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Abstract
Modelling of natural selection in self-replicating systems has been heavily influenced
by the concept of fitness which was inspired by Darwin’s original idea of the survival
of the fittest. However, so far the concept of fitness in evolutionary modelling is still
somewhat vague, intuitive and often subjective. Unfortunately, as a result of this, using
different definitions of fitness can lead to conflicting evolutionary outcomes. Here we
formalise the definition of evolutionary fitness to describe the selection of strategies
in deterministic self-replicating systems for generic modelling settings which involve
an arbitrary function space of inherited strategies. Our mathematically rigorous def-
inition of fitness is closely related to the underlying population dynamic equations
which govern the selection processes. More precisely, fitness is defined based on the
concept of the ranking of competing strategies which compares the long-term dynam-
ics of measures of sets of inherited units in the space of strategies. We also formulate
the variational principle of modelling selection which states that in a self-replicating
system with inheritance, selection will eventually maximise evolutionary fitness. We
demonstrate how expressions for evolutionary fitness can be derived for a class of
models with age structuring including systems with delay, which has previously been
considered as a challenge.
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1 Introduction

The concept of evolutionary fitness is one of the best-known paradigms in theoreti-
cal approaches to the description of biological evolution and adaptation (Birch 2016;
Gavrilets 2004). Charles Darwin himself stated the famous principle of the ‘survival
of the fittest’, indicating the key role of selection of life traits or behavioural strate-
gies against certain criteria which can be formalised mathematically via some fitness
function (Darwin 1859). The quantitative description of evolutionary fitness came
first from the seminal works of Wright (1932, 1988), in which biological evolution
was visualised as a ‘hill-climbing’ process in a certain parametric landscape, through
which natural selection in the population increases its fitness (Birch 2016; Davies et al.
2012; Gavrilets 2004; Roff 1992). Usually, fitness is defined as the expected number of
offspring produced by an individual that will survive until reproductive age (Mangel
and Clark 1988; McNamara et al. 2001). Eventually, the process of evolution under
these settings should lead the population to evolve to the nearest local maximum of
the fitness landscape, and then stop. For this reason, the concept of fitness is central to
evolutionary modelling: given a particular fitness function, the evolutionary outcome
can be predicted using an optimisation procedure to find the life traits or behaviours
which maximise it.

However, the choice of fitness for a subpopulation is generally subjective and
strongly depends on the personal preference of the modeller. For example, one can
claim that to find optimal life traits, we should maximise (taking into account some
possible constraints) the individual reproductive value (Fiksen and Carlotti 1998;
Mangel and Clark 1988; McNamara et al. 2001), the growth rate (or minimise the
mortality rate) (Han and Straskraba 1998, 2001), the ratio between the food intake
and mortality (De Robertis 2002; Gilliam and Fraser 1987; Sainmont et al. 2015)
or a certain entropy function (Levich 2000). It probably comes as no surprise that
the use of different optimisation criteria can potentially produce conflicting outcomes
(Kuzenkov and Ryabova 2015; Morozov and Kuzenkov 2016). In addition, more
advanced game-theoretical approaches in evolutionary modelling—which take into
account the strategies of the competitors—may suffer from the same drawback since
the resultant evolutionarily stable strategy (ESS) generally depends on the choice of
fitness—as defined by the pay-off matrix (Broom and Rychtar 2013; Hofbauer and
Sigmund 1998). Another shortcoming of the idea of optimising a certain fixed criterion
such as the individual reproductive value is that such an approach does not take into
account the possible impact of the evolution of species traits on the biotic and abiotic
components of the environment (McNamara et al. 2001). For example, a successful
behavioural strategy can result in the temporary proliferation of a population, but this
may cause a corresponding increase of the population of their predators which can
cause a decline in the original population (Morozov and Kuzenkov 2016; Sandhu et al.
2017).

Because of the influence of environmental feedbacks on evolution, there is a general
understanding in the literature that modelling the evolution of life traits or behaviour
should be somehow linked to the underlyingpopulationdynamics equations. For exam-
ple, the evolution of frequencies of competing strategies can bemodelled using a repli-
cator equation (Karev 2010). The individual-basedmodelling approach explicitly con-
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siders the reproduction, spatial movement, competition and mortality of each individ-
ualwithin a population or group (Hellweger et al. 2016): this approach, however, is usu-
ally computationally demanding and does not allow us to obtain analytically tractable
solutions (Hamblin 2013). A popular approach which links population dynamics with
evolutionary processes and allows analytical treatment of the problem is adaptive
dynamics. Adaptive dynamics is based on the concept of invasion fitness, defined as
the long-term per capita invasion rate of an initially rare mutant strain introduced into
an environment determined by a resident strain (Geritz et al. 1997, 1998;Morozov and
Adamson 2011; Parvinen et al. 2006). The relative simplicity of the adaptive dynamics
framework comes at a price: the method is only applicable to an ergodic environment
and assumes rare mutations which make small steps in trait space (Metz et al. 1992).
Given these assumptions, and assuming that the overall amount of mutants in the sys-
tem is small, pairwise comparisons between a resident and a mutant population can
be made. However, these simplifications are not always biologically justified (Wax-
man and Gavrilets 2005): for example, often natural selection occurs via simultaneous
competition among large numbers of strains with comparable population densities.

A generic approach tomodelling selection in self-reproducing systems should allow
us to deal with arbitrary types of life traits (either scalar or function-valued) across a
different set of initial conditions and external forcing, in the case where the environ-
ment is not necessarily ergodic, for example. One promising approach to modelling
natural selection considers dynamics of the measures of sets in the underlying space
of traits (Gorban 2007). The outcome of evolutionary modelling is described by the
long-term dynamics of measures of sets of inherited elements, rather than the com-
parison of a number of ‘pure’ life traits against each other. Note that in the case of the
presence of a large number of strategies, one can approximate them by a continuum
framework.

In this paper, we extend the original ideas of Gorban (2007) and revisit the concept
of evolutionary fitness in self-replicating systems in the case where the space of inher-
ited units is an arbitrary function space (encompassing scalar life trait parameters,
as well as function-valued behavioural traits and their combinations). We first intro-
duce the ranking order of competing sets of strategies using the underlying population
dynamic equations. Then we propose a mathematically rigorous definition of evolu-
tionary fitness, which is based on the ranking order of strategies. We show that the
connection between measures and densities in the space of strategies presents a num-
ber of mathematical challenges which should be taken into account when modelling
selection processes using the density-based approach. Using the new formulation of
evolutionary fitness, we formulate the variational principle of modelling selection,
which postulates that the long-term outcome of a selection process will correspond
to the strategy or trait which maximises evolutionary fitness. Establishing variational
principles in this way when modelling biological evolution has a long history with
various approaches proposed (Crow 1981; Levich 2000; McNamara et al. 2001; Metz
et al. 1992, 2008; Stankova et al. 2013; Wilhelm et al. 1994), but unlike the situation
in mechanics, or optics, the framework for developing a unifying variational principle
for modelling selection is still missing. Finally, with the help of a few insightful exam-
ples, we show how evolutionary fitness can be derived for a class of models with age
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structuring including delay, which has previously been considered as a mathematical
challenge.

