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Abstract
In this paper, we use multiple scale homogenisation to derive a set of averaged
macroscale equations that describe the movement of nutrients in partially saturated
soil that contains growing potato tubers. The soil is modelled as a poroelastic mate-
rial, which is deformed by the growth of the tubers, where the growth of each tuber
is dependent on the uptake of nutrients via a sink term within the soil representing
root nutrient uptake. Special attention is paid to the reduction in void space, resulting
change in local water content and the impact on nutrient diffusion within the soil as
the tubers increase in size. To validate the multiple scale homogenisation procedure,
we compare the system of homogenised equations to the original set of equations and
find that the solutions between the two models differ by � 2%. However, we find
that the computation time between the two sets of equations differs by several orders
of magnitude. This is due to the combined effects of the complex three-dimensional
geometry and the implementation of a moving boundary condition to capture tuber
growth.

Keywords Homogenisation · Deforming geometry · Diffusion · Solute movement

1 Introduction

Application of solutes such as fertilisers and pesticides is important in modern agri-
cultural practices (Godfray et al. 2010). However, more efficient solute application is
needed in order to mitigate growing costs of fertilisers and environmental pollution,
i.e. fertiliser and pesticide buffering, leaching and run off (Godfray et al. 2010). Hence,
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understanding water and solute movement in soil is vital for determining sustainable
crop production for long-term food security (Comas et al. 2013). To aid with this
goal, mathematical modelling of soil systems has been studied increasingly in recent
years (Vereecken et al. 2016), since this offers one method to investigate plant–soil
interactions while reducing time and resources compared to standard experimental
practices. Combining mathematical modelling with traditional experiments allows us
to efficiently improve our understanding of plant–soil interactions (Roose et al. 2016;
Daly et al. 2017). This can lead to further improvement of agricultural techniques for
greater crop yield while minimising waste of resources.

Mathematical modelling of soil systems covers a wide range of spatial scales,
including pore, plant and field scales (Darrah et al. 2006; Hopmans et al. 2002). As
such, when studying transport of water and solutes in soil, complex geometries are
often required to capture the intrinsic details contained in the microscopic structure
of the scale that is considered. This typically requires vast amounts of computation
time and resources (Daly and Roose 2018). Hence, it is often favourable to construct
an averaged macroscopic geometry so that the macroscale transport properties can be
attained directly from the microscale information (Bruna and Chapman 2015). One
technique that is frequently used to obtain macroscale movement of fluids and solutes
in soil or other porous media is multiple scale homogenisation (Hornung 2012). This
mathematical technique is a method of devising a system of averaged macroscopic
equations that are parameterised by associated cell problems, which are derived from
the inherent microscopic structure of the domain (Pavliotis and Stuart 2008).

Multiple scale homogenisation has been successfully used in awide range of porous
media and soil applications, including modelling saturated fluid flow (Keller 1980),
two-phase fluid flow (Daly and Roose 2015), wave propagation in poroelastic materi-
als (Sharma 2007) and single-phase fluid flow in double porosity systems (Arbogast
et al. 1990). One application that has been increasingly studied in recent years is
homogenisation of moving interfaces for first- and second-order partial differential
equations (Cardaliaguet et al. 2009; Lions and Souganidis 2005). Although there has
been extensive research on the mathematical theory for the homogenisation of moving
interfaces, few applications have been explored.

In this study, we demonstrate the utility of homogenisation bymodelling the growth
of potato tubers in soil, in which the growth is dependent on the quantity of nutrients
the plant is able to draw up from the soil. We model the soil as a poroelastic material,
such that any growth from a single crop will influence the water content adjacent to the
plant and therefore the movement of nutrients in the vicinity. We use a combination of
poroelastic theory and the diffusion equation in porous media to model the movement
of nutrients in a deforming soil environment. We develop a series of approximate
equations to describe nutrient movement, growth in tuber size and global nutrient
uptake in soil.

There has been previous researchwhich studied the effect of diffusionwith spatially
varying objects in porous media (Bruna and Chapman 2015), in which Rayleigh’s
multipole method was used to determine a spatially dependent effective diffusion
coefficient based on the size of the sphere within the microscopic periodic geometry
(Rayleigh 1892). Here, we extend this idea to model both spatially and temporally
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Fig. 1 Schematic of a
dimensional poroelastic domain,
where �̃ is the total domain,
�̃Soil is the deformable
poroelastic soil domain, �̃ p j are

the potato tubers, �̃Soil j are the
poroelastic soil subdomains
adjacent to each tuber and �̃ j

are the boundaries between �̃ p j

and �̃Soil. In addition, lx is the
macroscale and ly is the
microscale (Color figure online)

varying objects in poroelastic media, which are coupled to the diffusion of the species
within the material itself.

For simplicity, we choose to model the tubers as spherical objects in soil; however,
this can be extended to any 3D geometry, including, but not limited to, ovoids, capsules
and cylinders. To validate the homogenisation procedure, we compare the solution of
the homogenised equations against the full system for a series of case studies. This
shows the homogenised equations successfully capture the growth of each tuber and
the change in nutrient diffusion from the reduction of volume within the domain.

2 Theory

2.1 Three-Phase Poroelastic Soils

Let �̃ ⊂ R
3 be an open bounded subset representing a soil system (Fig. 1) that contains

N potato tubers. We define �̃ = �̃Soil ∪ ∑N
j=1 �̃ p j , where �̃Soil is the deformable

poroelastic soil domain that is composed of water, air and solid components, and �̃ p j

are the j = 1, . . . , N potato tubers each with a boundary �̃ j .
To describe the deformable poroelastic soil domain �̃Soil, we impose a system

of equations that describe a three-phase poroelastic domain. To derive the system of
equations, we use the conservation laws for mass and momentum. The conservation
of mass equations for the three phases of air, water and soil solid is

∂t̃φa = −∇̃ · (φa ṽa) , x̃ ∈ �̃Soil, (1)

∂t̃φw = −∇̃ · (φwṽw) − λc( p̃w − pr ), x̃ ∈ �̃Soil, (2)

∂t̃φs = −∇̃ · (φs ṽs) , x̃ ∈ �̃Soil, (3)

φa + φw + φs = 1, (4)
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where φa is the volumetric air content, φw is the volumetric water content, φs is the
volumetric soil solid content, ṽa is the air velocity, ṽw is the water velocity, ṽs is the
velocity of the soil solid component and p̃w is the soil water pore pressure. Water
uptake in our simulations is assumed to be dominated by transport through symplastic
pathways, thus passively taken up by pressure gradients in the root xylem (Roose and
Fowler 2004b). The ratio between the cortex and the xylem hydraulic conductivities
along with the root surface area density is characterised by λc, and the root xylem
pressure is expressed as pr . Roots are assumed to be uniformly distributed throughout
the soil domain. We note that we neglect the impact that tuber growth has on the root
system. The expression − λc( p̃w − pr ) represents water uptake by plant roots.

