logistic model are essentially
equivalent if we require in the first formulation that (a1/b1)1/s = N is an integer, that
the state space is finite and equal to {0, 1, 2, . . . , N }, and that b2 ≥ 0. We assume in
what follows in this paper that these three requirements are met. The second model
formulation can then be seen as a reparameterization of the first one. We find then that
the four parameters a1, a2, b1, b2 of the first formulation can be expressed in terms of
the five parameters μ, R0, α, N , s of the second formulation as follows:

a1 = μR0, (6)

a2 = μ, (7)

b1 = μ
R0

Ns
, (8)

b2 = μ
α

Ns
. (9)
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Obviously, s takes the same value in both formulations. We note also that some results
that we shall refer to below use the following notations for the sums and differences
of the parameters ai and bi :

a = a1 − a2 = μ(R0 − 1), (10)

b = b1 + b2 = μ
R0 + α

Ns
, (11)

c = a1 + a2 = μ(R0 + 1), (12)

d = b1 − b2 = μ
R0 − α

Ns
. (13)

As already mentioned, the logistic Verhulst model can be seen as a special case of
the power law logistic model, corresponding to s = 1. Asymptotic approximations
of the first three cumulants of the QSD for the Verhulst model are derived in Nåsell
(2017). The goal of the present paper is to derive corresponding approximations of the
first three cumulants of the QSD of the power law logistic model for positive values of
s. We proceed by first deriving asymptotic approximations of the first three cumulants
of the QSD for the s-values 2, 3, and 4. These results are then extended in Sect. 7 to
both integer and non-integer positive values of s.

3 Numerical Evaluations

Numerical evaluations have been used in earlier work on this model, and we shall
also use them here. However, there are differences between our approach and those
of earlier workers both in the methods used for deriving numerical results, and in the
type of evaluations that are carried out.

Bartlett et al. (1960) argue incorrectly that a stationary distribution cannot exist for
the model that they are concerned with, since λ0 = 0, while we claim that the process
in this case has a degenerate stationary distribution with probability one at the origin.
Bartlett et al. claim furthermore that “the probability distribution for the stationary (or
quasi-stationary) distribution must satisfy the recurrence relation”

μn pn = λn−1 pn−1. (14)

Wefind it disturbing that they refer to both stationary and quasi-stationary distributions
here, without clarifying which of these two distributions that theymean. The statement
can certainly not hold for both of them. The fact is that it is incorrect for both of
them. Instead, the relation (14) holds for the stationary distribution p(0) of a related
auxiliary process X (0)(t) that is useful for studying the quasi-stationary distribution.
The transition rates of this auxiliary process are equal to those of the process X(t),
with the one exception that the rate μ1 for transition from the state 1 to the absorbing
state 0 is replaced by zero. The stationary distribution p(0) is non-degenerate and can
be evaluated explicitly. It has been used to study the QSD for a SIS model, which is
the special case of the model that we are concerned with here that corresponds to the
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parameter values s = 1 and α = 0, in Nåsell (2011). It follows from this study that
p(0) is a good approximation of the QSD in its body, but not in the left tail, in the
parameter region where R0 > 1, but also that p(0) is not a good approximation of the
QSD if R0 < 1, nor in the parameter region near R0 = 1. Similar relations between
p(0) and the QSD are expected to hold for α > 0 and for integer values of s larger
than 1. Both Bartlett et al. (1960) and Matis et al. (1998) use the recurrence relation
(14) as a basis for numerical evaluations of the QSD. Our approach is different, as
shown below. However, we expect the cumulants of the stationary distribution p(0) to
be close to the cumulants of the QSD in the parameter region where R0 > 1, since the
tail probabilities have aminor influence on the cumulant values.We note that Renshaw
(2011) uses p(0) as a “working definition” of quasi-stationarity. We do not follow this
approach. Our results require a sharp line to be drawn between exact and approximate
relations.

To describe our method for numerical evaluations, we need a second auxiliary
process X (1)(t). The birth rates of this process are equal to those of the original process
X(t), while the death rates are slightly smaller than those of X(t), and equal to μn−1.
This means that the second auxiliary process can be interpreted as the original process
X(t) with one surviving and immortal individual. Like the first of the two auxiliary
processes, the second one lacks absorbing state, and its stationary distribution p(1) is
non-degenerate and can be evaluated explicitly.

Our numerical evaluations of the QSD make use of the restart map Ψ analyzed by
Ferrari et al. (1995), and also discussed by Nåsell (2011). This restart map is defined
as follows: Let a probability vector ν = (ν1, ν2, . . . , νN ) be given. Define a process
related to the process X(t) that we are studying by the requirement that whenever
the original process reaches the state zero, it is immediately restarted at some state
j with probability ν j . The restarted process has the state space {1, 2, . . . , N }, and
a unique stationary distribution p. The map Ψ is then defined by Ψ (ν) = p. The
quasi-stationary distribution q is a fixed point of the mapping Ψ , since Ψ (q) = q.
Furthermore, Ferrari et al. (1995) show that an iteration scheme can be established by
repeated applications of the map Ψ to an arbitrary initial probability vector, and that
it converges to the quasi-stationary distribution q. Suitable initial probability vectors
are given by the stationary distributions p(0) and p(1) of the two auxiliary processes
X (0)(t) and X (1)(t). It turns out that that the map Ψ can be described explicitly with
the aid of these two stationary distributions. A derivation is given by Nåsell (2011).
By denoting the components of the vector p = Ψ (ν) by pn , we find that

pn = πn Sn p1, n = 1, 2, . . . , N , (15)

where

π1 = 1, πn = λ1λ2 · · · λn−1

μ2μ3 · · · μn
, n = 2, 3, . . . , N , (16)
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and

Sn =
n∑

k=1

1 − ∑k−1
j=1 ν j

ρk
, n = 1, 2, . . . , N , (17)

with

ρ1 = 1, ρn = λ1λ2 · · · λn−1

μ1μ2 · · ·μn−1
, n = 2, 3, . . . , N , (18)

and

p1 = 1∑N
n=1 πn Sn

. (19)

The stationary distributions p(0) and p(1) of the two auxiliary processes are determined
from the sequences πn and ρn as follows:

p(0)
n = πn p

(0)
1 , n = 1, 2, . . . , N , where p(0)

1 = 1∑N
n=1 πn

, (20)

and

p(1)
n = ρn p

(1)
1 , n = 1, 2, . . . , N , where p(1)

1 = 1∑N
n=1 ρn

, (21)

Our numerical method for determining the quasi-stationary distribution consists in
applying the restartmapΨ to a suitable initial distribution and continues iterations until
successive iterates are sufficiently close. In case R0 > 1, which is the parameter region
of main interest for the study of cumulants in this paper, the stationary distribution
p(0) is recommended over the distribution p(1) as initial distribution.

Numerical evaluations are used by Matis et al. (1998) for showing that the errors
that their approximations lead to are small. With our different parameterizations, we
have access to a parameter N that can take large values. We can then use numeri-
cal evaluations to extract additional information both about the model and about the
approximations that we derive. One goal is to derive information about the orders
of magnitude (in terms of N ) of various cumulants, and another one concerns the
probability of taking the value 1 in the quasi-stationary distribution. Information of
these two types is important for the formulation of hypotheses as a basis for finding
asymptotic approximations of the first few cumulants for large values of N , as will
be shown below. Another use of numerical evaluations is to derive information about
the orders of magnitude (in terms of N ) of the errors that are committed in using our
approximations. Such results will be used below to support the forms of asymptotic
approximations that we derive.
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19 Page 8 of 35 I. Nåsell

4 ODEs for Cumulants of the Unconditioned RandomVariable X(t)

The starting point for our derivations of asymptotic approximations of the first three
cumulants of the QSD is ODEs for the first three cumulants of the conditioned random
variable XQ(t). It turns out that these ODEs are closely related to the ODEs for the
corresponding cumulants of the unconditioned random variable X(t) in one important
region of parameter space, namely where R0 > 1. We start therefore by giving these
latter ODEs.

The derivation of theseODEsmakes use of themoment generating functionM(θ, t)
and the cumulant generating function K (θ, t) of the random variable X(t). They are
defined by

M(θ, t) = E exp(θX(t)) =
N∑

n=0

pn(t) exp(nθ) (22)

and

K (θ, t) = logM(θ, t), (23)

where the state probabilities pn(t) = P{X(t) = n} satisfy the Kolmogorov forward
equations

p′
n(t) = λn−1 pn−1(t) − (λn + μn)pn(t) + μn+1 pn+1(t), n = 0, 1, . . . , N .

(24)

(Here, we agree to put λ−1 = μN+1 = p−1(t) = pN+1(t) = 0 so that (24) makes
sense formally for all n values indicated.)

The definitions of the cumulant generating function K and of the transition rates
λn and μn can be used to derive a partial differential equation (PDE) for K . It can be
written as follows:

∂K (θ, t)

∂t
= μ(exp(θ) − 1)

[
(R0 − exp(−θ))

∂K (θ, t)

∂θ

− R0 + α exp(−θ)

Ns
exp(−K (θ, t))

∂s+1 exp(K (θ, t))

∂θ s+1

]
. (25)

The same result follows by applying the reparameterization in (6)–(9) to the expression
for the PDE given by Renshaw (2011), and numbered (3.4.11).

The cumulants κi (t) are obtained from a power series expansion of the cumulant
generating function K (θ, t) as follows:

K (θ, t) =
∞∑
i=1

κi (t)

i ! θ i . (26)
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Weuse this result for determining theODEs of the first few cumulants of the random
variable X(t). They are found by determining the first few terms of the expansion of
the PDE of the cumulant generating function K (θ, t) in terms of θ and then identifying
terms with equal powers of θ .

