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Abstract
During an epidemic, the interplay of disease and opinion dynamics can lead to
outcomes that are different from those predicted based on disease dynamics alone.
Opinions and the behaviours they elicit are complex, so modelling them requires a
measure of abstraction and simplification. Here, we develop a differential equation
model that couples SIR-type disease dynamics with opinion dynamics. We assume
a spectrum of opinions that change based on current levels of infection as well as
interactions that to some extent amplify the opinions of like-minded individuals. Sus-
ceptibility to infection is based on the level of prophylaxis (disease avoidance) that
an opinion engenders. In this setting, we observe how the severity of an epidemic is
influenced by the distribution of opinions at disease introduction, the relative rates of
opinion and disease dynamics, and the amount of opinion amplification. Some insight
is gained by considering how the effective reproduction number is influenced by the
combination of opinion and disease dynamics.

Keywords Epidemiology · Opinion dynamics · Disease-behaviour model · Ordinary
differenntial equations · Prophylactic behaviour

1 Introduction

There is a long history of modelling disease dynamics, starting with the basic SIR
(susceptible-infected-recovered) model of Kermack and McKendrick (Kermack and
McKendrick 1927; Brauer and Castillo-Chavez 2012). This model has been modified,
critiqued, and analysed for nearly a century. Its limitations have inspired work that
seeks to account for additional features of real epidemics. For example, economic
epidemiology is used to model individuals who calculate the costs and benefits of their
actions and are motivated by pessimism (Auld 2003), personal gain (Fenichel et al.
2011), or a planning horizon (Nardin et al. 2016). Other models are more behaviour-
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based and incorporate the effect of fear (Epstein et al. 2008) or study how the spread
of awareness impacts the course of a disease (Funk et al. 2009).

Recently, research has emerged regarding the impact of opinions on the spread of
disease andherd immunity (Alvarez-Zuzek et al. 2017;Xia andLiu 2013;NdeffoMbah
et al. 2012; Voinson et al. 2015; Salathé and Bonhoeffer 2008). Much of this research
focuses on opinions regarding vaccination. While vaccination is one type of prophy-
lactic behaviour, it is characteristically different than others, such as hand washing,
face-mask wearing, or social distancing. Unlike vaccination, these latter behaviours
require high frequencies of affirmation or engagement; hands need to be washed after
contact with potentially contaminated areas, face masks need to be worn on a daily
basis, etc. Hence, the dynamics of opinions regarding vaccination are expected to be
substantively different than the dynamics of these other prophylactic behaviours. Con-
sider, for example, the behaviour of populations before and after the appearance of
severe acute respiratory syndrome (SARS). Arrival of the disease resulted in a sharp
increase in face-mask use (Lau et al. 2005), and when the disease disappeared so,
largely, did the face masks (though other hygienic behaviours such as hand washing
may be more persistent (Fung and Cairncross 2007)). Similar changes in behaviour
have been documented during influenza epidemics (Sadique et al. 2007; Goodwin
et al. 2011). A general increase in public hygienic behaviours has been shown to be
important in reducing the spread of disease.

We are interested in understanding the feedbacks between opinion and disease
dynamics, where the opinions in question are related to prophylactic behaviours such
as handwashing, face-maskwearing, or social distancing. In order tomake headway in
this regard, we study a model that couples opinion dynamics with a basic SIR model.
We combine our earlier opinion dynamics model (Baumgaertner et al. 2018) with
an SIR framework to study how attitudes regarding prophylactic behaviour affect the
course of a disease for which vaccination is not an option. Unlike economic models,
behaviours in our model are not based on personal utilities. Instead, we assume that
constructive conversations can lead to opinion-changing processes, and that therefore
people are susceptible to persuasion by others. It is known that human behaviour
and opinions during an outbreak can be motivated by messages from the media or
social circles. For example, it has been observed that a fear of infection can spread
during an outbreak due to the influence of media, government policy, or word-of-
mouth communications (Wasswa 2012; Young et al. 2008; Damme and Lerberghe
2000; Saadatian-Elahi et al. 2010). Fear of infection has been modelled by Epstein
et al. (Epstein et al. 2008) using two contagion processes: one for fear and another
for disease. Our model provides an opinion-based perspective to such behaviour, with
levels of infection influencing which opinions have more weight.

We recognize that there are many obstacles present in modelling behavioural
responses to epidemics due to the assumptions and generalizations involved in describ-
ing population behaviour (Funk et al. 2010, 2015). The challenges of modelling,
however, have not deterred the development of models that include various ways of
representing health-related beliefs and attitudes (Bauch and Earn 2004; Bauch and
Galvani 2013; Epstein et al. 2008; Ferguson 2007; Funk et al. 2009; Perrings et al.
2014; Philipson 2000;Manfredi andD’Onofrio 2013;Mao andYang 2012;Wang et al.
2015; Basu et al. 2008; Bauch and Bhattacharyya 2012; Fenichel et al. 2011; Perra
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et al. 2011; Del Valle et al. 2013; Pérez-Llanos et al. 2018). This wealth of approaches
demonstrates the complexity of the interaction between infectious disease, attitudes
(or opinions or beliefs), and behaviour. This complexity highlights the nuances within
which public policy decisions are (and need to be) made. We are optimistic that our
modelling, in conjunction with other epidemic models, makes informative contribu-
tions to public policy (Mansnerus 2015; Anderson and May 1992). More specifically,
our model may be informative when considering the flux of opinions in response to the
waxing and waning of disease risk, and the decision to intervene with severe control
measures (Ferguson et al. 2001, 2005; Flahault et al. 2006).

There is one aspect of our model that particularly differentiates it from others.
That is the inclusion of a form of opinion amplification, the tendency for individuals
to entrench or increase the strength of their opinions when interacting with other
like-minded individuals. The effect of amplification, absent a disease system, was
studied by Baumgaertner et al. (2018). In brief, increased rates of amplification lead
to decreased time to consensus of opinion in a well-mixed system. One of the effects
we study in this paper is the impact that amplification can have in a coupled opinion–
disease system.

The remainder of the paper is organized as follows. In Sect. 2, we introduce the
SIR-Opinion Dynamics model and explain some features of this model that set it apart
from traditional SIR models. We introduce the effective reproductive numberR(t) for
this model in Sect. 2.2. Then in Sect. 3, we explore how the opinion dynamics and
disease dynamics interact to affect the severity and duration of epidemics. We finish
with a summative discussion in Sect. 4, where we explore practical implications that
arise from our model.

2 TheModel

2.1 SIR-Opinion Dynamics Model

We introduce an ordinary differential equation (ODE) model that couples disease
dynamicswith an opinion dynamicsmodel (using an attitude spectrum) (Baumgaertner
et al. 2018). In particular, the model incorporates attitude-specific infection rates. We
envision here a situation in which attitudes, and hence infection rates, can change
frequently during the course of an epidemic. Unlike vaccination, which alters an
individual’s susceptibility level for the duration of the epidemic, the “prophylactic”
behaviours that determine susceptibility can change often in our model. Examples to
keep in mind are hand washing, social distancing, and face-mask wearing.