Furthermore, Darcy’s law for the relative phase velocity of air and water is written
as

φa (ṽa − ṽs) = − κa

μa
∇̃ p̃a, x̃ ∈ �̃Soil, (5)

φw (ṽw − ṽs) = − κw

μw

∇̃ p̃w, x̃ ∈ �̃Soil, (6)

where p̃a is the soil air pore pressure, κa and κw are the air and water permeabilities,
respectively, and μa and μw are the viscosities of air and water, respectively.

The air and water pressures p̃a and p̃w, and the air and water volume fractions
φa and φw are related via the van Genuchten saturation expression (Van Genuchten
1980)

Sw =
[ (

p̃a − p̃w

pc

) 1
1−m + 1

]−m

, (7)

where Sw = φw/(φw + φa) is the relative water saturation, pc is the characteristic
suction pressure and m is the van Genuchten parameter.

The conservation of momentum equation is (Wang 2000)

∇̃ · G = 0, x̃ ∈ �̃Soil, (8)

G = G

[ (
∇̃ũs

)
+

(
∇̃ũs

)T + ν

1 − 2ν
∇̃ · ũsT

]

− Sw p̃wT − Sa p̃aT, (9)

where G is the stress tensor, ũs is the displacement of the solid soil matrix, G is the
shear modulus of the soil solid, ν is the Poisson ratio, Sa = φa/(φw + φa) is the
relative air saturation and T is the identity tensor. The displacement ũs is related to ṽs
by the relationship

ṽs = ∂t̃ ũs . (10)

The system of Eqs. (1)–(10) completes a full mathematical description of a three-
phase poroelastic soil.
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2.2 Diffusion of Nutrients in Soil

Solutes such as nutrients typically exist in one of two states in soil, either sorbed to the
soil solid surfaces or dissolved in the pore water (Roose et al. 2001). We state that the
nutrient concentration in the sorbed state follows a reversible linear binding reaction
such that,

∂t̃ c̃s = ds, x̃ ∈ �̃Soil, (11)

where c̃s is the sorbed nutrient concentration and ds is the net transfer rate to the sorbed
phase from the pore water phase. From the conservation of mass, the rate of change
of the nutrient concentration in the pore water phase is

∂t̃ (φw c̃) = ∇̃ ·
(
Dφw∇̃c̃

)
+ dl − gc̃, x̃ ∈ �̃Soil, (12)

where c̃ is the nutrient concentration in pore water, dl is the net transfer rate to the pore
water phase from the sorbed phase, D is the diffusion coefficient and g is the nutrient
uptake rate by plant roots. Adding (11) and (12) yields

∂t̃ (c̃s + φw c̃) = ∇̃ ·
(
Dφw∇̃c̃

)
+ ds + dl − gc̃, x̃ ∈ �̃Soil. (13)

We assume there is a direct jump between the nutrients in the two states with no
intermediate phase, such that ds + dl = 0. Furthermore, we define ds

ds = kac̃ − kd c̃s = ∂t̃ c̃s, (14)

where ka is the adsorption rate of the nutrient in solution and kd is the desorption rate.
We assume kd is sufficiently large such that ds/kd = ∂t̃ c̃s/kd � 1 and ka ∼ kd , then

c̃s = bc̃, (15)

where b = ka/kd is the buffer power of the nutrient (Nye and Tinker 1977; Barber
1995; Roose and Fowler 2004a). This leads to the governing equation for nutrient
movement in terms of c̃ only, i.e.

(φw + b)∂t̃ c̃ + c̃∂t̃φw = ∇̃ ·
(
Dφw∇̃c̃

)
− gc̃, x̃ ∈ �̃Soil. (16)

2.3 Boundary Conditions

Here, we define a series of boundary conditions on the interfaces �̃ j , i.e. between
the deformable poroelastic soil domain �̃Soil and the potato tubers �̃ p j . To describe

nutrient interaction on �̃ j , we impose a zero flux condition, as the potato tubers take
up nutrients through their rooting systems and not through the tuber surfaces:
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n̂ ·
(
Dφw∇̃c̃

)
= 0, x̃ ∈ �̃ j , (17)

where n̂ is the unit normal vector pointing out of the geometry. Furthermore, on �̃ j

we assume the soil solid is displaced normally to the direction of the growing tuber,
hence

(
2n̂ ⊗ n̂ − T

) · ũs = n̂ξ j , x̃ ∈ �̃ j , (18)

where ξ j is the displacement of the j th tuber given by,

ξ j = r̃ j − r∗, (19)

where r∗ is the initial radius of the tubers and r̃ j is the radius of the j th tuber, which
is related to the total amount of nutrients taken up by the roots. The growth of each
tuber is expressed as

∂t̃ Ṽ j = α

∫

�̃Soil j

gc̃ d�̃Soil j , (20)

where Ṽ j is the tuber volume, α is the ratio between the rate of growth and uptake
and �̃Soil j is the volume of soil adjacent to each potato tuber j (see Fig. 1). Here,
we model the early-stage development of potato tubers (diameter 5–7cm); hence, we
approximate the tubers shape to be spherical. Therefore, Eq. (20) can be written in
terms of the radius r̃ j only, i.e.