To express our results, we use the capital letters A, B, and C to denote the time
derivatives of the first three cumulants of the random variable X(t), with superscripts
indicating the s-values, as follows:

A(s)(t) = κ
(s)

′
1 (t), (27)

B(s)(t) = κ
(s)

′
2 (t), (28)

C (s)(t) = κ
(s)

′
3 (t). (29)

Expressions for the functions A(s), B(s),C (s) for the s-values 2, 3 and 4 can then
be written as follows:

A(2) = μ(R0 − 1)κ1 − μ
R0 + α

N 2 (κ3
1 + 3κ1κ2 + κ3), (30)

B(2) = 2μ(R0 − 1)κ2 + μ(R0 + 1)κ1 − μ
R0 − α

N 2 (κ3
1 + 3κ1κ2 + κ3)

− 2μ
R0 + α

N 2 (3κ2
1κ2 + 3κ1κ3 + 3κ2

2 + κ4), (31)

C (2) = μ(R0 − 1)(κ1 + 3κ3) + 3μ(R0 + 1)κ2

− 3μ
R0 − α

N 2 (3κ2
1κ2 + 3κ1κ3 + 3κ2

2 + κ4)

− μ
R0 + α

N 2 (κ3
1 + 9κ2

1κ3 + 18κ1κ
2
2 + 3κ1κ2 + 9κ1κ4 + 27κ2κ3 + κ3 + 3κ5),

(32)

A(3) = μ(R0 − 1)κ1 − μ
R0 + α

N 3 (κ4
1 + 6κ2

1κ2 + 4κ1κ3 + 3κ2
2 + κ4), (33)

B(3) = 2μ(R0 − 1)κ2 + μ(R0 + 1)κ1

− μ
R0 − α

N 3 (κ4
1 + 6κ2

1κ2 + 4κ1κ3 + 3κ2
2 + κ4)

− 2μ
R0 + α

N 3 (4κ3
1κ2 + 6κ2

1κ3 + 12κ1κ
2
2 + 4κ1κ4 + 10κ2κ3 + κ5), (34)

C (3) = μ(R0 − 1)(κ1 + 3κ3) + 3μ(R0 + 1)κ2

− 3μ
R0 − α

N 3 (4κ3
1κ2 + 6κ2

1κ3 + 12κ1κ
2
2 + 4κ1κ4 + 10κ2κ3 + κ5)

− μ
R0 + α

N 3 (κ4
1 + 12κ3

1κ3 + 36κ2
1κ2

2 + 6κ2
1κ2 + 18κ2

1κ4 + 108κ1κ2κ3

+ 4κ1κ3 + 12κ1κ5 + 36κ3
2 + 3κ2

2 + 42κ2κ4 + 30κ2
3 + κ4 + 3κ6), (35)
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19 Page 10 of 35 I. Nåsell

A(4) = μ(R0 − 1)κ1

− μ
R0 + α

N 4 (κ5
1 + 10κ3

1κ2 + 10κ2
1κ3 + 15κ1κ

2
2 + 5κ1κ4 + 10κ2κ3 + κ5),

(36)

B(4) = 2μ(R0 − 1)κ2 + μ(R0 + 1)κ1

− μ
R0 − α

N 4 (κ5
1 + 10κ3

1κ2 + 10κ2
1κ3 + 15κ1κ

2
2 + 5κ1κ4 + 10κ2κ3 + κ5)

− 2μ
R0 + α

N 4 (5κ4
1κ2 + 10κ3

1κ3 + 30κ2
1κ2

2 + 10κ2
1κ4 + 50κ1κ2κ3 + 5κ1κ5

+ 15κ3
2 + 15κ2κ4 + 10κ2

3 + κ6), (37)

C (4) = μ(R0 − 1)(κ1 + 3κ3) + 3μ(R0 + 1)κ2

− 3μ
R0 − α

N 4 (5κ4
1κ2 + 10κ3

1κ3 + 30κ2
1κ2

2 + 10κ2
1κ4 + 50κ1κ2κ3 + 5κ1κ5

+ 15κ3
2 + 15κ2κ4 + 10κ2

3 + κ6)

− μ
R0 + α

N 4 (κ5
1 + 15κ4

1κ3 + 60κ3
1κ

2
2 + 10κ3

1κ2 + 30κ3
1κ4 + 270κ2

1κ2κ3

+ 10κ2
1κ3 + 30κ2

1κ5 + 180κ1κ
3
2 + 15κ1κ

2
2 + 210κ1κ2κ4

+ 150κ1κ
2
3 + 5κ1κ4 + 15κ1κ6 + 285κ2

2κ3 + 10κ2κ3 + 60κ2κ5
+ 105κ3κ4 + κ5 + 3κ7). (38)

Derivations of these results using Maple are given in Nåsell (2018).
We note that the 3 derivatives A(2), A(3), A(4) in (30), (33), (36) of the first cumulant

κ1 for the 3 s-values 2, 3, and 4 are found from the expressions (27), (28), (29) inMatis
et al. (1998) by reparameterization using (10)–(13) after introducing the correction
that the first term (a − bκ4

1 ) in the right-hand side of (29) is written (a − bκ4
1 )κ1.

Similarly, the 2 derivatives B(2) and B(3) in (31) and (34) of the second cumulant κ2
for the 2 s-values 2 and 3 are found from the expressions (33) and (34) in Matis et al.
by the same reparameterization after noting that the minus sign of the term −2aκ2 in
the right-hand side of their formula (34) is incorrect and should be changed to a plus
sign.

5 ODEs for Cumulants of the Conditioned RandomVariable X (Q)(t)

The goal of our study is to determine approximations of the first three cumulants of the
QSD for the stochastic variable X(t). This leads us to a study of the stationary values
of the system of ODEs for the first three cumulants of the conditioned random variable
X (Q)(t). These ODEs turn out to be closely related to the ODEs for the cumulants of
the unconditioned random variable X(t) in one important parameter region, namely
where R0 > 1. Identification of this parameter region is of high importance, since it
gives the validity condition for the approximations that we derive.
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In similarity to the case in the previous section, we use the cumulant generating
function K (Q)(θ, t) of the random variable X (Q)(t) that is of concern here to derive
the ODEs of the first few cumulants of this random variable. To derive the PDE of
this cumulant generating function, we proceed as in the previous section. The main
difference from the case in the previous section is that the expression for the time
derivative of the state probability p(Q)

n (t) is different from the counterpart of (24). By
using the relation in (5), we find that

p(Q)
n (t) = pn(t)

1 − p0(t)
, n = 1, 2, . . . , N . (39)

Differentiation and use of the Kolmogorov forward equations in (24) gives

p(Q)
n

′
(t) = λn−1 p

(Q)
n−1(t) − (λn + μn)p

(Q)
n (t) + μn+1 p

(Q)
n+1(t)

+μ1 p
(Q)
1 (t)p(Q)

n (t), n = 1, 2, . . . , N . (40)

The PDE for the cumulant generating function K (Q)(θ, t) of the conditioned ran-
dom variable XQ(t) turns out to be quite similar to the PDE for K (θ, t). It can be
written as follows:

∂K (Q)(θ, t)

∂t
= μ(exp(θ) − 1)

[
(R0 − exp(−θ))

∂K (Q)(θ, t)

∂θ

− R0 + α exp(−θ)

Ns
exp(−K (Q)(θ, t))

∂s+1 exp(K (Q)(θ, t))

∂θ s+1

]

+μ
(
1 + α

N

)
p(Q)
1 (t)

(
1 − exp(−K (Q)(θ, t)

)
. (41)

As in the previous section, we determine the ODEs of the first few cumulants by
expanding this PDE in terms of θ and identifying terms of equal powers of θ . We
find then that the last term of the right-hand side of every such ODE contains p(Q)

1 (t)
as a factor. The stationary value of this probability is equal to the quasi-stationary
probability q1.We claim that this probability is exponentially small in N for any α ≥ 0
and any positive value of s, integer or not, when R0 > 1. Arguments that support this
are given below. The last term can therefore be ignored when we are searching for
asymptotic approximations of the critical points. An important consequence of this is
that asymptotic approximations of the first few cumulants of the QSD for R0 > 1 are
found as stationary solutions of theODEs in Sect. 4 for the corresponding cumulants of
the unconditioned random variable X(t), with obvious rules for exclusion of spurious
solutions. Derivations of these results are given below in Sect. 6.

We show first that q1 is exponentially small in N when R0 > 1, α ≥ 0, and s = 1. It
follows from Nåsell (2011) that this result is true for the SIS model, defined by s = 1
and α = 0. Furthermore, it follows from Nåsell (2001a, b) that the same result holds
also for the Verhulst model, with s = 1 and α > 0. Support for the wider claim that
q1 is exponentially small in N for R0 > 1, α ≥ 0, and any s > 0 is given in Table 1,
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Table 1 Numerical evaluations
of the probability q1 of the QSD
of the stochastic power law
logistic model

s N = 100 N = 200 N = 400

0.5 1.04 ∗ 10−4 8.68 ∗ 10−9 3.60 ∗ 10−17

1 1.73 ∗ 10−12 8.04 ∗ 10−25 1.18 ∗ 10−49

2 7.55 ∗ 10−23 8.61 ∗ 10−46 7.88 ∗ 10−92

3 1.42 ∗ 10−28 2.36 ∗ 10−57 4.54 ∗ 10−115

Results are shown for R0 = 3, α = 1, the s-values 0.5, 1, 2, 3,
and the N -values 100, 200, and 400. The results indicate that q1 is
exponentially small. Derivations of these results usingMaple are given
in Nåsell (2018)

which shows numerically determined values of q1 for R0 = 3, α = 1, the s-values
0.5, 1, 2, 3, and the N -values 100, 200, and 400. The table shows that q1 decreases
strongly with both s and N for these values of R0 and α. It shows also that a doubling
of the N -value for fixed values of R0, α, and s leads to an approximate squaring of
the value of q1, as would be expected when q1 is exponentially small in N .