In this model, we assume a population that is well-mixed and an epidemic period
that is short enough to exclude births and deaths, resulting in a closed population. To
keep things simple,we assume that opinion dynamics only occurwithin the susceptible
population, which is split into four groups, each characterized by an attitude in the
attitude spectrum:

A = {−2,−1, 1, 2}.
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We will use the terms “opinion” and “attitude” interchangeably here. We write Si , i ∈
A, for susceptibles with attitude i . (In the differential equations below, Si denotes the
density of such individualswithin the population.) S−2 individuals represent thosewith
the highest level of prophylactic behaviour, while attitude S2 individuals correspond
to the lowest level of prophylactic behaviour. Individuals S−1 and S1 in the middle of
the spectrum correspond to moderate levels of prophylactic behaviour.Wewill refer to
individuals with attitudes−2 and−1 as being less susceptible to the disease because of
their increased prophylactic behaviour and those with attitudes +1 and +2 as having
more susceptibility to the disease because of their decreased prophylactic behaviour.

Attitude-specific infection rates. It is clear that increased levels of personal hygiene
or social distancing from perceived sources of infection can have a significant effect
in reducing the spread of infectious diseases (Aiello et al. 2008; Jefferson et al. 2009).
In our model therefore, an individual’s attitude determines susceptibility to infection.
Letting βi denote the infection rate for Si , we assume

β2 = β0, β1 = β0

a
, β−1 = β0

a2
, β−2 = β0

a3
, (1)

where β0 is the baseline infection rate, and each step-up in prophylactic behaviour
results in a discounting of infection rate by a factor a > 1. There are, of course,
other ways to model the dependence of infection rate on attitude, but the above form
consolidates this variation into a single parameter. The rate of recovery from infection,
γ , is assumed to be the same for all infected individuals.

Opinion dynamics In addition to the role attitudes play in determining infection
rates, these attitudes can change with time, for example in response to disease preva-
lence. The updating of attitudes/opinions in our model depends on “influence” and
“amplification”. The influence, ωi , of Si is defined as the per capita rate at which Si
individuals interact with other susceptible individuals. For example, the overall rate at
which S j individuals are influenced by Si individuals,with a possible change in attitude
of the “focal” S j individual, is ωi Si S j . The result of such an interaction is determined
by the relative positions of the two attitudes in the attitude spectrum and whether or
not opinion amplification occurs. Amplification, which was introduced in our earlier
work on opinion dynamics (Baumgaertner et al. 2016, 2018), provides amechanismby
which individuals gain confidence in their opinion when they encounter like-minded
individuals. Opinion amplification is the tendency to entrench or increase the strength
of an opinion when interacting with other like-minded individuals. The inclusion of
amplification in our model is motivated by studies of related biases, including biased
assimilation and confirmation bias (Lord et al. 1979; Miller et al. 1993; Munro et al.
2002; Taber and Lodge 2006; Jonas et al. 2001; Wason 1960, 1968). The underlying
idea is that one’s current opinion biases revisions of that opinion by differentially
weighting consistent and contrary information (relative to the opinion).

The models we consider have the following ingredients. When a “focal” individ-
ual looks to update its attitude via an interaction with another appropriately chosen
individual, the result depends on whether the two opinions are on the same side of
the attitude spectrum. If the attitudes are on opposite sides of the spectrum, the focal
individual will change its attitude by moving one step towards the other side. In the
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case where the opinions are on the same side of the attitude spectrum, two outcomes
are possible: a fraction pa of the interactions result in a hardening of the opinion of the
focal individual, while a fraction 1− pa of these interactions result in no change. We
refer to pa as the probability of “opinion amplification”. More formally, when an S j

individual is influenced by an Si individual, the attitude of the “focal” S j individual
is updated in one of two ways as follows:

– Interactions with no opinion amplification With probability 1 − pa , j is moved
one allowable step towards the value of i . Note that since there is no zero state in
A, a move to the left from 1 involves a jump to −1, and vice versa. If j = i , then
j will not change.

– Interactions that include opinion amplification With probability pa , j is moved
one (allowable) step to the right if i > 0 and one (allowable) step to the left if
i < 0, regardless of where the value of i lies in relation to j . Clearly, the only
possible movement for an individual at the edge of the spectrum ( j = ±2) is
towards the centre.

We now describe a system of differential equations (our SIR-Opinion Dynamics
model) that has the above features. The state variables are the densities Si of suscep-
tibles with attitude i ∈ A, as well as the densities of infective, I , and recovered (or
removed), R, individuals:

Ṡ−2 = −β−2S−2 I + S−1[ω−2S−2 + paω−1S−1] − S−2[ω1S1 + ω2S2
+ (1 − pa)ω−1S−1], (2a)

Ṡ−1 = −β−1S−1 I + S1[ω−2S−2 + ω−1S−1] + S−2[ω1S1 + ω2S2
+ (1 − pa)ω−1S−1] − S−1[ω−2S−2 + ω1S1 + ω2S2 + paω−1S−1], (2b)

Ṡ1 = −β1S1 I + S−1[ω2S2 + ω1S1] + S2[ω−2S−2 + ω−1S−1 + (1 − pa)ω1S1]
− S1[ω−2S−2 + ω−1S−1 + ω2S2 + paω1S1], (2c)

Ṡ2 = −β2S2 I + S1[ω2S2 + paω1S1] − S2[ω−2S−2 + ω−1S−1 + (1 − pa)ω1S1],
(2d)

İ = (β−2S−2 + β−1S−1 + β1S1 + β2S2 − γ )I , (2e)

Ṙ = γ I . (2f)

In the first four equations, (2a)–(2d), the first term on the right-hand side (βi Si I )
corresponds to infection dynamics,while the rest of the terms correspond to the opinion
dynamics. The remaining equations, (2e) and (2f), model disease dynamics alone. Our
main interest here is in the weighting of the opinion dynamics terms. The weights,
ωi , are influence functions which determine the rate at which individuals Si influence
the remainder of the susceptible population. We assume that these influence functions
vary with the level I of infection in the population. Several weightings and variations
with I are possible. We selected four plausible forms, as shown in Table 1. These
functions are discussed in more detail below.

