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                    Abstract
A major challenge in systems biology is to elicit general properties in the face of molecular complexity. Here, we introduce a class of enzyme-catalysed biochemical networks and examine how the existence of a single positive steady state (monostationarity) depends on the network structure, enzyme mechanisms, kinetic rate laws and parameter values. We consider Goldbeter–Koshland (GK) covalent modification loops arranged in a tree network, so that a substrate form in one loop can be an enzyme in another loop. GK loops are a canonical motif in cell signalling and trees offer a generalisation of linear cascades which accommodate network complexity while remaining mathematically tractable. In particular, they permit a modular, recursive proof strategy which may be more widely applicable. We show that if each enzyme follows its own complex reaction mechanism under mass action kinetics, then any network is monostationary for all appropriate parameter values. If the kinetics is non-mass action with a plausible monotonicity requirement, and each enzyme follows the Michaelis–Menten mechanism, then monostationarity is preserved. Surprisingly, a single GK loop with a complex enzyme mechanism under non-mass action monotone kinetics can have more than one positive steady state (multistationarity). The broader interplay between network structure, enzyme mechanism and kinetics remains an intriguing open problem.
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Appendix
Appendix
1.1 Lemma 1
                           
Courant proved a differentiable version of Lemma 1 in Courant (1936, pp. 119–121), but his differentiability assumptions are only used to show differentiability of the constructed implicit function. They can hence be dispensed with for our purposes. The proof below is adapted from a similar result in Kudryavtsev (1998).

                    Proof

                    Consider \({\mathscr {F}}({{\bar{x}}}^*,y)\). It is strictly monotonous in \(y \in U(y^*,\eta )\) and we can assume that it is strictly monotonously increasing. (Otherwise, we could take \(- {\mathscr {F}}\).) Choose \(\epsilon \in (0,\eta )\). Since \({\mathscr {F}}({{\bar{x}}}^*,y^*) = 0\), using monotonicity we get \({\mathscr {F}}({{\bar{x}}}^*,y^* + \epsilon ) > 0\) and \({\mathscr {F}}(\bar{x}^*,y^* - \epsilon ) < 0\). From continuity of \({\mathscr {F}}({{\bar{x}}},y)\) on \(U({{\bar{x}}}^*,{{\bar{\xi }}}) \times U(y^*,\eta )\), it follows that there exists a neighbourhood \(U({{\bar{x}}}^*,{{\bar{\delta }}}) \subset U(\bar{x}^*,{{\bar{\xi }}})\) of the point \({{\bar{x}}}^*\) such that \({\mathscr {F}}(\bar{x},y^* + \epsilon ) > 0\) and \({\mathscr {F}}({{\bar{x}}},y^* - \epsilon ) < 0\) for any \({{\bar{x}}} \in U({{\bar{x}}}^*,{{\bar{\delta }}})\). Since for a fixed \(\bar{x} \in U({{\bar{x}}}^*,{{\bar{\delta }}})\) the function \({\mathscr {F}}({{\bar{x}}},y)\) is continuous and monotonous in \(y\in U(y^*,\epsilon )\), there exists an unique solution \(y\in U(y^*,\epsilon )\) of \({\mathscr {F}}({{\bar{x}}},y) = 0\). Let us denote this correspondence \(y = f({{\bar{x}}})\), \({{\bar{x}}} \in U({{\bar{x}}}^*,{{\bar{\delta }}})\).

                    So far we have proved existence and uniqueness of the function \(y = f({{\bar{x}}})\), \({{\bar{x}}} \in U({{\bar{x}}}^*,{{\bar{\delta }}})\). Continuity of f at the point \({{\bar{x}}}^*\) follows from the fact that for any \(\epsilon \in (0,\eta )\) there exists \({{\bar{\delta }}}(\epsilon )\) such that if \({{\bar{x}}} \in U({{\bar{x}}}^*,{{\bar{\delta }}})\) then \(y \in U(y^*,\epsilon )\). Obviously \(f({{\bar{x}}}^*) = y^*\). This completes the proof of Lemma 1. \(\square \)

                  1.2 Proof of Proposition 1
                           

                    Proof

                    Suppose the function \(\phi (x,y)\) is continuous, (is) \(\times \) (ds) on \([0,\infty ) \times [0,\infty )\) and \(\phi (0,0) = 0\). The equation \(\phi (x,y) = 0\) therefore defines a curve C going from the point (0, 0) and increasing in both x and y. Choose \(a, b > 0\). Since \(\phi \) is strictly increasing in x and strictly decreasing in y, \(\phi (a,0) > 0\) and \(\phi (0,b) < 0\). It is therefore evident on the grounds of continuity that the curve must cross the right or upper boundary of the box whose far right corner is at (a, b). Suppose then that there exists some \(b > 0\) such that there is no point on the curve with \(y = b\), so that the curve is limited to lie in the region \(y < b\). Then, there can be no such limitation in the x coordinate or there would exist a box whose boundary is not crossed. Hence, for \(x \in [0,\infty )\), there exists some \(y \in [0,b)\) such that \(\phi (x,y) = 0\). Furthermore, because of strict monotonicity, y must be unique, so this assignment defines a function \(y(x):[0,\infty ) \rightarrow [0,b)\) such that \(\phi (x,y(x)) = 0\). (The use of y(x) is an abuse of notation but a convenient one which avoids the proliferation of function names.) y(x) inherits the property of being strictly monotonously increasing from \(\phi \).

                    Alternatively, it is possible that the curve is not limited in any direction or it is limited to some \(x < a\). In the former case, we get a (is0) function \(y(x): [0,\infty ) \rightarrow [0,\infty )\) such that \(\phi (x,y(x)) = 0\). In the latter case (denoting \(x_{max} = \inf (a) > 0\)), we get a (is0) function \(y(x): [0,x_{max}) \rightarrow [0,\infty )\) such that \(\phi (x,y(x)) = 0\). This function is not bounded, otherwise we would have a box with right or upper boundary not crossed by the curve C. In the following, let us allow \(x_{max}\) to be \(\infty \) to unite all three cases.

                    If we apply Lemma 1 to the function \({\mathscr {F}}(x,y) = \phi (x,y)\), we deduce the existence of a local implicit function which is locally continuous. Any implicit function must be unique by strict monotonicity, so the local function given by Lemma 1 coincides with y(x). Hence, y(x) is continuous for \(x \in (0,x_{max})\). Let us show that it is also continuous at \(x=0\). Since y(x) is strictly monotonously increasing and bounded from below, it must have a lower limit as \(x \rightarrow 0^+\). Suppose that \(\lim _{x \rightarrow 0^+} y(x) = y^+\). Since \(y(x) > 0\) for \(x > 0\), it must be that \(y^+ \ge 0\). If \(y^+ > 0\), then, since \(\phi \) is continuous at (0, 0), \(\lim _{x \rightarrow 0^+} \phi (x,y(x)) = \phi (0,y^+) < 0\). But, by construction, \(\phi (x,y(x)) = 0\). This contradiction shows that \(y^+ = 0\) and so y(x) is continuous at \(x = 0\). We conclude that y(x) is (cis0) for \(x \in [0, x_{max})\) and that \(y(0) = 0\). In fact, it is also normal, since it is not bounded if \(x_{max} < \infty \).