∂t̃ r̃ j = α

4π r̃2j

∫

�̃Soil j

gc̃ d�̃Soil j . (21)

We state the water and air components of �̃Soil do not penetrate the tubers �̃ p j ; thus,
we require the Darcy velocities normal to the interface to be zero, i.e.

n̂ ·
(

κw

μw

∇̃ p̃w

)

= 0, x̃ ∈ �̃ j , (22)

n̂ ·
(

κa

μa
∇̃ p̃a

)

= 0, x̃ ∈ �̃ j . (23)

Finally, on �̃ j we assume the air and water velocities are equal to the growth of the
tubers, hence

(
2n̂ ⊗ n̂ − T

) · ṽw = n̂∂t̃ r̃ j , x̃ ∈ �̃ j , (24)
(
2n̂ ⊗ n̂ − T

) · ṽa = n̂∂t̃ r̃ j , x̃ ∈ �̃ j . (25)
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2.4 Non-dimensionalisation

To simplify the model and understand the magnitude of influence of each parameter,
we non-dimensionalise the system of equations described above. We are interested
in the macroscopic properties of the system of equations while retaining the influ-
ence of the microscopic structure. Hence, we identify two different length scales, the
‘microscopic’ length scale ly associated with the inner domain tuber geometry, and
the macroscopic length scale lx associated with the full domain transport of water and
nutrients. Under these scales, ly/lx = ε � 1. We choose to non-dimensionalise using
the scaling

x̃ = lxx, t̃ = l2x
D
t, ũs = lyus, c̃ = cmaxc,

p̃i = Gpi , ṽi = ly D

l2x
vi , r̃ = lyr , (26)

where cmax is the maximum concentration of the nutrient applied to �̃Soil and i =
{w, a}. In (26) we use the macroscopic length scale lx as the spatial scaling to observe

macroscale properties, the diffusion timescale l2x
D for the time scaling and the shear

modulus G for the pressure scaling. Shown in Fig. 2 are the non-dimensionalised
macroscopic domain � and microscopic domain �. It follows that the air, water and
solid phase continuity equations become:

∂tφa = − ε∇ · (φava) , x ∈ �Soil, (27)

∂tφw = − ε∇ · (φwvw) − λc(pw − pr ), x ∈ �Soil, (28)

∂t (1 − φa − φw) = − ε∇ · [(1 − φa − φw)∂tus], x ∈ �Soil, (29)

with the constitutive poroelastic mechanical law represented as:

∇ ·
[

(∇us) + (∇us)T + ν∇ · usT − ε−1 (Sw pwT − Sa paT)

]

= 0,

x ∈ �Soil, (30)

where the force balances and relative movement of the air and water in the mixture
domain are represented as:

φa (va − ∂tus) = − κa∇pa, x ∈ �Soil. (31)

φw (vw − ∂tus) = − κw∇pw, x ∈ �Soil. (32)

The relationship between water and air is linked based on the Van Genuchten water
retention relationship:

Sw =
{[

G(pa − pw)
] 1
1−m + 1

}−m

. (33)
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The nutrients in the system follow the convection–diffusion equation:

(φw + b)∂t c + c∂tφw = ∇ · (φw∇c) − gc, x ∈ �Soil, (34)

where we have no flux through the tuber surface:

n̂ · (φw∇c) = 0, x ∈ � j . (35)

The soil solid phase displacement is equal to the increase in the tuber radius:

(
2n̂ ⊗ n̂ − T

) · us = n̂(r j − r∗), x ∈ � j . (36)

Neither water nor air is assumed to flow through the tuber surface:

n̂ · (∇pw) = 0, x ∈ � j , (37)

n̂ · (∇pa) = 0, x ∈ � j . (38)

The water and air velocities normal to the tuber surface also follow the rate of the
tuber growth:

(
2n̂ ⊗ n̂ − T

) · vw = n̂∂t r j , x ∈ � j , (39)
(
2n̂ ⊗ n̂ − T

) · va = n̂∂t r j , x ∈ � j . (40)

Finally, the tuber growth rate is based on the rate of nutrient uptake out of the system:

∂t r j = α

4πr2j

∫

�Soil j

c d�Soil j . (41)

Here, the system was non-dimensionalised as follows:

λc = λcGl2x
D

, pr = pr
G

, ν = ν

1 − 2ν
, κa = κaGε−1

Dμa
, κw = κwGε−1

Dμw

,

G = G

pc
, g = gl2x

D
, r∗ = r∗

ly
, α = cmaxαgl2x

D
. (42)

2.5 Parameter Estimation

Here, we estimate the parameters contained in Eqs. (27)–(41) in order to determine
the magnitude of influence each parameter has on the system of equations. Since this
model is motivated by the growth of potato tubers in soil, we assess the parameter
values for silt soils as potatoes are frequently grown in this soil type (Shock et al.
1998).

Potato plants are typically grown in ridge and furrow type systems and are contained
in the plough layer of soil, which is the top 30 cmof soil (Lesczynski and Tanner 1976).
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Fig. 2 Schematic of the dimensionless macroscale domain � and microscale domain �, where �Soil is the
poroelastic soil domain, ∂�E is the external boundary of �, �Soil is the poroelastic domain composed of
water, air and solid components, �p is the potato tuber, � is the boundary between �Soil and �p , ∂�E is
the external boundary of the periodic cell and r is the radius of �p (Color figure online)

Hence, we choose themacroscopic length scale to be lx ≈ 0.3 m. Similarly, we assume
that the tubers have an inter-tuber distance that is substantially less than the total length
of the plough layer. We choose an inter-tuber distance of approximately ly ≈ 0.05 m,
resulting in the ratio of the two length scales to be ε ≈ 0.1. We also assume an initial
tuber radius of r∗ = O(0.05) m < ly .

Values for the Poisson ratio of silt soils are approximately 0.3 � ν � 0.35 (Essien
et al. 2014), and the shear modulus is G ≈ 1× 107 Pa (Vardanega and Bolton 2013).
Furthermore, typical characteristic suction pressures for silt soils are approximately
pc ≈ 3 × 104 Pa (Van Genuchten 1980), with soil permeabilities of κw ≈ κa ≈
5 × 10−14 m2 (Van Genuchten 1980). The viscosity of water is μw ≈ 10−3 Pa s and
the viscosity of air is μa ≈ 10−5 Pa s.