The condition that we have found under which q1 is exponentially small in N ,
namely R0 > 1, turns out to be the condition for the validity of the approximations of
the first three cumulants of the QSD that we derive later. We note that a corresponding
condition of validity has been missing from earlier results for the same model, based
on cumulant closure.

6 Cumulants of the QSD: First Results

This section is used to derive asymptotic approximations of the first three cumulants
of the quasi-stationary distribution of the stochastic power law logistic model for the
s-values 2, 3, and 4 and large N -values in the parameter region where R0 > 1. The
method that we use is similar to the one introduced in the study of the cumulants of
the QSD of the Verhulst logistic model in Nåsell (2017). This latter study actually
represents the special case with s = 1 of the model that we study here. Our results are
based on assumptions about the forms of asymptotic approximations of the first few
cumulants for large values of N . For the Verhulst model with s = 1 and R0 > 1, we
give arguments in Nåsell (2017) for assuming that the first four cumulants of the QSD
are O(N). The results make it easy to conjecture that all finite order cumulants of the
QSD for s = 1 are O(N ) in the parameter region R0 > 1. It is tempting to guess that
this holds also for integer values of s larger than 1.

In what follows in this section, we shall assume that the first s + 3 cumulants of
the QSD are O(N) when s = 1, 2, 3, 4, α ≥ 0, and R0 > 1. As a basis for this, we
refer to the numerical results in Table 2. It shows numerically determined values of
the first seven cumulants of the QSD for the parameter values R0 = 10 and α = 1,
with the two s-values 1 and 4, and with the three N -values 100, 200, and 400. It is
easy to verify from the table that all cumulants experience an approximate doubling
both when N is doubled from 100 to 200 and also when N is doubled from 200 to
400. We take this as a strong indication that all of the cumulants considered are O(N ).
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Table 2 Numerical evaluations
of the first seven cumulants of
the QSD of the stochastic power
law logistic model

s Cumulant N = 100 N = 200 N = 400

1 κ1 81.6 163 327

1 κ2 16.7 33.3 66.3

1 κ3 −13.8 −27.3 −54.3

1 κ4 8.61 16.9 33.6

1 κ5 −0.532 −0.620 −0.833

1 κ6 −10.0 −21.0 −42.8

1 κ7 17.8 38.3 79.0

4 κ1 95.0 190 380

4 κ2 4.93 9.74 19.3

4 κ3 −4.80 −9.45 −18.8

4 κ4 4.63 9.09 18.0

4 κ5 −4.61 −8.98 −17.7

4 κ6 5.52 10.5 20.5

4 κ7 −10.2 −18.9 −36.6

Results are shown for R0 = 10, α = 1, the s-values 1 and 4, and the
N -values 100, 200, and 400. The results indicate that the first seven
cumulants are all O(N )

The results in Table 2 are derived using Maple in Nåsell (2018), where also similar
results are given for the s-values 2 and 3.

We studyfirst the case s = 2.The assumptions that thefirst five cumulantsκ1−κ5 are
O(N ) in the parameter region R0 > 1 for s = 2 are basic for our further assumptions
that the first five cumulants have the following asymptotic behaviors for R0 > 1 and
s = 2:

κ1 = x1N + x2 + x3
N

+ O

(
1

N 2

)
, R0 > 1, s = 2, (42)

κ2 = y1N + y2 + O

(
1

N

)
, R0 > 1, s = 2, (43)

κ3 = z1N + O(1), R0 > 1, s = 2, (44)

κ4 = u1N + O(1), R0 > 1, s = 2, (45)

κ5 = u2N + O(1), R0 > 1, s = 2. (46)

The reason for including different numbers of terms in these asymptotic approxima-
tions will become apparent shortly. Thus, we have introduced eight unknowns, namely
x1, x2, x3, y1, y2, z1, u1, u2.Weproceed to determine the first six of them.By inserting
the above asymptotic approximations of the first five cumulants into the expressions
(30)–(32) for the functions A(2), B(2),C (2), we find that asymptotic approximations
for them can be written as follows:

A(2) = A(2)
1 N + A(2)

2 + A(2)
3

N
+ O

(
1

N 2

)
, R0 > 1, s = 2, (47)
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B(2) = B(2)
1 N + B(2)

2 + O

(
1

N

)
, R0 > 1, s = 2, (48)

C (2) = C (2)
1 N + O(1), R0 > 1, s = 2, (49)

where

A(2)
1 = μ(R0 − 1)x1 − μ(R0 + α)x31 , (50)

A(2)
2 = μ(R0 − 1)x2 − 3μ(R0 + α)(x21 x2 + x1y1), (51)

A(2)
3 = μ(R0 − 1)x3 − μ(R0 + α)(3x21 x3 + 3x1x

2
2 + 3x1y2 + 3x2y1 + z1), (52)

B(2)
1 = 2μ(R0 − 1)y1 + μ(R0 + 1)x1 − μ(R0 − α)x31 − 6μ(R0 + α)x21 y1, (53)

B(2)
2 = 2μ(R0 − 1)y2 + μ(R0 + 1)x2 − 3μ(R0 − α)(x21 x2 + x1y1)

− 6μ(R0 + α)(x21 y2 + 2x1x2y1 + x1z1 + y21 ), (54)

C (2)
1 = μ(R0 − 1)(x1 + 3z1) + 3μ(R0 + 1)y1 − 9μ(R0 − α)x21 y1

− μ(R0 + α)(x31 + 9x21 z1 + 18x1y
2
1 ). (55)

The reason for including different numbers of terms in the assumed asymptotic approx-
imations of the cumulants κ1 − κ5 can be understood with reference to the resulting
asymptotic approximations of the quantities A(2), B(2), andC (2). We note for example
from the expression (30) for A(2) that an additional term in the assumed asymptotic
approximation of κ2 would contribute a term of the order of 1/N 2 to the asymp-
totic approximation of A(2). Inclusion of such an additional term would therefore be
absorbed in the error term for the asymptotic approximation of A(2). We note from
the expressions in (50)–(55) that only the first six of the eight coefficients introduced
above appear in these expressions.

Our assumptions for s = 2 that the first five cumulants have the asymptotic approxi-
mations given in (42)–(46) lead to the asymptotic approximations of A(2), B(2),C (2) in
(47)–(49). These expressions are equal to the derivativeswith respect to time of the first
three cumulants. Setting them equal to zero gives conditions for the stationary points
of the corresponding system of ODEs. Since we are working with approximations
instead of exact results, we transform these conditions into the three requirements that
A(2) = O(1/N 2), B(2) = O(1/N ), C (2) = O(1). These requirements are satisfied
by the basic conditions that the six expressions A(2)

1 , A(2)
2 , A(2)

3 , B(2)
1 , B(2)

2 ,C (2)
1 in

(50)–(55) are equal to zero. We note that each of these expressions is a polynomial of
degree three in the six unknown coefficients x1, x2, x3, y1, y2, z1. Our basic problem
is to solve the six equations that are formed by setting the corresponding expressions
equal to zero for the six unknown coefficients. Each equation is a polynomial of degree
s+1 = 3 in the six unknown coefficients. Solution appears possible, since the number
of equations equals the number of unknowns. Further inspection of the six equations
reveals that considerable simplification can be achieved in the solution by determining
the six unknowns in a definite order, as described below. The first advantage is that
each of the equations to be solved contains only one unknown coefficient, and the
second one is that all equations except the first one are linear in the coefficient to be

123



Approximations of Cumulants of the Stochastic Power Law Logistic Model Page 15 of 35 19

solved for. The very first equation is of degree s+1 = 3 in the case we are considering
here with s = 2. All of the roots of the first equation except one are spurious solutions
that turn out to be easy to identify and to delete. Whenever a solution is found for
one of the coefficients, its value is immediately inserted into the remaining unsolved
equations. The order of solution that leads to these pleasant results is as follows: First,
the equation A(2)

1 = 0 is solved for x1. This equation has in this case, with s = 2,
s+1 = 3 solutions. Among them, we exclude x1 = 0 and x1 < 0 as the only spurious
solutions that appear in this method. The solution found for x1 is then inserted into the
remaining five unsolved equations. After finding x1, we proceed to solve the equation
B(2)
1 = 0 for y1, the equation A(2)

2 = 0 for x2, the equation C (2)
1 = 0 for z1, the

equation B(2)
2 = 0 for y2, and the equation A(2)

3 = 0 for x3. It is elementary to use
these rules to solve for the six unknown coefficients. Alternative derivations using
Maple are given in Nåsell (2018). The solutions are as follows:

x1 =
(
R0 − 1

R0 + α

)1/2

, R0 > 1, α ≥ 0, s = 2, (56)

x2 = −3

4

(α + 1)R0

(R0 + α)(R0 − 1)
, R0 > 1, α ≥ 0, s = 2, (57)

x3 = − (α + 1)R0

(R0 + α)2(R0 − 1)2

(
R0 + α

R0 − 1

)1/2

·
[
7

8
(R2

0 + α) + 13

32
(α + 1)R0

]
, R0 > 1, α ≥ 0, s = 2, (58)

y1 = 1

2

(α + 1)R0

(R0 + α)(R0 − 1)