                    The case of non-strict monotonicity in x of the function \(\phi (x,y)\) is analogous. Strict monotonicity in y guarantees existence and uniqueness of y(x) on some interval \([0,x_{max})\) and Lemma 1 guarantees continuity on \((0,x_{max})\). Continuity at \(x = 0\) follows the same way. y(x) inherits non-strict monotonicity in x from \(\phi (x,y)\). \(\square \)

                  1.3 Proof of Proposition 2
                           

                    Proof

                    Let the continuous function \({{\tilde{\phi }}}(x,y)\) be an extension of the function \(\phi (x,y)\) to the whole quadrant defined as follows. \({{\tilde{\phi }}}(x,y) = \phi (x,y)\), if \(x \ge 0\), \(y_0 \ge y \ge 0\) and \({{\tilde{\phi }}}(x,y) = \phi (x,y) + y_0 - y\) if \(x \ge 0\), \(y > y_0\). Note that \({{\tilde{\phi }}}(x,y)\) has the same monotonicity properties as \(\phi (x,y)\). Applying Proposition 1 to \({{\tilde{\phi }}}(x,y)=0\), we obtain a (cis0n), respectively, (ci0n), function y(x), such that \(\phi (x, y(x)) = 0\). y(x) either does not exceed \(y_0\) and therefore is defined on \([0,\infty )\) or there exists \(a > 0\), such that \(y(a) = y_0\) and \(y(x)>y_0\), \(x>a\). In the latter case, we can take \(x_{max} = a\), so that the domain of definition is \([0,x_{max}]\).

                    Any other continuous extension of the function \(\phi \) preserving monotonicity properties would be also acceptable, since it doesn’t modify the curve in the region \(y_0 \ge y \ge 0\) in which we are interested. \(\square \)

                  1.4 Proof of Lemma 2
                           

                    Proof

                    Consider first the case \(X \equiv S^*\).

                    By the properties in Eq. 21 and using Eq. 35, the function \(\phi (S^*,S) = - p(S,S^*) + q(S,S^*)\) satisfies the conditions of Proposition 1, with \(\phi \) being continuous on \([0,\infty ) \times [0,\infty )\) and (is) \(\times \) (ds). We therefore obtain a (cis0n) solution function \(S(S^*)\) on \([0,S^*_{max})\) such that \(\phi (S^*,S(S^*)) = 0\).

                    Substituting \(S(S^*)\) into Eq. 36, we get
$$\begin{aligned} g(S(S^*),S^*) + S^* \cdot \sigma = S_T. \end{aligned}$$

It follows from the properties of g in Eq. 21 that the function on the left-hand side of this equation is also (cis0n) for \(S^* \in [0,S^*_{max})\) and that it grows at least as much as \(S(S^*) + S^*\). It therefore has a unique solution function \(S^*(\sigma ) > 0\), with \(\sigma \in [0,\infty )\), for which \(S(S^*(\sigma )) > 0\).

                    Let us introduce the variable \({\tilde{S}}^* = S^*(0) - S^*\). Applying Proposition 2 to the continuous (i) \(\times \) (ds) function \(\phi (\sigma ,{\tilde{S}}^*) = g(S(S^*(0) - \tilde{S}^*),S^*(0)-{\tilde{S}}^*) + (S^*(0) - {\tilde{S}}^*) \cdot \sigma - S_T\) defined on \([0,\infty ) \times [0,S^*(0)]\), we get that \(\tilde{S}^*(\sigma )\) is (ci0) on its domain of definition. Since \(\phi (\sigma ,S^*(0)) = - S_T \ne 0\), the curve \({\tilde{S}}^*(\sigma )\) cannot intersect \({\tilde{S}}^* = S^*(0)\) and therefore extends to infinity in the \(\sigma \) direction. In fact, it is (cis0) because \(\phi \) is (is) \(\times \) (ds) on \([0,\infty ) \times [0,y]\), for any \(0< y < S^*(0)\). Thus, \(S^*(\sigma ) = S^*(0) - \tilde{S}^*(\sigma )\) and \(S(S^*(\sigma ))\) are (cds) function on \([0,\infty )\). Moreover, \(S^*(\sigma ) \cdot \sigma = S_T - g(S(S^*(\sigma )),S^*(\sigma )) \ge 0\) is a bounded (cis0) function of \(\sigma \in [0,\infty )\).

                    The proof for \(X \equiv S\) is similar. One way to see it is to express \(S^*(S)\) from Eq. 35 and substitute it into Eq. 36. \(\square \)

                  1.5 Eliminating a Root Node in Theorem 1
                           
We show that the cases \(4 \rightarrow 3\), \(4 \Rightarrow 3\) and [image: ] are equivalent to the case [image: ] by redefining the variables. The crucial step in eliminating the variables of the root node 4 with a single outgoing link to node 3 (Sect. 2.2.4) is to prove that expression of variables \(S_4\), \(S^*_4\) in favour of \(S_3\) or \(S^*_3\) is unique and that, after elimination of \(S_4\) and \(S^*_4\), the new \(g^\prime _3(S_3,S^*_3) = g_3(S_3,S^*_3) + \varDelta g_3(S_3,S^*_3)\) as well as the term \(p_3(S_3,S^*_3)\) (or \(q_3(S_3,S^*_3)\)) have the required properties in Eq. 21. We will confirm these requirements in each case.
Case \(4 \rightarrow 3\). The balance and substrate conservation equations for node 4 take the form
$$\begin{aligned}&\displaystyle p_4(S_4,S^*_4) = q_4(S_4,S^*_4),\\&\displaystyle g_4(S_4,S^*_4) + S^*_4 \cdot (\alpha _3 S_3 + \beta _3 S^*_3) = S_{4T}. \end{aligned}$$