One of the key nutrients responsible for plant growth and development is nitrogen
(Nye and Tinker 1977). We choose to model this nutrient since plant growth is closely
linked to abundance of nitrogen in soil. Nitrogen has a diffusion coefficient in soilwater
of D ≈ 2.5×10−10 m2 s−1 (Barber 1995). Furthermore, for the potato plant Solanum
tuberosumL, the uptake rate of the nutrient nitrogen is g ≈ 1×10−9 s−1 (Sattelmacher
et al. 1990; Asfary et al. 1983). This was found to be in nitrogen concentrations in soil
of cmax ≈ 10−1kg m−3 (Asfary et al. 1983).

In early-stage growth of Solanum tuberosum L plants, the tuber radius growth rate
is approximately 1 × 10−9 m s−1 (Xu et al. 1998). If we assume that the quantity
of nitrogen that is taken up by the plant is proportional to the growth of the tuber,
then we can estimate the ratio between the rate of growth and the uptake, i.e. α ≈
1 × 101 kg−1 m−1 (Sattelmacher et al. 1990; Asfary et al. 1983).

Using the values above, we find that the parameters κa and κw in equations (31)
and (32) are κa = O(109) and κw = O(107). This is significantly larger than the
other terms in the equations. Hence, we rewrite Eqs. (31) and (32) so that,
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∇pa ≈ 0, x ∈ �Soil, (43)

∇pw ≈ 0, x ∈ �Soil, (44)

which have the solutions pa = constant and pw = constant, i.e. the consolidation of
the soil is substantially faster than the diffusion of solutes. Since pw = constant, we
find that the sink term inEq. (2) representing root uptake is constant, i.e.λc( p̃w− pr ) =
F , where F is the water uptake rate by plant roots. The uptake rate of water from
Solanum tuberosum L roots is F ≈ 1 × 10−8 s−1 (Parker et al. 1989).

From Equation (33), the solutions pa = constant and pw = constant result in
Sw = constant, and since Sw + Sa = 1, this leads to Sa = constant. Although
Sw is constant, φw will still change as a function of the changing domain geometry.
Substituting 44 into 32 renders the domain water content to become dependent on the
solid phase displacements:

∂tus = vw, x ∈ �Soil. (45)

Thus, we reduce the system of Eqs. (27)–(41) to

∂tφw = −ε∇ · (φw∂tus) − F, x ∈ �Soil, (46)

∇ ·
[
(∇us) + (∇us)T + ν∇ · usT

]
= 0, x ∈ �Soil, (47)

(φw + b)∂t c + c∂tφw = ∇ · (φw∇c) − gc, x ∈ �Soil, (48)
(
2n̂ ⊗ n̂ − T

) · us = n̂(r j − r∗), x ∈ � j , (49)

n̂ · (φw∇c) = 0, x ∈ � j , (50)

∂t r j = α

4πr2j

∫

�Soil j

c d�Soil j , (51)

where F = Fl2x/D.
Using the values discussed above,wefind that the parameters contained in (46)–(51)

have the approximate values

F = O(1), ν = O(1), g = O(1), r∗ = O(1), α = O(1). (52)

For the remainder of this study, Eqs. (46)–(51) will be referred to as the ‘full set’
of equations to describe solute movement and tuber growth.

2.6 Homogenisation

In this section, we use multiple scale homogenisation to develop a set of averaged
macroscale equations that describe the movement of nutrients and tuber growth in
soil. From Equation (46), we observe that φw is affected by two mechanisms: firstly
by soil compression due to the growth of the tuber, i.e. ε∇·(φwvs), and secondly by root
water uptake, i.e. F . From the non-dimensionalisation, we observe that the maximum
displacement is bounded such that us � F . This leads to the results ∂tus � F . If we
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consider a scenario when the tubers are not taking up water, Eq. 45 suggests that the
primary change inwater content is based on ε∇·(φw∂tus). Since ε∇·(φw∂tus) � ∂tus
and ∂tus � F , then it follows that ε∇ · (φw∂tus) � F . Therefore, we find that
the root water uptake term dominates the change in water content. Hence, for the
homogenisation procedure, we neglect the term regarding soil compression, and the
system of equations we homogenise reduces to

∂tφw = −F, y ∈ �Soil, (53)

(φw + b)∂t c + c∂tφw = ∇ · (φw∇c) − gc, y ∈ �Soil, (54)

n̂ · (φw∇c) = 0, y ∈ �, (55)

∂t r = α

4πr2

∫

�Soil

c d�Soil. (56)

periodic y ∈ ∂�E . (57)

To validate this assumption, we compare the full set of Eqs. (46)–(51) to the
homogenised system of equations derived from (53)–(57) in the following section.
We highlight that the horizontal boundaries for the full model preserve the periodicity
presented here.

We observe there are two different length scales present in the geometry �̃, the
macroscale lx and the microscale ly . Any change of O(1) on the length scale lx will
result in aO(ε) change on the length scale ly . We can formalise this by assuming that
the dependent variables φw, c and r are functions of a small scale y and a large-scale x.
We denote the unit cell� representing the microscale domain y ∈ � ≡ [−1/2, 1/2]3.
Using the two length scales and chain rule, the gradient operator is written as

∇ = ∇x + ε−1∇y. (58)

Furthermore, we expand φw, c and r such that,

φw = φw0 + O(ε), (59)

c = c0 + εc1 + ε2c2 + O(ε3), (60)

r = r0 + O(ε). (61)

The first step of the homogenisation procedure is to determine the most dominant
terms in the system of Eqs. (53)–(57). To do this, we substitute Eqs. (59)–(61) into
(53)–(57), collecting the largest termsO(ε−2). This results in the system of equations

∇y · (φw0∇yc0) = 0, y ∈ �Soil, (62)

n̂ · (φw0∇yc0) = 0, y ∈ �, (63)

periodic y ∈ ∂�E . (64)