The paper is organised as follows. In Sect. 2, we introduce the generic framework of
modelling natural selection in systems with inheritance. In particular, we introduce a
mathematically rigorous definition of evolutionary fitness. In Sect. 3, we demonstrate
how this evolutionary fitness can be found for a class of population models with age
structure. In Sect. 4, we discuss the advantages of the proposed concept of fitness when
modelling evolutionary dynamics and compare this concept with those from earlier
approaches.

2 Defining Evolutionary Fitness

2.1 Setting the Stage: The Space of Inherited Units andMeasures

Herewe introduce a genericmodelling concept as well as some important assumptions
necessary for a mathematically rigorous definition of evolutionary fitness in a self-
replicating system with inheritance.

Assumption 1 We consider a self-replicating system, where any set of inherited units
(strategies) v belong to a compact metric (or compact Hausdorff topological) space V.

Biologically, inherited units can be genotypes, behavioural strategies, functional
traits, etc. Mathematically, an element v can be a scalar, a vector, a function or a
vector of functions.

In the case where the number of inherited units v is large (or infinitely large or
even uncountable), it is impossible to follow the dynamics of each element separately.
In other words, for an arbitrary model, it will be meaningless to compare some finite
number of inherited units against each other and such a comparison will not inform us
about selection in the system (Gorban 2007). Instead, we must consider the evolution
of some subsets A of space V .

Assumption 2 We assume that the system � consisting of any subsets A from the
space V form a σ -algebra known as the Borel algebra.

To accurately describe the evolution of an inherited unit (or a set of such units), it
is necessary to be able to quantify its presence at any moment of time. In the simplest
case, we can quantify the presence of strategies via the total population size or total
biomass of all strategies v ∈ A. However, we can also use the logarithmic scale of
the biomass, or alternatively, we can characterise the presence of strategies in the
population via any positive power of population size which can be strategy dependent.
In this case, it is rather natural to use the mathematical concept of measure. More,
accurately:

Assumption 3 Let us assume that at each moment of time t each set A in � can be
described by a nonnegative function μ(t)(A). We postulate that this quantity should
satisfy the following requirements:

– A value of zero at any given moment of time indicates the absence of A in the
population.
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– A positive value indicates the presence of the set A in the population.
– It is countably additive.
– It is a smooth function of time.
– If it tends to zero, this signifies extinction of v.

Under the above assumptions, the function μ(t) should be understood as a Borel
measure defined on V .

Assumption 4 Weassume thatμ(t) is uniformlyboundedbya constant, i.e.μ(t)(V ) ≤
c for any t .

This is a natural assumption to make, taking into account resource limitations for
the population. Using the above assumptions, we can define a selection process.

Definition 1 (Selection) We have selection of some set of A ∈ � in the space of
inherited units in the case where the measure μ(t) of the complement of A tends to
zero for large times whereas the measure of A does not, i.e.

lim
t→∞ μ(t)(V /A) = 0 and lim

t→∞ μ(t)(A) �= 0. (1)

Remark According to the above definition, the measure of the whole set V does not
tend to zero: this would signify the extinction of the whole population, which we want
to avoid.

Remark The above limit forμ(t)(A)may not always exist in some systems, for exam-
ple, in the case of a periodical evolutionary succession of strategies.

Using the measure dynamics, we can compare selective advantages of different sets
from �.

Definition 2 (Ranking order of sets) We state that set A ∈ � is better (fitter) than set
B ∈ � (A � B), if

lim
t→∞

μ(t)(B)

μ(t)(A)
= 0.

The introduced relation satisfies the axiom of transitivity, since if (A � B) and
(B � D), then

lim
t→∞

μ(t)(B)

μ(t)(A)
= 0;

lim
t→∞

μ(t)(D)

μ(t)(B)
= 0;

and

lim
t→∞

μ(t)(D)

μ(t)(A)
= lim

t→∞
μ(t)(D)

μ(t)(B)

μ(t)(A)

μ(t)(B)
= 0;

therefore (A � D). Moreover, it is impossible that (A � B) and (B � A). Therefore,
the relation is a partial ranking order in�, not a full order because we cannot compare
two sets if the limit of the ratio of their measures is not equal to zero. In the case of
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the bounded measure (μ[t](V ) < c), this definition signifies that B will be eventually
replaced by A because

lim
t→∞ μ(t)(B) = lim

t→∞ μ(t)(A)
μ(t)(B)

μ(t)(A)
≤ lim

t→∞ c
μ(t)(B)

μ(t)(A)
= 0;

and there is the selection process of V /B.
The introduced ranking order of sets may depend on initial conditions. This can be

seen from the following illustrative example.

Example 1 Consider a system of three competing species V = (v1, v2, v3) with nor-
malised numbers of individuals μi (i.e. the total number of the population is equal to
unity μ1 + μ2 + μ3 = 1). The model equations are of the replicator type

dμi

dt
= μiμi+1 − μi (μ1μ2 + μ2μ3 + μ3μ1), i = 1, 2, 3.

where μ4 ≡ μ1.

Let the measure of the presence of every element be the normalised number of
individuals. In the case μ1(0) = 0 the system becomes

dμ2

dt
= μ2

2μ3,

dμ3

dt
= −μ2

2μ3.

For large times we have μ2 → 1, μ3 → 0, hence v2 � v3. We can similarly prove
that in the case where μ2(0) = 0 we have v3 � v1 and in the case where μ3(0) = 0
we have v1 � v2. In other words, the ranking order depends on initial conditions.
Moreover, when all species are initially present, they can coexist at the equilibrium
(1/3, 1/3, 1/3), i.e. no ranking order can be established between the three strategies.
On the other hand, in the case of the inverse time (t → −t), the internal equilibrium
loses its stability and the trajectory gradually approaches the boundary of the standard
triangular simplex. In this case, all species persist in the system. More examples on
dependence of the ranking order on initial condition can be found in Kuzenkov and
Ryabova (2015).

Note that the introduced ranking order is not a perfect comparison because a part
of A may be worse than B. To cover this situation, we will introduce the following
definition of strong ranking.

Definition 3 (Strong ranking order of sets) Set A is strongly better than set B if A is
better than B and any μ-nonzero subset of A is better than B.

In this case, any nontrivial part of A is better than B. The strong ranking satisfies
the properties of transitivity and anti-symmetry, i.e. we introduce a partial order in �.
This gives us the opportunity to compare elements of different sets.
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Definition 4 (Ranking order of strategies) Let any neighbourhood of elements v and
w be μ-nonzero. Element v is better than element w (v � w) if there exist neighbour-
hoods of these elements (O(v) of v and O(w) of w) such that O(v) is strongly better
than O(w).

It is obvious that this relation also satisfies the properties of transitivity and anti-
symmetry, i.e. it introduces the partial ranking order in V . The ranking order of
strategies may also depend on initial conditions.

If the measure is uniformly bounded (μ(t)(V ) < c) and v � w, it follows from
Definition 4 that the measure μ of some neighbourhood O(w) of w vanishes with
t → +∞.

Using the above ranking order definition, we can now postulate evolutionary fitness
as follows.

Definition 5 (Evolutionary fitness) In the case where there exists a functional J (v)

which preserves the ranking order of strategies it is referred to as evolutionary fitness,
i.e. from J (v) > J (w) it should follow that v � w.

