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Abstract
The number of pathogenic threats to plant, animal and human health is increasing.
Controlling the spread of such threats is costly and often resources are limited. A key
challenge facing decision makers is how to allocate resources to control the different
threats in order to achieve the least amount of damage from the collective impact.
In this paper we consider the allocation of limited resources across n independent
target populations to treat pathogens whose spread is modelled using the susceptible–
infected–susceptible model. Using mathematical analysis of the systems dynamics,
we show that for effective disease control, with a limited budget, treatment should be
focused on a subset of populations, rather than attempting to treat all populations less
intensively. The choice of populations to treat can be approximated by a knapsack-
type problem.We show that the knapsack closely approximates the exact optimum and
greatly outperforms a number of simpler strategies. A key advantage of the knapsack
approximation is that it provides insight into the way in which the economic and
epidemiological dynamics affect the optimal allocationof resources. In particular using
the knapsack approximation to apportion control takes into account two important
aspects of the dynamics: the indirect interaction between the populations due to the
shared pool of limited resources and the dependence on the initial conditions.
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1 Introduction

The infection burden of many epidemics outstrips the resources available to treat all
individuals (Lipsitch et al. 2000; Kiszewski et al. 2007). Furthermore, characteristics
of disease spreadmaydiffer between different groups of the populations. The challenge
facing central decision makers who seek to control an epidemic at the landscape scale
is therefore how to allocate limited resources in order to minimise the impacts of
disease across the entire population? Optimising the deployment of control requires
consideration of both epidemic dynamics and economic factors, including the costs of
the epidemic and control as well as budgetary constraints and availability of resources.

Previous studies have used control theory to determine the optimal allocation of
limited resources to minimise the impacts from an epidemic (Rowthorn et al. 2009;
Ndeffo Mbah and Gilligan 2011; Zaric and Brandeau 2001a, b; Brandeau et al. 2003;
Hansen and Day 2011; Zhou et al. 2014). For simplicity, many early studies con-
sidered the application of a single control within a single target population (Hansen
and Day 2011; Zhou et al. 2014). However, heterogeneities in the host population are
known to be important in the invasion and persistence of human, animal and plant
pathogens (Ferguson et al. 2001; Dye and Gay 2003; Stacey et al. 2004). Within
human populations heterogeneities arise, for example through different contact pat-
terns amongst sub-populations (Wallinga et al. 1999). For animal and plant pathogens,
it is often the spatial structure that is critical in the invasion and persistence of the
pathogen (Ferguson et al. 2001; Stacey et al. 2004; Keeling et al. 2001). Such hetero-
geneities in the characteristics related to epidemic spread amongst sub-populations of
the host population are typically captured using structured metapopulations (Grenfell
and Bolker 1998, 2000). Rowthorn et al. (2009) consider the optimal deployment
of limited resources across two different but interconnected regions of equal size.
Minimising the discounted number of infected individuals over a fixed time horizon
within the susceptible–infected–susceptible (SIS) model, Rowthorn et al. (2009) find
an arguably counterintuitive result that treatment should be preferentially directed at
the sub-population with the lowest number of infected individuals. The inclusion of
temporary immunity, essentially extending from an SIS to an SIRS model, alters the
optimal strategy whereby it is initially optimal to preferentially treat the more infected
sub-population and then switch to treating the less infected sub-population (Ndeffo
Mbah and Gilligan 2011). The limitation of the studies by Rowthorn et al. (2009) and
Ndeffo Mbah and Gilligan (2011) is that they only consider two sub-populations, but
in reality a larger number of sub-populations is often needed to capture the hetero-
geneities within a target population. A key goal of the current work is to extend the
work of Rowthorn et al. (2009); Ndeffo Mbah and Gilligan (2011) to the problem of
n ≥ 2 sub-populations.

Work on the allocation of resources between two sub-populations uses an opti-
misation approach based on the Hamiltonian method (Rowthorn et al. 2009) and the
Pontryaginmaximumprinciple (NdeffoMbah andGilligan 2011),which provides ana-
lytic insight into the form of the optimal allocation strategy. Extending this approach
to the general problem of n populations leads to a large number of equations that
cannot be solved analytically. Indeed, Zaric and Brandeau (2001b) show that the gen-
eral problem of the allocation of limited resource across n coupled sub-populations is
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intractable. Therefore, numerical techniques are typically used to solve such problems
as in Richter et al. (1999), Zaric and Brandeau (2001a), Zaric and Brandeau (2001b)
and Brandeau et al. (2003). However, numerical approaches lose the intuitive insight
that analytic approaches provide about underlying mechanisms. The loss of intuitive
insight limits the use of optimal control methods in determining generalisable rules
and simple heuristics that can be used by decision makers. Indeed, Brandeau et al.
(2003) identify the need for simple, easy to use guidelines based on the optimal solu-
tion in order to make practical use of optimal control theory by decision makers. The
challenge therefore is how to generalise the results from Rowthorn et al. (2009) and
Ndeffo Mbah and Gilligan (2011) to the case of n ≥ 2 sub-populations.

The primary goal of this paper is accordingly to provide insight into the general form
of the optimal allocation of treatment across n sub-populations when the resources
available for control are limited. In particular, we seek to answer the following ques-
tions:

– How do epidemiological dynamics and economic constraints impact the optimal
allocation of resources across n sub-populations?

– How does the indirect interaction between sub-populations that arises from the
limited availability of resources affect the optimal allocation of resources to the
different sub-populations?

– Can we develop a simple easy-to-use allocation strategy that is close to the optimal
solution?

We consider a simplified model of an epidemic that directly incorporates the eco-
nomic constraint and we consider the final size of the epidemic as the measure of
impact. We are therefore able to use understanding of the long-term dynamics of the
model in order to gain analytic insight into the form of the optimal strategy without the
use of optimal control theory, which becomes intractable for n-dimensional problems
such as that studied in this paper. Some options for relaxing the assumptions to analyse
more realistic epidemic scenarios are addressed in the discussion.

2 Methods

2.1 Model

Forests often contain a number of different tree species, and in recent years there
has been a move towards mixed-species in order to make forests more resilient to
disturbances and stresses such as those posed by climate change (Kerr et al. 2015). To
understand how to allocate resources optimally in order to minimise the impacts of
multiple threats across different tree species is challenging using traditional optimal
control theory approaches. The problem quickly becomes intractable for the general
n-dimensional problem when n greater than 2.

We consider the optimal control of epidemics in n sub-populations, each of size
Ni . Each population is considered to be a different tree species within a forest under
threat from multiple different pests or pathogens. This is a common problem facing
many non-commercial forests which are typically composed of a large number of
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different tree species under threat from a number of invasive species (Baker et al.
2014). A pest or pathogen is typically specialised to a given tree species, for example
the ash dieback fungus only infects ash trees and Dothistroma needle blight only
affects pine trees. Therefore, we assume that infection can only be transmitted within
a sub-population (species) and not between sub-populations. This means the sub-
populations are independent, which allows us to reduce the optimal control problem
to study the dynamics of the individual sub-populations.

We assume that each epidemic can be described by a susceptible–infected–
susceptible (SIS) compartmental framework since it is a very general epidemic model
applicable to awide number of different pathogens (Anderson andMay 1991). The SIS
model assumes individuals return to the susceptible compartment following natural
recovery or treatment. It is therefore characteristic of infections, such as gonorrhoea or
Dothistroma, where recovered individuals do not gain immunity (Anderson and May
1991).We consider a treatment that increases the rate of recovery of infected hosts by a
fixed amount, ηi (Rowthorn et al. 2009; NdeffoMbah and Gilligan 2011). For tree dis-
eases, examples of such treatments are application of pesticides or fungicides directly
to the tree (Masoa et al. 2014). Such control options are common especially when
aerial spraying is banned, as in the UK, and felling is a less popular option with the
general public (Sheremet et al. 2017). In human and animal health, examples of such
a treatment could be antibiotics. We assume that the rate of recovery due to treatment
is different for each sub-population since the efficacy for a given pesticide/fungicide
is likely to vary for across tree species.