Theorem Equations (62)–(64) have the solution c0 = c0(x, t), i.e. c0 has large-scale
dependence only.
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Proof We observe from (62) that

∫

�Soil

c0∇y · (φw0∇yc0) d�Soil = 0. (65)

Applying Green’s first identity to (65) yields

∫

∂�

c0n̂ · (φw0∇yc0) d� +
∫

∂�E

c0n̂ · (φw0∇yc0) d∂�E

−
∫

�Soil

∇yc0 · (φw0∇yc0) d�Soil = 0. (66)

Using (63) and (64), we find

∫

�Soil

∇yc0 · (φw0∇yc0) d�Soil = 0. (67)

Equation (67) can be expressed as

∫

�Soil

φw0 ||∇yc0||22 d�Soil = 0, (68)

where ||·||2 is the Euclidean norm, i.e. ||x||2 = √〈x, x〉 =
√
x21 + ... + x2n . In order

to satisfy (68), ||∇yc0||22 = 0. By definition, ||x||2 = 0 ⇐⇒ x = 0, hence

||∇yc0||22 = 0. ⇒ ∇yc0 = 0. (69)

Therefore, c0 = c0(x, t). ��
From the theorem above, we observe that c0 has large-scale dependence only and is

independent of the small scale y; however, we receive no other information regarding
the solution of c0.

To proceed with the homogenisation methodology, we collect the next most dom-
inant terms in the system of equations. This is achieved by collecting terms O(ε−1)

and using the results ∇yc0 = 0, i.e.

∇y · (φw0∇yc1 + φw0∇xc0) = 0, y ∈ �Soil, (70)

n̂ · (φw0∇yc1 + φw0∇xc0) = 0, y ∈ �, (71)

periodic y ∈ ∂�E . (72)

To ensure (70)–(72) form a well-posed problem, i.e. the equations have a solution that
agrees with the boundary conditions, we check the solvability of the system. We can
show the system is well-posed by applying the divergence theorem to equation (70)
and use the boundary condition (71) such that,
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∫

�Soil

∇y · (φw0∇yc1 + φw0∇xc0) d�Soil

=
∫

∂�Soil

n̂ · (φw0∇yc1 + φw0∇xc0) d∂�Soil = 0. (73)

Next we choose to rescale c1 such that,

c1(x, y) =
3∑

k=1

χk(y)∂xk c0 + c̄1(x), (74)

where c̄1(x) is the large-scale component of c1(x, y). Substituting (74) into (70)–(72)
yields the cell problem for χk

∇y · (∇yχk + êk) = 0, y ∈ �Soil, (75)

n̂ · (∇yχk + êk) = 0, y ∈ �, (76)

periodic y ∈ ∂�E , (77)

where êk is the unit vector.
We note that the tubers grow in the soil domain; hence, the cell problem solution

χk is dependent on the radius of the tuber. Since the cell problem is a representation
of the impedance of nutrient movement due to tuber obstruction, and as the tuber
grows, the impact on nutrient transport will change; therefore, we have the relationship
χk = χk(r), i.e. the cell problem solution is dependent on the radius of the tuber.

The last step of the homogenisation procedure is to collect terms O(ε0), i.e.

∂tφw0 = −F, y ∈ �Soil, (78)

(φw0 + b)∂t c0 + c0∂tφw0

= ∇y · (φw0∇yc2 + φw0∇xc1)

+∇x · (φw0∇yc1 + φw0∇xc0) − gc, y ∈ �Soil, (79)

n̂ · (φw0∇yc2 + φw0∇xc1) = 0, y ∈ �, (80)

periodic y ∈ ∂�E , (81)

∂t r0 = α

4πr20

∫

�S

c0 d�S . (82)

To check (78)–(82) provide a well-posed problem, we check the solvability of the
system of equations. To do this, we apply the divergence theorem to (79)

∫

�Soil

(φw0 + b)∂t c0 + c0∂tφw0 d�Soil

=
∫

�Soil

∇y · (φw0∇yc2 + φw0∇xc1) d�Soil

+
∫

�Soil

∇x · (φw0∇yc1 + φw0∇xc0) d�Soil −
∫

�Soil

gc d�Soil, (83)
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and using boundary condition (80) yields

∫

�Soil

(φw0 + b)∂t c0 + c0∂tφw0 d�Soil

=
∫

�Soil

∇x · (φw0∇yc1 + φw0∇xc0) d�Soil

−
∫

�Soil

gc d�Soil. (84)

We define

||�Soil|| = ||�Soil(r)|| =
∫

�Soil

d�Soil, (85)

to be the volume integral of the cell problem, which is dependent on the radius of the
tuber. It follows that (84) can be written as

||�Soil||
[
(φw0 + b)∂t c0 + c0∂tφw0

]

= ∂

∂xi

∫

�Soil

[

φw0

(
∂c0
∂xi

+ ∂χ j

∂ yi

∂c0
∂x j

)]

d�Soil − ||�Soil||gc0, y ∈ �Soil. (86)

This results in the approximate equations for φw0 , c0 and r0

∂tφw0 = −F, y ∈ �Soil, (87)

||�Soil(r0)||
[
(φw0 + b)∂t c0 + c0∂tφw0

]

= φw0∇x · (De(r0)∇xc0)

− ||�Soil(r0)||gc0, y ∈ �Soil, (88)

∂t r0 = α

4πr20
||�Soil(r0)||c0, (89)

where

De(r0) =
∫

�Soil

T + ∇yχk(r0) ⊗ êk d�Soil, (90)

for k = (1, . . . , 3).
Here, the averaged terms ||�Soil(r0)|| and De(r0) are parameterised from the cell

problem (75)–(77). This result identifies that Eqs. (78)–(82) provide a well-posed
problem if and only if the system of Eqs. (87)–(90) has a solution. For the remainder
of this study, Eqs. (87)–(90) will be referred to as the ‘homogenised set’ of equations
to describe solute movement and tuber growth.
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3 Validation of the Homogenisation Procedure

We validate the mathematical steps used in the homogenisation procedure by compar-
ing the homogenised set of Eqs. (87)–(90) to the full set of Eqs. (46)–(51).We consider
multiple comparisons by varying parameters for the buffer power b, root uptake rate F
and initial volumetric water content φw|t=0 to examine the accuracy of the averaging
procedure.