These equations already have the same form as for the case [image: ] in Sect. 2.2.4, except for the coefficients in the non-negative linear combination \((\alpha _3 S_3 + \beta _3 S^*_3)\). Thus, \(S_4(\alpha _3 S_3 + \beta _3 S^*_3)\) and \(S^*_4(\alpha _3 S_3 + \beta _3 S^*_3)\) are uniquely expressed, positive and (cds) functions of \((\alpha _3 S_3 + \beta _3 S^*_3) \in [0,\infty )\). \(\varDelta g_3(S_3,S^*_3) = (\alpha _3 S_3 + \beta _3 S^*_3) S^*_4(\alpha _3 S_3 + \beta _3 S^*_3)\) is (cis0) function of \((\alpha _3 S_3 + \beta _3 S^*_3)\), and \(g^{\prime }_3(S_3,S^*_3) = g_3(S_3,S^*_3) + \varDelta g_3(S_3,S^*_3)\) has the required properties in Eq. 21. The left side of the balance equation for node 3, \(S^*_4 \cdot (\gamma _3 S_3 - \delta _3 S^*_3)\), becomes \(p_3(S_3,S^*_3) = (\gamma _3 S_3 - \delta _3 S^*_3) S^*_4(\alpha _3 S_3 + \beta _3 S^*_3)\). If we make the following redefinition of variables, coefficients and functions, which preserve the properties of these functions, \(S_3 = {\tilde{S}}^*_3\), \(S^*_3 = {\tilde{S}}_3\), \(\gamma _3 = {{\tilde{\gamma }}}^*_3\), \(\delta _3 = {{\tilde{\delta }}}^*_3\), \(\alpha _3 = {{\tilde{\alpha }}}^*_3\), \(\beta _3 = {{\tilde{\beta }}}^*_3\), \(p_3(S_3,S^*_3) = {\tilde{q}}_3({\tilde{S}}_3,{\tilde{S}}^*_3)\), then the required properties of \(p_3\) follow from the proven properties of \(q_3\) in the case [image: ].
Case \(4 \Rightarrow 3\). The balance and substrate conservation equations for node 4 take the form
$$\begin{aligned}&\displaystyle p_4(S_4,S^*_4) = q_4(S_4,S^*_4),\\&\displaystyle g_4(S_4,S^*_4) + S_4\cdot (\alpha _3 S_3 + \beta _3 S^*_3) = S_{4T}. \end{aligned}$$

Consider the following redefinition of the variables and functions for node 4 which preserve the properties of these functions, \(S_4 = {\tilde{S}}^*_4\), \(S^*_4 = {\tilde{S}}_4\), \(p_4(S_4,S^*_4) = \tilde{q}_4({\tilde{S}}_4,{\tilde{S}}^*_4)\), \(q_4(S_4,S^*_4) = {\tilde{p}}_4(\tilde{S}_4,{\tilde{S}}^*_4)\), \(g_4(S_4,S^*_4) = {\tilde{g}}_4({\tilde{S}}_4,\tilde{S}^*_4)\). Then, the equations above take the form
$$\begin{aligned}&\displaystyle {\tilde{p}}_4({\tilde{S}}_4,{\tilde{S}}^*_4) = {\tilde{q}}_4({\tilde{S}}_4,\tilde{S}^*_4),\\&\displaystyle {\tilde{g}}_4({\tilde{S}}_4,{\tilde{S}}^*_4) + {\tilde{S}}^*_4 \cdot (\alpha _3 S_3 + \beta _3 S^*_3) = S_{4T}, \end{aligned}$$

which are the same as for the case \(4 \rightarrow 3\) above. Thus \(\tilde{S}_4(\alpha _3 S_3 + \beta _3 S^*_3)\) and \({\tilde{S}}^*_4(\alpha _3 S_3 + \beta _3 S^*_3)\) are uniquely expressed, positive and (cds) functions of \((\alpha _3 S_3 + \beta _3 S^*_3) \in [0,\infty )\). The expression \(\varDelta g_3(S_3,S^*_3) = (\alpha _3 S_3 + \beta _3 S^*_3){\tilde{S}}^*_4(\alpha _3 S_3 + \beta _3 S^*_3)\) is a (cis0) function of \((\alpha _3 S_3 + \beta _3 S^*_3)\), and \(g^{\prime }_3(S_3,S^*_3) = g_3(S_3,S^*_3) + \varDelta g_3(S_3,S^*_3)\) has the required properties in Eq. 21. The left side of the balance equation for node 3, \(S_4 \cdot (\gamma _3 S_3 - \delta _3 S^*_3) \equiv {\tilde{S}}^*_4 \cdot (\gamma _3 S_3 - \delta _3 S^*_3)\), becomes \(p_3(S_3,S^*_3) = (\gamma _3 S_3 - \delta _3 S^*_3) {\tilde{S}}^*_4(\alpha _3 S_3 + \beta _3 S^*_3)\), and it follows from the case \(4 \rightarrow 3\) that the required properties of \(p_3\) are also satisfied.
Case [image: ]. The balance and substrate conservation equations for node 4 take the form
$$\begin{aligned}&\displaystyle p_4(S_4,S^*_4) = q_4(S_4,S^*_4),\\&\displaystyle g_4(S_4,S^*_4) + S_4 \cdot (\alpha ^*_3 S^*_3 + \beta ^*_3 S_3) = S_{4T}. \end{aligned}$$

Consider the following redefinition of variables and functions for node 4 preserving the properties of these functions, \(S_4 = \tilde{S}^*_4\), \(S^*_4 = {\tilde{S}}_4\), \(p_4(S_4,S^*_4) = {\tilde{q}}_4(\tilde{S}_4,{\tilde{S}}^*_4)\), \(q_4(S_4,S^*_4) = {\tilde{p}}_4({\tilde{S}}_4,\tilde{S}^*_4)\), \(g_4(S_4,S^*_4) = {\tilde{g}}_4({\tilde{S}}_4,{\tilde{S}}^*_4)\). The equations above take the form
$$\begin{aligned}&\displaystyle {\tilde{p}}_4({\tilde{S}}_4,{\tilde{S}}^*_4) = {\tilde{q}}_4({\tilde{S}}_4,\tilde{S}^*_4),\\&\displaystyle {\tilde{g}}_4({\tilde{S}}_4,{\tilde{S}}^*_4) + {\tilde{S}}^*_4 \cdot (\alpha ^*_3 S^*_3 + \beta ^*_3 S_3) = S_{4T} \end{aligned}$$

which are the same as for the case [image: ]. Thus \(\tilde{S}_4(\alpha ^*_3 S^*_3 + \beta ^*_3 S_3)\) and \({\tilde{S}}^*_4(\alpha ^*_3 S^*_3 + \beta ^*_3 S_3)\) are uniquely expressed, positive and (cds) functions of \((\alpha ^*_3 S^*_3 + \beta ^*_3 S_3) \in [0,\infty )\). The expression \(\varDelta g_3(S_3,S^*_3) = (\alpha ^*_3 S^*_3 + \beta ^*_3 S_3){\tilde{S}}^*_4(\alpha ^*_3 S^*_3 + \beta ^*_3 S_3)\) is (cis0) function of \((\alpha ^*_3 S^*_3 + \beta ^*_3 S_3)\) and \(g^{\prime }_3(S_3,S^*_3) = g_3(S_3,S^*_3) + \varDelta g_3(S_3,S^*_3)\) has the required properties in Eq. 21. The right side of the balance equation for node 3, \(S_4 \cdot (\gamma ^*_3 S^*_3 - \delta ^*_3 S_3) \equiv {\tilde{S}}^*_4 \cdot (\gamma ^*_3 S^*_3 - \delta ^*_3 S_3)\), becomes \(q_3(S_3,S^*_3) = (\gamma ^*_3 S^*_3 - \delta ^*_3 S_3) {\tilde{S}}^*_4(\alpha ^*_3 S^*_3 + \beta ^*_3 S_3)\) and it follows from the case [image: ] that the required properties of \(q_3\) are also satisfied.
1.6 Proof of Lemma 3
                           