The opinion dynamics terms illustrate how interactions across susceptible subpop-
ulations of different attitudes lead to opinion-changing processes. For example, the
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Table 1 The four types of influence functions, ωi (I )

ωi (I ) Linear Saturating Fixed-order satu-
rating

Reverse-order sat-
urating

ω−2(I ) ω0 (1 + ωmax I ) ω0

(
1 + ωmax

I2

k2+I2

)
ω0

(
1 + ωmax

I
k+I

)
ω0

(
1 + 1

2ωmax
I

k+I

)

ω−1(I ) ω0

(
1 + 1

2ωmax I
)

ω0

(
1 + 1

2ωmax
I

k+I

)
ω0

(
1 + 1

2ωmax
I

k+I

)
ω0

(
1 + ωmax

I
k+I

)

ω1(I ) ω0

(
1 − 1

2 I
)

ω0

(
1
2 + 1

2
I−1

k−1+I−1

)
ω0

(
1
2 + 1

2
I−1

k−1+I−1

)
ω0

(
I−1

k−1+I−1

)

ω2(I ) ω0 (1 − I ) ω0

(
I−2

k−2+I−2

)
ω0

(
I−1

k−1+I−1

)
ω0

(
1
2 + 1

2
I−1

k−1+I−1

)

Plots of these functions are shown in Fig. 1. The linear and saturating influence functions are choices that
naturally arise from functional responses in ecology. The fixed-order saturating function is a modification
of the saturating function so that there is no switch in the ordering of the influence functions for low levels
of infection. In all of the first three functions, it was assumed that influence increases with prophylactic
behaviour (though the saturating influence function has a reversed order of influence for I sufficiently
small). If, however, some prophylactic behaviours are considered socially unacceptable (for example, if the
wearing of face masks is seen as impolite), a reversal in the influence ordering can occur. This is the case
embodied in the reverse-order saturating influence function

second term in the Ṡ−2 equation indicates that whenever an S−1 “focal” individual
interacts with either an S−2 or an amplified S−1, the focal individual will transition
into the S−2 subpopulation. The other opinion dynamics terms are organized in the
same fashion, with the focal S j shown outside the square brackets and the influencing
Si shown within the square brackets.

All populations are scaled according to total population; thus, Si , I , and R are
proportions with S−2 + S−1 + S1 + S2 + I + R = 1. For reference, the parameter and
variable descriptions are listed in Table 2.

Specifying the influence functions The final piece of the model description is to
specify the form of the influence functions. In our earlier work on opinion dynamics
without disease (Baumgaertner et al. 2018, 2016), the ωi s were fixed over time to give
more or less influence to stronger opinions. Here, in a disease setting, we are interested
in influence functions, ωi = ωi (I ), that depend on disease prevalence, since it is the
response to disease (both attitudinal and behavioural) that is the theme of this paper.
Indeed, the goal is to better understand how attitudes change in response to disease
prevalence and how these changes affect the course of an epidemic.

While empirically measured influence functions are not available, it is clear from
public responses to disease outbreaks that such influence functions do exist and are
complex (Fung and Cairncross 2007; Lau et al. 2005; Sadique et al. 2007; Oster 2018).
We defined four plausible influence functions to explore a range of possible responses
to an epidemic. More specifically, these influence functions represent different ways
in which an outbreak may tip the weighting of opinion dynamics to favour the more
prophylactic side of the attitude spectrum. The functions considered are defined as
linear, saturating, fixed-order saturating, and reverse-order saturating ωi (I ) functions,
as shown in Fig. 1 and Table 1. These functions serve to increase or decrease the
influence of each subpopulation Si as I changes during the course of the epidemic.

Each function ωi (I ) in Table 1 begins at the same point, ωi (0) ≡ ω0. (All attitudes
have equal influence in the absence of disease.) As disease prevalence increases, the
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Table 2 Disease state variables and parameters (first group); opinion parameters (second group)

Symbol Definition Values

Si Susceptible subpopulation with attitude i

I Infected and infectious population proportion

R Recovered or removed population proportion

β0 Standard infection rate 0.4, 0.8

a Multiplicative factor to reduce the rate of infection for
susceptible populations with better prophylactic
behaviour

2

γ Rate of recovery from infection 0.1

ωi (I ) Influence of susceptible with attitude i

ω0 Influence when I = 0 0.05, 0.1, 0.2

ωmax Asymmetrical weighting for ω−1 and ω−2, which
allows for prophylactic attitudes to have more
influence when I > 0

1, 3

k Half-saturation constant involved in the saturating
influence functions

0.1

pa Probability of amplification 0, 0.01, 0.05, 0.1

Boldface indicates default values

influence functions increase the weights of more prophylactic opinions (ω−1(I ) and
ω−2(I )) and decrease those of less prophylactic opinions (ω1(I ) and ω2(I )). The
parameter ω0 serves as a base rate for the opinion dynamics, so its relation to γ

provides an indication of the relative rates of opinion and disease dynamics. The half-
saturation constant, k, in the saturating ωi (I ) functions is set to 0.1 in the simulations.
Note that the saturating ωi (I ) function causes ω−1(I ) > ω−2(I ) and ω1(I ) < ω2(I )
when the infected proportion is small. (The exact range of I for which this ordering
is true depends on the function parameters.)

The parameter ωmax in ω−1(I ) and ω−2(I ) for the linear, saturating, and modified
saturating influence functions was incorporated to allow us to increase the maxi-
mum influence of the more prophylactic attitudes as disease prevalence increases. For
ωmax = 1, these influence functions are symmetric about ω0 (this is the case shown
in Fig. 1); for ωmax > 1, the influence of the more prophylactic attitudes is scaled up,
removing the symmetry. (In our numerical results, we explore the values ωmax = 1
and ωmax = 3.)

We end this subsection with a few comments about how disease prevalence influ-
ences opinions and behaviour in our model. Any model that couples disease dynamics
with opinion dynamicsmust address the coupling; there are several approaches already
in the literature, as well as many more possibilities. Here, unlike some models, people
do not respond to the population infection level itself. As I changes, we change
the rates of interactions with people of various opinions. So larger I causes one
to encounter attitudes “−2” or “−1” more often, such encounters then pull peo-
ple towards a more prophylactic mindset, and this mindset causes them to display
the prophylactic behaviour that reduces their infection rate. In other words, opinions
change based on the frequencies of other susceptibles; infection level regulates prob-
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Fig. 1 Influence functions plotted as a function of the infected proportion, I , for the linear, saturating, fixed-
order saturating, and reverse-order saturating cases given in Table 1. The thick/thin lines correspond to the
influence of the more/less prophylactic subgroups (ω−2(I ) and ω2(I ) solid, ω−1(I ) and ω1(I ) dashed).
Influence is shown for 0 ≤ I ≤ 0.5, so that the behaviour near I = 0 is more visible. Parameter values are
given in Table 2, and the choice of influence functions is explained in the caption of Table 1. Note that the
functions are symmetric about ω0 because we have used ωmax = 1. For ωmax > 1, the more prophylactic
influence functions increase in magnitude, removing the symmetry

abilities of encountering different types of susceptibles, but it does not have a direct
effect on opinion formation; there is no I term in any of the opinion terms in the ODEs
except through the influence functions. Also note that the encounters could include
simply seeing someone who displays the outward signs of their opinion, e.g. some-
one wearing a face mask. Finally, note that infective and recovered individuals have
no opinions; at least, nobody listens to them. As we were interested in the opinion
dynamics within the susceptible population, we ignored opinions in the infective and
recovered populations for simplicity.