To model the economic constraint, we assume that the control resources are limited
and no more than a proportion, γi , of the hosts within sub-population i can be treated
at any given time. The dynamics of the proportion of infected hosts in sub-population
i (Ii ) is therefore given by the following equation

dIi
dt

= βi Ii (1 − Ii ) − Ii − ηi min(Ii , γi ), (1)

where βi Ii is the rate at which a susceptible host in sub-population i gets infected
(assuming homogeneous mixing within sub-population i). Note that time is scaled so
that one unit of time corresponds to the average length of one infectious period in the
absence of treatment, which is equivalent to setting the recovery rate, μi to be μi = 1
in the standard SIS model. We note that the time scaling in each sub-population will
be different. However, since infection cannot be transmitted between sub-populations
and we only consider the dynamics of the system once equilibrium has been reached
this does not affect our analysis. We allow the transmission parameter βi and the
efficacy of the treatment ηi to vary amongst sub-populations. This generality captures
the fact that epidemiological dynamics are likely to vary across sub-populations which
in our example arises because of differences in pathogen characteristics for distinct
tree species. Finally we assume that the initial level of infection at time t = 0, Ii (0),
varies across the sub-populations.

We assume resources are allocated to sub-populations at time t = 0 and cannot be
reallocated later, which is applicable if reallocation is expensive, for example when
decisions are taken by central planners (Zaric and Brandeau 2001a, b; Brandeau et al.
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2003).We allow the cost of treatment per host (i.e. amount of resource per host treated),
ki , to vary amongst sub-populations. For example, it may be harder to administer
treatment to certain sub-populations. We assume there is a limited amount, M units,
of the resource available. Even though there is no direct coupling, the assumption
of a limited shared resource pool gives rise to an indirect interaction between sub-
populations. When more resources are allocated to one of the sub-populations, the
disease prevalence in that sub-population decreases, but there is consequently less
resource for allocation into the other sub-populations. The proportions of infected
individuals in the sub-populations are therefore anti-correlated.

Consider an allocation strategy that allocates xi M resource into sub-population i ,
where xi ∈ [0, 1] is the proportion of resource allocated to sub-population i and so∑

i xi = 1. The proportion of individuals that can be treated in sub-population i is
γi = xi M/(Niki ). If there is enough resource, then all infected individuals are treated.
Otherwise, treatment is allocated in order to minimise the long-term level of infection.
Therefore, we seek to choose an allocation strategy that puts a proportion, xi , of the
total resource into sub- population i , in order to minimise the objective function given
by

J (xi ) =
∑

i

Ni I
∞
i (xi ), (2)

subject to the resource constraint

∑

i

ki Niγi ≤ M, (3)

where I∞
i (xi ) is the equilibrium level of infection that is reached if the proportion of

resource allocated to sub-population i is xi .
The objective function in Eq. (2) is natural and easy to understand. Mathematically,

it is, in fact, a special case of a more general, commonly used (Rowthorn et al. 2009;
Ndeffo Mbah and Gilligan 2011) objective function defined as the average over some
time interval (0, T ) of the number of the infected individuals,

J = 1

T

∑

i

Ni

∫ T

0
Ii (t)dt . (4)

The objective function we consider here can be interpreted as the average over a time
interval (0, T ) when the time horizon T becomes very large, in the limit T → ∞.
Other potential choices for the objective function would be to use an equivalent of
quality adjusted life years (QALYs) as in (Zaric and Brandeau 2001a; Brandeau et al.
2003) or the infections averted as in Zaric and Brandeau (2001b) as a measure of the
impact of the infection. The advantage of the choice of objective function in Eq. 2 is
the following. Firstly, it is applicable to epidemics within humans, animals and plants,
while QALYs are a measure specific to human health. Secondly, since the control we
consider increases the recovery time, which essentially reduces the infection burden,
it makes more sense to consider the impact of control as the reduction in infection
burden rather than infections averted, which is more appropriate for control measures
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Table 1 Table showing the parameters and variables used, together with their descriptions

Parameter/variable Description

βi Rate of infection in population i

ηi Additional recovery rate provided by the treatment

C(i)
T Endemic disease prevalence given full treatment in population i , 1 − 1+ηi

βi

C(i)
0 Endemic disease prevalence given no treatment in sub-population i , 1 − 1

βi

γ
(i)
c Proportion of hosts in sub-population i that require simultaneous treatment

necessary for saturation

Ni Size of the i th sub-population

M The maximum amount of resources available

xi Proportion of the resource that is allocated to the sub-population i

ki The cost of treating one host in sub-population i

n Number of sub-populations

The most used derived parameters are also included, for convenience

that reduce the transmission rate. Thirdly, taking the infinite time horizon limit is
appropriate for our motivating example of multithreats within a forest since typically
the time scales of interest for preserving a forest are very long. Finally, considering
the average level of infection over a long time horizon allows us to use analysis of the
equilibrium dynamics of the model to characterise the optimal solution, rather than
using formal optimal control theory, which is intractable for the general problem of
n-sub-populations.

The equilibrium level of infection in the absence of treatment for sub-population i
is 1 − 1/βi which we denote by C (i)

0 . When there are sufficient resources to treat all
infected hosts, that is Ii < γi , then the equilibrium level of infection, which we term
the full treatment equilibrium (C (i)

T ), is

C (i)
T = 1 − (1 + ηi )/βi , (5)

(see “Appendix A” for details).We refer to a sub-population as saturated whenever the
resources allocated to it cause the long-term prevalence to beC (i)

T . Therefore saturation
is the state in which adding more resources no longer has an effect on the objective
function. The model parameters and variables along with baseline parameter values
used in simulations are summarised in Table 1.

2.2 Simple Allocation Strategies

In Sect. 2.3 we derive a simple heuristic that closely approximates the optimal solution
but which is more intuitive. We compare the performance of this heuristic with four
straightforward allocation strategies that a decision maker might use. All strategies
are compared with the performance of the exact optimal which is calculated using
a ‘brute force’ numerical approach (see Sect. 2.4 for details). The simple allocation
strategies we consider are:
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– Proportional allocationThe amount of resource allocated to the i th sub-population
is proportional to the size of the sub-population, Ni , so the proportion of resource
allocated to sub-population i is

xi = Ni
∑

i Ni
. (6)

– Equal allocation The same amount of resource is allocated to each of the sub-
populations, so the proportion of resource allocated to sub-population i is xi =
1/n.

– Allocate to the largest strategyWe look atwhich sub-populationweneed to saturate
to achieve the greatest decrease in the objective function and then repeat until we
cannot saturate anymore, at which point resources are allocated to the remaining
sub-population that would result in the greatest decrease in the objective function.
In the case when both the epidemiological and the cost parameters are identical
across all sub-populations, this is equivalent to saturating each sub-population in
order of size from largest to smallest, hence we refer to this as the “allocate to the
largest” strategy.

– Allocate to the smallest strategy This strategy is the opposite of the allocate to the
largest strategy, in that we saturate the sub-population that leads to the smallest
decrease in the objective function and then repeat until we cannot saturate any
more, at which point we allocate the remaining resource to the sub-population
that would give the smallest decrease in the objective function. This strategy is
equivalent to saturating each sub-population in order of size fromsmallest to largest
when both the epidemiological and cost parameters are identical. Hence we refer
to this as the “allocate to the smallest” strategy.