                    Proof

                    For positive \(\sigma \), Eq. 40 can be written as
$$\begin{aligned} \chi (\sigma ,S^*,S) = -\sigma \cdot (\gamma S - \delta S^*) + q(S,S^*) = 0. \end{aligned}$$

The function \(\chi (\sigma ,S^*,S)\) is continuous on \((\sigma ,S^*,S) \in (0,\infty ) \times [0,\infty ) \times [0,\infty )\), (is) in \(S^*\) and (ds) in S when other variables are fixed, by properties of the function q in Eq. 21 and \(\chi (\sigma ,0,0) = 0\) for any \(\sigma > 0\). Applying Proposition 1, we get a family of (cis0n) functions \(S(S^*,\sigma )\) of \(S^* \in [0,S^*_{max}(\sigma ))\), parameterised by \(\sigma > 0\). It is possible to make a stronger statement for \(S(S^*,\sigma )\) considered as a function of two variables.

                  
                    Proposition 5

                    \(S(S^*,\sigma )\) constructed above is defined on \([0,\infty ) \times (0,\infty )\), continuous on \((0,\infty ) \times (0,\infty )\) and (cis0n) in \(S^*\).

                  
                    Proof

                    Let us first show that the domain of definition of \(S(S^*,\sigma )\) contains \([0,\infty ) \times (0,\infty )\) or, equivalently, that \(S^*_{max}(\sigma ) = \infty \), \(\forall \sigma > 0\). Let us substitute the representation specified in Lemma 3 for the function q in Eq.  40 and rewrite it as
$$\begin{aligned} \sigma \gamma S + \delta ^* S \rho ^*(\alpha ^* S^* + \beta ^* S) = \sigma \delta S^* + \gamma ^* S^* \rho ^*(\alpha ^* S^* + \beta ^* S). \end{aligned}$$

We see that the left side grows at least linearly in S for any choice of kinetic parameters and the right side can be bounded from above in both variables if \(\delta = 0\). Indeed, \(S^* \rho ^*(\alpha ^* S^* + \beta ^* S)\) is a positive, decreasing function of S and an increasing and bounded function of \(S^*\). Thus, the left side, and therefore also S, has to be bounded if \(\delta = 0\). If S is bounded, then \(S^*\) cannot be (as follows from Proposition 1). On the other hand, if S goes to \(\infty \), when \(\delta > 0\), then so does \(S^*\) (the right side can be unbounded only in \(S^*\)). Thus \(S^*_{max}(\sigma ) = \infty \), \(\forall \sigma > 0\).

                    Let us apply Lemma 1 to the three-dimensional function \({\mathscr {F}}(S^*,\sigma ,S) = \chi (\sigma ,S^*,S)\). We get that the function \(S(S^*,\sigma )\) defined on \([0,\infty ) \times (0,\infty )\) is continuous on \((0,\infty ) \times (0,\infty )\), (is) in \(S^* \in [0,\infty )\) and \(S(0,\sigma ) = 0\), \(\sigma > 0\). This completes the proof of Proposition 5. \(\square \)

                  Continuing with the proof of Lemma 3, we can now substitute \(S(S^*,\sigma )\) into Eq. 41 to get
$$\begin{aligned} g(S(S^*,\sigma ),S^*) + \sigma \cdot (\alpha S(S^*,\sigma ) + \beta S^*) = S_T. \end{aligned}$$

The left side of the equation is (cis0) and unbounded in \(S^*\). Therefore there is an unique solution \(S^*(\sigma )>0\) for any \(\sigma > 0\). Applying Lemma 1 to the function \({\mathscr {F}}(\sigma ,S^*) = g(S(S^*,\sigma ),S^*) + \sigma \cdot (\alpha S(S^*,\sigma ) + \beta S^*) - S_T\), we deduce that \(S^*(\sigma )\) is continuous for \(\sigma \in (0,\infty )\). The composition \(S(S^*(\sigma ),\sigma )\) is continuous for \(\sigma \in (0,\infty )\) as well. \(S(S^*(\sigma ),\sigma )\) is positive for \(\sigma \in (0,\infty )\) because \(S^*(\sigma )\) is.
If \(\sigma = 0\), then Eqs. 40 and  41 greatly simplify. The first equation becomes \(q(S,S^*) = 0\). Applying Proposition 1 to the function \(\phi (S,S^*) = -q(S,S^*)\), we obtain a function \(S^*(S)\) which is (ci0n) on some maximal interval \([0,{\tilde{S}}_{max})\). Substituting \(S^*(S)\) in Eq.  41 at \(\sigma = 0\), we get
$$\begin{aligned} g(S,S^*(S)) = S_T. \end{aligned}$$