2.2 Effective Reproduction Number

Aswith all diseasemodels havingmultiple susceptible or infective states, age structure,
or other complexities, computing a basic reproduction number is more complicated
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than in a standard SIR model (Heffernan et al. 2005). This is the case with our model.
The model has an unstable non-trivial disease-free equilibrium (DFE) for susceptible
states:

(S∗−2, S
∗−1, S

∗
1 , S

∗
2 ) =

(
pa

2(pa + 1)
,

1

2(pa + 1)
,

1

2(pa + 1)
,

pa
2(pa + 1)

)
.

This equilibrium is a saddle point and is approached only if the susceptible population
is initially symmetrically distributed. The lack of stability means that this point is not
the only reasonable starting state for investigating the initiation of disease dynamics.
For most initial distributions of susceptibles, opinion dynamics (with amplification)
make the system tip towards consensus. Thus, the other two DFEs, (0, 0, 0, 1) and
(1, 0, 0, 0), are stable and correspond to susceptible populations that have only attitude
2 or only attitude −2. Of course, consensus of opinions about disease (or anything
else) does not typically occur. Furthermore, we are interested in opinion dynamics
over the short term here, i.e. during the disease outbreak. Thus, the consensus DFEs
are also not relevant. We therefore do not have a single DFE that we can use as a
starting state to calculate a basic reproduction number; we must account for different
initial configurations of susceptibles.

Since our model has multiple susceptible types with different susceptibilities to
infection, the notions of basic reproduction number and effective reproduction number
depend on the mix of susceptibles, both at the initiation of the epidemic and (for the
effective reproduction number) later, due to the combined dynamics of infection and
opinion.

It is easy to see that İ (t) > 0 when the effective reproduction number

R(t) = β0

a3γ
S−2(t) + β0

a2γ
S−1(t) + β0

aγ
S1(t) + β0

γ
S2(t) (3)

is larger than 1. This follows by writing (2e) in the form İ = γR(t)I − γ I .
In particular, the value at t = 0 when the initial susceptible frequencies

(S−2(0), S−1(0), S1(0), S2(0)) sum to 1, just prior to the introduction of the disease,
is the basic reproduction number:

R0 = β0

a3γ
S−2(0) + β0

a2γ
S−1(0) + β0

aγ
S1(0) + β0

γ
S2(0). (4)

The same value obtains using the next-generation method (Heffernan et al. 2005).
In the SIR-Opinion Dynamics model (2), one recovers the usual SIR model if

all susceptibles are of a single class and opinion dynamics are turned off (ω0 =
0). In the case of all susceptibles belonging to the single class, Si , and no opinion
changes, the basic reproduction number is R(i)

0 = βi/γ . With this notation, we can
combine Eqs. (3) and (4) to write the effective reproduction number for the SIR-
Opinion Dynamics model as a time-varying linear combination of the individual basic
reproduction numbers:
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R(t) =
∑
i∈A

Si (t)R(i)
0 . (5)

The last equation helps illustrate the additional complexity in our model, as well as
the potential for interesting dynamics. In the classic SIR model, since all susceptibles
are of the same type, the basic reproduction number predicts in a fairly straightforward
manner the future development of disease dynamics, including final epidemic size and
time until the number of infectives begins to wane (Brauer and Castillo-Chavez 2012).
This simplicity derives from the fact that there is only one disease-free equilibrium,
and infection rates, though dynamically changing, depend only on S(t) and I (t). For
example, dI/dS = −1+γ /βS depends only on S, as doesR(t) = βS(t)/γ . Equations
such as these allow for a separation of variables that easily yields functions that are
constant along trajectories (Brauer and Castillo-Chavez 2012), that allow calculation
of peak epidemic size and final epidemic size as functions ofR0. Such a strategy will
not work for the SIR-Opinion Dynamics model because of the multiple susceptible
states.

In the SIR-Opinion Dynamics model, R0 is still relevant (see Sect. 3.4.2 and also
“Appendix A”), butR(t) quickly changes from this initial value in response to opinion
dynamics, which in turn depend on I (t), as well as disease dynamics that are made
more complex by the different infectivities of the various susceptible classes. The
effect of initial conditions on future disease (and opinion) dynamics thus becomes
muchmore complex and interesting. In addition, the rate atwhich the disease dynamics
evolve relative to the rate at which the opinion dynamics evolve has a strong effect on
R(t). The importance of these relative rates is discussed further in Sect. 3.4. Further
discussion of the time evolution of R(t) in our model appears in “Appendix A”.

3 Results

To study the dynamics of the system,we numerically solved theODEusing theRunge–
Kutta method in MATLAB. For the numerical solutions in the following sections,
default values are listed in Table 2. The timescale of the solutions is fixed in the sense
that the recovery rate is set to γ = 0.1 in all simulations. Below, we explore how social
influence (via the influence functions), the initial prophylactic proportion S−2 + S−1,
amplification, and the relative opinion/disease rates affect the spread of disease within
the susceptible population.

Given the number of parameters in the model, a wide range of solution behaviours
are possible. Our goal in the subsections is to present the most interesting behaviours
we found, and an intuitive analysis of how the coupling of opinion dynamics and
disease dynamics led to the observed results in each case.

3.1 Effects of Influence Functions

The population response to increases in the infectious subpopulation, encoded in the
influence functions ωi (I ), provides an important component of the coupled dynamics
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of opinion and disease. These influence functions affect both the speed of the opinion
dynamics and the relative weighting of, or encounter rates with, the four different
subpopulations Si . Retaining the default parameter values for the moment (changes in
the ωmax and ω0 parameters are investigated in Sect. 3.4), we show how the influence
functions listed in Table 1 change the time course of the system dynamics (Figs. 2, 3).
For reference, we also include the two “no influence” cases: that of a traditional SIR
model with all susceptibles in the S2 subpopulation, and that of an SIR model with
four subpopulations of susceptibles but no interaction between these groups.

Comparing the two “no influence” cases (subplots (a) and (b) in Figs. 2 and 3),
we observe that the distribution of susceptibles into four non-interacting but differ-
entially susceptible subpopulations reduces the final size substantially, as expected.
The difference between this case and the linear influence case, however, is minor, as
the proportion of infectious individuals never rises above 20%, and so the influence
functions, ωi (I ), remain fairly close to each other in magnitude, and close to the value
at I = 0. The saturating influence cases respond much more rapidly to the initial
increase in infectives, and so they all have a much stronger effect on final size. When
the initial prophylactic proportion of the population is 30% (Fig. 2), the reverse- order
saturating influence function (subplot (f)) yields the strongest reduction in final size,
while with an initial prophylactic proportion of 70% (Fig. 3), it is the fixed-order
saturating influence function (subplot (e)) that yields the strongest reduction.