(
R0 − 1

R0 + α

)1/2

, R0 > 1, α ≥ 0, s = 2, (59)

y2 = 3

4

(α + 1)R0

(R0 + α)2(R0 − 1)2
(R2

0 + α), R0 > 1, α ≥ 0, s = 2, (60)

z1 = − (α + 1)R0

(R0 + α)2(R0 − 1)2

(
R0 − 1

R0 + α

)1/2

·
[
1

2
(R2

0 + α) − 1

4
(α + 1)R0

]
, R0 > 1, α ≥ 0, s = 2. (61)

The method used here for derivation of asymptotic approximations of the first three
cumulants of the QSD for s = 2 can in principle be followed for higher integer values
of s. We proceed to consider the case when s = 3. We begin by assuming that the first
six cumulants have the following asymptotic behaviors for R0 > 1 and s = 3:

κ1 = x1N + x2 + x3
N

+ O

(
1

N 2

)
, R0 > 1, s = 3, (62)

κ2 = y1N + y2 + O

(
1

N

)
, R0 > 1, s = 3, (63)

κ3 = z1N + O(1), R0 > 1, s = 3, (64)

κ4 = u1N + O(1), R0 > 1, s = 3, (65)
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κ5 = u2N + O(1), R0 > 1, s = 3, (66)

κ6 = u3N + O(1), R0 > 1, s = 3. (67)

Insertions of these asymptotic approximations of the first six cumulants into the
expressions (33)–(35) for the functions A(3), B(3),C (3) lead to the following asymp-
totic approximations for them:

A(3) = A(3)
1 N + A(3)

2 + A(3)
3

N
+ O

(
1

N 2

)
, R0 > 1, s = 3, (68)

B(3) = B(3)
1 N + B(3)

2 + O

(
1

N

)
, R0 > 1, s = 3, (69)

C (3) = C (3)
1 N + O(1), R0 > 1, s = 3, (70)

where

A(3)
1 = μ(R0 − 1)x1 − μ(R0 + α)x41 , (71)

A(3)
2 = μ(R0 − 1)x2 − 2μ(R0 + α)(2x31 x2 + 3x21 y1), (72)

A(3)
3 = μ(R0 − 1)x3 − μ(R0 + α)(4x31 x3 + 6x21 x

2
2 + 6x21 y2 + 12x1x2y1

+ 4x1z1 + 3y21 ), (73)

B(3)
1 = 2μ(R0 − 1)y1 + μ(R0 + 1)x1 − μ(R0 − α)x41 − 8μ(R0 + α)x31 y1, (74)

B(3)
2 = 2μ(R0 − 1)y2 + μ(R0 + 1)x2 − μ(R0 − α)(4x31 x2 + 6x21 y1)

− μ(R0 + α)(8x31 y2 + 24x21 x2y1 + 12x21 z1 + 24x1y
2
1 ), (75)

C (3)
1 = μ(R0 − 1)(x1 + 3z1) + 3μ(R0 + 1)y1 − 12μ(R0 − α)x31 y1

− μ(R0 + α)(x41 + 12x31 z1 + 36x21 y
2
1 ). (76)

These six expressions are all polynomials of degree four in the six unknowns
x1, x2, x3, y1, y2, z1. We solve the six equations formed by putting each of these
expressions equal to zero for the six unknowns x1, x2, x3, y1, y2, z1. First, the equation
A(3)
1 = 0 is solved for x1. Among the four roots, we exclude the one that is equal to

zero, and the two that are complex conjugate as the only spurious solutions that appear
in this method. The remaining five equations are then solved for the remaining five
unknowns, using an order of solution similar to what is described for the case s = 2
above. Derivations using Maple are given in Nåsell (2018). The results are as follows:

x1 =
(
R0 − 1

R0 + α

)1/3

, R0 > 1, α ≥ 0, s = 3, (77)

x2 = −2

3

(α + 1)R0

(R0 + α)(R0 − 1)
, R0 > 1, α ≥ 0, s = 3, (78)

x3 = − (α + 1)R0

(R0 + α)2(R0 − 1)2

(
R0 + α

R0 − 1

)1/3
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·
[
8

9
(R2

0 + α) + 7

27
(α + 1)R0

]
, R0 > 1, α ≥ 0, s = 3 (79)

y1 = 1

3

(α + 1)R0

(R0 + α)(R0 − 1)

(
R0 − 1

R0 + α

)1/3

, R0 > 1, α ≥ 0, s = 3, (80)

y2 = 2

3

(α + 1)R0

(R0 + α)2(R0 − 1)2
(R2

0 + α), R0 > 1, α ≥ 0, s = 3, (81)

z1 = − (α + 1)R0

(R0 + α)2(R0 − 1)2

(
R0 − 1

R0 + α

)1/3

·
[
1

3
(R2

0 + α) − 1

9
(α + 1)R0

]
, R0 > 1, α ≥ 0, s = 3. (82)

The last problem addressed in this section is the derivation of asymptotic approx-
imations of the first three cumulants of the QSD for s = 4. We begin by assuming
that the first seven cumulants have the following asymptotic behaviors for R0 > 1 and
s = 4:

κ1 = x1N + x2 + x3
N

+ O

(
1

N 2

)
, R0 > 1, s = 4, (83)

κ2 = y1N + y2 + O

(
1

N

)
, R0 > 1, s = 4, (84)

κ3 = z1N + O(1), R0 > 1, s = 4, (85)

κ4 = u1N + O(1), R0 > 1, s = 4, (86)

κ5 = u2N + O(1), R0 > 1, s = 4, (87)

κ6 = u3N + O(1), R0 > 1, s = 4, (88)

κ7 = u4N + O(1), R0 > 1, s = 4. (89)

Insertions of these asymptotic approximations of the first seven cumulants into the
expressions (36)–(38) for the functions A(4), B(4),C (4) lead to the following asymp-
totic approximations for these three functions:

A(4) = A(4)
1 N + A(4)

2 + A(4)
3

N
+ O

(
1

N 2

)
, R0 > 1, s = 4, (90)

B(4) = B(4)
1 N + B(4)

2 + O

(
1

N

)
, R0 > 1, s = 4, (91)

C (4) = C (4)
1 N + O(1), R0 > 1, s = 4, (92)

where

A(4)
1 = μ(R0 − 1)x1 − μ(R0 + α)x51 , (93)

A(4)
2 = μ(R0 − 1)x2 − 5μ(R0 + α)(x41 x2 + 2x31 y1), (94)

A(4)
3 = μ(R0 − 1)x3 − 5μ(R0 + α)(x41 x3 + 2x31 x

2
2 + 2x31 y2 + 6x21 x2y1
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+ 2x21 z1 + 3x1y
2
1 ), (95)

B(4)
1 = 2μ(R0 − 1)y1 + μ(R0 + 1)x1 − μ(R0 − α)x51 − 10μ(R0 + α)x41 y1, (96)

B(4)
2 = 2μ(R0 − 1)y2 + μ(R0 + 1)x2 − 5μ(R0 − α)(x41 x2 + 2x31 y1)

− 10μ(R0 + α)(x41 y2 + 4x31 x2y1 + 2x31 z1 + 6x21 y
2
1 ), (97)

C (4)
1 = μ(R0 − 1)(x1 + 3z1) + 3μ(R0 + 1)y1 − 15μ(R0 − α)x41 y1

− μ(R0 + α)(x51 + 15x41 z1 + 60x31 y
2
1 ). (98)

These six expressions are all polynomials of degree five in the six unknown quanti-
ties x1, x2, x3, y1, y2, z1. As above, we solve the six equations formed by putting each
of these expressions equal to zero for the six unknowns x1, x2, x3, y1, y2, z1. First, the
equation A(4)

1 = 0 is solved for x1. Among the five roots, we exclude four of them as
spurious solutions, namely one that is equal to zero, one that is negative, and two that
are imaginary. The remaining five equations are then solved for the remaining five
unknowns, using the same order as above for the cases s = 2 and s = 3. Derivations
using Maple are given by Nåsell (2018). The results are as follows:

x1 =
(
R0 − 1

R0 + α

)1/4

, R0 > 1, α ≥ 0, s = 4, (99)

x2 = −5

8

(α + 1)R0

(R0 + α)(R0 − 1)
, R0 > 1, α ≥ 0, s = 4, (100)

x3 = − (α + 1)R0

(R0 + α)2(R0 − 1)2

(
R0 + α

R0 − 1

)1/4

·
[
15

16
(R2

0 + α) + 25

128
(α + 1)R0

]
, R0 > 1, α ≥ 0, s = 4, (101)

y1 = 1

4

(α + 1)R0

(R0 + α)(R0 − 1)

(
R0 − 1

R0 + α

)1/4

, R0 > 1, α ≥ 0, s = 4, (102)

y2 = 5

8

(α + 1)R0

(R0 + α)2(R0 − 1)2
(R2

0 + α), R0 > 1, α ≥ 0, s = 4, (103)

z1 = − (α + 1)R0

(R0 + α)2(R0 − 1)2

(
R0 − 1

R0 + α

)1/4

·
[
1

4
(R2

0 + α) − 1

16
(α + 1)R0

]
, R0 > 1, α ≥ 0, s = 4. (104)

7 Cumulants of the QSD: Extensions to Positive Values of s

The results derived in the previous section give asymptotic approximations of the first
three cumulants of the QSD for the integer s-values 2, 3, and 4. The present section
is used to extend these approximations to positive values of s, both integer and non-
integer. The extension to positive integer values of s starts out by giving asymptotic
approximations of the first three cumulants of the QSD for the integer s-values from
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1 to 10. For this, we use the method spelled out in detail in the previous section. It
turns out that the s-dependence of these results can be described with the aid of five
functions of s that all can be expressed as ratios of polynomials in s of degree two.
After these five functions have been determined, we indicate that they can be used
to extend our results to arbitrary positive integer values of s. No further evaluations
are necessary for the extension of these results to positive non-integer values of s. We
argue that small changes in the parameter s will lead to small changes in the first few
cumulants of the QSD. The corresponding continuity argument lies behind our claim
that the results that have been derived for positive integer values of s are valid for all
positive values of s.