The proportional and equal allocation strategies can be considered more socially equi-
table from the perspective of the chance of every individual receiving treatment, as
compared with the allocate to largest and the smallest strategies, and potentially to the
optimal solution. Similar strategies to the ones above were previously considered in
Ndeffo Mbah and Gilligan (2011), although we note that they are not identical since
Ndeffo Mbah and Gilligan (2011) allow for reallocation of resources.

2.3 Model Analysis

In this section we show that the optimal allocation using analysis of the fixed points
is as follows: saturate some subset S of the sub-populations such that no further
sub-populations can be saturated and then allocate all the resources left over into
one of the remaining unsaturated sub-populations. Therefore, the optimal strategy
lies on the boundary of possible allocation strategies and no interior solution to the
problem exists. Furthermore, we determine a simple heuristic to determine which sub-
populations should be saturated. Since the optimal solution involves the saturation of
sub-populations, we begin by considering the minimum amount of resource needed
to saturate a sub-population that depends on the long-term dynamics of the system.

123



1738 C. E. Dangerfield et al.

2.3.1 Minimal Treatment to Saturate a Sub-population

We begin by considering the minimum amount of resource, γ (i)
C , necessary to ensure

that sub-population i ends up in the full treatment equilibrium, that is I (i) → C (i)
T

as t → ∞. This depends on the dynamics of the system at equilibrium, which are
analysed in detail in “Appendix A”. In particular, the dynamics differ in two distinct
regions of parameter space, depending on the epidemiological parameters for the rate
of infection, βi , and the rate of recovery following treatment ηi .

When ηi < (βi − 1)/2, C (i)
T is the only stable equilibrium (see “Appendix A” for

details) and so the minimum amount of treatment required is simply γ
(i)
C = C (i)

T .

When η > (β − 1)/2, allocating γ
(i)
C = C (i)

T resources may no longer be sufficient to

ensure the full treatment endemic equilibriumC (i)
T is reached (i.e. that the population is

saturated). This is because in this region of parameter space there exist three equilibria,
C (i)
T , I (i)

A and I (i)
B (formulae for I (i)

A and I (i)
B are given in “Appendix A”). In particular,

C (i)
T and I (i)

B are both stable (C (i)
T < I (i)

B ) and they are separated by the unstable

equilibrium I (i)
A . In this casewe use the analysis of the systemdynamics at equilibrium,

given in “Appendix A”, to determine the minimum amount of treatment required to
ensure I∞

i = C (i)
T (i.e. to ensure the sub-population is saturated), based on the initial

prevalence of infection in the sub-population, I (i)
0 . If the initial prevalence I (i)

0 satisfies

I (i)
0 < C (i)

T , then we only need to allocate γ
(i)
C = C (i)

T . When the initial condition

satisfies C (i)
T < I (i)

0 < C (i)
0 /2, the necessary γ

(i)
C is given by the intersection of the

line I = I (i)
0 with the curve I = I (i)

A , that is, it is the solution to the equation

1

2

(

C (i)
0 −

√
(
C (i)
0

)2 − 4ηiγi
βi

)

= I (i)
0 (7)

which is given by γ
(i)
C = βi

ηi
I (i)
0 (C (i)

0 − I (i)
0 ). Finally if the initial prevalence satisfies

I (i)
0 > C (i)

0 /2, that is the initial prevalence is greater than the I (i)
A at the point where

equilibria I (i)
A and I (i)

B annihilate (“Appendix A”) then we need to allocate γ
(i)
c =

β(C(i)
0 )2

4ηi
.

We summarise the conditions and formula for the minimum amount of treatment
for the different possible scenarios in Table 2.

The analysis shows dependence of the minimum amount of treatment required to
saturate a sub-population on the initial conditions. This dependence on initial con-
ditions arises due to the dynamics of the SIS model in the presence of an economic
constraint on available treatment resources. Therefore, even if all sub-populations are
identical in terms of the epidemiological and economic parameters, different amounts
of resource may be needed to saturate each sub-population, depending on the initial
level of infection within a given sub-population. Since resources are limited, differ-
ences in the amount of resource required to saturate a sub-population are important in
determining the optimal allocation of resources.
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Table 2 Table giving the parameter regimes, conditions on the initial conditions and the subsequent formulas
for the minimal amount of treatment required to saturate sub-population i

Parameter region Initial condition criterion Allocation

ηi < (βi − 1)/2 all I (i)0 γ
(i)
C = C(i)

T

ηi > (βi − 1)/2 I (i)0 < C(i)
T γ

(i)
C = C(i)

T

ηi > (βi − 1)/2 C(i)
T < I (i)0 <= C(i)

0 /2 γ
(i)
c = βi

ηi
I (i)0 (C(i)

0 − I (i)0 )

ηi > (βi − 1)/2 C(i)
0 /2 < I (i)0 γ

(i)
c = βi (C

(i)
0 )2

4ηi

2.3.2 The Optimal Strategy is to Saturate a Subset of Sub-populations

Let S ⊂ {1, . . . , n} be the subset of sub-populations that are saturated under the
allocation {xi }. Then the objective function to be minimised, Eq. (2), can be written
as follows

J =
∑

i

Ni I
∞
i (xi ) (8)

=
∑

i∈S
C (i)
T Ni +

∑

i /∈S

Ni

2

(

C (i)
0 +

√
(
C (i)
0

)2 − 4ηi Mxi
βi Ni ki

)

. (9)

In the first term inEq. (9), each sub-population is saturated and so the endemic infection
levelwill beC (i)

T , by definition. In the second termnone of the populations are saturated
and so the endemic level of infection is given by the equilibrium in the case when there
is insufficient resource to treat all infected individuals. The form of this equilibrium,
given by the term in the second summation in Eq. (9), is found by fixed point analysis
of the model for epidemic dynamics in the presence of control given by Eq. (1) in the
case where Ii > γi . See “Appendix A” for details.

We begin by showing that there is only one interior local extremum and it cannot
be a minimum. Consider an allocation strategy xi which does not saturate any of the
populations. The objective function is given by

J (x1, . . . , xn−1) =
n∑

i

Ni

2

(

C (i)
0 +

√
(
C (i)
0

)2 − 4ηi Mxi
βi Ni ki

)

, (10)

where xn = 1−x1−· · ·−xn−1. To find the local extrema, we solve the set of equations
∂ J/∂xi = 0. This yields that for each i ,

βi ki
ηi

√
(
C (i)
0

)2 − 4ηi M

βi ki Ni
xi = constant. (11)
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To find the constant and hence the unique local extreme, x�, we use the condition∑n
i x

�
i = 1. This gives

x�
i = ai −

∑
j a j − 1
∑

j b j
bi , (12)

where

ai =
Ni

(
C (i)
0

)2
βi ki

4ηi M
, (13)

bi = ηi Ni

4Mβi ki
. (14)

To show that this point cannot be a local minimum and therefore cannot be the solution
to the optimisation problem, we need to prove that the n − 1 × n − 1 matrix of the
second derivatives DJ � has at least one negative eigenvalue, (Arrowsmith and Place
1992). Differentiating J twice yields

DJ �
i i = −2M2

S3/2

(
βnkn
ηnNn

+ βi ki
ηi Ni

)

(15)

DJ �
i �= j = −2M2

S3/2
βnkn
ηnNn

. (16)

This is a real, symmetric matrix with negative entries and therefore it has a negative
eigenvalue (Theorem, “Appendix B”). The result implies that the point x� cannot be a
local minimum. Since this is the only local extremal point of the system, the allocation
strategy minimising J must saturate at least one of the sub-populations. Suppose the
optimum lies in the subspace of all possible strategies where sub-population m is
saturated. The resources remaining after saturating m are M − Nmkmγ

(m)
c (where

γ
(m)
c are the resources needed to saturate sub-population m). After we saturate m,

the problem is to minimise J in the remaining sub-populations given the unused
resources. This is qualitatively the same as before, and so the solution must saturate at
least one of the remaining sub-populations. This argument can be repeated until there
are insufficient resources to keep saturating.