In comparing the fixed-order and reverse-order saturating influence functions, we
are, in part, looking at the effect of the influence of moderate (especially S−1) versus
extreme (especially S−2) opinions. Our results suggest that final size is most reduced
when extreme opinions have the greatest weight (cases (c)–(e) in Fig. 2), but that
occasionally the reverse is true (case (f) in Fig. 2). When the population is composed
of a prophylactic majority, it makes little difference whether it is the moderate or
extreme opinions that have the greatest weight. (Compare cases (e) and (f) in Fig. 3.)

3.2 Effects of Initial Proportion of Prophylactic Population

In the previous section,we examined how the systemdynamics differwhen the popula-
tion is distributed either as a 30:70 non-prophylacticmajority or as a 70:30 prophylactic
majority. If we investigate a larger range of ratios, we obtain the results shown in
Fig. 4. For the default values of the model parameters, final and peak epidemic sizes
all decrease as the initial proportion of prophylactic individuals increases. Epidemic
duration, however, is nonmonotonicwith respect to increasing prophylactic population
proportion (though see Fig. 8 when disease dynamics are faster).

On a more detailed level, we observe that the saturating influence functions all
yield a concave-up dependence of final epidemic size on initial prophylactic popula-
tion proportion, while in the case of no influence, the dependence is concave down.
The linear case behaves like the no-influence case for non-prophylactic majority pop-
ulations (low initial proportion prophylactic), but like the saturating influence cases
for prophylactic majority populations (high initial proportion prophylactic). Epidemic
duration for all of the saturating influence functions is always less than that for the
no-influence case, but for non-prophylactic majority populations the linear influence
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Fig. 2 Simulations of a non-prophylactic majority initial distribution of the susceptible population (S−2 =
S−1 = 0.15 and S1 = S2 = 0.345), given an initial infectious population of I = 0.01. Colour legend: red
curves are S2 (solid) and S1 (dashed). Blue curves are S−2 (solid) and S−1 (dashed). Black and purple curves
are I (t) and R(t), respectively. Influence functions were a no influence and all susceptible individuals in
the S2 population (S2 = 0.99, Si = 0 ∀ i �= 2), b no influence (wi = 0), c linear, d saturating, e fixed-order
saturating, and f reverse-order saturating. Influence functions c–f are defined in Table 1. Parameter values
are at the defaults listed in Table 2 (Color figure online)

case yields the longest-lasting epidemics. We observe that the rapid response of the
saturating influence functions to an increasing subpopulation of infectious individuals
has a strong effect on reducing final size, especially when the initial distribution of
susceptibles is fairly uniform, or biased towards a non-prophylactic majority.

Note that once the initial fraction of prophylactic individuals is high enough (just
past the value that yields a peak in the duration subplot of Fig. 4), a further increase in
this fraction leads to a steep drop in epidemic duration. Increasing it a bit further, we
reach the “critical” fraction of the initial prophylactic fraction at which all the duration
curves hit 0; this occurs whenR0 = 1. Note that when I ≈ 0, all the influence curves
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Fig. 3 Simulations of a prophylactic majority initial distribution of the susceptible population (S−2 =
S−1 = 0.35 and S1 = S2 = 0.145), given an initial infective population I = 0.01. See Fig. 2 for colour
legend and parameters (Color figure online)

are the same, so it is not surprising that all the curves hit 0 at the same point. For initial
prophylactic fraction less than this critical value, R0 > 1, and R0 < 1 for higher
initial levels of prophylaxis.

The hump in epidemic duration in Fig. 4 is an example of “critical slowing down” at
a bifurcation point (O’Dea et al. 2018). As one approaches the critical valueR0 = 1,
disease dynamics play out on a slower timescale. By contrast, for smallR0 the disease
dies out quickly, and for large R0, the disease burns through most of the available
susceptible population quickly. Of course, an ODEmodel with only disease dynamics
features I (t) approaching 0 asymptotically and one must impose a cut-off to get a
finite “duration”. Our epidemics were declared to be over when the frequency of
infectives dropped to the value I (t) = 0.1 ∗ I (0) = 0.001. (Stochastic models do
have finite epidemic duration, and one observes the same critical slowing down near
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Fig. 4 Plots, for default parameters in Table 2, of final epidemic size, peak epidemic size, and epidemic dura-
tion as a function of the initial proportion of the population on the prophylactic side, for all of the influence
functions listed in Table 1 as well as the no-influence (ωi = 0) case. Linestyle legend: solid—no influence;
dashed—linear influence; dotted—saturating influence; dash-dot—fixed-order saturating influence; dotted
with crosses—reverse-order saturating influence

R0 = 1; cf. Tritch and Allen (2018).) To get a feel for why the peak epidemic duration
occurs when initial prophylactic proportion is about 0.75 for the case of the default
parameters and no influence, note that this value puts the initial susceptible frequencies
at approximately (S−2(0), S−1(0), S1(0), S2(0)) = (3/8, 3/8, 1/8, 1/8), and hence,
R0 = 1.25. Since the individual basic reproductive numbers for S−2, S−1, S1, and
S2 are, respectively, 1/2, 1, 2, and 4, the disease preferentially infects S2 and S1. For
the sake of argument, if all the S2s were eliminated first, the effective reproduction
number would drop to R(t) = 0.93, which makes the infection rate subcritical, but
still close to the critical rate. In other words, the effective reproduction number spends
a good deal of time initially near the critical value 1, and hence, the infection lingers
for a long time. Note that the epidemic duration curves shift to the left when opinion
dynamics are at work. The presence of the infection shifts opinions to the left (more
prophylactic), more quickly lowering R(t).

3.3 Effects of Amplification

In our context, amplification can occur when opinions received from others are consis-
tent with the receiver’s current opinion. The amplification parameter, pa , has a value
between 0 and 1. A helpful interpretation is that it represents the average fraction of
like-minded interactions where amplification occurs. So if pa = 0.1, then 10% of
interactions between opinions of the same type will include the effects of amplifica-
tion. For example, if a +1 opinion interacts with another positive opinion, then there
is a 10% chance that it will become a + 2, regardless of whether that second positive
opinion is a + 1 or a + 2. (See Sect. 2.1 for precise specification of amplification in
our model.)