Remark One can easily see that the above definition of fitness is not unique: any
function of J would be considered as an evolutionary fitness if it preserves the ranking
of strategies. It is easy to see that in this case, any strategy v∗ maximising the fitness
will be the same.

Remark A generic definition of evolutionary fitness would depend on what we deter-
mine as the measure of the presence.

Only strategies v∗ having the highest ranking order according to Definition 4 will
remain after a long time, with the others eventually vanishing. Let A be a set from
�, such that the closure of A does not contain any point v∗ of the global maximum
of J (v). Then μ(t)(A) → 0 and there is selection of V /A. We emphasise that this
selection does not depend on the choice of measure on V , provided that assumption 3
is satisfied.

Maximisation of evolutionary fitness J (v) provides the variational principle of
modelling evolution dynamics: among all elements v, only the strategies v∗ realising
the global maximum of J (v) will survive in the population over time. Thus, finding
the evolutionary optimal strategies will be equivalent to finding the maximum value
of J across V .

2.2 Measure Dynamics andMeasure Densities

Under the above assumptions, the set of differentmeasuresμ over V is a Banach space,
where the norm of μ is equal to its total variation. Therefore, we can now consider the
following equation of the dynamics of measure μ(t)

dμ(t)

dt
= F(μ, t), (2)

where F is an operator describing the rate of change of μ(t) in time.
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However, the description based on (2) is too generic to allow us to obtainmathemat-
ically rigorous but meaningful results; in particular, the equation does not impose any
restriction on mutation rates. In this paper, we will investigate the particular scenario,
where inheritance is strong so that we can initially neglect the effect of mutations and
assume that offspring have the same genotype as their parents.

An example of a system with strong inheritance is the following generic equation
considered in Gorban (2007)

dμ(t)

dt
= K (v, μ, t)μ(t), (3)

where K (v, μ, t) is a continuous function of v ∈ V which represents the reproduction
coefficient. From (3) one can conclude that if the measure of the set of strategies A
is initially zero, it will always remain zero, i.e. new strategies cannot be produced by
the existing strategies.

However, model (3) cannot describe another important case of strong inheritance,
which allows for the effects of delays. For example, the current absence of a particular
strategy v at some developmental stage/age within the population does not necessarily
signify that such a strategy will not appear later due to the maturation of younger
individuals with the same genotype. A generic class of models of self-replicating
systems with delay and strong inheritance is given by

dμ(t)

dt
=

n∑

i=1

ai (v, μ, t)μ(t − τ ∗
i ) + K (v, μ, t)μ(t), (4)

where the first term provides the rate of replenishment of the distribution due to the
maturation of offspring; the delays τ ∗

i describe maturation time lags or effects of
modification of the environment in the past. We assume that we know the history
of the measure dynamics μ(t) in the time interval [−T , 0], where T = max(τ ∗

i ).
Equation (4) is an extension of (3) describing the possibility of inheritance with a zero
measure at the initial moment of time (t = 0).

Mathematically, it is generally difficult to explore the dynamics ofmeasures directly
fromEqs. (3) or (4). However, oftenwe canmodelmeasure dynamics using the density
distribution across the space of inherited units. To be able to use the density-based
modelling framework, we need to assume the following

Assumption 5 Let the measure μ(t) be absolutely continuous with respect to some
fixedmeasureμ∗. In this case, there is an integrable function η(v, t) (called the density
of the measure) such that

μ(t)(A) =
∫

A
η(v, t)μ∗(dv),∀A ∈ �.

The temporal dynamics of η(v, t) is given by the following evolution equation

dη(v, t)

dt
= φ(η(v, t), v, t), (5)
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where φ(η(v, t), v, t) is the density operator of F in (2). Equations (3) and (4) intro-
duced above for the measures can be rewritten in a similar form for the dynamics
of densities. Several insightful examples of dynamics based on (5) are provided in
Sect. 3.

Theorem 1 Element v is better than element w (v � w), if there exist neighbourhoods
of these elements (O(v) of v and O(w) of w) such that the ratio of densities (6) tends
to zero uniformly in these neighbourhoods (∀v′ ∈ O(v) and ∀w′ ∈ O(w)), i.e.

η(w′, t)
η(v′, t)

−−−−−→
uniformly

0, t → ∞. (6)

The proof of this theorem is given in ‘Appendix A’.
The importance of the assumption about uniform convergence in this theorem is

crucial, as can be seen from the following example.

Example 2 Consider a self-replicating systemwhere elements are described by a scalar
parameter v ∈ [0, 1]. For the sake of simplicity, we consider the measure density η to
be the population density ρ. Let the dynamics of the density ρ(v, t) be described by
the following equation which is of a logistic type

dρ(v, t)

dt
= k(v, t)ρ − ρ

∫ 1

0
k(v, t)ρdv,

where the reproduction coefficient k is time-dependent and given by k = vt exp(−vt);
for simplicity consider the initial density ρ(v, 0) = 1.

Solving the above equation gives (see ‘Appendix B’)

ρ(v, t) = g(v, t)
∫ 1
0 g(v, t)dv

, where g(v, t) = exp
(−t exp(−vt)+(1−exp(−vt))/v

)
.

One can prove that g(v, t) → exp(1/v), v > 0 and g(0, t) = 1. Moreover, the
density tends to zero for all v, i.e. ρ(v, t) → 0 for t → ∞. On the other hand, for the
measure of the interval [0, 1] we have

μ(t)([0, 1]) =
∫ 1

0
ρ(v, t)dv =

∫ 1
0 g(v, t)dv

∫ 1
0 g(v, t)dv

≡ 1.

From this example, it follows that even if the density of the measure tends to zero for
all elements of the set A, this does not signify that its measure μ(A) also vanishes at
large times.

Remark We should stress here that one should not confuse the density η(v, t) with
the ‘true’ population density: η(v, t) should be considered as a particular character-
istic (which is a function of the population density) for which if it tends to zero,
the underlying population density also tends to zero. In this particular case, we have
η(v, t) ≡ ρ(v, t), where ρ(v, t) is the ‘true’ population density (e.g. see Example 2).
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2.3 Constructing Evolutionary Fitness

The definition of evolutionary fitness stated in the previous section is axiomatic, in
the sense that it does not provide a procedure for finding J (v). In this section as well
as in Sect. 3, we demonstrate several ways of constructing evolutionary fitness using
the underlying density equations.

We start with a construction of fitness using the long-term time average of the
generalised reproduction coefficient (assuming that the average value exists, which
might not be the case in some models) given by

lim
T→∞

1

T

∫ T

0

η′
t (v, t)

η(v, t)
dt =

〈
η′
t (v, t)

η(v, t)

〉
≡ J1(v) (7)

Evolutionary fitness can be constructed using the following theorem.

Theorem 2 Assume the existence of a long-term time average (7) of the generalised
reproduction coefficient for all elements v with nonzero initial density η(v, 0). More-
over, assume that for any point v there is a neighbourhood O(v), where convergence
in limit (7) is uniform on O(v). In this case, from J1(v) > J1(w) it follows that v � w.
Thus, we can consider the long-term time average J1(v) as evolutionary fitness.