The left side is a (cis0) function of \(S \in [0,\tilde{S}_{max})\) which is unbounded from above. Therefore there is a unique solution \(S \in (0,S_T]\).
Having constructed unique solutions of Eqs. 40 and 41, \(S(S^*(\sigma ))\) and \(S^*(\sigma )\), it will be convenient to combine them and denote the solutions simply as \(S(\sigma )\) and \(S^*(\sigma )\).
Next we show that \(\sigma \cdot (\alpha S_2(\sigma ) + \beta S^*(\sigma ) )\) is continuous and monotonously increasing for \(\sigma \in [0, \infty )\). We already showed that \(S(S^*(\sigma ),\sigma )\) and \(S^*(\sigma )\) are continuous for \(\sigma \in (0,\infty )\). Also, clearly, \(0 \le S \le S_T\), \(0 \le S^* \le S_T\) for any \(\sigma \ge 0\). This means that \(\lim _{\sigma \rightarrow 0^+} \sigma \cdot (\alpha S(\sigma ) + \beta S^*(S(\sigma ),\sigma )) = 0\), which implies continuity of \(\sigma \cdot (\alpha S(\sigma ) + \beta S^*(\sigma ))\) at \(\sigma = 0\).
Now let us prove that \(\sigma \cdot (\alpha S(\sigma ) + \beta S^*(\sigma ))\) is monotonously increasing in \(\sigma \in [0,\infty )\). Suppose \(\sigma \) is increasing to \(\sigma + \varDelta \sigma \), \(\varDelta \sigma > 0\). Then S and \(S^*\) will change to some \(S + \varDelta S\) and \(S^* + \varDelta S^*\), respectively. We need to consider four different cases:
1) \(\varDelta S \ge 0\) and \(\varDelta S^* \ge 0\) and at least one of them is strictly greater than zero. Since \(\varDelta \sigma > 0\), we get a contradiction because the left side of the substrate conservation equation 41 is increasing, while the right side is not changed.
2) \(\varDelta S \le 0\) and \(\varDelta S^* \le 0\) and at least one of them is strictly less than zero. Then, \(\sigma \cdot (\alpha S + \beta S^*) = S_T - g(S,S^*)\) is indeed monotonously increasing from zero.
3) \(\varDelta S > 0\) and \(\varDelta S^* < 0\). Now the right side of Eq. 40 is decreasing (because of the properties of the function q in Eq. 21). Therefore \(\sigma \cdot (\gamma S - \delta S^*)\) has to decrease as well. This is possible only if \(\delta > 0\). If \(\beta = 0\), we find that \(\sigma \cdot \alpha S\) is indeed increasing. If \(\beta > 0\), we can write
$$\begin{aligned} \sigma \cdot (\alpha S + \beta S^*) = \frac{\beta }{\delta }\left( \sigma \cdot (\delta S^* - \gamma S) + (\gamma + \frac{\delta }{\beta } \alpha ) \sigma \cdot S\right) \end{aligned}$$

which shows that it is monotonously increasing from zero as well.
4) \(\varDelta S < 0\) and \(\varDelta S^* > 0\). Now the right side of Eq. 40 is increasing (because of the properties of the function q in Eq. 21). Therefore \(\sigma \cdot (\gamma S - \delta S^*)\) has to increase as well. But now our expression can be rearranged so that,
$$\begin{aligned} \sigma \cdot (\alpha S + \beta S^*) = \frac{\alpha }{\gamma } (\sigma \cdot (\gamma S - \delta S^*) + (\delta + \frac{\gamma }{\alpha } \beta ) \sigma \cdot S^*), \end{aligned}$$

which shows that it is monotonously increasing from zero. This completes the proof of Lemma 3. \(\square \)
1.7 Eliminating a Terminal Node in Theorem 1
                           
We show that the cases \(1 \Rightarrow 2\), [image: ] and [image: ] are equivalent to the case \(1 \rightarrow 2\) by redefining the variables. The crucial step in eliminating the variables of the terminal node 2 with a single incoming link from node 1 (Sect. 2.2.5) is to prove that expression of variables \(S_2\), \(S^*_2\) in favour of \(S_1\) or \(S^*_1\) is unique and that, after elimination of \(S_2\) and \(S^*_2\), the new \(g^\prime _1(S_1,S^*_1) = g_1(S_1,S^*_1) + \varDelta g_1(S_1,S^*_1)\) has the required properties in Eq. 21. We confirm these requirements in each case.
Case \(1 \Rightarrow 2\). The balance and substrate conservation equations for node 2 take the form
$$\begin{aligned}&\displaystyle S_1 \cdot (\gamma _2 S_2 - \delta _2 S^*_2) = q_2(S_2,S^*_2),\\&\displaystyle g_2(S_2,S^*_2) + S_1 \cdot (\alpha _2 S_2 + \beta _2 S^*_2) = S_{2T}. \end{aligned}$$

These equations are the same as for the case \(1 \rightarrow 2\) in Sect. 2.2.5, with \(S^*_1\) replaced by \(S_1\). Thus \(S_2(S_1)\) and \(S^*_2(S_1)\) are uniquely expressed and positive for \(S_1 > 0\). Furthermore, \(\varDelta g_1(S_1,S^*_1) = S_1 \cdot (\alpha _2 S_2(S_1) + \beta _2 S^*_2(S_1))\) has the same properties as a function of \(S_1\) as \(\varDelta g_1(S_1,S^*_1) = S^*_1 \cdot (\alpha _2 S_2(S^*_1) + \beta _2 S^*_2(S^*_1))\) has as a function of \(S^*_1\) for the case \(1 \rightarrow 2\) (Sect. 2.2.5).
Case [image: ]. The balance and substrate conservation equations for node 2 take the form
$$\begin{aligned}&\displaystyle p_2(S_2,S^*_2) = S^*_1 \cdot (\gamma ^*_2 S^*_2 - \delta ^*_2 S_2),\\&\displaystyle g_2(S_2,S^*_2) + S^*_1 \cdot (\alpha ^*_2 S^*_2 + \beta ^*_2 S_2) = S_{2T}. \end{aligned}$$

Consider the following redefinition of parameters, variables and functions for node 2, which preserve the properties of these functions, \(\alpha ^*_2 = {{\tilde{\alpha }}}_2\), \(\beta ^*_2 = \tilde{\beta }_2\), \(\gamma ^*_2 = {{\tilde{\gamma }}}_2\), \(\delta ^*_2 = \tilde{\delta }_2\), \(S_2 = {\tilde{S}}^*_2\), \(S^*_2 = {\tilde{S}}_2\), \(p_2(S_2,S^*_2) = {\tilde{q}}_2({\tilde{S}}_2,{\tilde{S}}^*_2)\) and \(g_2(S_2,S^*_2) = {\tilde{g}}_2({\tilde{S}}_2,{\tilde{S}}^*_2)\). The equations above now take the form
$$\begin{aligned}&\displaystyle S^*_1 \cdot ({{\tilde{\gamma }}}_2 {\tilde{S}}_2 - {{\tilde{\delta }}}_2 \tilde{S}^*_2) = {\tilde{q}}_2({\tilde{S}}_2,{\tilde{S}}^*_2),\\&\displaystyle {\tilde{g}}_2({\tilde{S}}_2,{\tilde{S}}^*_2) + S^*_1 \cdot ({{\tilde{\alpha }}}_2 {\tilde{S}}_2 + {{\tilde{\beta }}}_2 {\tilde{S}}^*_2) = S_{2T}, \end{aligned}$$