We generate two geometries, one for the full set of Eqs. (46)–(51) containing potato
tubers and the other uniform geometry for the homogenised Eqs. (87)–(90).We choose
the domain length of each geometry to be composed of eight periodic cells. Due to
the homogenisation procedure, the approximate Eqs. (87)–(90) do not require any
tubers as the influence of the microscale geometry is contained in the parameterised
terms ||�Soil(r0)|| andDe(r0). Shown in Fig. 3 are the geometries used to validate the
homogenisation procedure.

Lastly,wenumerically illustrate that the full solution tends towards thehomogenised
solution as ε → 0. Since ε = ly

lx
, it suffices to show that the solutions become closer

as lx → ∞, as this implies that ε → 0. We begin with by setting lx = 0.3, where the
domain of the full solution can only consist of 3 tubers. We incrementally increase
the domain size up to lx = 0.8, where the domain consists of 8 tubers. We take the
percent difference between the homogenised solution for the concentration profile as:

dp = ‖c(ε) − c(ε)
0 ‖∞

‖c(ε)‖∞
× 100%, x ∈ �Soil, (91)

Fig. 3 The geometries used to validate the homogenisation procedure a the approximate Eqs. (87)–(90)
are solved on the left geometry, whereas the original set of Eqs. (46)–(51) are solved on the right geometry
that contains potato tubers. b The cell problem is solved on a single unit cell that contains a potato tuber
(coloured in red). Comparisons between the homogenised model and the full model were done by analysing
the concentrations along the of the domain running down the vertical axes (Color figure online)
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where c(ε) is the solute concentration profile in the full solution as a function of a
given ε, c(ε)

0 is the solute concentration profile based on the homogenised solution,

‖c(ε) − c(ε)
0 ‖∞is the largest difference between the two solutions for all time points

in the whole domain for a fixed ε value, and ‖c(ε)‖∞ is the supremum concentration
value for all time in the full domain for the full solution for a fixed ε value.

To solve the systems of equations, we use the finite element package COMSOL
Multiphysics® 5.3 (www.comsol.com). We run our full model with a mesh consisting
of 21729 tetrahedral elements and 1405 for the homogenised model. Simulations were
run using theMUMPS (MultifrontalMassively Parallel Sparse) direct solver for a fully
coupled physical system. In this section, we describe the implementation of each set
of equations and show a comparison between them.

3.1 Full Equations

Implementation of the full set of Eqs. (46)–(51) requires the implementation of a
complex moving boundary problem. This accounts for the uptake of nutrients by
each tuber � p j , the subsequent growth of � p j and the reduction in volumetric water
content φw. The geometry we impose the full set of equations on can be seen in Fig. 3a.
However, we require two versions of this geometry, an undeformed geometry that is
constant in time, and a deforming geometry that is dependent on tuber growth, since
different components of the system (46)–(51) are solved on either an undeformed or
deforming frame of reference. There are three main components that are required to
be implemented in order to solve (46)–(51); these are the poroelastic equations, the
compaction and deformation of soil, and the nutrient movement equations.

To implement the poroelastic equations (46)–(47) and (49) for the local displace-
ment us and reduction in φw is straightforward, since these equations are solved on the
undeformed geometry regardless of tuber size. Using this solution at each time step,
we can prescribe a deformation (for the deforming geometry) within the soil domain
to correspond with the increase in tuber size.

The nutrient equations (48) and (50)–(51) are solved on the deforming geometry to
correspond with the growth of the tubers. However, these equations use the poroelastic
solution from the undeformed geometry. Hence, we implement a reference frame
change such that poroelastic solution can bemapped from the undeformed geometry to
the deformed geometry. This allows us to solve the nutrient equations on the deformed
geometry corresponding with the prescribed tuber deformation.

Since the nutrient equations are solved on a deforming geometry, we are required
to ensure that c is conserved. This is achieved by making two alterations to (48) and
(50). Firstly, we note Reynolds transport theorem

d

dt

∫

θ(t)
F dV =

∫

θ(t)

∂F
∂t

dV +
∫

∂θ(t)
(ω · n̂)F dA, (92)

where dV and dA are volume and surface elements, respectively, ω is the velocity
of the surface element, n̂ is the normal vector pointing out of the geometry, F is any
function of x and t and θ(t) is the domain. Reynolds transport theorem states that the
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change in nutrient concentration in a domain is equal to the change in concentration
within the domain plus the rate at which nutrient is entering the domain. Applying
equation (92) to the full set of equations we have leads to

d

dt

∫

�Soil(t)

c d�Soil(t) =
∫

�Soil(t)

∂c

∂t
d�Soil(t)

+
∫

∂�Soil(t)

(ωmesh · n̂)c d∂�Soil(t), (93)

where ωmesh is the velocity of the boundaries � p j . This requires us to adapt equation
(50) so that,

n̂ · (φw∇c) = −(ωmesh · n̂)c, x ∈ � j . (94)

Equation (94) then satisfies the conservation law for moving boundaries.
Secondly, as � p j grows and �S is deformed, this causes an advective movement

effect on c within �S . This can be interpreted as the boundaries of the tubers and
� j physically pushing the nutrients. Hence, we are required to add a conservative
advection term to Eq. (48) accounting for the individual elements within the mesh
moving, i.e.

(φw + b)∂t c + c∂tφw = ∇ · (φw∇c − ωmeshc) − gc, x ∈ �Soil. (95)

This modified system of equations can then be successfully implemented to model
coupled nutrient movement and poroelastic deformation from growing tubers.