The proof of the theorem is given in ‘Appendix C’.

Corollary 2.1 If the conditions of Theorem 2 hold, J1(v) is a continuous functional and
v∗ is a point of the global maximum of J1 defined by (7), we then have J1(v∗) = 0.

The proof of Corollary 2.1 is given in ‘Appendix C’. Biologically, this signifies that
the maximal average per capita growth rate should be zero.

Remark In the proof of Theorem 2 (see ‘Appendix C’), it is shown that the fitness
functional J1 can be expressed as J1(v) = limT→∞(ln(η(T , v))/T ).

Remark The uniform convergence to the time average required in Theorem 2 is of
crucial importance. Consider the equation introduced in Example 2. The formal com-
putation of fitness in this case gives

J (v) =
〈
k(v, t)

〉
−

〈 ∫ 1

0
k(v, t)ηdv

〉
= 1 − 1 = 0.

However, we cannot consider this function as evolutionary fitness since the conver-
gence to the average per capita growth rate is not uniform on the interval [0, 1].
Remark The function of evolutionary fitness depends on what we determine as the
density η of measures, which can be different from a biological definition, i.e. the
population density. For example, it can be a certain power of the population density:
η = ρR(v), where ρ is the biological population density and R(v) > 0 is a certain
function(al) of v. The choice of the formulation of η may depend on the particular
biological study case.
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Computing the time average per capita growth rate (7) is not the only possible way
of finding evolutionary fitness. In particular, one can prove that a certain combination
of model parameters can be considered as a fitness if it preserves the ranking order
given by Definition 2. Interestingly, in some cases it is possible to construct an evolu-
tionary fitness which does not depend on the initial conditions. Consider the following
insightful example.

Example 3 Let the dynamics of the population density ρ(v, t) be described by the
following equation of logistic type

dρ(v, t)

dt
= k(v)ρ − r(v)ρ

∫ 1

0
ρdv,

where v ∈ [0, 1]; k(v) and r(v) are positive functions of v.

We make the following change of variables η(v, t) = ρ(v, t)1/r(v). For the new
variable η (which can be considered as the generalised density of the measure), we
obtain the following equation

dη(v, t)

dt
= k(v)

r(v)
η − η

∫ 1

0
η(w)r(w)dw.

For evolutionary fitness based on the long-term growth rate (7), we have

J1(v) = k(v)

r(v)
−

〈 ∫ 1

0
η(w)r(w)dw

〉
.

Since the integral (second) term in the above expression is constant, from
k(v)/r(v) > k(w)/r(w) it follows (Theorem 2) that

lim
t→∞

η(w, t)

η(v, t)
= lim

t→∞
ρ(w, t)1/r(v)

ρ(v, t)1/r(w)
= 0. (8)

As such, we can consider η(v, t) = ρ(v, t)1/r(v) as characteristics of the presence
of a strategy within the population, i.e. as the generalised population density. This is
possible since η(w, t) → 0 will automatically indicate that ρ(w, t) → 0. Thus, as
evolutionary fitness in themodel, we can take the ratio k(v)/r(v), which is independent
of the initial conditions. Using J = k(v)/r(v) can be more practical as compared to
J1 based on the long-term per capita growth rate (7).

Remark The definition of fitness in Sect. 2.1 based on ranking order and its mathe-
matical representation via the generalised reproduction coefficient (7) are extensions
of the Darwinian idea of ‘Survival of the Fittest’. This, however, contains some seeds
of tautology due to a deterministic interpretation of Darwin’s evolutionary theory:
the fittest strategies will be those selected by long-term evolution, and the strategies
selected by evolution will be the fittest ones. This is an a posteriori interpretation of
fitness (also see Sect. 4). Establishing a rigorous definition of fitness, however, is a

123



4686 O. Kuzenkov, A. Morozov

vital step between connecting the a posteriori and a priori concepts of fitness. The
next section gives examples of a priori implementation of fitness which provides tools
to create links between measurable/observable characteristics of organisms such as
life traits or behavioural patterns (described by model coefficients) and long-term
evolutionary outcomes, thus predicting which combination of biological parameters
(under some constraints) should produce a successful strategy. We should stress that
obtaining amathematical expression for evolutionary fitness as a function(al) of model
coefficients can be a difficult task. We show below that for some classes of models
with age structuring one can derive evolutionary fitness and predict the evolution out-
come. Moreover, some numerical procedures have recently been proposed for finding
evolutionary fitness for a generic population model (see Sect. 4 for more details).

3 Revealing Fitness in Some Age-StructuredModels

Here we demonstrate how evolutionary fitness can be derived for several generic
population models with age structure.

3.1 Fitness in a PopulationModel with Discrete Stages

Consider the following model. Let z(v, t) = (z1(v, t), . . . , zn(v, t)) be the vector of
variables of the model corresponding to element v, an inherited behavioural strategy.
Relations between the variables z have the form of the following differential equation

z′t (v) = L(v)z(v) − R(v) f (z, t)z(v). (9)

Here L(v) is a matrix [n × n] with components qi j (v) independent on t , R(v) is a
coefficient independent on t , and f (z, t) is a functional independent on v, for instance

f (z, t) =
∫

V

n∑

i=1

zi (v, t)μ∗(dv).

By introducing the normalising change of variables

ξi (v, t) = zi (v, t)∑n
i=0 zi (v, t)

,

n∑

i=0

ξi (v, t) = 1,

we arrive at the following system for the frequencies ξ(v, t) = (ξ1(v, t), . . . , ξn(v, t)

dξ(v, t)

dt
= L(v)ξ(v, t) − ξ(v, t)F(v, t), (10)

where F(v, t) = ∑n
i=1

∑n
j=1 qi jξ j (v, t). The equation for the total population density

Z(v, t) = ∑n
i=0 zi (v, t) is given by
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dZ(v, t)

dt
=

(
F(v, t) − R(v) f (t)

)
Z(v, t). (11)

Consider the following linear system

dζ(v, t)

dt
= L(v)ζ(v, t), (12)

where ζ(v, t) is a vector (ζ1(v, t), . . . , ζn(v, t)). The solutions of (10) and (12) are
related to each other via (see ‘Appendix D’ for detail)

ξi (v, t) = ζi (v, t)∑n
i=0 ζi (v, t)

. (13)

We suggest, for simplicity, that the matrix L has only single eigenvalues λi and, by
consequence, has n linearly independent eigenvectors ei (v).Without loss of generality,
we can always assume that the sum of components of each eigenvector is 1. We can
sort the eigenvalues in descending order of their respective real values. The general
solution of (12) with constants ci depending on initial condition reads as

ζ(v, t) =
n∑

i=0

ci ei (v) exp(λi (v, t)). (14)

We return to the variables ξi (v, t) to obtain

ξ(v, t) =
∑n

i=0 ci ei (v) exp(λi (v, t))∑n
i=0 ci exp(λi (v, t))

. (15)

Let us assume that the initial condition is such that c1 > 0 and λ1 is a real number. In
this case, for large times the solution of (10) will be dominated by the first eigenvector.
This will be the asymptotic state of themodel. The stationary state of (10) will be given
by

0 = L(v)ξ(v) − ξ(v)F(v), (16)