We have thus shown that the optimal allocation must lie on the boundary of the
surface that defines the potential optimal strategies, that is we need to saturate sub-
populations until further saturation is not possible. A key question therefore is how
should the remaining resources be distributed amongst those sub-populations that are
not saturated?

The question ofwhere to allocate the remaining resources is the same as the problem
ofwhere to allocate resources ifwe cannot saturate anyof the sub-populations. Suppose
that in the optimal allocation, some subset X of the sub-populations share the resources,
that is more than one sub-population has nonzero amount of resources allocated to it.
There is no coupling between the sub-populations and so we can consider the subset
X in isolation. Since none of the sub-populations in X are saturated and none have
zero resources allocated to it, as far as X is concerned, this allocation is an interior
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one. We proved above however, that there can be no interior local minimum of any
number of sub-populations. Therefore, when no sub-populations can be saturated, all
the resources should be allocated to a single sub-population, that is γm = M/(kmNm)

for some m and γi = 0 ∀i �= m.
The above analysis shows that the optimal allocation strategy is as follows: saturate

some subset S of sub-populations such that no further saturating is possible and then
allocate all the unused resources into oneof the remainingunsaturated sub-populations.
The optimal strategy raises two main questions:

1. How should the subset of sub-populations that are saturated with treatment, S, be
chosen?

2. Into which sub-population should the remaining resource be allocated?

2.3.3 Which Sub-populations Should Receive Treatment?

We consider the first question, that is, if we can saturate some of the sub-populations,
which should we pick? Suppose a set S of the sub-populations is saturated, so
S = {i |i is saturated}. Mathematically, we want to know which choice of S min-
imises the objective function. We refer to the set of the remaining unsaturated
sub-populations as R, so R = {i |i /∈ S}. The resource left after saturating S, MR ,
is given by

MR = M −
∑

i∈S
Ni kiγ

(i)
c . (17)

The restriction on S that no more sub-populations can be saturated can be put in
mathematical terms as

MR < γ (i)
c Ni ki , ∀i ∈ R. (18)

The objective function, as a function of S, is given by

J (S) =
∑

i∈S
C (i)
T Ni +

∑

i∈R\{m0}
C (i)
0 Ni

+ 1

2
Nm0

(

C (m0)
0 +

√
(
C (m0)
0

)2 − 4ηm0MR

βm0Nm0km0

)

, (19)

where m0 is the index of the sub-population receiving the resources left after
saturation. The task is to minimise J (S) by an appropriate choice of S. This is a
difficult problem, mainly because it is hard to capture how m0 depends on the choice
of the set S.

We approach the optimisation problem given by Eq. (19) by considering an approx-
imation where we neglect the term 4ηm0MR/βm0Nm0km0 . This amounts to ignoring
the resources that are left over after saturating the sub-populations in S when selecting
the optimal S. The error in the objective function arising from this approximation is
at most 1

2C
m0
0 Nm0 . The objective function as a function of S can then be written as
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J (S) =
∑

i∈S
C (i)
T Ni +

∑

i /∈S
C (i)
0 Ni (20)

=
n∑

i

C (i)
0 Ni −

∑

i∈S
(C (i)

0 − C (i)
T )Ni . (21)

To minimise J (S) we need to maximise
∑

i∈S(C
(i)
0 − C (i)

T )Ni . In other words we
need to saturate a set S such that the value of host saved by treatment is as large as
possible, given the constraint on available resources. The problem can be rephrased
as follows:

Find subset S that maximises
∑

i∈S

(
C (i)
0 − C (i)

T

)
Ni (22)

Subject to the constraint
∑

i∈S
kiγ

(i)
C Ni < M, (23)

where γ
(i)
C is the minimal amount of treatment required to saturate sub-population i ,

which will depend on the initial conditions when ηi > (βi − 1)/2. Formulae for γ
(i)
C

are given in Table 2.
Equation (23) is a variation on the knapsack problem, well known in computer

science (Martello and Toth 1990; Skiena 1999; Kellerer et al. 2004). Its uses are wide
ranging, for example finding the optimalway to cut rawmaterials (Kellerer et al. 2004),
construction of investment portfolios (Kellerer et al. 2004) and the construction and
scoring of tests (Feuerman and Weiss 1973). The knapsack problem is as follows:
given a set of items, each with a value and a weight, the aim is to find a collection
of items that maximises the value such that the total weight is less than or equal to
some given limit. Since each item is included or not we have to solve the so-called
0-1 type knapsack problem. In our problem, the ‘items’ are the sub-populations that
are saturated by treatment and the values and weights of each sub-population, can be
read off from Eqs. (22) and (23) as

Valuei =
(
C (i)
0 − C (i)

T

)
Ni , (24)

Weighti = kiγ
(i)
C Ni . (25)

2.3.4 Knapsack Approximation

One of the standard approaches to solving the knapsack problem computationally and
the one we use here is the so-called Meet in the middle method (Horowitz and Sartaj
1974). This algorithm is a variation on the brute force approach searching through
all the possible subsets S. TheMeet in the middle algorithm consists of the following
steps:
Meet in the middle algorithm

1. Split the n sub-populations into two subsets of approximately equal size in terms
of the total value, A and B.
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2. Find the total weight (
∑

i kiγ
(i)
C Ni ) and the total value (

∑
i (C

(i)
0 − C (i)

T )Ni ) of
each subset of A and each subset of B.

3. For each subset of A, find the subset of B that maximises the value with the
combined weight less than the limit M . This can be done efficiently as follows.
First sort the subsets of B by weight. Then remove all subsets of B that have higher
weight but smaller value than some other subset of B. That is, if for two subsets
of B, weight (S1) ≥ weight(S2) but value(S1) ≤ value(S2), remove S1, because it
will definitely not be in the optimal selection. After this procedure, the subsets of
B are sorted both in weight and value. To find the subset of B that for some given
subset of A maximises the value while having combined weight less than M , we
can just use binary search.

Both steps (2) and (3) require O(n2n/2) operations and so thewhole algorithm requires
O(n2n/2) operations. Computational time for a brute force approach to finding the
optimal set S exactly is O(n2n). Therefore, the Meet in the middle algorithm is sig-
nificantly faster than the naive brute force search, particularly when the number of
sub-populations (n) is large. There are other algorithms for solving this type of a
knapsack problem, for example algorithms based on dynamic programming (Cormen
et al. 2001) that can sometimes be faster, but for our purposes here the Meet in the
middle algorithm is sufficient.

2.3.5 Allocation of Remaining Resources

We now consider where to allocate the remaining resources. Suppose there is not
enough resource to saturate any of the sub-populations. If resources are allocated to
sub-population m, the objective function is

J (m) =
n∑

i

C (i)
0 Ni − 1

2
C (m)
0 Nm

⎛

⎜
⎝1 −

√
√
√
√1 − 4ηmM

βmkmNm

(
C (m)
0

)2

⎞

⎟
⎠ . (26)

To minimise the objective function, involves maximising a function f (m) given by,

f (m) = C (m)
0 Nm

⎛

⎜
⎝1 −

√
√
√
√1 − 4ηmM

βmkmNm

(
C (m)
0

)2

⎞

⎟
⎠ . (27)

There is no simple rule thatmaximises f (m). Thereforewepick thebestm numerically,
simply by running through all m ∈ {1, 2, . . . , n} and selecting the one that maximises
f (m).