One effect of amplification in a well-mixed system is that it increases the rate
at which one side of the opinion spectrum grows. Even without amplification, as
the frequency of one opinion increases beyond a majority, more interactions will
have at least one individual with that opinion (say, a positive number on the opinion
spectrum). When iterated, these interactions beget even more interactions with at least
one individual with a positive opinion, and so on, while the other opinions decrease
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Fig. 5 Effects of amplification on final size, peak size, and epidemic duration. Three types of influence
functions: linear influence (green), fixed-order saturating influence (blue), and no influence (red), each with
varying levels of amplification (pa ): solid (pa = 0), dashed (pa = 0.01), dash-dotted (pa = 0.05), and
dottedwith crosses (pa = 0.1). Parameter values are all at the defaults listed in Table 2, except forω0 = 0.2.
The baseline case for comparison is shown in Fig. 4 (Color figure online)

in frequency (in this case, the negative opinions). In a system with amplification,
the rate of this process is increased, as now the frequency of interactions with two
positive opinions also increases. As such, there is an increase in opportunities for
amplification. Consider opinions on the positive side that have been amplified; these
opinions have value + 2 as opposed to + 1. The + 2 opinions require at least two
interactions with negative opinions before becoming negative, whereas making a + 1
opinion negative requires only one negative interaction. Consequently, not only does
the majority opinion “win over” more opinions on the same side, it also “loses” fewer
to the minority. This process feeds back on itself and thereby increases the rate at
which one side of the opinion spectrum grows. For more details on amplification and
its effects, absent a disease system, both in deterministic and stochastic contexts, see
Baumgaertner et al. (2018).

In a disease context, this means that, when the prophylactic proportion is com-
paratively low, the population will be drawn towards the non-prophylactic side, even
as infection risk increases. On the other hand, when the prophylactic proportion is
comparatively more frequent, then the rate of movement to the prophylactic side is
increased, in addition to the increased rate driven by infection risk.

The effect of amplification in a disease system is thus predicted as follows. Suppose,
first, thatwe beginwith higher levels of initial prophylaxis. Evenwithout amplification,
this begets more prophylactic opinions, which in turn leads to a small final epidemic
size. Under the same initial conditions, the inclusion of amplification will magnify
these effects and yield even lower final epidemic sizes. If, however, initial levels of
prophylaxis are low, the more non-prophylactic opinions spread the fastest, which in
turn leads to a large final epidemic size, even in the absence of amplification. Again,
the inclusion of amplification will magnify these effects and yield even higher final
epidemic sizes. As expected, these behaviours are evident in Fig. 5, left subplot.

The peak size and epidemic duration plots in Fig. 5 show that the increase in final
size from amplification at low initial levels of prophylaxis is due to an increase in
peak size rather than an increase in epidemic duration. For larger initial levels of
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prophylaxis, we see the opposite: the decrease in final size from amplification is due
to a decrease in epidemic duration, rather than a decrease in peak size.

3.4 Delayed Epidemics and Other Effects of Relative Opinion/Disease Rates

3.4.1 Relative Opinion/Disease Rates

In addition to the dynamics involved in susceptibles switching from one subpopulation
to another, a key factor in the coupled disease–opinion dynamics is the rate at which the
opinion dynamics occur relative to the disease dynamics. To formalize these relative
rates, we non-dimensionalize equations (2). The variables Si , I , and R are already
dimensionless, and so it remains only to non-dimensionalize the parameters. As γ is
held constant, we non-dimensionalize by dividing all of the equations by γ , and scaling
time: t∗ = γ t . The dimensionless disease and opinion dynamics parameters are thus
β0/γ and ωi/γ . We therefore control the rate of disease dynamics by varying β0, and
the rate of disease dynamics by varying the parameters in the influence functions ωi ,
i.e. ω0 and ωmax.

If we increaseω0 while holding β0 constant, thenwe speed up the opinion dynamics
relative to the disease dynamics. If we also increase ωmax, we introduce an asymmetry
in the encounter rates for prophylactic and non-prophylactic opinions and give more
weight to (or more frequent encounters with) prophylactic opinions. For direct com-
parison, in Figs. 6 and 7 we show simulations of non-prophylactic and prophylactic
majority initial populations for the same parameter values as shown in Figs. 2 and 3,
respectively, but with increasedωmax andω0.We observe that increasing theweighting
and speed of the opinion dynamics leads tomuch smaller final sizes, with the difference
being more noticeable when the initial population is distributed as a non-prophylactic
majority. For all three saturating influence functions (saturating, fixed-order saturat-
ing, and reverse-order saturating), we also observe a much higher peak in the S−1
subpopulation during the epidemic. In addition, at the final time shown (t = 150),
we observe that opinion dynamics increase the proportion of the population found in
the S−2 subpopulation. (Compare subplots (c)–(f) with subplot (b).) When the rate of
opinion dynamics is increased, the S−2 subpopulation increases as well (comparing
Figs. 2 and 3 with Figs. 6 and 7, respectively). Thus, opinion dynamics coupled with
disease dynamics lead to a final population (after the epidemic has passed) that is sig-
nificantly more protected from recurrence of the disease. The importance of opinion
dynamics is made particularly salient when comparing subplots (c) and (e). In case
(e), we see that the fixed-order saturating opinion dynamics lead to a rapid increase
in the S−2 population, and a significantly smaller final size, as compared to the linear
opinion dynamics in case (c). Note that the continuing increase in the S−2 population
after the epidemic has passed (after time 100 in Fig. 6, and after time 50 in Fig. 7 is
chiefly due to amplification; disease no longer has any effect as I ≈ 0.

If we increase β0, then we have faster infection rates relative to the disease recovery
rate.We expect faster infection rates to lead to larger epidemics, absent the influence of
opinion dynamics. Here, wemeasure the effect of opinion dynamics on amore virulent
disease by investigating the three metrics of final epidemic size, peak epidemic size,
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Fig. 6 Simulations of a non-prophylactic majority initial distribution of the susceptible population (S−2 =
S−1 = 0.15 and S1 = S2 = 0.345), given an initial infectious population of I = 0.01 and faster opinion
dynamics. These plots are the same as shown in Fig. 2, except that the opinion dynamics have been sped up
by increasing ωmax and ω0. Colour legend: red curves are S2 (solid) and S1 (dashed). Blue curves are S−2
(solid) and S−1 (dashed). Black and purple curves are I (t) and R(t), respectively. Influence functionswere a
no influence and all individuals in the S2 population (S2 = 0.99, Si = 0 ∀i �= 2),b no influence (wi = 0 ∀i),
c linear, d saturating, e fixed-order saturating, and f reverse-order saturating. Influence functions c–f are
defined in Table 1. Parameter values are at the defaults listed in Table 2, except for ωmax = 3 and ω0 = 0.2
(Color figure online)

and epidemic duration as a function of the initial proportion of the population that is
prophylactic, when the speeds of the infection and opinion dynamics are increased
(see Fig. 8, first row). We also augment the asymmetry between the prophylactic and
non-prophylactic opinions by increasing ωmax (see Fig. 8, second row). The baseline
for comparison is shown in Fig. 4. We see that the faster opinion dynamics (Fig. 8,
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Fig. 7 Simulations of a prophylactic majority initial distribution of the susceptible population (S−2 =
S−1 = 0.35 and S1 = S2 = 0.145), given an initial infective population I = 0.01 and faster opinion
dynamics. See Fig. 6 for colour legend and parameters (Color figure online)