For easy reference we quote first from Nåsell (2017), the expressions for the six
coefficients x1, x2, x3, y1, y2, z1 in the case s = 1:

x1 = R0 − 1

R0 + α
, R0 > 1, α ≥ 0, s = 1, (105)

x2 = − (α + 1)R0

(R0 + α)(R0 − 1)
, R0 > 1, α ≥ 0, s = 1, (106)

x3 = − (α + 1)R0

(R0 − 1)3
(R0 + 1), R0 > 1, α ≥ 0, s = 1, (107)

y1 = (α + 1)R0

(R0 + α)2
, R0 > 1, α ≥ 0, s = 1, (108)

y2 = (α + 1)R0

(R0 + α)2(R0 − 1)2
(R2

0 + α), R0 > 1, α ≥ 0, s = 1, (109)

z1 = − (α + 1)R0

(R0 + α)3
(R0 − α), R0 > 1, α ≥ 0, s = 1. (110)

The asymptotic approximations of the first three cumulants of the QSD for the
stochastic power law logistic model are given in terms of the following expressions
for the coefficients x1, x2, x3, y1, y2, z1 for any s > 0:

x1 =
(
R0 − 1

R0 + α

)h1(s)

, R0 > 1, α ≥ 0, s > 0, (111)

x2 = −h2(s)
(α + 1)R0

(R0 + α)(R0 − 1)
, R0 > 1, α ≥ 0, s > 0, (112)

x3 = − (α + 1)R0

(R0 + α)2(R0 − 1)2

(
R0 + α

R0 − 1

)h1(s)

·
[
h3(s)(R

2
0 + α) + h4(s)(α + 1)R0

]
, R0 > 1, α ≥ 0, s > 0, (113)

y1 = h1(s)
(α + 1)R0

(R0 + α)(R0 − 1)

(
R0 − 1

R0 + α

)h1(s)

, R0 > 1, α ≥ 0, s > 0, (114)

y2 = h2(s)
(α + 1)R0

(R0 + α)2(R0 − 1)2
(R2

0 + α), R0 > 1, α ≥ 0, s > 0, (115)
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Table 3 Values of the functions
h1 − h5 when their argument s
takes integer values from 1 to
10. Derivations for s from 5 to
10 are given in Nåsell (2018)

s h1(s) h2(s) h3(s) h4(s) h5(s)

1 1 1 1 1 1

2 1/2 3/4 7/8 13/32 1/4

3 1/3 2/3 8/9 7/27 1/9

4 1/4 5/8 15/16 25/128 1/16

5 1/5 3/5 1 4/25 1/25

6 1/6 7/12 77/72 119/864 1/36

7 1/7 4/7 8/7 6/49 1/49

8 1/8 9/16 39/32 57/512 1/64

9 1/9 5/9 35/27 25/243 1/81

10 1/10 11/20 11/8 77/800 1/100

z1 = − (α + 1)R0

(R0 + α)2(R0 − 1)2

(
R0 − 1

R0 + α

)h1(s)

·
[
h1(s)(R

2
0 + α) − h5(s)(α + 1)R0

]
, R0 > 1, α ≥ 0, s > 0, (116)

where the functions h1 − h5 are defined as follows:

h1(s) = 1

s
, (117)

h2(s) = s + 1

2s
, (118)

h3(s) = s2 + 6s + 5

12s
, (119)

h4(s) = s2 + 12s + 11

24s2
, (120)

h5(s) = 1

s2
. (121)

To show that the functions h1 − h5 are determined by these expressions for s > 0,
we determine first the values that they take for the integer s-values 1–10, and given
in Table 3. The values taken by these five functions for the integer s-values 1-4 are
readily found from the expressions found for the 6 coefficients x1, x2, x3, y1, y2, z1
given in the previous and present sections. The further results for the s-values from 5
to 10 are based on asymptotic approximations of the first three cumulants of the QSD
of the power law logistic model that have been derived using Maple, and are reported
in Nåsell (2018).

It is straightforward to use the entries in Table 3 for the functions h1, h2, and h5
to confirm that the expressions (117), (118), (121) for these functions are valid for all
integer values of s from 1 to 10.

We turn now to deal with the functions h3 and h4. To find expressions for them,
we assume that each of them can be written as a quotient of two polynomials in s of
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degree 2. To be specific, we assume that

h3(s) = a0 + a1s + a2s2

b0 + b1s + b2s2
, (122)

h4(s) = c0 + c1s + c2s2

d0 + d1s + d2s2
. (123)

To determine the values of the six coefficients a0, a1, a2, b0, b1, b2, we establish six
equations that are found by equating the values of h3(s) for the integer s-values
from 1 to 6 according to (122) to the corresponding values in Table 3. By solving
these equations using Maple, as seen in Nåsell (2018), we find that h3(s) equals the
expression in (119). An entirely similar treatment of the function h4 leads to the
expression (120) for h4(s). So far, we can conclude that the expressions (119) and
(120) for h3(s) and h4(s) are valid for the integer s-values in the interval from 1
to 6. Extensions of the validities of the two expressions for h3(s) and h4(s) to all
integer values of s from 1 to 10 are easily seen to hold by the simple expedient of
verifying equalities between the values of the expressions in (119) and (120) and the
corresponding values in Table 3. We take this as a strong indication that the domain
of validity of the expressions (119) and (120) can be further extended to all positive
integer values of s.

As a last step of extension, we use a continuity argument to claim that the domain
of validity for the five functions h1−h5 can be extended from all positive integers s to
all positive values of s. We illustrate the result for non-integer s-values by giving the
numerical values of the error terms for the three cumulants κ1, κ2, κ3 in case R0 = 10
and α = 1, for the two s-values 0.5 and 3.5, and the 3 N -values 100, 200, and 400 in
Table 4. The table indicates that the error term for κ1 is divided by approximately 4
for each doubling of N , the error term for κ2 is divided by approximately 2 for each
doubling of N , and the error term for κ3 is approximately constant when N is doubled.
This is consistent with the claims that the error terms of κk are O(1/N 3−k) for the
k-values 1, 2, and 3. Evaluations of the error terms in Table 4 are derived using Maple
in Nåsell (2018).

The results in (111)–(116) show theway inwhich our asymptotic approximations of
the first three cumulants of the QSD of the stochastic power law logistic model depend
on the four parameters N , R0, α, and s. The one-term asymptotic approximations of
the first three cumulants κ1, κ2, and κ3 are useful for the information that they give
about the behaviors of these cumulants. They can be written as follows:

κ1 = x1N + O(1), R0 > 1, α ≥ 0, s > 0, N → ∞, (124)

κ2 = y1N + O(1), R0 > 1, α ≥ 0, s > 0, N → ∞, (125)

κ3 = z1N + O(1), R0 > 1, α ≥ 0, s > 0, N → ∞, (126)

where expressions for the three coefficients x1, y1, z1 are given in (111), (114), and
(116), respectively. We use these expressions to derive some properties of the first
three cumulants, valid for sufficiently large values of N .
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Table 4 Numerical evaluations of the error terms of the approximations of the first three cumulants of the
QSD of the stochastic power law logistic model

s Cumulant N = 100 N = 200 N = 400

0.5 κ1 −227 ∗ 10−6 −55 ∗ 10−6 −14 ∗ 10−6

0.5 κ2 111 ∗ 10−4 54 ∗ 10−4 27 ∗ 10−4

0.5 κ3 −35 ∗ 10−2 −34 ∗ 10−2 −33 ∗ 10−2

3.5 κ1 −334 ∗ 10−7 −83 ∗ 10−7 −21 ∗ 10−7

3.5 κ2 247 ∗ 10−5 122 ∗ 10−5 61 ∗ 10−5

3.5 κ3 −144 ∗ 10−3 −142 ∗ 10−3 −141 ∗ 10−3

Results are shown for R0 = 10, α = 1, the s-values 0.5 and 3.5, and the N -values 100, 200, and 400. The
table indicates that the error term of κ1 is O(1/N2), the error term of κ2 is O(1/N ), and the error term of
κ3 is O(1)

We note first that the expectation κ1 is an increasing function of the power s. This
follows from the following expression for the derivative of x1 with respect to s:

dx1
ds

= 1

s2
log

(
R0 + α

R0 − 1

) (
R0 − 1

R0 + α

)1/s

. (127)

Our second observation concerns the variance κ2. For sufficiently large values of
N , we find that it has a maximum as a function of s at s = s2, where

s2 = log((R0 + α)/(R0 − 1)). (128)

This follows from the following expression for the derivative of y1 with respect to s:

dy1
ds

= − 1

s3
(α + 1)R0

(R0 + α)(R0 − 1)

(
R0 − 1

R0 + α

)1/s (
s − log

R0 + α

R0 − 1

)
. (129)

We conclude in particular that κ2 is increasing in s for s < s2 and decreasing in s for
s > s2, provided N is large enough.

Our third observation concerns the third cumulant κ3. It is useful for determining
the skewness of the QSD. Actually, the QSD has negative skewness if κ3 is negative,
and positive skewness if κ3 is positive. It follows from the expression (116) that z1 is
positive if s < s3 and negative if s > s3, where

s3 = (α + 1)R0/(R
2
0 + α). (130)

It is easy too see that the same intervals of s lead to positive, respectively negative,
skewness of the QSD if N is sufficiently large.