3.2 Homogenised Equations

The geometry used to simulate the homogenised set of equations can be seen in
Fig. 3a. However, to solve the set of homogenised Eqs. (87)–(90), we are required to
solve a series of cell problems, i.e. Eqs. (75)–(77), to calculate the terms ||�Soil(r0)||
and De(r0) that parameterise Eqs. (88) and (89). Since the geometric properties of
the domain � are contained in ||�Soil(r0)|| and De(r0), we solve the cell prob-
lem for a series of different tuber radii to correspond with different levels of
growth/displacement from the original tuber size. Using the results from the cell prob-
lems, we can construct interpolated functions to describe ||�Soil(r0)|| and De(r0) as
functions of the homogenised radius r0.

3.3 Results

To validate the homogenisation procedure, we compare the homogenised Eqs. (87)–
(90) against the original set of Eqs. (46)–(51). We choose to run a series of case
studies by varying the parameters b, F and φw|t=0. For the buffer power b, we choose
the values b ∈ {0.5, 5} since this covers a range of buffer powers for the nutrients
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nitrogen, boron, magnesium, zinc and molybdenum (Barber 1995). From the non-
dimensionalisation and parameter estimation, we observe the value for root water
uptake is F = O(1). However, to test the homogenisation procedure, we select the
values F ∈ {0.1, 10} for low and high levels of water uptake, respectively. Finally, for
the initial water content φw|t=0 we assign the values φw|t=0 ∈ {0.4, 0.6} as these are
approximate upper and lower bounds for silty soils (Das 2013).

In each of the simulations we impose a Dirichlet condition of c = c0 = 1 on the top
of each of the geometries shown in Fig. 3a. Additionally, we choose the initial non-
dimensionalised tuber radius to be r∗ = 0.025 and choose the remaining parameters to
be g = α = 1.We also impose a stop condition on each of the simulations so that when
the non-dimensionalised volume of a tuber has doubled inmagnitude, the simulation is
terminated. Finally, in order to construct interpolated functions to describe ||�Soil(r0)||
and De(r0) in Eqs. (88) and (89), we solve a series of 6 cell problems with varying
sphere radii.

Shown in Fig. 4 are the nutrient profiles for c and c0 down the length of the geome-
tries shown in Fig. 3a. We observe for all buffer powers, root uptake values and initial
porosities, that the homogenised nutrient profile for c0 is qualitatively identical to the
full nutrient concentration c. We find there to be a maximum error of � 2% between
the solutions across all scenarios.

Additionally, shown in Fig. 5 are the individual tuber radii r j for the full set of
equations against the effect radius r0 from the homogenised equations. Similar to the
results from Fig. 4, we find that the effective radius r0 successfully captures the growth
of each tuber within the full domain shown in Fig. 3a. We find there to be a maximum
error of � 2% between the actual and effective tuber radius.

To highlight the accuracy of the homogenised set of equations, shown in Fig. 6
are detailed results for the simulation using the parameters F = 0.1, b = 0.5 and
φw|t=0 = 0.4. From Fig. 6a we observe that the effective radius r0 is able to mimic
the growth of the tubers in the full geometry. Figure 6b illustrates that as we have a
system with more tubers, the full model converges to the homogenised model. For the
8 tuber scenario, the growing tubers can be seen in Fig. 6c, inwhich the tubers at the top
of the full equation domain at the time point t = end have grown substantially larger
than those at the base of the domain. Furthermore, we find that the solute concentration
profiles exhibit identical trains between the full and homogenised domains.

As a final confirmation of our model accuracy, we increased our mesh density from
21,729 tetrahedral elements to 49,218 elements in order to insure that our results are
sufficiently accurate. Percent difference between the refined vs course solutionswas on
the order of 0.1%. This grants us confidence that ourmesh is sufficiently resolved given
the current problem. It is worth noting that our current simulations do not consider
any automatic mesh refinement, as the deformations modelled do not result in any
large aspect ratios. Future considerations could include more general geometries or
greater deformations (Dehghani et al. 2018). This would be more significant when
considering large deformations, which are more common in soil materials (Yu 2000).

From Figs. 4 and 5, we observe that the homogenised equations successfully cap-
ture the nutrient movement and tuber growth in soil. However, the computation time
between the two systems of equations differs by several orders of magnitude. We find
that the full set of equations in three dimensions requires ≈ 5min (300s) to solve one
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Fig. 4 Validation of homogenised Eqs. (87)–(90) against the original set of Eqs. (46)–(51). The plots show
the nutrient profile c and c0 from the base to the top of the domains shown in Fig. 3 for a series of case
studies using the parameter values b ∈ {0.5, 5}, F ∈ {0.1, 10}, φw |t=0 ∈ {0.4, 0.6} (Color figure online)

simulation for eight periodic cells. Conversely, solving the homogenised equations
requires ≈ 10 s to solve an analogous 3D simulation. Furthermore, the homogenised
set of equations can be reduced to a 1D problem which will achieve the same results
as the 3D problem due to the homogenisation procedure. We find that the computa-
tion time to solve the 1D problem is � 1s, which is substantially faster than the full
set of equations. However, a set of 3D cell problems is required to parameterise the
homogenised set of equations for the terms ||�Soil|| and De. In this case study, we
chose to conduct six cell problems for varying sphere radii. Each of the cell problems
requires ≈ 10 s to solve. However, these cell problems are only required to be solved
once for each set of parameters. Hence, we find that the homogenised sets of equations
can reduce the computation time substantially while retaining a high level of accuracy.
Furthermore, we can highlight the influence that the tubers’ radii have on the effective
homogenised diffusion coefficient (Fig. 7). Under more dramatic growth scenarios
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Fig. 5 Validation of homogenised Eqs. (87)–(90) against the original set of Eqs. (46)–(51). The plots show
the effective radius r0 against the actual radius r j of the tubers from the base to the top of the domains

shown in Fig. 3 for a series of case studies using the parameter values b ∈ {0.5, 5}, F ∈ {0.1, 10},
φw |t=0 ∈ {0.4, 0.6} (Color figure online)

where tubers increase their radii by a factor of 5, the effective diffusion in the system
could be reduced by as much as 30%.