which are the same as for the case \(1 \rightarrow 2\) (Sect. 2.2.5). Thus \(S_2 = {\tilde{S}}^*_2(S^*_1)\) and \(S^*_2 = {\tilde{S}}_2(S^*_1)\) are uniquely expressed and positive for \(S^*_1 > 0\). Furthermore, \(\varDelta g_1(S_1,S^*_1) = S^*_1 \cdot ({{\tilde{\alpha }}}_2 \tilde{S}_2(S^*_1) + {{\tilde{\beta }}}_2 S^*_2(S^*_1))\) has the same properties as a function of \(S^*_1\) as \(\varDelta g_1(S_1,S^*_1) = S^*_1 \cdot (\alpha _2 S_2(S^*_1) + \beta _2 S^*_2(S^*_1))\) has as a function of \(S^*_1\) for the case \(1 \rightarrow 2\) (Sect. 2.2.5).
Case [image: ]. The balance and substrate conservation equations for node 2 take the form
$$\begin{aligned}&\displaystyle p_2(S_2,S^*_2) = S_1 \cdot (\gamma ^*_2 S^*_2 - \delta ^*_2 S_2),\\&\displaystyle g_2(S_2,S^*_2) + S_1 \cdot (\alpha ^*_2 S^*_2 + \beta ^*_2 S_2) = S_{2T}. \end{aligned}$$

which are the same as for the case [image: ] above, with \(S^*_1\) replaced by \(S_1\). Thus \(S_2(S_1)\) and \(S^*_2(S_1)\) are uniquely expressed and positive for \(S_1 > 0\). Furthermore, \(\varDelta g_1(S_1,S^*_1) = S_1 \cdot (\alpha ^*_2 S^*_2(S_1) + \beta ^*_2 S_2(S_1))\) has the same properties as a function of \(S_1\) as \(\varDelta g_1(S_1,S^*_1) = S^*_1 \cdot (\alpha ^*_2 S^*_2(S^*_1) + \beta ^*_2 S_2(S^*_1))\) has as a function of \(S^*_1\) for the case [image: ] above.
1.8 Proof of Lemma 4
                           

                    Proof

                    Expressing E from Eq. 50 and substituting in 51 we get
$$\begin{aligned} \phi (\sigma ,Y) = k_{\text {on}}(E_T - Y,\sigma ) - (k_{\text {off}}+k_{\text {cat}})(Y) = 0, \end{aligned}$$

where \(\phi (\sigma ,Y)\) is a continuous (i) \(\times \) (ds) function on \([0,\infty ) \times [0,E_T]\). Applying Proposition 2 to \(\phi (\sigma ,Y)\), we obtain a (ci0) function \(Y(\sigma )\) on \([0,\infty )\). This follows from Proposition 2 and from the fact that \(\phi (\sigma , E_T) < 0\) for any \(\sigma \ge 0\), so that Y can never reach \(E_T\). Therefore the curve is bounded by \(E_T\) and has to be unbounded in \(\sigma \). In fact, \(Y(\sigma )\) is (cis0), because \(\phi \) is (is) \(\times \) (ds) on \([0,\infty ) \times [0,y]\), for any \(0< y < E_T\). Since \(Y < E_T\), \(E(\sigma )\) is positive and (cds). \(\square \)

                  1.9 Proof of Lemma 5
                           

                    Proof

                    Applying Proposition 1 to the continuous function \(\phi (S^*, S) = q(S^*) - p(S)\), which is (is) \(\times \) (ds) on \([0, \infty ) \times [0, \infty )\), and using Eq. 66, we obtain a (cis0n) function \(S(S^*)\) on \(S^* \in [0,S^*_{max})\). Substituting this solution in Eq. 67, we get
$$\begin{aligned} g(S(S^*)) + g^*(S^*) + Y = S_T. \end{aligned}$$

Since \(g(S(S^*)) + g^*(S^*)\) is a (cis0) and unbounded from above function of \(S^* \in [0,S_{max})\) from the last equation we obtain unique solution \(S^*(Y)\), \(Y \in [0,S_T]\). Obviously, \(S^*_0 = S^*(0) < S_{max}\). Let us define \({\tilde{S}}^* = S^*_0 - S^*\). Applying Proposition 2 to the continuous (is) \(\times \) (ds) function \(\phi (Y,{\tilde{S}}^*) = g(S(S^*_0 - \tilde{S}^*)) + g^*(S^*_0 - {\tilde{S}}^*) + Y - S_T = 0\) defined on \([0,\infty ) \times [0, S^*_0]\), we obtain a (cis0) function \({\tilde{S}}^*(Y)\) on \([0,S_T]\), such that \({\tilde{S}}^*(S_T) = S^*_0\). Equivalently we have a (cds) function \(S^*(Y) = S^*_0 - \tilde{S}^*(Y)\) on \([0,S_T]\).

                    Substituting \(S^*(Y)\) into Eq. 68, we get
$$\begin{aligned} k_{\text {on}}(S^*(Y),\sigma ) = (k_{\text {off}} + k_{\text {cat}})(Y). \end{aligned}$$

Applying Proposition 2 to the continuous (i) \(\times \) (ds) function
$$\begin{aligned} \phi (\sigma ,Y) = k_{\text {on}}(S^*(Y),\sigma ) - (k_{\text {off}} + k_{\text {cat}})(Y) \end{aligned}$$

defined on \([0,\infty ) \times [0,S_T]\), we obtain a (ci0) solution \(Y(\sigma )\) on \([0,\infty )\). The corresponding curve C is not bounded in the direction \(\sigma \) because \(\phi (\sigma , S_T) < 0\) for any \(\sigma \ge 0\), so that Y cannot equal \(S_T\). In fact, \(Y(\sigma )\) is (cis0), because \(\phi \) is (is) \(\times \) (ds) on \([0, \infty ) \times [0, y)\), for any \(0< y < S_T\).

                    Since \(Y(\sigma ) < S_T\), it follows that \(S^*(Y(\sigma ))\) and \(S(S^*(Y(\sigma )))\) are both (cds) and positive for \(\sigma \in [0,\infty )\). \(\square \)

                  1.10 Eliminating a Root Node in Theorem 2
                           
We show that the cases \(4 \Rightarrow 3\), [image: ] and [image: ] are equivalent to the case \(4 \rightarrow 3\) by redefining the variables. The crucial step in eliminating the variables of the root node 4 with a single outgoing link to node 3 (Sect. 2.3.3.1) is to prove that expression of the variables \(S_4\), \(S^*_4\) and the corresponding intermediate complex, in favour of \(S_3\) or \(S^*_3\), is unique and that, after eliminating node 4, the new \(g^\prime _3(S_3) = g_3(S_3) + \varDelta g_3(S_3)\) or \(g^{*\prime }_3(S^*_3) = g^*_3(S^*_3) + \varDelta g^*_3(S^*_3)\) and the terms \(p_3(S_3)\) or \(q_3(S^*_3)\) have the required properties in Eq. 52.
Case \(4 \Rightarrow 3\). The balance and substrate conservation equations for node 4 and the kinetic equation for node 3 take the form
$$\begin{aligned}&\displaystyle p_4(S_4) = q_4(S^*_4),\\&\displaystyle g_4(S_4) + g^*_4(S^*_4) + S_4 S_3 = S_{4T},\\&\displaystyle k_{\text {on},3}(S_4,S_3) = (k_{\text {off},3} + k_{\text {cat},3})(S_4 S_3). \end{aligned}$$