One can easily see that the equilibrium state of (10) is the eigenvector of (12), and
the value of F at equilibrium is equal to its eigenvalue, thus for large times F → λ1.
Moreover, due to the continuous dependence of the model coefficients on v, we have
F → λ1 uniformly. One can demonstrate in this case that the temporal average of F is
λ1. To characterise the presence of strategy v within the population, we will consider
the quantity η(v) = Z1/R(v)(v, t), which satisfies all assumptions of the measure
required in Sect. 2.1. The dynamics of η(v) are described by the following equation

dη(v, t)

dt
= F(v, t)η(v, t)/R(v) − f (z, t)η(v, t). (17)
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According to Theorem 1, the fitness is given by

J =
〈 F(v, t)

R(v)

〉
− 〈 f 〉 = λ1(v)

R(v)
− 〈 f 〉, (18)

which is equivalent to

J1 = λ1(v)

R(v)
. (19)

A clear advantage of using J1 rather than J is that the former does not involve 〈 f 〉,
which would need to be computed. Moreover, J1 does not depend on initial conditions
which simplifies our computation of its optimal value.

For example, consider a population with n developmental stages. We denote zi (v)

to be the population density of stage i individuals using strategy v. We assume that
all stages (except the newly produced individuals with i = 1) can contribute to the
production of newborns, which is described by the reproduction coefficient bi (v):
without losing any generalitywe can consider that some bi (v) are zero. The individuals
are subject to natural mortality (in the absence of competition and predation) at a rate
of ai (v). The model equations for zi (v) read

dz1(v, t)

dt
=

n∑

i=2

bi (v)zi (v, t) − p1(v)z1(v, t)

− a1(v)z1(v, t) − R(v)y(t)z1(v, t), (20)
dzi (v, t)

dt
= pi−1(v)zi−1(v, t) − pi (v)zi (v, t) − ai (v)zi (v, t)

− R(v)y(t)zi (v, t), 2 ≤ i ≤ n − 1 (21)
dzn(v, t)

dt
= pn−1(v)zn−1(v, t) − an(v)zn(v, t) − R(v)y(t)zn(v, t), (22)

where pi (v) describes the transition rate from stage i into i + 1 due to ageing; y(t) is
some growth limitation factor determining extra mortality within the population (due
to predation, interspecific competition, etc); R(v) is the coefficient describing the
strength of the influence of the limitation factor y on the individuals using strategy v.
We assume that all coefficients in (20)–(22) are continuous functionals of the strategy
v.

This system is the partial case of (9), where f = y, q11 = −p1 − a1, q1i = bi ,
qii−1 = pi−1, qii = −pi − ai , 2 ≤ i ≤ n − 1, pn = 0. The above results provide the
function of generalised fitness (19) for the given model.

3.2 Fitness in a Generic PopulationModel with Delay

Consider the following model. Let z(v, t) = (z1(v, t), . . . , zn(v, t)) be the vector of
variables of the model, corresponding to element v, an inherited behavioural strategy.
Relations between the variables z have the form of the following differential equation
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dzl(v, t)

dt
=

n∑

j=1

m∑

i=1

ql ji (v)z j (v, t − τ ∗
i ) exp(−R(v)

∫ t

t−τ∗
i

f (z, t)dt)

+
n∑

j=1

rl j (v)z j (v, t) − R(v)zl(v, t) f (z, t), 1 ≤ l ≤ n. (23)

where ql ji (v), rl j (v), R(v) are continuous functionals over V ; f (z, t) is a continuous
functional.

In the particular case of n = 1, we can consider Eq. (23) as the equation for the
density of the measure described by Eq. (4).

The change of variables

z(v, t) exp(R(v)

∫ t

0
f (z, t)dt) = ζ(v, t), (24)

where ζ is the vector (ζ1(t), . . . , ζn(t)), transforms this equation into the following
simplified version

dζl(t)

dt
=

n∑

j=1

m∑

i=1

ql ji (v)ζ j (t − τ ∗
i ) +

n∑

j=1

rl j (v)ζ j (t), 1 ≤ l ≤ n. (25)

The proof is provided in ‘Appendix E’.
We now seek the solution ζ = (ζ1(t), . . . , ζn(t)) as a sum of ei exp(λi t), where

ei = (ei1, ei2, . . . , ein) is a constant vector (eigenvector). The system of characteristic
equations for the eigenvalues λ reads as

det(H(λ) − λE) = 0, (26)

where E is the identity matrix; H is the matrix [n × n] with components hl j (λ, v) =∑m
i=1 ql ji (v) exp(−λτ ∗

i ) + rl j (v), ei are the corresponding nontrivial solutions of the
following system

λ =
n∑

j=1

m∑

i=1

ei j ql ji (v) exp(−λτ ∗
i ) +

n∑

j=1

ei j rl j (v), 1 ≤ l ≤ n.

The general solution ζ with constants ci depending on initial condition reads as

ζ(v, t) =
∞∑

i=0

ci ei (v) exp(λi (v, t)). (27)

We rank the solutions λ of the characteristic equation in descending values of their
real parts (λ1 having the largest real part) and assume that c1 �= 0. We can characterise
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the presence of strategy v in the population by η(v, t) = (
∑n

j=1 z j (v, t))1/R(v) since
it satisfies all assumptions stated in Sect. 2. We further consider the following limit

lim
t→∞

η(w, t)

η(v, t)
= lim

t→∞

( ∑
i ci (w) exp(λi (w)t)

)1/R(w)

(∑
i ci (v) exp(λi (v)t)

)1/R(v)
.

One can see that the above limit will be zero in the case where maxi �(λi (v))/R(v) >

maxi �(λi (w))/R(w), here �(λi (v)) is the real part of λi (v). Since all coefficients
of the characteristic equation are continuous functions of v, its solution remains a
continuous function. One can easily show that the above limit is uniform in some
small neighbourhoods of u and v. Therefore, we can consider the function J (v) =
maxi �(λi (v))/R(v) as evolutionary fitness. This fitness does not depend on the initial
conditions as far as they are chosen in a way that the coefficient c1 is nonzero.

Example 4 Consider a single population model with structuring described by a
Foerster’s type equation (Botsford et al. 1994; Cushing 1998). The population is char-
acterised by its density u(v, t, τ ) at the moment of time t with age τ and behavioural
strategy v.

∂u(v, τ, t)

∂t
+ ∂u(v, τ, t)

∂τ
= −A(v, τ )u(v, τ, t) − R(v)y(t)u(v, τ, t), (28)

where A(v, τ ) is the linear (natural) mortality rate; the second mortality term has the
same meaning as in (20)–(22). The production of offspring is due to the reproduction
of the whole cohort of adults which is given by

u(v, 0, t) =
∫ +∞

τ1

b(v, τ )u(v, τ, t)dτ, (29)

where b(v, τ ) is the reproduction coefficient and τ1 is the minimum reproductive age.

We further split the entire population into n age groups each ofwhich has a particular
strategy; the different stages are described by the following life trait parameters

A(v, τ ) =

⎧
⎪⎨

⎪⎩

a1(v), 0 ≤ τ < τ1,

ai (v), τi−1 ≤ τ < τi , 2 ≤ i ≤ n − 1

an(v), τn−1 ≤ τ < +∞,

b(v, τ ) =
{
bi (v), τi−1 ≤ τ < τi , 2 ≤ i ≤ n − 1

bn(v), τn−1 ≤ τ < +∞.