4 Discussion

In this study, we developed a physical model for potato tuber growth that couples
water and nutrient uptake with mechanical growth of potatoes in soil. The explicit
consideration of the potato growth in the soil domain creates a physical impedance
to nutrient transport through the soil. The geometry and the surface sinks due to the
presence of potatoes impede the effective transport of nutrients through the soil domain
(Fig. 6). If impedance to diffusion caused by the potato tubers was not considered,
we would incur an error between 175 and 300% in the effective diffusion of the
solute (where the effective diffusion is Deff = φD

φ+b in the case with no potatoes and
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Fig. 6 a Shown are the results for the actual and effective tuber volumes for the simulation using the
parameters F = 0.1, b = 0.5 and φw |t=0 = 0.4 at the beginning and end of the simulation. b The
convergence of the full solution to the homogenised solution (presented as percent difference) as ε → 0.
c Shown are the results for the actual and effective solute concentration for the same simulation as (a).
Additionally the geometries capturing the tuber growth are shown (Color figure online)

Dh
eff = φ(r0)De(r0)

(φ(r0)+b)||�Soil(r0)|| when impedance to diffusion caused by growing tubers is

homogenised). Furthermore, an error of up to 62.5% in effective diffusion could occur
if the tubers were modelled as a sphere with constant half of the final time-dependent
radius. These errors in effective diffusion would greatly impact the predicted solute
leaching or plant solute uptake of models, ignoring geometric impedance to diffusion.
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Fig. 7 Effective homogenised
diffusivity coefficient as a
function of potato radius (Color
figure online)

One primary novelty associated with our growth model largely pertains to the
growth domain locally external to our growing tubers. Similar studies have invoked
a fluid–solid mechanical coupling to describe biological tissue as a porous medium,
where cells are grow in an interstitial fluid (O’Dea et al. 2015; Penta et al. 2014).
These models deal with a saturated fluid domain interacting with a solid cell that
is able to grow based on either nutrient uptake (O’Dea et al. 2015) or a prescribed
growth rate (Penta et al. 2014). Our model is applied to a partially saturated domain.
Similar to O’Dea et al. (2015), our biological agents grow proportional to the rate
of nutrient uptake. However, our potato tubers also take up water, which impacts the
advective fluxes associated with the nutrient transport in the unsaturated soil domain.
As the focus of our system is to obtain a geometrically simplified model through
our homogenisation procedure, the final equations that arise are convection–diffusion
equations. By choosing a different re-scaling approach, it may be possible to obtain a
similar Darcy type expression as demonstrated by O’Dea et al. (2015) and Penta et al.
(2014); however, this was not within the scope of this study.

Previous studies have coupled fluid and solid mechanical systems to infer not only
the impact that a solid inclusion would have on the fluid flow, but also the mechanical
deformations that fluid flow would induce on the solid inclusion (Royer et al. 2019;
Chen et al. 2019). Authors have found that the homogenised system parameters are
impacted by the distribution of inclusions in the domain. While our modelling scheme
does not explicitly account for the mechanical response of the inclusions to externally
applied stresses, the distribution of our potato tubers impacts the flow and transport
coefficients in a similar manner as demonstrated in previous studies (Royer et al.
2019). It is worth noting that the growth behaviour of our modelled tubers implies a
compensation for external stresses. Plant roots are known to respond to mechanical
stresses by increasing their radii and reducing their length (Abdalla et al. 1969). This
behaviour does not readily lend itself to a simple coupling betweenmechanical stresses
and growth responses, and future work should be conducted to better quantify these
contrasting effects.

The full system of equations in this paper required the implementation of a complex
moving boundary problem. This required the use ofmultiple domains to solve different
components of the equations, and subsequent mappings of solutions across domains.
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Not only does this system require considerable computational power to solve, the
time required to correctly implement this system is substantial. This is due to ensuring
conservation of mass and consistent mappings of solutions across domains. Using
mathematical homogenisation, many of themore cumbersomemodelling aspects were
simplified into an effective media, where the tuber surfaces are treated as domain
sinks, and the tuber geometries are accounted for in the diffusivity term shown in
Figs. 4 and 5. Applying a similar method to a root system would facilitate a more
rigorous quantification of bulk scale rhizosphere transport dynamics for both water
and nutrients, generating better tools to disentangle the plant influence (rhizosphere
soil) from the soil physical properties (bulk soil) (Koebernick et al. 2017).

Although the explicit model couples the poroelastic mechanical model to the trans-
port equations for water and nutrients, a more specific mechanical coupling might be
more appropriate to define the tubers expanding in partially saturated soil. Partially sat-
urated soils are not subject to consolidation (Yu 2000); thus, considering the soil as an
elasto-viscoplastic media may be important in this situation (Ghezzehei and Or 2000).
Furthermore, the mechanical stresses likely exceed typical yield stress values found in
soil under field saturation conditions (Ghezzehei and Or 2001). Previous models have
utilised strictly linear-elastic parameters to quantify the mechanics of cavity expan-
sion in unsaturated soil (Aravena et al. 2014); however, future work should attempt to
remedy this by considering soil plasticity.

This study was motivated by the growth of tubers in soil; however, the system of
equations is not limited to this particular problem. Other biological processes could
also bemodelled, including, but not limited too, clusters of lymphnodes swelling under
an inflammatory response from a disease or virus moving through a biological tissue
(Yang et al. 2014), the growth of roots in response to water and nutrients (Aravena
et al. 2014; Drew and Saker 1978), or to model the effect of tumour growth on nutrient
flow during angiogenesis (Alarcón et al. 2003).

Technical analysis regarding the homogenisation procedure showed encouraging
results. Comparing the results from the homogenised sets of equations to the full set
yielded less than about a 2% difference between nutrient concentrations at different
depths, as shown in Fig. 4. Despite similarities in the results, the homogenised set of
equations could be solved 1000 times faster than the full set of equations. Furthermore,
the homogenised model could be physically scaled up with minimal increases to
computational time, while increasing the domain size for the explicit geometry will
substantially increase the computational time. This is important if we were to do
combinatorial simulations spanning large numbers of soil and climate parameters
to predict how potato crops grow. Thus, the averaged model will computationally
allow extensive explorations of soil management and crop breeding strategies to be
investigated in silico.
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