Consider the following redefinition of the variables and functions for node 4, which preserves the properties of these functions, \(S_4 = {\tilde{S}}^*_4\), \(S^*_4 = {\tilde{S}}_4\), \(p_4(S_4) = \tilde{q}_4({\tilde{S}}^*_4)\), \(q_4(S^*_4) = {\tilde{p}}_4({\tilde{S}}_4)\), \(g_4(S_4) = {\tilde{g}}^*_4({\tilde{S}}^*_4)\), \(g^*_4(S^*_4) = {\tilde{g}}_4(\tilde{S}_4)\) and \(S_4 S_3 = Y\). The equations above now take the form
$$\begin{aligned}&\displaystyle {\tilde{p}}_4({\tilde{S}}_4) = {\tilde{q}}_4({\tilde{S}}^*_4),\\&\displaystyle {\tilde{g}}_4({\tilde{S}}_4) + \tilde{g}^*_4({\tilde{S}}^*_4) + Y = S_{4T},\\&\displaystyle k_{\text {on},3}({\tilde{S}}^*_4,S_3) = (k_{\text {off},3} + k_{\text {cat},3}) (Y), \end{aligned}$$

which are the same as for the case \(4 \rightarrow 3\) (Sect. 2.3.3.1). Thus \(S_4(S_3) = {\tilde{S}}^*_4(S_3)\), \(S^*_4(S_3) = {\tilde{S}}_4(S_3)\) and \(S_4 S_3(S_3) = Y(S_3)\) are uniquely expressed in terms of \(S_3\), and \(S_4\) and \(S^*_4\) are positive. Furthermore, \(\varDelta g_4(S_3) = S_4 S_3(S_3) = Y(S_3)\) and the term \(p_3(S_3) = k_{\text {cat},3}(S_4 S_3(S_3)) = k_{\text {cat},3}(Y(S_3))\), which appears upon removal of node 4, are both (cis0).
Case [image: ]. The balance and substrate conservation equations for node 4 and the kinetic equation for node 3 take the form
$$\begin{aligned}&\displaystyle p_4(S_4) = q_4(S^*_4),\\&\displaystyle g_4(S_4) + g^*_4(S^*_4) + S^*_4 S^*_3 = S_{4T},\\&\displaystyle k^*_{\text {on},3}(S^*_4,S^*_3) = (k^*_{\text {off},3} + k^*_{\text {cat},3})(S^*_4 S^*_3), \end{aligned}$$

which are the same as for the case \(4 \rightarrow 3\) (Sect. 2.3.3.1), except for the name of the functions in the last equation and replacement of \(S_3\) and \(S^*_4 S_3\) by \(S^*_3\) and \(S^*_4 S^*_3\), respectively. Thus \(S_4(S^*_3)\), \(S^*_4(S^*_3)\) and \(S^*_4 S^*_3(S^*_3)\) are expressed uniquely and \(S_4\) and \(S^*_4\) are positive. Furthermore, the term \(\varDelta g^*_3(S^*_3) = S^*_4 S^*_3(S^*_3)\) and the term \(q_3(S^*_3) = S^*_4 S^*_3(S^*_3)\), which appears upon removal of node 4, are both (cis0).
Case [image: ]. The balance and substrate conservation equations for node 4 and the kinetic equation for node 3 take the form
$$\begin{aligned}&\displaystyle p_4(S_4) = q_4(S^*_4),\\&\displaystyle g_4(S_4) + g^*_4(S^*_4) + S_4 S^*_3 = S_{4T},\\&\displaystyle k^*_{\text {on},3}(S_4,S^*_3) = (k^*_{\text {off},3} + k^*_{\text {cat},3})(S_4 S^*_3), \end{aligned}$$

which are the same as for case \(4 \Rightarrow 3\) above, except for the name of the functions in the last equation and replacement of \(S_3\) and \(S_4 S_3\) by \(S^*_3\) and \(S_4 S^*_3\). Thus \(S_4(S^*_3)\), \(S^*_4(S^*_3)\) and \(S_4 S^*_3(S^*_3)\) are expressed uniquely and \(S_4\) and \(S^*_4\) are positive. Furthermore, the term \(\varDelta g^*_3(S^*_3) = S_4 S^*_3(S^*_3)\) and the term \(q_3(S^*_3) = S_4 S^*_3(S^*_3)\), which appears upon removal of node 4, are both (cis0).
1.11 Proof of Lemma 6
                           

                    Proof

                    Applying Proposition 1 to the function \(\phi (Y,S^*)=k_{\text {cat}}(Y) - q(S^*)\) using Eq. 72, we obtain a (cis0n) function \(S^*(Y)\) on \([0,Y_{max})\). Substituting this solution in Eq. 73, we get
$$\begin{aligned} g(S) + g^*(S^*(Y)) + Y = S_T. \end{aligned}$$

Since g(S) is a (cis0) unbounded from above function of \(S \in [0,\infty )\) and \(g^*(S^*(Y)) + Y\) is a (cis0) unbounded from above function of \(Y \in [0,Y_{max})\) from the last equation we obtain unique solution Y(S) for \(S \in [0,S_{max}]\), where \(S_{max}\) is the unique solution of \(g(S_{max}) = S_T\). Clearly \(Y(S_{max}) = 0\) and \(Y_0 = Y(0) < Y_{max}\).

                    Let us introduce the variable \(\tilde{Y} = Y_0 - Y\). Applying Proposition 2 to the continuous (is) \(\times \) (ds) function \(\phi (S,\tilde{Y}) = g(S) + g^*(S^*(Y_0 - {\widetilde{Y}})) + Y_0 - \tilde{Y} - S_T\) defined on \([0,\infty ) \times [0,Y_0]\) using the above equation, we obtain a (cis0) solution \(\tilde{Y}(S)\) on \(S \in [0,S_{max}]\). Therefore Y(S) is a (cds) function on this interval and the inverse S(Y) is a (cds) function on \([0,Y_0]\), such that \(S(0) = S_{max}\) and \(S(Y_0) = 0\).

                    Substituting S(Y) into Eq. 74, we get
$$\begin{aligned} k_{\text {on}}(\sigma ,S(Y)) = (k_{\text {off}} + k_{\text {cat}})(Y). \end{aligned}$$

Applying Proposition 2 to the continuous (i) \(\times \) (ds) function \(\phi (\sigma ,Y) = k_{\text {on}}(\sigma ,S(Y)) - (k_{\text {off}} + k_{\text {cat}})(Y)\) defined on \([0,\infty ) \times [0,Y_0]\), we obtain a (ci0) function \(Y(\sigma )\). It is bounded and defined on \([0,\infty )\), because \(\phi (\sigma , Y_0) < 0\), for all \(\sigma \ge 0\), so that the corresponding curve cannot cross \(Y = Y_0\). In fact, \(Y(\sigma )\) is a (cis0) function, because \(\phi \) is continuous (is) \(\times \) (ds) on \([0,\infty ) \times [0,y]\), for any \(0< y < Y_0\).