We further introduce the following integral quantities for the total population den-
sities for stage i .

Si (v, t) =
∫ τi

τi−1

u(v, τ, t)dτ, 1 ≤ i ≤ n, τ0 = 0, τn = +∞. (30)

123



Towards the Construction of a Mathematically Rigorous… 4691

We recast Eq. (28) into the equation for Si (t)

dSi (v, t)

dt
+ u(v, t, τi ) − u(v, t, τi−1) = −ai (v)Si (v, t) − R(v)y(t)Si (v, t), (31)

where 1 ≤ i ≤ n and u(τn) = 0.
Integration of (28) from τi−1 to τi gives

u(v, t, τ )=u(v, t−(τ−τi−1), τi−1) exp
(
−ai (v)(τ−τi−1)−R(v)

∫ t

t−(τ−τi−1)

y(t)dt
)
,

(32)
where τi−1 < τ < τi , 1 ≤ i ≤ n with τ0 = 0. The boundary condition for u(t, 0, v)

is given by

u(v, t, 0) =
n∑

i=2

bi (v)Si (v, t). (33)

We substitute (32) into (31) to obtain

dSi (v, t)

dt

=
n∑

k=2

bk(v)Sk(v, t − τi−1) exp
(

−
i−1∑

k=1

ak(v)(τk − τk−1) − R(v)

∫ t

t−τi−1

y(t)dt
)

−
n∑

k=2

bk(v)Sk(v, t − τi ) exp
(

−
i∑

k=1

ak(v)(τk − τk−1) − R(v)

∫ t

t−τi

y(t)dt
)

− ai (v)Si (v, t) − R(v)y(t)Si (v, t), (34)

where 1 ≤ i ≤ n. Note that for the last stage i = n, the second term in (34) should be
removed.

The given system is a particular case of above model (23), where f = y,

m = n − 1, ql jl−1 = b j (v) exp
(

− ∑l−1
k=1 ak(v)(τk − τk−1)

)
, ql jl = −b j (v) exp

(
− ∑l

k=1 ak(v)(τk − τk−1)
)
, rl j = −al(v), other coefficients are equal to zero.

Therefore, the generalised fitness for the population is given by

J = maxi �(λi (v))

R(v)
,

where λi is the solution of the characteristic equation (26). Note that this fitness
functional does not depend on the initial conditions.

4 Discussion and Conclusions

Fitness is one of the most influential concepts in evolutionary modelling following
the seminal idea of Sewall Wright concerning a hypothetical adaptive fitness land-
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scape (Wright 1932, 1988). The metaphor of ‘climbing uphill’ to reach a local peak
is compelling and easily graspable, which has probably helped to make the concept
of fitness so popular in the literature. However, the initial idea by Wright has also met
with criticism from many different backgrounds. A major point of criticism centres
on the fact that the shape of the fitness landscape should not be stationary, but instead
should constantly change in the course of evolution due to a permanent dynamical
feedback between the strategies of individuals and the environment (Nowak and Sig-
mund 2004). To rectify this situation, more advanced approaches have been proposed.
In particular, adaptive dynamics introduces the well-known concept of invasion fit-
ness, which provides the condition for the invasion of a rare mutant in an environment
set by a resident type. Since the resident type is changed via consecutive replacements
of successful mutants, the overall fitness landscape should be constantly being varied
until we arrive at an evolutionary endpoint and the evolution-environment feedback
loop is captured (Geritz et al. 1997, 1998; Parvinen et al. 2006).

Our revised concept of fitness is actually an extension of the idea of Wright in
that we still assume that the evolutionary outcome should maximise some fitness.
However, we also take into account the dynamical feedback between the population
and the environment. Our idea of fitness is closely linked to the concept of the ranking
order of strategies, given by the long-term limit of the ratio of their densities (6). The
ranking order and thus the definition of evolutionary fitness may both depend on what
we understand by the density of measures η(v), which should not necessarily be some
ecological density ρ(v) such as the population size or biomass per volume, but could
also be a function of such a density, possibly depending on the strategy v itself. For
example, we might choose η(v) = ρ(v)R(v), where R(v) is an arbitrary continuous
positive functional on V , in which case changing R(v)may give us a different ranking
order. The choice of measure density η(v) can be based on the underlying equations
for the population density ρ(v) (see Example 3 in Sect. 2 and Sects. 3.1, 3.2), but
this is not necessary. The main requirement is that using some other density η should
not change the evolutionary outcome of selection, i.e. the maximum fitness strategies
remain the same even if the ordering of less fit strategies changes. We should also
emphasise that the ranking order (6) might strongly depend on initial conditions, i.e.
the initial presence/absence of other strategies.

The framework for modelling selection processes proposed here is based on explor-
ing the long-term dynamics of measures in the space of strategies, as suggested in
some earlier works Cressman and Hofbauer (2005), Gorban (2007). This approach is
generic, so it can be equally applied to modelling selection in chemistry, sociology,
turbulence theory and economics. Although realistic populations are discrete, in many
cases, we have the situation where a large number of subpopulations (genotypes) with
close traits simultaneously compete with each other, so that we can use a continuum
approximation. This is relevant to biological reality, where in studies we usually com-
pare competitive efficiency of some traits against each other: we technically deal with
subpopulations with life traits located within some continuum ranges. However, we
show here that we should implement the density-based modelling framework with
care and compare particular strategies with each other only under some mathematical
restrictions (uniform convergence). In this case, we actually do not only compare pure
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strategiesw and v per se but also their surroundings; thus, we still appeal to the overall
measure-based framework.

The proposed evolutionary fitness concept using ranking order of strategies is actu-
ally an extension of Darwin’s ‘Survival of the Fittest’ idea. This implies, in particular,
that the fittest strategies are those which will eventually survive after a very long time,
and so their fitness J will be maximal. We should say, however, that only postulating
such a definition is in a certain sense tautological as it follows from the deterministic
interpretation of Darwinian evolutionary theory. Indeed, the inherited unit(s) selected
by long-term evolution will be the fittest one(s) and, inversely, the fittest inherited
unit(s) should be those which will eventually survive (Mills and Beatty 1979). In this
case, the idea of fitness becomes an a posteriori rather than an a priori concept. How-
ever,we should still stress that the formulated definition allows us to analytically and/or
computationally more easily derive which strategies are the fittest. Moreover, creating
a rigorous definition is a necessary step to sort out the above tautological situation.