2.4 Calculation of True Optimal Strategy

To assess how well the approximate optimal allocation strategy given by the knapsack
problem performs, we compare it with the exact optimal solution. Since we have
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Fig. 1 The green colour represents initial susceptible hosts and the red colour the infected ones. The columns
correspond to the different populations, and the height of the columns corresponds to the population size
(Color figure online)

proved that the optimal solution must saturate a subset of sub-populations, we obtain
the exact optimal strategy by finding the optimal saturation set S that minimises the
objective function (19) numerically. Specifically, we use a brute force approach and
scan through all the subsets S ⊂ {1, 2, . . . , n} which can be saturated given the
resource constraint and select the one that minimises the objective function. This has
computational complexity proportional to n2n , however since the largest nwe consider
is 11 such an approach remains computationally tractable.

3 Results

3.1 Performance of Knapsack Approximation

We initially compared the performance of the knapsack approximation, exact opti-
mal and simple allocation strategies for many sub-populations, each with a different
population structure. Since the exact optimal becomes computationally intensive to
solve as the number of sub-populations increases (it is proportional to n2n where n
is the number of sub-populations), we consider 11 sub-populations as beyond this the
exact optimal is computational unfeasible to solve. The population size and initial
level of infection of each sub-population are given in Fig. 1. The performance of each
allocation scheme was tested on three different randomly generated combinations of
parameters. More specifically a given parameter set was generated as follows: for sub-
population i the infection rate (βi ) was chosen uniformly from the interval (1.5, 2.5),
the treatment rate (ηi ) was chosen uniformly from the interval (0.5, 1.1) and the cost
of treating one host (ki ) was chosen uniformly from the interval (1, 1.5). Intervals
were chosen to be in realistic ranges, and lie within the region used in previous studies
Rowthorn et al. (2009); Ndeffo Mbah and Gilligan (2010). Parameter values are cho-
sen randomly within these intervals to ensure a representative range of values from
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the parameter space. In this way we obtain a set of values for each sub-population that
describes the disease dynamics and economic costs for that sub-population and these
values taken together across all 11 sub-populations comprise a single parameter set.
Figure 2 shows the performance of the allocation strategies, in terms of the value of the
objective function (J ), for three example combinations of randomly chosen parameter
values as a function of the resource limit (M).

The knapsack approximation performed remarkably well for all three different
parameter sets (Fig. 2). It only noticeably misses the optimal solution (black line)
for a small range of resource limit values under the parameter regime in Fig. 2a, b,
with an 8% error in the knapsack approximation compared with the exact optimum.
In comparison all four simple strategies perform significantly worse than the optimal
strategy. Indeed the allocate to the largest strategy does worst of all for a wide range
of resource limits (Fig. 2a, c). In particular, the allocate to the largest often performs
worse than the equal and proportional allocation strategies. This is surprising because
the allocate to the largest strategy, like the optimal strategy, saturates some subset
of sub-populations while under the equal and proportional allocation strategies it is
possible that no sub-populations are saturated. The poor performance of the allocate
to the largest strategy therefore suggests that the choice of which sub-populations to
saturate is very important, and picking the ‘wrong’ sub-populations could mean that
a socially equitable solution is preferable, even if no sub-populations are saturated.

These results suggest that the knapsack approximation performs well when there
are many populations. However, due to the computational cost of solving the exact
optimum when there are 11 sub-populations, this limits the number of parameter
sets for which the knapsack approximation can be tested. Therefore, the knapsack
approximation was also tested against the exact optimum when there are just three
sub-populations, n = 3. In the case of n = 3 the exact optimum is relatively fast to
compute, allowing us to compare the knapsack and exact optimum for 50, 000 different
parameter sets. These 50, 000 parameter setswere generated as follows. The parameter
values in the first sub-population were kept fixed across all 50, 000 parameter sets with
β1 = 2, η1 = 1.2, k1 = 1, N1 = 100 and the initial condition set to the endemic
equilibrium. For the other two sub-populations, 50, 000 different parameter sets are
generated randomly.More specifically a given parameter set for population i (i = 2, 3)
is generated as follows: βi is uniform on (2,3), ηi = βi − 1+ r where r is a uniformly
distributed random number on (0,0.5), ki is uniform on (1,1.5) and the population
size (Ni ) is uniform on (100, 1000). We note that ηi is set to be a function of βi to
ensure that ηi > (βi − 1)/2. In this way we obtain 50, 000 unique parameter sets that
describe the population structure, epidemiological dynamics and economic costs for
the 3 different sub-populations. Parameter values are chosen at random to ensure that
we test the knapsack approximation over a wide range of parameter space.

The computational cost of solving the exact optimum is proportional to n2n (n
is the number of sub-populations) and so solving the exact optimum when n = 11
involves significant computational time. This limits the number of different parameter
sets that could be used to test the knapsack approximation for the population structure
given in Fig. 1 as the resource limit is varied. Therefore, the knapsack approximation
was also tested against the exact optimum across a wide range of different parameter
sets when there are just three sub-populations, n = 3. The parameter values for the
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Fig. 2 Comparison of the performance of the knapsack approximation, exact optimal calculated using a
brute force approach (Sect. 2.4) and simple allocation strategies (described in Sect. 2.2) for three different
realisations of the random sets of parameters βi , ηi and ki
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Fig. 3 Scatter plot of the values for the two sub-populations (v2 and v3) whose parameters were randomly
varied in the 50, 000 different parameter sets tested, for the cases where the worst-case error was higher
than 6%. In particular, each point corresponds to a specific parameter set where the worst-case error was
higher than 6%. Points are colour coded depending which of the three different lines they lie on. The three
lines are v3 = v2 and v3 = v2 ± v1, where v1 is the value of the sub-population whose parameter values
are kept fixed for the 50,000 different sets of parameter combinations tested (Color figure online)

first sub-population were kept fixed with β = 2, η = 1.2, k1 = 1, N1 = 100 and
the initial condition endemic. The parameters for the remaining two sub-populations
were selected at random in the following manner. β is uniform on (2,3), η is β −1+ r
where r is a uniformly distributed random number on (0,0.5) (this is to ensure that
η > (β −1)/2), k is uniform on (1,1.5) and the population size (N2 and N3) is uniform
on 100, 1000. We considered 50,000 different sets of parameter combinations and for
each the largest error as the resource limit is varied was computed, hereafter referred
to as the worst-case error.

Across the 50,000 different parameter sets tested, the mean worst-case error was
0.28% and the standard deviation was 1.19%. In particular, in 91% of cases the worst-
case error was 0. Furthermore, large values of the error were rare with only 1.2% of the
parameter sets having a worst-case error larger than 6% and the maximum error out
of all 50, 000 different parameter sets was only 16.7%. This provides further support
that the knapsack approximation closely approximates the exact optimum over a large
range of parameter space.

To understand the conditions under which the error in the knapsack is large (greater
than 6%) we consider the relationship between the knapsack values (Eq. 24) of the
two sub-populations whose parameter values are varied across the 50,000 different
parameter sets tested, Fig. 3. When the worst-case error is large, the knapsack values
in the two sub-populations are almost perfectly correlated with each other and in fact
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lie along one of three lines, v3 = v2 and v3 = v2 ± v1, where v1 is the value of
the sub-population whose parameter values are kept fixed for the 50,000 different
parameter combinations tested (Fig. 3). These results suggest that the error between
the knapsack approximation and the exact optimumwill be largest when the knapsack
values of one of the sub-populations are close to the knapsack value of one of the
remaining sub-populations, or close to the sum of knapsack values of a subset of the
remaining sub-populations. In these cases, the discrepancy in the total value from
saturating different subsets of the sub-populations will be smaller, making it difficult
for the knapsack approximation to determine which set of sub-populations it is best to
saturate. Unlike the exact optimal solution, the knapsack ignores the interdependency
between the set of sub-populations to saturate and where the resources remaining
after no more sub-populations can be saturated should be allocated. The results here
suggest that when the value of saturating sub-populations is highly correlated with
each other, the interdependency between the choice of sub-populations to saturate
and the allocation of the remaining resources becomes more important in determining
the optimal allocation of resources. However, we note that while in these situations
the knapsack approximation seems to perform less well, the maximum error between
the knapsack approximation and exact optimum that we found was still only 16.7%.
Furthermore, the worst-case error between the knapsack approximation and exact
optimum was greater than 6% in only a very small number of cases (about 1.2% of
cases tested here) suggesting that the knapsack approximation is very close to the
optimal in the vase majority of cases.