                    Since \(Y(\sigma )\) is a (cis0), so is \(S^*(Y(\sigma ))\). In addition, since \(Y(\sigma ) < Y_0\), it follows that \(S(Y(\sigma ))\) is a positive and (cds) function of \(\sigma \in [0,\infty )\). \(\square \)

                  1.12 Eliminating a Terminal Node in Theorem 2
                           
We show that the cases \(1 \Rightarrow 2\), [image: ] and [image: ] are equivalent to the case \(1 \rightarrow 2\) by redefining the variables. The crucial step in expression of the variables of the terminal node 2 with a single incoming link from node 1 (Sect. 2.3.3.2) is to prove that expression of variables \(S_2\), \(S^*_2\) and the corresponding intermediate complex in favour of \(S_1\) or \(S^*_1\) is unique and that, after elimination of node 2, the new \(g^\prime _1(S_1) = g_1(S_1) + \varDelta g_1(S_1)\) or \(g^{*\prime }_1(S^*_1) = g^*_1(S^*_1) + \varDelta g^*_1(S^*_1)\) have the required properties in Eq. 52.
Case \(1 \Rightarrow 2\). The balance, substrate conservation and kinetic equations for node 2 take the form
$$\begin{aligned}&\displaystyle k_{\text {cat},2}(S_1 S_2) = q_2(S^*_2),\\&\displaystyle g_2(S_2) + g^*_2(S^*_2) + S_1 S_2 = S_{2T},\\&\displaystyle k_{\text {on},2}(S_1,S_2) = (k_{\text {off},2} + k_{\text {cat},2})(S_1 S_2), \end{aligned}$$

which are the same as for the case \(1 \rightarrow 2\) (Sect. 2.3.3.2), with \(S^*_1\) and \(S^*_1 S_2\) replaced by \(S_1\) and \(S_1 S_2\), respectively. Thus, \(S_2(S_1)\), \(S^*_2(S_1)\) and \(S_1 S_2(S_1)\) are uniquely expressed and \(S_2\) and \(S^*_2\) are positive for \(S_1 > 0\). Furthermore, the term \(\varDelta g_1(S_1) = S_1 S_2(S_1)\) has the same properties as a function of \(S_1\) as \(\varDelta g^*_1(S^*_1) = S^*_1 S_2(S^*_1)\) has as a function of \(S^*_1\) for the case \(1 \rightarrow 2\) (Sect. 2.3.3.2).
Case [image: ]. The balance, substrate conservation and kinetic equations for node 2 take the form
$$\begin{aligned}&\displaystyle p_2(S_2) = k^*_{\text {cat},2}(S^*_1 S^*_2),\\&\displaystyle g_2(S_2) + g^*_2(S^*_2) + S^*_1 S^*_2 = S_{2T},\\&\displaystyle k^*_{\text {on},2}(S^*_1,S^*_2) = (k^*_{\text {off},2} + k^*_{\text {cat},2})(S^*_1 S^*_2). \end{aligned}$$

Consider the following redefinition of variables and functions for node 2, which preserves the properties of the functions, \(S_2 = {\tilde{S}}^*_2\), \(S^*_2 = {\tilde{S}}_2\), \(S^*_1 S^*_2 = Y\), \(p_2(S_2) = {\tilde{q}}_2({\tilde{S}}^*_2)\), \(g_2(S_2) = {\tilde{g}}^*_2({\tilde{S}}^*_2)\), \(g^*_2(S^*_2) = {\tilde{g}}_2({\tilde{S}}_2)\), \(k^*_{\text {on},2}(S^*_1,S^*_2) = \tilde{k}_{\text {on},2}(S^*_1,{\tilde{S}}_2)\), \(k^*_{\text {off},2}(S^*_1 S^*_2) = {\tilde{k}}_{\text {off},2}(Y)\) and \(k^*_{\text {cat},2}(S^*_1 S^*_2) = {\tilde{k}}_{\text {cat},2}(Y)\). The equations above now take the form
$$\begin{aligned}&\displaystyle {\tilde{k}}_{\text {cat},2}(Y) = {\tilde{q}}_2({\tilde{S}}^*_2),\\&\displaystyle {\tilde{g}}_2({\tilde{S}}_2) + {\tilde{g}}^*_2({\tilde{S}}^*_2) + Y = S_{2T},\\&\displaystyle {\tilde{k}}_{\text {on},2}(S^*_1,{\tilde{S}}_2) = (\tilde{k}_{\text {off},2} + {\tilde{k}}_{\text {cat},2})(Y), \end{aligned}$$

which are the same as for the case \(1 \rightarrow 2\) (Sect. 2.3.3.2). Thus \(S_2 = {\tilde{S}}^*_2(S^*_1)\), \(S^*_2 = {\tilde{S}}_2(S^*_1)\) and \(S^*_1 S^*_2 = Y(S^*_1)\) are uniquely expressed and \(S_2\) and \(S^*_2\) are positive for \(S^*_1 > 0\). Furthermore, the term \(\varDelta g^*_1(S^*_1) = Y(S^*_1)\) has the same properties as a function of \(S^*_1\) as \(\varDelta g^*_1(S^*_1) = S^*_1 S_2(S^*_1)\) has as a function of \(S^*_1\) for the case \(1 \rightarrow 2\) (Sect. 2.3.3.2).
Case [image: ]. The balance, substrate conservation and kinetic equations for node 2 take the form
$$\begin{aligned}&\displaystyle p_2(S_2) = k^*_{\text {cat},2}(S_1 S^*_2),\\&\displaystyle g_2(S_2) + g^*_2(S^*_2) + S_1 S^*_2 = S_{2T},\\&\displaystyle k^*_{\text {on},2}(S_1,S^*_2) = (k^*_{\text {off},2} + k^*_{\text {cat},2})(S_1 S^*_2), \end{aligned}$$

which are the same as for the case [image: ] above, with \(S^*_1\) and \(S^*_1 S^*_2\) replaced by \(S_1\) and \(S_1S^*_2\), respectively. Thus, \(S_2(S_1)\), \(S^*_2(S_1)\) and \(S_1 S^*_2(S_1)\) are uniquely expressed and \(S_2\) and \(S^*_2\) are positive for \(S_1 > 0\). Furthermore, the term \(\varDelta g_1(S_1) = S_1 S^*_2(S_1)\) has the same properties as a function of \(S_1\) as \(\varDelta g^*_1(S^*_1) = S^*_1 S^*_2(S^*_1)\) has as a function of \(S^*_1\) for the case [image: ].
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