Our brief study of the s-dependence of the first three cumulants shows that one
can identify two cases with rather different behaviors. The first case occurs when
s < min(s2, s3), and the second one when s > max(s2, s3). In the first case, we
conclude that both κ1 and κ2 are increasing functions of s, and that the QSD has
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Fig. 1 The QSD for the stochastic power law logistic model with N = 100, R0 = 5, α = 1, and the 5
s-values 0.2, 0.5, 1, 3, and 10

positive skewness. In the second case, we conclude as in the first case that κ1 is
increasing in s, while κ2 now is a decreasing function of s and the skewness of the
QSD has changed from positive to negative.

We illustrate the s-dependence of the first three cumulants by plotting the QSDs
for five different s-values with the constant parameter values N = 100, R0 = 5, and
α = 1. In these cases, we find s2 = 0.4055 and s3 = 0.3846. Numerically determined
QSDs are shown in Fig. 1 for the five s-values 0.2, 0.5, 1, 3, and 10. The figure shows
that the first cumulant (the expectation) increases as a function of s, that the second
cumulant (the variance) increases as a function of s for small s, but decreases as a
function of s for large s, and finally that the third cumulant (a measure of skewness) is
positive for small s-values, and negative for large s-values. (For the interpretations of
the plots in Fig. 1, it is useful to note that the probabilities qn are positive for all n in
the state space {1, 2, . . . , N }. Recall that the QSDs are discrete, and that the individual
probabilities qn are determined from the plotted curves by reading off the values at
each abscissa n.)

The asymptotic approximations that we have given of the first three cumulants
are valid for sufficiently large N -values. It is seen from the plot in Fig. 1 that the
requirement that q1 is exponentially small is not satisfied for s = 0.2 when R0 =
5, N = 100 and α = 1. Clearly, a larger value of N is needed here for q1 to be
exponentially small in N .
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8 Discussion of Other Approaches

In this section, we discuss five published results that all deal with the problem in this
paper, namely to determine approximations of the first three cumulants of the QSD of
the stochastic power law logistic model. All these results are formally different from
each other and also different from the results that we have derived and presented in
Sect. 7 of this paper. We use the powerful method of asymptotic approximations to
analyze these results. In this discussion, we are mainly limited to the case s = 1.

The first published results are those due to Bartlett (1957) and Bartlett et al. (1960).
The latter results are referred to as the BGL approximations. Themodel they analyze is
the first one formulated in Sect. 2. Their derivation is based on a study of the changes of
the stochastic variable X(t), and of its second and third powers, during an infinitesimal
time interval. This requires approximations for which validity and error magnitudes
have not been analyzed. The resulting approximations of the first three cumulants of
the QSD are denoted by κ

(B)
1 , κ(B)

2 , and κ
(B)
3 , respectively. They are given as follows

in Bartlett et al. (1960):

κ
(B)
1 = a1 − a2

b1 + b2
, (131)

κ
(B)
2 = a1 − b1κ

(B)
1

b1 + b2
, (132)

κ
(B)
3 = b2 − b1

b1 + b2
κ

(B)
2 . (133)

In the quoted paper, these three approximations are denoted by the sign ∼ instead of
≈. This would indicate that the approximations have the desirable property of being
asymptotic under the condition that some identified variable becomes large. However,
no such variable appears in the derivations. Because of this, the implicit claim by
Bartlett et al. (1960) that the approximations are asymptotic has not been proved by
them. It is, however, easy to use the results that we have derived to show that the BGL
approximations of the first three cumulants are asymptotic. All one has to do is to use
the reparameterization in (6)–(9). This leads to the following results:

κ
(B)
1 = x1N + x2, (134)

κ
(B)
2 = y1N , (135)

κ
(B)
3 = z1N , (136)

where x1, x2, y1, z1 are given in (105), (106), (108), (110). This shows that the approx-
imation (131) of the first cumulant of the QSD is equal to the sum of the first two terms
of its asymptotic approximation for large N -values, while the approximations (132)
and (133) of the second and third cumulants of he QSD are equal to the first terms
of the corresponding asymptotic approximations. All three approximations are there-
fore asymptotic for large N . We note, however, that the BGL method does not by
itself allow this important conclusion. Additional information about properties of the
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method will be uncovered in our study below of published results number three and
four, referred to as BR1 and BR2.

The second published result that we comment on was presented by Matis and Kiffe
(1996) in case s = 1, and byMatis et al. (1998) when s is a positive integer. A valuable
contribution of these papers is that they show that a system of ordinary differential
equations (ODEs) for the first few cumulants of the unconditioned random variable
X(t) can be derived from the PDE for the cumulant generating function K (θ, t) of
X(t). As already mentioned, we use a slight variation of this approach for deriving
ODEs of the first few cumulants of the conditioned random variable XQ(t). It turns out
that the first system of ODEs (for the cumulants of X(t)) serves as an approximation
of the second system of ODEs (for the cumulants of XQ(t)) under the condition that
R0 > 1. The critical points of the two systems of ODEs correspond to stationary
distributions of the two random variables X(t) and XQ(t), respectively. The two
systems of ODEs for the cumulants are not closed, in the sense that the number of
cumulants is larger than the number of equations. This may appear as an undesirable
property of the problem. Closure is clearly necessary if one wants or needs exact
solutions. However, for our purposes it is important to realize that closure is not
needed to find approximate solutions. To achieve closure, Matis et al. (1996, 1998)
assume that all cumulants of sufficiently large order are equal to zero. This assumption
is clearly at odds with our finding that all cumulants of the QSD are of order O(N ). It
turns out, however, that it leads to good numerical approximations of the cumulants.
This behavior can be understood fromour results.We note for example fromEqs. (36)–
(38) that the right-hand sides of the ODEs for the first three cumulants when s = 4
depend upon all seven cumulants κ1−κ7. But we note also in this case from (93)–(98)
that our assumption that the cumulants κ4 − κ7 are all O(N ) leads us to conclude that
they have no influence on the first three terms of the asymptotic approximation of κ1,
nor on the first two terms of the asymptotic approximation of κ2, or on the first term
of the asymptotic approximation of κ3. The same conclusion can be drawn from the
assumption made byMatis and Kiffe that the cumulants κk are equal to zero for k ≥ 4.
This argument shows that cumulant approximations based on cumulant closure and
an assumption of cumulant neglect can lead to asymptotic approximations if they are
acceptable at all, as shown numerically in several cases by Matis et al. (1998). But the
assumption that some cumulant κk equals zero is incorrect and can lead to errors if
one studies, e.g., the QSD instead of its cumulants.

The remaining three published results that we discuss here are all based on the BGL
method. Renshaw (2011) has used the BGL method in an effort to improve the results
by Bartlett et al. (1960) by giving additional terms in the approximations of the first
three cumulants of the QSD. He proceeds to formulate two approaches that we refer
to as BR1 and BR2, respectively, where the letters B and R are used to refer to Bartlett
and Renshaw. In each of these two approaches, he proceeds to derive three relations
between cumulants that turn out to be similar to relations between critical points of the
system of ODEs for the first three cumulants. To describe his findings, we quote first
from Renshaw (2011) the ODEs for the first three cumulants in the case s = 1. They
are derived from the PDE for the cumulant generating function and do not involve
any approximations. For consistency in notation, we denote the time derivatives of the
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first three cumulants by A(1), B(1), and C (1), respectively, when s = 1. We get

κ ′
1 = A(1) = aκ1 − b(κ2

1 + κ2), (137)

κ ′
2 = B(1) = 2aκ2 − b(4κ1κ2 + 2κ3) + cκ1 − d(κ2

1 + κ2), (138)

κ ′
3 = C (1) = a(κ1 + 3κ3) − b(κ2

1 + 6κ1κ3 + 6κ2
2 + κ2 + 3κ4)

+ 3cκ2 − d(6κ1κ2 + 3κ3). (139)

The same equations are found in Matis and Kiffe (1996), and, after using the repa-
rameterization in (10)–(13), in Nåsell (2017).

The two approaches discussed by Renshaw (2011) are the third and fourth of the
published results that we discuss. It turns out that the first two of the cumulant relations
derived by Renshaw are in each of his two approaches equal to the expressions found
by setting the cumulant derivatives κ ′

1 = A(1) and κ ′
2 = B(1) quoted above equal to

zero. However, the third cumulant relation that he derives is different from what is
found by setting κ ′

3 = C (1) equal to zero in each of the two approaches. In the approach
BR1 the third cumulant relation is given by relation (3.5.21) in Renshaw’s book, while
it is given by the expression following (3.5.38) in the same book in the approach BR2.
We use the notations C (a) = 0 and C (b) = 0 to refer to these relations. For the first
one of these, we find that C (a) is written as follows after using the reparameterization
in (10)–(13):

C (a) = μ(R0 − 1)(κ3
1 + 3κ1κ2 + κ3) + μ(R0 + 1)κ2

1 − μ
R0 − α

N
κ3
1

−μ
R0 + α

N
(κ4

1 + 6κ2
1κ2 + 4κ1κ3 + 3κ2

2 + κ4). (140)

We proceed to derive asymptotic approximations of the first three cumulants of the
QSD for this case. As in Sect. 6, our basic assumption is that the first four cumulants
have the following asymptotic behaviors:

κ1 = x1N + x2 + x3
N

+ O

(
1

N 2

)
, (141)

κ2 = y1N + y2 + O

(
1

N

)
, (142)

κ3 = z1N + O(1), (143)

κ4 = u1N + O(1). (144)

By inserting these asymptotic approximations of the first four cumulants into the
expressions for A(1), B(1),C (a) in (137), (138), (140), we find that asymptotic approx-
imations for them can be written as follows:

A(1) = A(1)
1 N + A(1)

2 + A(1)
3

N
+ O

(
1

N 2

)
, (145)
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B(1) = B(1)
1 N + B(1)

2 + O

(
1

N

)
, (146)

C (a) = C (a)
3 N 3 + C (a)

2 N 2 + C (a)
1 N + O(1), (147)

where

A(1)
1 = μ(R0 − 1)x1 − μ(R0 + α)x21 , (148)

A(1)
2 = μ(R0 − 1)x2 − μ(R0 + α)(2x1x2 + y1), (149)

A(1)
3 = μ(R0 − 1)x3 − μ(R0 + α)(2x1x3 + x22 + y2), (150)

B(1)
1 = 2μ(R0 − 1)y1 + μ(R0 + 1)x1 − μ(R0 − α)x21 − 4μ(R0 + α)x1y1, (151)

B(1)
2 = 2μ(R0 − 1)y2 + μ(R0 + 1)x2 − μ(R0 − α)(2x1x2 + y1)

− μ(R0 + α)(4x1y2 + 4x2y1 + 2z1), (152)

C (a)
3 = μ(R0 − 1)x31 − μ(R0 + α)x41 , (153)

C (a)
2 = μ(R0 − 1)(3x21 x2 + 3x1y1) + μ(R0 + 1)x21 − μ(R0 − α)x31

− μ(R0 + α)(4x31 x2 + 6x21 y1), (154)

C (a)
1 = μ(R0 − 1)(3x21 x3 + 3x1x

2
2 + 3x1y2 + 3x2y1 + z1)

+ 2μ(R0 + 1)x1x2 − 3μ(R0 − α)x21 x2

− μ(R0 + α)(4x31 x3 + 6x21 x
2
2 + 6x21 y2 + 12x1x2y1 + 4x1z1 + 3y21 ). (155)

The basic mathematical problem at this point is to determine the six coefficients
x1, x2, x3, y1, y2, z1 so that the following three conditions are satisfied:

A(1) = O

(
1

N 2

)
, (156)

B(1) = O

(
1

N

)
, (157)

C (a) = O (1) . (158)

These conditions are satisfied by setting the eight expressions (148)–(155) equal
to zero. We proceed to solve the resulting eight equations for the six unknown coef-
ficients x1, x2, x3, y1, y2, z1. At this point it appears that there are more equations
than unknowns, but the apparent problem that this causes will readily be solved. The
equation A(1)

1 = 0 is first solved for x1, and the spurious solution x1 = 0 is excluded.
As above, as soon as the solution is found for any of the coefficients x1, x2, x3, y1,
y2, z1, it is inserted into the remaining unsolved equations. The equation B(1)

1 = 0 is

then solved for y1, and the equation A(1)
2 = 0 is solved for x2. After this we find that

the two expressions C (a)
3 and C (a)

2 can both be determined from these values, and that
they both are equal to zero. Thus, the number of equations is reduced to be equal to
the number of unknown coefficients. In the last steps we use the equation A(1)

3 = 0 to
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express x3 as a function of y2, the equation B(1)
2 = 0 to solve for z1 as a function of

y2, and finally the equation C
(a)
1 = 0 to solve for y2. The result of these evaluations is

that the six coefficients x1, x2, x3, y1, y2, z1 can be expressed as follows as functions
of the model parameters R0 and α:

x1 = R0 − 1

R0 + α
, (159)

x2 = − (α + 1)R0

(R0 + α)(R0 − 1)
, (160)

x3 = (α + 1)R0(R2
0 + α − 5(α + 1)R0)

(R0 + α)(R0 − 1)3
, (161)

y1 = (α + 1)R0

(R0 + α)2
, (162)

y2 = − (α + 1)R0(R2
0 + α − 4(α + 1)R0)

(R0 + α)2(R0 − 1)2
, (163)

z1 = (α + 1)R0(R2
0 + α − 3(α + 1)R0)

(R0 + α)3(R0 − 1)
. (164)

Comparisons with (105)–(110) show that the expressions for the three coefficients
x1, x2, and y1 are equal to the corresponding expressions derived in Sect. 7 using our
preferred method where asymptotic approximations of the cumulants are derived from
the ODEs for the cumulants without attempting to close the equations. The compar-
isons also show that the expressions for the remaining three coefficients x3, y2, and
z1 disagree between our approach and BR1. This means that BR1 does not give any
improvement on the approximations of the first two cumulants established by Bartlett
et al. (1960). The reason for this is that one or more of the various approximation steps
that are taken in using the BGL method brings in errors. Renshaw (2011) appears
to share this view in his brief discussion of this issue after his formula (3.5.21). We
conclude that the BGL method brings in errors of unknown magnitude, and therefore
is unsuitable for deriving approximations of the cumulants of the QSD beyond those
derived by Bartlett et al. (1960). Support for this claim is given by the numerical
evaluations reported in Table 5. They indicate that the error terms of the approxima-
tions of the cumulants κ1, κ2, κ3, derived in Nåsell (2017), are of the orders O(1/N 2),
O(1/N ), O(1), respectively, just as expected. But we find also that the error terms of
the approximations derived via the BR1 approach are larger than this by an order of
magnitude. The BR1 approximation of κ3 in this case is useless, since the error terms
actually grow with N .

We turn now to a consideration of the second version BR2 of the Bartlett–Renshaw
approach. Renshaw (2011) uses it to derive a new expression for the third cumulant
relation. It is given after relation (3.5.38) in his book. After writing μ4 = κ4 + 3κ2

2
and using the reparameterization (10)–(13), it can be written C (b) = 0, where C (b) is
as follows:
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Table 5 Numerical evaluations of the error terms of three different approximations of the first three cumu-
lants of the QSD of the stochastic Verhulst logistic model

Approx Cumulant N = 100 N = 200 N = 400

N κ1 − 697 ∗ 10−7 − 171 ∗ 10−7 − 42 ∗ 10−7

N κ2 445 ∗ 10−5 219 ∗ 10−5 108 ∗ 10−5

N κ3 − 226 ∗ 10−3 − 222 ∗ 10−3 − 220 ∗ 10−3

BR1 κ1 − 311 ∗ 10−5 − 154 ∗ 10−5 − 76 ∗ 10−5

BR1 κ2 253 ∗ 10−3 251 ∗ 10−3 250 ∗ 10−3

BR1 κ3 −21 −41 −82

BB κ1 − 359 ∗ 10−5 − 178 ∗ 10−5 − 88 ∗ 10−5

BB κ2 292 ∗ 10−3 290 ∗ 10−3 289 ∗ 10−3

BB κ3 − 10.2 − 20.3 − 40.3

Results are shown for R0 = 10, α = 1, s = 1, and the N -values 100, 200, and 400. Approximation N uses
the results presented in this paper, while Approximation BR1 uses the first version of the Bartlett–Renshaw
approach, and Approximation BB is taken from Sect. 4 of the paper by Bhowmick et al. The table indicates
that the error terms of κ1, κ2, κ3 in ApproximationN are reduced by approximately 4, 2, and 1, respectively,
for each doubling of N , while in approximations BR1 and BB the error terms of κ1 and κ2 are reduced by
approximately 2 and 1, respectively, for each doubling of N , and the error terms of κ3 are seen to grow with
N . The derivations of the numerical results here are documented in Nåsell (2018)

C (b) = μ(R0 − 1)(κ1κ2 + κ3) + μ(R0 + 1)κ2 − μ
R0 − α

N
(2κ1κ2 + κ3)

−μ
R0 + α

N
(κ2

1κ2 + 2κ1κ3 + 3κ2
2 + κ4). (165)

We proceed to derive asymptotic approximations of the first three cumulants of
the QSD for this case, using the three cumulant relations A(1) = 0, B(1) = 0, and
C (b) = 0. As above, we assume that the first four cumulants have the following
asymptotic behaviors:

κ1 = x1N + x2 + x3
N

+ O

(
1

N 2

)
, (166)

κ2 = y1N + y2 + O

(
1

N

)
, (167)

κ3 = z1N + O(1), (168)

κ4 = u1N + O(1). (169)

By inserting these asymptotic approximations of the first four cumulants into the
expressions for A(1), B(1), and C (b), we find that asymptotic approximations for them
can be written as follows:

A(1) = A(1)
1 N + A(1)

2 + A(1)
3

N
+ O

(
1

N 2

)
, (170)
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B(1) = B(1)
1 N + B(1)

2 + O

(
1

N

)
, (171)

C (b) = C (b)
2 N 2 + C (b)

1 N + O(1). (172)

Expressions for thefive quantities A(1)
1 , A(1)

2 , A(1)
3 , B(1)

1 , B(1)
2 are given in (148)–(152),

while C (b)
2 and C (b)

1 are equal to

C (b)
2 = μ(R0 − 1)x1y1 − μ(R0 + α)x21 y1, (173)

C (b)
1 = μ(R0 − 1)(x1y2 + x2y1 + z1) + μ(R0 + 1)y1 − 2μ(R0 − α)x1y1

− μ(R0 + α)
(
x21 y2 + 2x1x2y1 + 2x1z1 + 3y21

)
. (174)

We set these seven expressions equal to zero, and solve the resulting seven equations
for the six unknown coefficients x1, x2, x3, y1, y2, z1. The value of x1 is found by
solving the equation A(1)

1 = 0 and excluding the spurious solution x1 = 0. The values

of y1 and x2 are then found by first solving the equation B(1)
1 = 0 for y1, and then

solving the equation A(1)
2 = 0 for x2. The values of x1, x2, and y1 are the same as the

ones found in (159), (160), (162). Furthermore, we insert these values of x1, x2, y1 into
(173) and (174). This shows that C (b)

2 = 0 and that therefore the number of equations
available for solving for the six coefficients is reduced from seven to six. We also get

C (b)
1 = −(R0 − 1)z1 − (α + 1)R0(R0 − α)(R0 − 1)

(R0 + α)3
. (175)

To determine the three coefficients x3, y2, z1 we solve the equation C (b)
1 = 0 for z1,

the equation B(1)
2 = 0 for y2, and the equation A(1)

3 = 0 for x3. The rather surprising
result is that the values of the six coefficients x1, x2, x3, y1, y2, z1 are found to be
the same as in (105)–(110). This means that even though the explicit results from the
BR2 method are different from the results from our preferred method, the asymptotic
approximations agree.