We have shown that the knapsack approximation closely approximates the exact
optimum. However, unlike the exact optimum, it provides analytic insight into the way
to choose which sub-populations to saturate. This is since we have derived an analytic
formula for the values and weights in the knapsack approximation in terms of the
model parameters. In the next two subsections we use the knapsack approximation to
gain insight into the characteristics that are important to capture within an allocation
strategy.

3.2 Insight into Choosing Sub-populations to Saturate Using the Knapsack
Approximation

The knapsack approximation associates a value and a weight to saturating each sub-
population. The value of the sub-population represents the gain that is achieved from
saturation (see Eq. 24). It depends on the size of the sub-population Ni , as well as the
disease characteristics that are captured in the endemic equilibrium with and without
treatment. The knapsack approximation shows that saturating larger sub-populations
(greater Ni ) is more advantageous. It also shows that diseases for which treatment
leads to a greater reduction in the endemic equilibrium (greater C (i)

0 −C (i)
T ) also lead

to bigger gains in the objective function. However, unlike the simple strategies (as
described in Sect. 2.2), the knapsack approximation also takes into account the cost
of saturating a sub-population (Eq. 25), and in particular how this depends on initial
conditions when ηi > (βi − 1)/2.
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Fig. 4 a Initial number of infected individuals (green) and susceptible individuals (red) for the three different
sub-populations. The stars above the bars showwhich populations are saturated under the different allocation
schemes. Note that the proportional allocation strategy does not saturate any sub-population for this example
and so there are no stars corresponding to this scheme. b The value (blue) and weight (red) of the knapsack
approximation (Eq. 24 and 25) for each sub-population. c Performance of the knapsack and four simple
allocation strategies, in terms of the objective function, for the simple three sub-populations example. The
parameter values for this example are as follows: maximum amount of resource is M = 30 units, the sub-
population sizes and initial levels of infection are N1 = 100, I 10 = 0.08, N2 = 120, I 20 = 0.3, N3 = 150,

I 30 = 0.08, the transmission rate for all sub-populations is β1,2,3 = 2 and η1,2,3 = 0.8 and the cost for all
sub-populations is k1,2,3 = 1 (Color figure online)

To understand the characteristics of the optimal allocation strategy that the knapsack
captures, and in particular those that aremissing from the simple strategieswe consider
an example of three sub-populations that are identical except for their size and initial
level of infection. The size of each sub-population, along with the initial level of
infection, is shown in Fig. 4a. The values of the epidemiological parameters, β and η

are given in Table 1. The stars in Fig. 4a show which sub-populations are saturated
under the knapsack approach and the other four simple strategies. Note that no sub-
populations are saturated under the proportional allocation strategy and so no stars are
shown for this strategy (Fig. 4a). The performance of each strategy, in terms of the
objective function, is given in Fig. 4c.We conclude that since the aim is tominimise the
objective function it is clear that the knapsack approach is the best allocation strategy.

Considering the sub-populations that are, and are not saturated by the different
allocation strategies provides insight into the knapsack approximations superior per-
formance. Both the knapsack and the allocate to the largest strategies saturate the
largest sub-population (sub-population 3; Fig. 4a). This is because the large size
of sub-population 3 means that there are potentially large gains to be made from
focusing treatment in this sub-population. However, the allocate to the largest strat-
egy also saturates the second largest sub-population (sub-population 2) while the
knapsack approximation instead focuses treatment on the smallest sub-population
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(sub-population 1). While the value of sub-population 2 is larger than sub-population
1 (Fig. 4b), the higher initial level of infection in sub-population 2 means that a
greater amount of resources need to be allocated in order to saturate sub-population
2. That is, the cost of saturating sub-population 2 is greater than for sub-population 1
(Fig. 4b). By focusing resources on sub-population 1 instead, the knapsack allocation
is able to saturate two sub-populations, while the allocate to the largest is only able
to saturate sub-population 3 as there are not enough resources remaining to saturate
sub-population 2 as well. On the other-hand, the allocate to the smallest, like the knap-
sack approximation, is able to saturate two sub-populations, namely sub-populations 1
and 2. However, as with the allocate to the largest strategy, the allocate to the smallest
ignores the fact that saturating sub-population 2 ismuchmore costly, and less valuable,
than saturating sub-population 3 (Fig. 4b) since the initial level of infection is so high
in sub-population 2. This simple example illustrates that the knapsack performs sowell
because it accounts for both the value and cost of saturating a sub-population with
treatment. In particular, the cost of saturation is important since the more resources
that are used treating one sub-population, the fewer resources there are left to treat the
remaining sub-populations. This indirect coupling that arises due to the shared limited
resources is captured by the knapsack approximation but is ignored by all the simple
strategies.

3.3 The allocation of Resources Across Identical Sub-populations

We consider a further simplification to the 3 sub-population example in Fig. 4 such
that the sizes of all 3 sub-populations are identical and so the only differences between
the sub-populations are the initial levels of infection. The size of each sub-population,
along with the initial level of infection is shown in Fig. 5a. Under the knapsack alloca-
tion strategy, which we have shown is approximately optimal, the aim is to maximise
the value obtained from the sub-populations saturated with treatment, subject to the
constraint on the resources available for treatment. Since the size, value and epi-
demiological parameters of the sub-populations are identical, the value of saturating a
sub-population within the knapsack problem, given by Eq. (24), is the same for all sub-
populations. Therefore, the more sub-populations saturated the greater the value for a
given allocation strategy. The only difference between sub-populations is in the initial
levels of infection and therefore the minimum amounts of treatment (γi ) required to
saturate each sub-population. In terms of the knapsack approximation, this means that
the sub-populations have differentweights given byEq. (25) (Fig. 5b); sub-populations
with smaller initial levels of infection have lower weight while higher initial preva-
lence leads to the sub-population having greater weight. Saturating sub-populations
with fewer initial infected individuals (lower initial prevalence), a greater number
of sub-populations can be saturated with treatment for a given amount of resource.
Therefore, the application of the knapsack approximation suggests that, when sub-
populations are identical except for the initial levels of infection, the best strategy
is preferentially to treat the sub-populations with the lowest prevalence of infected
individuals. This counterintuitive result is similar to what Rowthorn et al. (2009) find
in the case of two identical (interacting) populations.
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Fig. 5 a Initial number of infected individuals (blue) and susceptible individuals (yellow) for the three
different populations. The stars above the bars show which populations are saturated under the knapsack
allocation schemes. Note that the proportional (which is equivalent to the equal allocation strategy when
the sub-populations are identical) allocation strategy does not saturate any population for this example and
so there are no stars corresponding to this scheme. bThe value (blue) and weight (red) of the knapsack
approximation (Eq. 24 and 25) for each sub-population. c Performance of the knapsack and proportional
allocation strategies, in terms of the objective function. The parameter values for this example are as follows:
maximum amount of resource is M = 20 units, the sub-population sizes and initial levels of infection are
N1,2,3 = 100, I 10 = 0.08, I 20 = 0.3, I 30 = 0.08, the transmission rate for all sub-populations is β1,2,3 = 2
and η1,2,3 = 0.8 and the cost for all populations is k1,2,3 = 1 (Color figure online)

4 Discussion

In this paper we have investigated the allocation of limited resources across n sepa-
rate sub-populations to treat infected individuals for SIS-type epidemics. The shared
resource pool introduces an effective interaction between the sub-populations, because
allocating resource to one of them implies there will be less of the resource left for
the others. This has the effect of anti-correlating the levels of infection in the different
sub-populations. We assume that once allocated for disease control the resource can-
not be reallocated later, meaning that the allocation strategy must take into account
the long-term behaviour of the epidemic.