first row) have an effect that is similar to that of increased amplification (Fig. 5). Final
size is significantly decreased in the simulations with opinion dynamics (especially
saturating opinion dynamics) in comparison with the no-influence case. Peak size
is also reduced. Epidemic duration is reduced for the cases of saturating opinion
dynamics. For the linear opinion dynamics, epidemic duration is increased/decreased
at lower/higher initial levels of prophylaxis. When infection rates are also increased
(Fig. 8, second row), completely new behaviours emerge. Final size again increases,
but most dramatically for the reverse-order saturating influence case. This latter case
puts the greatest influence on the S−1 population, and so the larger final size in this case
suggests that the S−2 population is more important in decreasing final size, especially
under fast opinion dynamics. Peak size increases in all cases, and epidemic duration
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Fig. 8 The effect of faster opinion dynamics (first row), and faster both opinion and disease dynamics
(second row). The baseline case for comparison is shown in Fig. 4. Final epidemic size, peak epidemic
size, and epidemic duration as a function of the initial proportion of the population on the prophylactic
side, for all of the influence functions listed in Table 1 as well as the no-influence (ωi = 0) case. Linestyle
legend: solid—no influence, dashed—linear influence, dotted—saturating influence, dash-dot—fixed-order
saturating influence, dotted with crosses—reverse-order saturating influence. All parameter values are set to
the default values listed in Table 2 except for ωmax = 3 and ω0 = 0.2 (which speed up opinion dynamics),
and in the second row β0 = 0.8 (which speeds up disease dynamics)

becomes monotonic, never dropping to zero. This behaviour is due to the fact that the
infection dynamics are now fast enough so that an epidemic is always initiated, even in
the presence of fast opinion dynamics and a high initial level of prophylaxis. Further
discussion of the effect of relative disease/opinion dynamics rates, coupled with the
effect of amplification, appears in “Appendix B”.

3.4.2 Delay in Epidemic Wave

We consider here the effect of very slow disease dynamics, relative to opinion dynam-
ics, in the situation where reports of a possible epidemic have moved some people
to more prophylactic behaviour. More specifically, the initial level of prophylaxis is
enough to make R0 < 1, but the population still has a majority of non-prophylactic
behaviours. When the disease enters the population, the number of infectives begins
to decrease since R(t) < 1. At the same time, the reduction in infectives as well
as the majority non-prophylactic distribution causes a shift in opinions to the more
non-prophylactic side. Eventually, the S2 population proportion increases sufficiently
so that R(t) > 1, and an epidemic occurs.

We show simulation results for such a scenario in Fig. 9. When both opinion
dynamics and disease dynamics are present (Fig. 9, top row), the epidemic is initially
suppressed because of the distribution of behaviours in the susceptible population (as
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Fig. 9 First row: simulations to showhowopinion dynamics can delay the onset of an epidemic, as compared
to the simple SIR case with a single susceptible population S = S2. Parameter values are at the defaults
as given in Table 2 except β0 = 0.131. Colour legend for the top left subplot: red curves are S2 (solid)
and S1 (dashed). Blue curves are S−2 (solid) and S−1 (dashed). Black and purple curves are I (t) and
R(t), respectively. Numerical solutions are shown for the full model with fixed-order saturating influence.
Susceptible attitudes are initially distributed as a “non-prophylactic majority” where S−2 = S−1 = 0.15,
S2 = S1 = 0.345, and I (0) = 0.01. The effective reproduction number, R(t), is shown in the top right
subplot. The horizontal line indicates the epidemic threshold above which İ (t) > 0. Second row: summary
data plots showing how the final size, peak size, and duration of the epidemic vary as a function of the initial
population proportion that is more prophylactic (S−2 + S−1). Dashed line: full model with fixed- order
saturating influence and solid line: SIRmodel with distribution of susceptibles but no interactions (ω0 = 0).
Note that epidemic duration is zero for all initial distribution of susceptibles if there is no interaction between
susceptible groups (Color figure online)

in the top right subplot), and R(t) < 1. With time, however, the opinion dynamics
cause the population to become more careless and shift towards the S2 side of the
spectrum. Consequently, there are eventually sufficient S2 individuals present so that
the reproductive number R(t) > 1, and an epidemic is initiated. The final size of the
epidemic in the full opinion dynamics case is close to 40% of the population. This
epidemic is smaller than that predicted by a standard SIR model with all susceptibles
in the S2 subpopulation (results not shown).

If we vary the initial proportion of individuals on each side of the attitude spectrum,
but keep S−2 = S−1 and S1 = S2, we obtain the results shown in Fig. 9, second row.
If more than half the population exhibits prophylactic behaviour, there is no epidemic,
as the preponderance of prophylactic behaviours causes the susceptible attitudes to
continue shifting towards the more prophylactic side, and there are never sufficient S2
individuals for initiation of an epidemic. When less than 50% of the initial population
is prophylactic, an epidemic does occur, and the size varies depending on the initial
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prophylactic proportion. Intuitively, one would expect the final epidemic size and
peak epidemic size to decrease as the initial prophylactic proportion increased, but the
change is, in fact, nonmonotonic.

4 Discussion

It is clear that human behaviour can affect the spread of disease. Conversely, as an
epidemic spreads, opinions and behaviours can change. Mathematical and computa-
tional models of the interplay between disease spread and opinions have been gaining
attention, but the subject is still in its infancy. While it is relatively straightforward
to model some of the effects of behaviour on disease spread, human behaviour and
opinion dynamics are far too complex to model with anything approaching precision
or completeness. Consequently, opinion dynamics models currently take an approach
of greatly reducing complexity, with the hope of gaining insight into certain aspects
of opinion formation and spread. This strategy parallels those in other sciences, such
as biology. Instead of approaching the problem with models or experiments involv-
ing many ecological interactions in natural habitats, (mathematical) biologists started
with one predator and one prey, or two competitors, in an idealized habitat that con-
trolled for most variables. This approach allowed biologists to learn a great deal by
first studying greatly reduced systems. Similarly, while opinion dynamics models can
be criticized as being too simplistic, the upshot is tractability.

Even given this approach, there are many ways to reduce system complexity when
building models, as illustrated by examples in the Introduction. What distinguishes
our model from others is that our opinion dynamics are neither utility-driven (as
most economics models are) nor based on a contagion process (e.g. the spread of
a fear of infection), or some combination of utility and contagion (Manfredi and
D’Onofrio 2013). The opinion dynamics we adopt assume that constructive conver-
sations between individuals can lead to changes in opinions through persuasion, but
that persuasion is also sensitive to information about the risk of infection. In addition,
the opinion dynamics we use also can capture the effects of echo chambers and ampli-
fication (ascertainment bias)—features that are especially prevalent in social media.
These forces can make people slow to respond to information about a threatening
epidemic, or they can tip the balance creating a rapid response.

