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On April 19, 2017, sad news hit all of us in the research communities of computational
biology, stochastic simulation and applied physics. Our beloved friend, Dan T. Gille-
spie, a research physicist best known for the stochastic simulation algorithm (SSA,
also known as the Gillespie Algorithm), passed away at his home in Castaic California
at the age of 78.

The impact of Dan Gillespie’s work on the field of stochastic physics, compu-
tational biology and other related areas has been huge. When he first presented his
original work in Gillespie (1976), it was called “completely wrong” by some promi-
nent researchers in the field of chemistry. Certainly, it was far ahead of its time. In the
late 1990s, it came to light that intrinsic stochasticity, arising from extremely small
populations of key molecular species, was playing an important role in cell biology.
The Gillespie algorithm was perfectly suited for simulating these systems. Since that
time, it has been widely used in cell biology. Dan Gillespie’s foundational publications
would eventually receive over ten thousand citations, and he was well recognized as
one of the founders of the field of stochastic physics in biology. His research con-
tributions spanned a wide range of fields, including cloud physics, random variable
theory, Brownian motion, Markov process theory, electrical noise, light scattering in
aerosols, and quantum mechanics.

The contributions in this special issue come from researchers working in many
different disciplines that have benefitted from Dan Gillespie’s pioneering work. The
Gillespie algorithm (Gillespie 1976, 1977) is an important modeling and simulation
method, but it also suffers from inefficiency when applied to large scale systems. He
and his collaborators developed different methods to improve the algorithm, such as the
tau-leaping method (Gillespie 2001; Rathinam et al. 2003; Cao et al. 2005b), and the
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slow-scale SSA method (Cao etal. 2005a, c). This special issue includes areview article
on rejection-based exact methods (Thanh 2018), improvements to the tau-leaping
method (Beentjes and Baker 2018) and the S-leaping method (Lipkova et al. 2018),
and numerical analysis of the hybrid ODE/SSA method (Chen et al. 2018). In addition
to the development of simulation algorithms, there have been efforts to improve the
efficiency of the many simulations that are required to obtain accurate approximations
to the probability density functions of the chemical species. Simulation strategies and
numerical algorithms have been proposed to enable the use of fewer simulations while
still maintaining high accuracy. This special issue includes work on the multilevel
approach (Engblom 2018), the variance-reduced simulation method (Maginnis et al.
2019) for general Markov chains, and the low variance coupling method (Anderson
and Yuan 2018).

The original Gillespie algorithm is physically accurate only for systems that are
both dilute and well-mixed in the reactant (solute) molecules. An extension of the SSA
for systems that are not well-mixed is the reaction—diffusion SSA (RD-SSA). It divides
the system volume into subvolumes or “voxels” , which are small enough that each
can be considered to be well-mixed. Chemical reactions are then considered to occur
inside individual voxels and are modeled using the SSA, while diffusion is modeled via
jumps from a subvolume to one of its neighbors. In this way, the Gillespie algorithm has
been extended to the challenging field of spatial stochastic modeling. This special issue
features several contributions in this area: Grima gives a review for spatial stochastic
modeling (Smith and Grima 2018), Kang and Erban (2019) present an analysis for
multiscale reaction—diffusion system and Markov Chain, and Lotstedt (2018) presents
a linear noise approximation for spatially dependent biochemical networks.

To highlight Dan Gillespie’s impact on related fields, this special issue also features
contributions that are related to his work from other areas, such as the network-free
simulation method (Suderman et al. 2018), rare event analysis (Roh 2018), sensitivity
analysis for multiscale stochastic systems (Gupta and Khammash 2018), and an appli-
cation of stochastic dynamics to simulation of eukaryotic flagellar growth (Rathinam
and Sverchkov 2018).

These articles are by no means, or even close to a full list of work that benefited
from Dan Gillespie’s great scientific career. We hope that they serve as milestones in
memory of a brave pioneer, a close friend, a devoted mentor, and a great physicist.
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