In Sect. 3, we show a possible way of how the above mentioned tautological aspects
can be resolved and then used as an a priori framework. The main idea is that for the
given environment (deterministic or stochastic) we can establish links between mea-
surable characteristics of organisms such as life traits or behavioural patterns and
long-term evolutionary outcomes. In other words, our a priori knowledge of life traits
or behavioural strategies should allow us to predict long-term evolutionary outcome
providedwehave enough information about intra-specific and interspecies interactions
as well as the environment (mathematically, such information is fixed in terms of alge-
braic or/and differential constraints representing the model). For example, the strategy
maximising the ratio between the reproduction rate and mortality is shown to be even-
tually dominant in a simple system under variable predation, provided the model itself
is correct (Morozov and Kuzenkov 2016). In more complex models, the expression
for fitness will be obviously more complicated (Sect. 3). Therefore, the major goal
is to provide a mathematical function(al) expressing the link between observable life
traits or behaviours (i.e. a priori information) and the long-term evolution success.
Here the definition of fitness serves as major tool for constructing such a link. Finally,
we should also stress that we explore evolution and selection in the absence of rare
or singular catastrophic events (e.g. a single earthquake, forest fire, atomic explosion)
which might results in some paradoxical misinterpretation of fitness [see Examples in
Mills and Beatty (1979)].

The fitness J introduced here allows us to formulate the variational principle of
modelling evolutionary dynamics: the outcome of long-term selection should corre-
spond to the maximum of the fitness functional across the strategies initially present.
Ideas of optimisation in evolution have been suggested in earlier works, for example
in the adaptive dynamics framework, where it was found that evolution will optimise
the invasion fitness of a mutant introduced in the resident population in the case where
the environment affects fitness in an effectively monotone one-dimensional manner
(Metz et al. 1992, 2008). However, generic classes of models for which this property
holds are still poorly understood (Gyllenberg et al. 2011). For example, it has been
shown that the optimisation principle (i.e. the existence of a certain function(al) whose
maximisation would provide the evolutionary attractor) should require the absence of
so-called rock–scissors–paper cycles of invasion of mutants into the environment set
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by a resident (Gyllenberg and Service 2011).We should stress that themeaning of evo-
lutionary optimisation in the current paper is somewhat different to the one considered
in the adaptive dynamics framework (Gyllenberg and Service 2011; Metz et al. 1992,
2008), since it does not implement the invasion-replacement paradigm of adaptive
dynamics. In particular, in our case, the strategy which maximises the fitness J may
depend on the initial conditions, as in Example 1.

Here we have considered selection processes in deterministic systems, but similar
definitions can be formulated in systems with environmental or demographic noise,
where we should consider dynamics of expected measures. In particular, the intro-
duced ranking order can then be defined as the ratio of expected measures. However,
adding noise would make the derivation of fitness function(al)s more complicated.
For example, we would need to include information about the covariances of species
growth rates: even for simple density-independent dynamics, computing the geomet-
ric mean of the growth rate (known as ‘Malthusian fitness’) will not provide a correct
fitness function (Lande 2007). Considering more complicated dynamics via a gener-
alised logistic equation with noise would make the evolutionary outcome even more
complicated: onewould need tomaximise the expected value of the density-dependent
component of the growth rate (Lande et al. 2009). However, even this maximisation
principle still does not seem to be generic enough to cover other more complicated
models. Another issue related to stochasticity is that our current Definitions in Sect. 2
do not allow for the possibility of stochastic extinction of a subpopulation when its
measure (e.g. the population size) drops to a very low value. However, we can incor-
porate this as well by setting a certain threshold ε for the measures/densities and
assuming that reaching this threshold would signify the extinction of species. Note
that in this case, the overall axiomatic approach towards modelling selection will be
similar to the current one.

It would be interesting to compare predictions of long-term selection using the cur-
rent approachwith someotherwell established approaches, such as adaptive dynamics,
for example. Strictly speaking, a rigorous direct comparison between our approach
and that of adaptive dynamics is hardly possible at all, since in the current settings we
assume the absence of ongoing mutations. Also, a fair comparison would require us to
have an ergodic environment, as is required for adaptive dynamics (Metz et al. 1992,
2008), so adaptive dynamics would not be applicable to Example 2. However, one can
suggest that we already include somemutations in our settings when we consider arbi-
trary nonzero initial strategies in the space of strategies so that various ‘mutations’ are
already present in the system at the start and the fittest mutation will grow and outcom-
pete the other strategies. As such, one can consider the scenario where initial nonzero
densities (‘mutations’) are distributed in the vicinity of the strategy v∗ maximising the
fitness J given by Definition 3 (applied to the scenario where initial nonzero densities
are located in a small vicinity of v∗). In principle, we can also consider a polymorphic
case of several strategies which maximise the fitness: J (v∗) = J (u∗) = · · · = J (w∗)
and consider initial mutations in the vicinity of each of them. To our understanding, it
seems that v∗ will also be an evolutionary attractor in the sense of adaptive dynamics
(although a strict mathematical proof of this still needs to be done). Indeed, adaptive
dynamics requires that an evolutionary attractor should be convergence stable, non-
invasible and, in the case of protected polymorphism, mutation strategies closer to v∗
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should be able to invade (Geritz et al. 1997, 1998). Our definition of fitness covers
all of these properties by requiring uniform convergence in (6). For example, uniform
convergence in the vicinity of v∗ in our definition of fitness rules out the possibility of a
‘Garden of Eden’ situation, in which the best strategy v∗ outcompetes all other strate-
gies, but taking out this strategy from the initial nonzero set would drastically change
the evolutionary outcome (Broom and Rychtar 2013). The question about the possi-
bility of achieving the global maximum of J via small mutations in adaptive dynamics
remains an open one since the evolutionary trajectory can get stuck at a local attractor.

In this paper, using a specific change of variables we derived evolutionary fitness for
some classes of populationmodels (Sect. 3). The question of how to reveal a population
fitness for some more complicated models remains. The development of efficient
analytical methods to deal with other classes of population models will be the priority
for our next work, but the outcome of selection in self-reproducing systems with
high complexity can also be obtained via numerical methods which take into account
the theoretical framework of this paper, in particular, the requirement of uniform
convergence in the space of strategies. For example, in recent work Sandhu et al.
(2017), it was shown how the best strategy v∗ can be found using a straightforward
computational algorithm. The method can be used for both scalar and function-valued
traits and can also be implemented in situations where we do not know the underlying
dynamical equations. However, the proposed method is based on the assumption that
the fitness does not depend on initial conditions, and so it should be modified to deal
with more realistic situations.
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Appendix A

Let there exist neighbourhoods O(v) and O(w) of points v andw such that the ratio of
densities η(w′, t)/η(v′, t) tends to zero uniformly in O(v) and O(w). In other words,
for any ε > 0 there should be T > 0 such that for any t > T for any w′ from O(w)

and for any v′ from O(v) the following inequality holds

η(w′, t)
η(v′, t)

< ε.

Moreover, anyneighbourhoods of pointsv andw areμ-nonzero, henceO(v) andO(w)

are alsoμ-nonzero. Let A be anyμ-nonzero subset from O(w). Then neighbourhoods
O(v), O(w) and the subset A are also μ∗-nonzero due to the absolute continuity of
the measure μ with respect to the measure μ∗. Thus, the measures μ∗ of O(v), O(w)
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and A will be given by

μ∗(O(w)) =
∫

O(w)

μ∗(dw′) = α > 0 and μ∗(A) =
∫

A
μ∗(dv′) = γ > 0.

By integrating the ratio of densities in the neighbourhood O(w), we obtain

∫

O(w)

η(w′, t)
η(v′, t)

μ∗(dw′) = 1

η(v′, t)

∫

O(w)

η(w′, t)μ∗(dw′)

= 1

η(v′, t)
μ(t)(O(w)) < εα.