Results presented here suggest that opinion dynamics can have a profound effect
on disease progression through a population, and they illustrate the importance of the
spectrum of opinions at the initiation of the epidemic, as well as the relative speeds
of opinion and disease dynamics. There are scenarios in which opinion dynamics
dramatically reduce the fraction of the population that will be infected and the peak
epidemic size. In other scenarios, it is possible for opinion dynamics to make the
epidemic worse than it would be otherwise.

More specifically, we explored the effects of three features of the opinion dynamics
model: the influence functions, the initial distribution of opinions along a spectrum,
and different levels of opinion amplification. What we learn from this exploration
is that these features can interact with each other and the disease dynamics, and in
turn their impact on epidemiological outcomes, such as final epidemic size, is not
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straightforward. For example, some influence functions will have populations respond
more rapidly to initial increases in infectives (e.g. saturating influence), but that does
not entail a larger decrease in final epidemic size. As shown in Sect. 3.2, it also matters
whether the population starts with a majority of prophylactic or non-prophylactic
opinions. If the initial majority is non-prophylactic, then some influence functions
(e.g. reverse-order saturating) will yield the strongest reduction in final epidemic size.

The complexity that arises from the interactions in the coupling of the opinion
and disease dynamics presents substantial challenges to capturing and predicting the
dynamics of real epidemics. That, however, is not our primary aim. Ours is to fur-
ther understanding of the feedbacks between certain social processes and disease. The
importance of these feedbacks was also identified by Collinson and Heffernan (2014)
in their study of models for the effect of mass media on the course of an influenza
epidemic. The situation they consider is different from ours, as their models all have
a vaccinated subpopulation that cannot return to the unvaccinated state, and the popu-
lation infectivity immediately responds to I (t), without waiting for opinion dynamics
to shift. Consistent with our work, however, they find that the different response func-
tions predict epidemic dynamics that can differ in important ways. Our work sheds
light on how opinion dynamics and influence functions couple with disease dynamics
and can perhaps inform future development of reliable media functions.

We are cognizant of some limitations of our model. Like the basic SIR model,
our model assumes a well-mixed population characterized by a system of ODEs.
ODE models of disease spread typically overestimate final epidemic size (for a given
value of R0). In real populations, spatial and network structure, as well as other
heterogeneities, can render some pockets of the population less susceptible and stop
the epidemic sooner than is predicted by ODE models. The opinion dynamics model
used here has been shown (Baumgaertner et al. 2016, 2018) to behave very differently
in spatial and well-mixed systems. In particular, opinion amplification and spatial
structure can conspire to lead to clustering of opinions and polarization, with opinion
dynamics essentially freezing once the system becomes sufficiently polarized. With
enough mixing, on the other hand, the behaviour changes to one in which opinions can
rapidly tip to one side. It is thus likely that incorporating spatial structure into our SIR-
Opinion Dynamics model could lead to different outcomes. With sufficient clustering
and polarization of opinions, a spatial version of the model could lead to segregation
of the population into spatially contiguous regions that are highly susceptible and
others that have low susceptibility. Here, again, the relative time scales for disease
and opinion spread (as well as different mechanisms for the spread of information and
opinions) are likely to influence the outcomes. We leave the construction and analysis
of such models for future work.
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Appendix A The Effective Reproduction Number

In this section, we present additional figures illustrating the complex relationship
between the effective reproduction number R(t) and the susceptible subpopulations.
While in traditional SIR models the time evolution ofR(t) is essentially known from
R0, the different infectivities of, and the interactions between, the susceptible sub-
populations in our model mean that the time evolution ofR(t) is much more complex
(Fig. 10).

Fig. 10 Plots showing how the time evolution of the effective reproduction numberR(t) is affected by shifts
within the susceptible subpopulations due to opinion dynamics. In the bottom row, the rate of opinion/disease
dynamics has been increased/decreased relative to the top row. Linetypes indicate no influence, i.e. ω0 =
0 (solid), linear influence (dashed), saturating influence (dotted), fixed-order saturating influence (dash-
dotted), and reverse-order saturating influence (dotted with crosses). The epidemic threshold R(t) = 1 is
indicated by a thin horizontal dashed line. Parameter values are all at the default values given in Table 2
except, in the bottom row, ω0 = 0.2 and β = 0.2

Appendix B Further Notes About Relative Rates

In Fig. 11, we can see how the shapes of the final size, peak size, and epidemic
duration curves are affected by increases inωmax and β0. The default parameter values
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Fig. 11 Plots showing how β0 and ωmax affect the three metrics: final epidemic size (left column), peak
epidemic size (middle column), and epidemic duration (right column), as functions of the initial proportion
of the prophylactic population for different values of pa . The default is the middle row. From the middle
row to the top row, ωmax has been increased, frommiddle row to the bottom row β0 has been increased, and
all other parameters held constant. The results were obtained from simulations with three different influence
functions (colour online): no influence (red), linear influence (green), and fixed-order saturating influence
(blue). Within the results for each influence function are presented results for four different values of pa :
0 (solid), 0.01 (dashed), 0.05 (dash-dotted), and 0.1 (dotted with crosses). All other parameter values were
set to the default values given in Table 2 (Color figure online)

established in Table 2 give rise to the results in the middle row. Ifωmax is increased, we
arrive at the results shown in the top row. Increasingωmax corresponds to increasing the
asymmetry between the weighting of the prophylactic and non-prophylactic opinions,
making prophylactic influence much stronger (and the prophylactic opinion dynamics
faster) than that of the opposing non-prophylactic opinions. Comparing the top and
middle rows, we observe that as the initial prophylactic opinions are increased, the
final epidemic size decreases more rapidly in the top row than in the middle row,
most notably for the fixed-order saturating influence function. (Note the change in
curvature.) Similar effects hold for peak epidemic size and duration. Put intuitively,
increasing the influence of prophylactic opinions dampens epidemics in our model.
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Comparing the middle and bottom rows of Fig. 11, we see how increasing the
rate of infection, β0, affects the model outcomes. When β0 is increased, the infection
dynamics dominate the dynamics of the disease, and the opinion dynamics have a
much smaller effect. The most striking difference between these two rows is the shape
of the epidemic duration curve. For small β0, or slow disease dynamics, the curve
is concave down with a distinct maximum. For large β0, or fast disease dynamics,
the curve is concave up and monotonic, with little separation between the results
obtained for different influence functions. When the initial proportion of prophylactic
opinions is low, fast disease dynamics result in a shorter epidemic with higher peak
and final sizes. When the initial proportion of prophylactic opinions is high enough,
and disease dynamics sufficiently slow, the influence of the opinion dynamics can
significantly shorten the duration and reduce the final and peak sizes of the epidemic.
When the opinion dynamics are too slow compared to the disease dynamics, however,
a high initial proportion of prophylactic opinions has some effect in decreasing the
final and peak sizes of the epidemic, but result in a much longer epidemic.
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