Using understanding of the long-term dynamics of the system, we have shown that
the optimal allocation strategy involves saturating a subset of sub-populations with
treatment, while other sub-populations receive none. This is similar to the findings
for the two population case where resources should be focused within the population
that is more/less infected depending on the epidemiological model and parameters,
(Rowthorn et al. 2009; Ndeffo Mbah and Gilligan 2011). Characterising the full opti-
mal allocation problem for n ≥ 2 sub-populations is complicated by the dependence of
where the remaining resources are allocated on the subset of sub-populations that are
saturated with treatment. Therefore, it is not possible to characterise the full optimal
allocation strategy analytically.
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By ignoringwhere the remaining resources are allocatedwe are able to approximate
the full optimisation problem in a way that provides greater insight into how resources
should be allocated between the different sub-populations.We term this approximately
optimal strategy the knapsack approximation due to its similarity to the knapsack
problem from computer science (Kellerer et al. 2004). Formulating the optimisation
problem in this way associates a value and a weight to each sub-population. The value
of a sub-population is the gain expected from saturation while the weight is the cost of
doing so. A key advantage of the knapsack approximation is that it provides formulae
for the values and weights of each sub-population in terms of the epidemiological
parameters. We showed that the knapsack closely approximates the exact optimum
allocation strategy (obtained by brute force method) for a wide range of different
parameter sets. Indeed in the worst cases, the knapsack approximation under performs
the exact optimum by only 10%. Furthermore, the knapsack is more computationally
efficient than the exact optimum, particularly when the number of sub-populations (n)
is large.

We showed that the knapsack outperforms a number of simple strategies. The
simple strategies either allocate a proportion of resources to each sub-population in a
socially equitable way so everyone who is infected has an equal chance of receiving
treatment or focus resources on sub-populations sequentially in a way that leads to
the largest/smallest gain in the objective function. In particular, the simple strategies
are chosen since they do not require any computation to determine where resources
should be allocated. The knapsack performs better than the simple strategies because it
captures two important aspects of the exact optimal solutionwhich the simple strategies
do not:

1. The knapsack captures the indirect coupling between sub-populations that arises
due to the shared pool of resources. This is because it accounts for both the value
gained in saturating a sub-population, as well as the cost (weight) of saturation and
therefore the reduction in resources left over for the remaining sub-populations.

2. The knapsack captures the dependence of the optimal solution on the initial levels
of infection in each sub-population. This arises due to the dependence of the
minimum amount of resources needed to saturate a sub-population on the initial
conditions.

We note that even though there is no direct interaction between sub-populations, the
superior performance of the knapsack approximation shows that the indirect inter-
action between sub-populations, via the shared pool of limited resources, plays a
significant role in the optimal allocation of resources. The knapsack strategy therefore
provides an approximately optimal allocation strategy that is more intuitive and com-
putationally efficient to compute than the exact optimum(particularlywhen the number
of sub-populations is large) but performs significantly better than other straightforward
allocation strategies.

The superior performance of the knapsack approximation compared with other
allocation strategies that involve saturating sub-populations, such as the ‘allocate to
the largest’ and ‘allocate to the smallest’ strategies, shows that the choice of which sub-
populations to saturate is highly important. Indeed a strategy that saturates the ‘wrong’
sub-populations can actually do worse than a more equitable allocation strategy. This

123



Resource Allocation for Epidemic Control Across Multiple… 1753

is similar to the findings of Rowthorn et al. (2009) for an SIS epidemic who found
that a strategy that focuses resources on the population with the highest prevalence
performs worst of all, in the case of two identical connected populations.

A key goal of this work was to extend the results from Rowthorn et al. (2009), who
consider the allocation of resources between two interacting sub-populations for an
SIS-type infection over a finite time horizon, to the general problemof n heterogeneous
sub-populations. Due to the challenges of this n-dimensional problem we made two
simplifications; we assumed no interaction between sub-populations and we consider
the allocation of resources over a long time horizon (T → ∞). Therefore, it is difficult
to compare our findings directly with those of Rowthorn et al. (2009). However, by
considering 3 sub-populations that are identical except for the initial levels of infection,
the similarities between the results we obtain from the knapsack approximation and
those reported in (Rowthorn et al. 2009) are evident. We find that in this case, the
knapsack strategy involves focusing treatment on the sub-populations with the lowest
level of initial infection, since these sub-populations have the lowest costs associated
with saturation. This is the same as for Rowthorn et al. (2009) who find that in the
case of two sub-populations, limited treatment resources should be focused in the least
infected region, where there are the most susceptibles. Therefore, the results from the
knapsack approximation suggest that the results from (Rowthorn et al. 2009) hold in the
general n-dimensional problem for sub-populations whose size and epidemiological
behaviour is identical. However, when the sub-populations are heterogeneous in terms
of their size and/or epidemic dynamics it is a combination of population size, costs
of infection, epidemiological parameters and initial levels of infection that determine
where scarce resources should be concentrated. That may not necessarily be to the
least infected sub-populations.

The objective function in Eq. (2) we use is a special case of a more general, com-
monly used objective function (Rowthorn et al. 2009; NdeffoMbah andGilligan 2011)
defined as the average cost of infection over a long-term horizon T → ∞, consider-
ing a short time horizon (Zaric and Brandeau 2001a) could significantly change the
results. We do not explicitly consider any discounting of the cost of future infections
(Forster and Gilligan 2007). Generally, due to how our objective function is defined,
an exponential discount factor e−r t would only multiply the objective function by a
constant and thus not affect the analysis in any way.

The situations we consider here are intentionally simplified with an SIS model,
in order to gain insight into the optimal allocation. Our assumptions are therefore
deliberately restrictive in order to make progress. We briefly consider the implications
of the assumptions below and the options for dealing with more general and realistic
epidemic scenarios. We have considered epidemics of SIS-type, and so individuals
can be re-infected which is typical of many diseases such as Chlamydia (Turner et al.
2006). However, for many diseases re-infection is preceded by a period of temporary
immunity and so an SIRS-type (susceptible–infected–recovered–susceptible) is more
appropriate. The addition of a removed class can significantly impact the optimal
allocation strategy, (Ndeffo Mbah and Gilligan 2011); therefore, it is important to
consider the extension of our findings to SIRS-type infections. This is not, however,
straightforward since the dynamics of the SIRS model with an economic constraint
on treatment are complex. In particular the long-term dynamics involve limit cycles
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(Vyska and Gilligan 2016). This means it is difficult to obtain a formula for the
minimum amount of treatment required to saturate the population in the weights for
the knapsack problem.