In his development of BR2, Renshaw (2011) uses the equation C (b)
1 = 0 to derive

the relation

κ3 ≈ − R0 − α

R0 + α
κ2. (176)

By using the reparameterization in (11) and (13) we find that this relation was shown
to hold already by Bartlett et al. (1960). It is seen from (108) and (110) that this
relation is asymptotic for large N . However, the arguments used by Renshaw in his
derivation can be criticized. As also pointed out by Bhowmick et al. (2016), it does not
make sense to assume that κ1 is large in comparison with a1, b1, a2, b2, since these
four parameters are rates whose values depend on the unit of time, which is arbitrary,
while κ1 is independent of the time unit. It is also unrealistic to assume that κ2 is small
compared with κ1, since it contradicts our finding that all cumulants are O(N ).
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Renshaw’s two efforts to extend the BGL approximation beyond what was derived
byBartlett et al. (1960) leads to two different conclusions. In one case (BR2) the results
provide improvements, while they do not in the other case (BR1). This is enough to
conclude that the BGL method cannot be trusted to give improved results without
further investigations.

We turn now to consider the results reported by Bhowmick et al. (2016). Actually,
they study a more general model than the one that we are concerned with here. The
population birth rate λn in their model is given by

λn = μR0

(
1 − α1

( n

N

)β
)
nδ, (177)

while their population death rate μn equals

μn = μ

(
1 + α2

( n

N

)β
)
nδ. (178)

They allow δ to be apositive number, not necessarily an integer. This leads to difficulties
in determining dimensions and biological interpretations of the parameters whenever
δ 
= 1. To avoid such difficulties, we limit ourselves to a study of their model in the
special case when δ = 1. To agree with our model formulation we furthermore put
β = s = 1, α1 = 1 and α2 = α.

By using results derived by Bhowmick et al. (2016) and reported in Sect. 4 of their
paper, we find that their approximation κ

(BB)
1 of the first cumulant κ1 equals

κ
(BB)
1 = R0 − 1

R0 + α
N

1

1 + H/N
, (179)

where

H = (α + 1)R0

(R0 − 1)2
. (180)

By including three terms in the asymptotic approximation of κ1 in (179), we find that

κ
(BB)
1 = R0 − 1

R0 + α
N − (α + 1)R0

(R0 + α)(R0 − 1)
+ (α + 1)2R2

0

(R0 + α)(R0 − 1)3
1

N
+ O

(
1

N 2

)
.

(181)

From relation (25) in Bhowmick et al., we find that their approximation κ
(BB)
2 of

the variance κ2 equals

κ
(BB)
2 = κ

(BB)
2

2 H

N
. (182)
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By including two terms in the asymptotic approximation of κ
(BB)
2 , we find that

κ
(BB)
2 = (α + 1)R0

(R0 + α)2
N − 2(α + 1)2R2

0

(R0 + α)2(R0 − 1)2
+ O

(
1

N

)
. (183)

Bhowmick et al. use four quantities A, B, C , and D in a formula that determines
their approximation κ

(BB)
3 of the third cumulant κ3 as follows:

κ
(BB)
3 = − A + B

C + D
κ

(BB)
2 . (184)

These four quantities are defined in terms of the parameters that are used to describe
the first of the two model formulations in Sect. 2. After reparameterization they can
be expressed as follows:

A = a − bκ(BB)
1 = μ(R0 − 1) − μ

R0 + α

N
κ

(BB)
1 , (185)

B = c

κ
(BB)
1

− 2d = μ
R0 + 1

κ
(BB)
1

− 2μ
R0 − α

N
, (186)

C = a

κ
(BB)
1

− 2b = μ
R0 − 1

κ
(BB)
1

− 2μ
R0 + α

N
, (187)

D = − d

κ
(BB)
1

= −μ
R0 − α

Nκ
(BB)
1

. (188)

Thus, all four of these quantities are determined as functions of κ
(BB)
1 . We use

the asymptotic approximation of κ
(BB)
1 in (181) to determine one-term asymptotic

approximations of each of A, B,C, D. Two terms of the asymptotic approximation
of κ

(BB)
1 are needed for A, while one term suffices for the remaining three quantities.

The results are

A = μ
(α + 1)R0

R0 − 1

1

N
+ O

(
1

N 2

)
, (189)

B = −μ
R2
0 + α − 3(α + 1)R0

R0 − 1

1

N
+ O

(
1

N 2

)
, (190)

C = −μ(R0 + α)
1

N
+ O

(
1

N 2

)
, (191)

D = −μ
R2
0 − α2

R0 − 1

1

N 2 + O

(
1

N 3

)
. (192)
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It follows from this that the one-term asymptotic approximation of the ratio (A +
B)/(C + D) equals

A + B

C + D
= R2

0 + α − 4(α + 1)R0

(R0 + α)(R0 − 1)
+ O

(
1

N

)
. (193)

By inserting this result and the one-term asymptotic approximation of κ
(BB)
2 from

(183) into (184), we get

κ
(BB)
3 = − (α + 1)R0(R2

0 + α − 4(α + 1)R0)

(R0 + α)3(R0 − 1)
N + O(1). (194)

The resulting asymptotic approximations of the first three cumulants derived by
Bhowmick et al. are found in (181), (183), and (194). These can be compared with
the results derived by using our preferred method and found in (105)–(110). The
comparisons show that the first two terms of the asymptotic approximation of κ

(BB)
1

agree with the corresponding terms of the asymptotic approximation of the true first
cumulant κ1, but there is disagreement between the third terms.Moreover, the first term
of the asymptotic approximation of κ

(BB)
2 agrees with the first term of the asymptotic

approximation of the true second cumulant κ2, but there is disagreement between
the second terms. Finally, there is disagreement between the one-term asymptotic
approximation of κ(BB)

3 and the corresponding one-term asymptotic approximation of
the true third cumulant κ3 . Independent supports for these conclusions are found from
the numerical evaluations of the error terms of the results presented by Bhowmick et
al. and given in Table 5. We see here that the error term for the BB approximation of
κ1 is reduced by the factor two for each doubling of N . This is indicative of an error
that is of magnitude of O(1/N ). In addition, the error term for the BB approximation
of κ2 is found to be approximately independent of N , which indicates that it is of the
magnitude of O(1). The error term for the BB approximation of κ3 is, finally, found to
be approximately proportional to N , which makes the corresponding approximation
useless. The reason for the larger errors in the results arrived at by Bhowmick et al. is
that one or more of the approximation steps taken in the application of BGL method
brings in errors. This is similar to the reason for the large errors of the BR1 result,
commented on above.

It is interesting to note that the study by Bhowmick et al. (2016) is the only one
among the five studies commented on in this section that uses the parameterization that
accompanies the second of the two model formulations described in Sect. 2. However,
we note also that Bhowmick et al. do not make use of the important property that this
model formulation offers, namely the availability of the large parameter N that can be
used for deriving asymptotic approximations.
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9 Concluding Comments

The method that we have used here to derive asymptotic approximations of the first
few cumulants of the QSD of the stochastic power law logistic model emphasizes
the importance of the second model formulation in Sect. 2. It gives access to two
parameters that are basic for our study, namely the maximum population size N and
the threshold parameter R0. We have shown that the condition R0 > 1 for large N is
required for the results that we have presented here, while both the moment closure
method and the three approaches BR1, BR2, and BB based on the BGL method
have the serious weaknesses that they cannot produce conditions for validity of the
approximations that are derived. In addition,we note thatmagnitudes of approximation
errors are easy to establish in ourmethod, as they are for any asymptotic approximation,
while they can not be produced in themoment closuremethod, nor in approaches based
on the BGL method. We note furthermore that spurious solutions that could require
large efforts to eliminate appeared in early studies based on moment closure, while
the spurious solutions that appear in the method that we use here are easy to identify
and eliminate. Our results show that the number of spurious solutions is equal to the
parameter s whenever s is a positive integer. As a further comment, we note that the
dependence of the new approximations on the model parameters is explicit in our
approach, while they are unknown in results based on moment closure and in BR1
and BR2.

We have found that our method based on the second model formulation of Sect. 2,
and followed by a search for asymptotic approximations, provides a powerful approach
for determinationof approximations of thefirst fewcumulants of theQSDfor the power
law logistic model. We have also shown that the method of determining asymptotic
approximations can be used to study other approaches to the same problem.

We conclude that the method of determining ODEs for the first few cumulants of
the QSD introduced by Matis and Kiffe (1996) is preferred over the BGL method
for deriving relations between the cumulants. An important reason for this is that the
ODEs for the first few cumulants of the QSD are exact, while the BGL method can
cause errors of unknown magnitude. We emphasize the obvious fact that whenever
exact solutions of a mathematical problem are difficult to establish, then one should
search for approximations. Furthermore, approximation methods are then definitely
preferred that give both conditions for validity of the approximations andmagnitudes of
approximation errors. Because of this, we conclude that our method for determining
asymptotic approximations of the first few cumulants is preferred over any other
method that has been used on this problem.
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