In other words, we have
η(v′, t)

μ(t)(O(w))
>

1

εα
.

By integrating the latter inequality in the set A, we obtain

∫

A

η(v′, t)
μ(t)(O(w))

μ∗(dv′) = 1

μ(t)(O(w))

∫

A
η(v′, t)μ∗(dv′)

= 1

μ(t)(O(w))
μ(t)(A) >

γ

εα
.

In other words, we have
μ(t)(O(w))

μ(t)(A)
<

εα

γ
.

Therefore, the ratio of measures of the neighbourhood of point w and any subset A
of the neighbourhood of point v becomes an arbitrarily small for big enough time T
that means convergence of this ratio to zero. Therefore, any nontrivial subset of the
neighbourhood of v is better than the neighbourhood ofw and the neighbourhood of v
is strong better than the neighbourhood of w. This finalises the proof of the theorem.

Appendix B

Here we analytically find the solution in Example 2 (Sect. 2.2).
We consider the following auxiliary homogeneous equation

dσ(v, t)

dt
= k(v, t)σ (v, t)

with the same initial condition σ(v, 0) = 1.
One can see that the solutions of the above auxiliary homogeneous equation and

the original model are connected via the following change of variables

ρ(v, t) = σ(v, t)
∫ 1
0 σ(w, t)dw

.
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We can easily integrate the homogeneous equation to obtain

σ(v, t) = exp
( ∫ t

0
k(v, t)dt

)
= exp

(
− t exp(−vt) + 1

v
− exp(−vt)

v

)
.

For the solution of the original equation in terms of ρ(v, t), we have

ρ(v, t) =
exp

(
− t exp(−vt) + 1

v
− exp(−vt)

v

)

∫ 1
0 exp

(
− t exp(−vt) + 1

v
− exp(−vt)

v

)
dw

.

Appendix C

Proof of Theorem 2.
Let J (v) > J (w). Then there is a neighbourhood O(v) of the point v and a

neighbourhood O(w) of the point w such that

1

T

∫ T

0

η′
t (v

′, t)
η(v′, t)

dt −−−→
T→∞ J (v′) and

1

T

∫ T

0

η′
t (w

′, t)
η(w′, t)

dt −−−→
T→∞ J (w′)

uniformly in O(v) and O(w), respectively. Moreover, for the same neighbourhoods
we have infO(v) J (v′) > supO(w) J (w′).

From computation of the long-term average growth rate, we have

J1(v
′) = lim

T→∞
1

T

∫ T

0

η′
t (v

′, t)
η(v′, t)

dt = lim
T→∞

1

T
ln(η(v′, T )).

Consider now the limit of the densities ratio in O(v) and O(w).

lim
T→∞

η(w′, T )

η(v′, T )
= exp

(
lim

T→∞(ln(η(w′, T )) − ln(η(v′, T ))
)

= exp
(

lim
T→∞ T

(ln(η(w′, T )) − ln(η(v′, T ))

T

)

= lim
T→∞ exp

(
T (J1(w

′) − J1(v
′))

)
= 0.

The above limit is uniform in O(v) and O(w), since the convergence to the time
average per capita growth rate (7) is uniform. This finalises the proof of the theorem.

We will now prove the corollary of Theorem 2 (Corollary 2.1).
Proof of Corollary. We assume that J1(v∗) �= 0. We firstly consider the case where

J1(v∗) = α > 0. Since J1(v) is continuous and there exists a neighbourhood O(v∗) of
v∗ such that infv J1(v) > α/2 for v from O(v∗) and convergence to the time average
J1(v) is uniform for v ∈ O(v∗). For the measures we have

lim
t→∞ μ(t)(O(v∗)) = lim

t→∞

∫

O(v∗)
η(v, t)μ∗(dv) =

∫

O(v∗)
lim
t→∞ η(v, t)μ∗(dv)

123



4698 O. Kuzenkov, A. Morozov

=
∫

O(v∗)
exp

(
lim
t→∞ t

ln(η(v, t))

t

)
μ∗(dv)

=
∫

O(v∗)
exp

(
lim
t→∞ t J1(v)

)
μ∗(dv) = +∞.

This contradicts the assumption on the boundedness of the measure of V .
Let us assume that J1(v∗) = α < 0. Then for the measure of some neighbourhood

O(w) we have

lim
t→∞ μ(t)O(w) = lim

t→∞

∫

O(w)

η(w′, t)μ∗(dw′) =
∫

O(w)

lim
t→∞ η(w′, t)μ∗(dw′)

=
∫

O(w)

exp
(
lim
t→∞ t

ln(η(w′, t))
t

)
μ∗(dw′)

=
∫

O(w)

exp
(
lim
t→∞ t J1(w)

)
μ∗(dw)

≤
∫

O(w)

exp
(
α lim

t→∞ t
)
μ∗(dw′) = 0.

Since V is compact and a finite system of neighbourhoods O(wi ) can cover V , for
the measures we have

lim
t→∞ μ(t)(V ) ≤ lim

t→∞

N∑

i=1

μ(t)(O(wi )) = 0.

This contradicts the assumption about the positivity of themeasure of V . Therefore,
we have J (v∗) = 0.

Appendix D

Let ζ be the solution of differential equation (12). We differentiate the expression of
ξ in (13) to obtain

dξl
dt

= ζ ′
i∑n

j=0 ζ j
− ζi

∑n
j=0 ζ ′

j
(∑n

j=0 ζ j

)2

=
∑n

j=1 qi jζ j∑n
j=0 ζ j

− ζi
∑n

k=1
∑n

j=1 qkjζ j
(∑n

j=0 ζ j

)2

=
n∑

j=1

qi jξ j − ξi

n∑

k=1

n∑

j=1

qkjξ j =
n∑

j=1

qi jξ j − ξi F .

Therefore, ξ satisfies Eq. (10).
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Appendix E

We differentiate the expression of ζ in the change of variable to obtain

dζl(t)

dt
= dzl(t)

dt
exp

∫ t

0
R(v) f (z, t)dt + zl(t)R(v) f (z, t) exp

∫ t

0
R(v) f (z, t)dt

=
( n∑

j=1

m∑

i=1

ql ji (v)z j (v, t − τ ∗
i ) exp(−R(v)

∫ t

t−τ∗
i

f (z, t)dt

)
exp

∫ t

0
R(v) f (z, t)dt

+
⎛

⎝
n∑

j=1

rl j (v)z j (v, t) − R(v)zl(v, t) f (z, t)

⎞

⎠ exp
∫ t

0
R(v) f (z, t)dt

+ zl(t)R(v) f (z, t) exp
∫ t

0
R(v) f (z, t)dt

=
n∑

j=1

m∑

i=1

ql ji (v)z j (v, t − τ ∗
i ) exp(−R(v)

∫ t−τ∗
i

0
f (z, t)dt

+
⎛

⎝
n∑

j=1

rl j (v)z j (v, t)

⎞

⎠ exp
∫ t

0
R(v) f (z, t)dt

=
n∑

j=1

m∑

i=1

ql ji (v)ζ j (t − τ ∗
i ) +

n∑

j=1

rl j (v)ζ j (t).
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