In this paper we assumed that sub-populations do not interact. While this is appli-
cable to systems where each sub-population represents a distinct pathogen threat to
a given species, or when there is negligible contact between the two groups (e.g.
this is typically the assumption when considering the spread of blood-borne diseases
within injecting drug users and non-injecting drug users) in many systems interactions
between populations are important in contributing to the invasion and persistence
of a pathogen (Ferguson et al. 2001; Stacey et al. 2004; Dye and Gay 2003). For
the case of two identical sub-populations, Rowthorn et al. (2009) show that interac-
tions between populations can lead to non-intuitive allocation strategies. Therefore, an
important extension to the work presented here would be to derive a simple heuristic to
determine the approximately optimal allocation of limited resources amongst n inter-
connected sub-populations. Extending the approach taken here to include coupling
between sub-populations is, however, not straightforward. Determining the form of
the optimal allocation of resources relies on the ability to fully characterise the equi-
librium behaviour of the system. Relaxing the assumption of no coupling between
sub-populations means that we are no longer able to determine the equilibrium
behaviour for the general problem of n sub-populations. Therefore, our approach
does not generalise easily to the problem of n interconnected sub-populations, and
more computational methods are most likely needed to determine the optimal alloca-
tion strategy in this situation. The challenge is that in moving to more computational
based methods to determine the optimal strategy we loose the intuitive insight that the
analytic approach taken here provides us, with the solution to the problem being more
or less a black box.

We assumed that resources are allocated at the beginning and cannot be reallocated
later. While this assumption is applicable to situations where reallocation of resources
may be very expensive, it ignores the fact that we may need fewer resources to main-
tain the endemic treatment equilibrium than are needed to reach this state initially.
Therefore, surplus resources could more efficiently be used by reallocation to another
population. Another natural extension to our current work would thus be to consider
how allowing for reallocation of resources alters the optimal strategy. Indeed in the
case of two identical populations the optimal allocation strategy for both the SISmodel
(Rowthorn et al. 2009) and the SIRSmodel (NdeffoMbah and Gilligan 2011) involves
the continual reallocation of resources.

In this paper we consider the optimal allocation of a treatment that increases the
recovery period of an individual, for example application of a fungicide or administer-
ing antibiotics. Other control measures, such as antivirals which reduce viral load or
improving condom use in the case of sexually transmitted diseases, reduce the trans-
mission rate of infection. Brandeau et al. (2003) consider such a case and find that the
optimal strategy depends on many factors including the size of each sub-population,
the state of the epidemic in each sub-population before resources are allocated and the
effectiveness of the control program. The approach taken here could be extended to
obtain an approximately optimal allocation strategy for a control which reduced the
transmission rate instead of increasing the recovery rate. Since we include the eco-
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nomic constraint directly into the model this would involve re-framing of the problem
and re-doing the long time analysis. It is therefore beyond the scope of this paper and
we leave such analysis for future work.

Optimal control theory provides a powerful tool to combine epidemiological
dynamics with economic factors to determine the optimal allocation of resources,
which is of particular importance when resources are limited. However, the solution
to such problems can often be complex to implement when for example involving
multiple switching times. Previous approaches to optimal control theory may pro-
vide little intuitive insight into how epidemic spread and economic constraints impact
the way in which scarce resources can be most efficiently deployed. The advantage
of the approach taken here is that it provides insight into the form of the opti-
mal solution which allows us to obtain an approximate heuristic that is simple to
interpret and implement. Such simple heuristics are important in the translation of
theoretical results to application by decision makers for current and future pathogen
threats.
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5 Appendix

A Dynamic Behaviour of SIS Model

We examine the long-term behaviour of the level of infection in each population in
order to gain understanding into the form of the optimal solution. In each population,
the dynamics of the level of infection is governed by the following equation

d I

dt
= β I (1 − I ) − I − ηmin(I , γ ). (28)

Note that we have dropped the subscript i for brevity. β is the transmission rate, η is
the increase in recovery rate dues to treatment and γ is the proportion of hosts that
can be treated at any given time and so this parameter captures the limited treatment
resources available.

In the absence of treatment, Eq. (28) has a single nonzero fixed point,

C0 = 1 − 1

β
. (29)

This fixed point exists and is stable providing β > 1.
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When there is sufficient treatment, I < γ , the fixed points are solutions to

0 = β I (1 − I ) − (1 + η)I . (30)

Equation (30) has one nonzero solution, CT , which is the endemic equilibrium pro-
portion of infected hosts providing there is full treatment and it is given by

CT = 1 − 1 + η

β
. (31)

For CT to exist we require CT ≥ 0, but we also need that

CT < γ, (32)

otherwise it would be outside the relevant interval.
If there is insufficient resource to treat all infected individuals, I > γ , the fixed

points are then solutions to the equation

0 = β I (1 − I ) − I − ηγ. (33)

This is a quadratic equation with two fixed points, A and B, given by

IA = 1

2

(

C0 −
√

C2
0 − 4ηγ

β

)

, (34)

IB = 1

2

(

C0 +
√

C2
0 − 4ηγ

β

)

. (35)

A is always unstable, whereas B is always stable. This is because in the quadratic in Eq.
(33), the coefficient in front of I 2 is negative. Therefore perturbing the system slightly
from the root B in the positive (negative) direction results in a negative (positive)
derivative and vice-versa for A.

For these points to exist C2
0 > 4ηγ /β, otherwise A and B would be imaginary.

This condition simply puts a restriction on γ :

γ <
βC2

0

4η
≡ γmax. (36)

An additional constraint occurs, IA,B > γ , otherwise these points would lie outside
the relevant interval. For IB > γ we need that,

2γ − C0 <

√

C2
0 − 4ηγ

β
, (37)
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which is satisfied automatically whenever γ < C0/2. If γ ≥ C0/2 is squared the
inequality to obtain

γ − C0 < − η

β
(38)

⇐⇒ γ < CT . (39)

In other words, for IB > γ we need

γ < max(C0/2,CT ). (40)

Therefore, IB exists providing conditions 36 and 40 are met.
When both CT and B coexist, A must exist as in a one-dimensional system we

cannot have two stable fixed points without an unstable one in between (Strogatz
2014). Conversely, when A exists, both CT and B must exist (although CT could be
at 0). This means that the existence of A is equivalent to the simultaneous existence of
CT and B. Putting together conditions (32), (36) and (40) gives thatC exists whenever
γ satisfies both

CT < γ < C0/2, (41)

γ < γmax. (42)

It follows that A can only exist when C0 > 2CT and when CT < γmax. The first
translates to

η >
β − 1

2
(43)

where we introduced a new parameter r = β − 1. The second translates to

CT <
βC2

0

4η
(44)

⇐⇒ 4η(β − η − 1) < β2C2
0 (45)

⇐⇒ 4η2 − 4βηC0 + β2C2
0 > 0 (46)

⇐⇒ (2η − βC0)
2 > 0. (47)

This is automatically satisfied and therefore we only need η > (β−1)/2. It is straight-
forward to check that when η > (β − 1)/2 we have C0/2 > γmax and therefore the
full set of conditions equivalent to the existence of A is

η > (β − 1)/2 and CT < γ < γmax. (48)

We can now summarise the fixed point behaviour of the system (28).

1. When η < (β − 1)/2, there is a single nonzero endemic state which is given by B
when γ < CT and by CT (endemic equilibrium given full treatment) otherwise.
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2. When (β − 1)/2 < η and γ is outside the interval (CT , γmax), there is only
one nonzero endemic state. This endemic equilibrium is CT providing sufficient
resources are available, namely if γ > CT , otherwise the endemic equilibrium is
B.

3. When (β − 1)/2 < η and γ ∈ (CT , γmax), there are two endemic states (CT

and B) and which one is reached depends on the initial condition. The basins of
attraction of these two equilibrium states are separated by the point A.

B Real Symmetric Matrix with Negative Entries has Negative Eigenvalues

Theorem 1 Let X be a real, symmetric, square matrix such that Xi j < 0, ∀i, j . Then
there exists a vector u such that uT Xu < 0, that is the matrix X has a negative
eigenvalue.

Proof Consider a vector u such that ui > 0, ∀i . Denote v = Xu. Therefore vi =∑
k Xikuk < 0, ∀i . This means that

uT Xu =
∑

i

uivi < 0. (49)

�
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