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Abstract
Phylogenetic models admit polynomial parametrization maps in terms of the root
distribution and transition probabilities along the edges of the phylogenetic tree.
For symmetric continuous-time group-based models, Matsen studied the polynomial
inequalities that characterize the joint probabilities in the image of these parametriza-
tions (Matsen in IEEE/ACM Trans Comput Biol Bioinform 6:89–95, 2009). We
employ this description for maximum likelihood estimation via numerical algebraic
geometry. In particular, we explore an example where the maximum likelihood esti-
mate does not exist, which would be difficult to discover without using algebraic
methods.

Keywords Phylogenetics · Group-based models · Maximum likelihood estimation ·
Real algebraic geometry · Numerical algebraic geometry · Algebraic statistics

1 Introduction

A phylogenetic tree is a rooted tree that depicts evolutionary relationships between
species. A phylogenetic model is a statistical model describing the evolution of species
on a phylogenetic tree. There is a discrete randomvariable associatedwith every vertex
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of the tree. The random variables associated with interior vertices are hidden and cor-
respond to extinct species; the random variables associated with leaves are observed
and correspond to extant species. The model parameters are the root distribution and
the rate or transition matrices at the edges of the phylogenetic tree. There are differ-
ent constraints on the model parameters depending on the phylogenetic model. The
joint probabilities of random variables associated with leaves (leaf probabilities) are
polynomials in the model parameters.

Cavender and Felsenstein (1987), and, separately, Lake (1987), introduced an alge-
braic approach to study phylogenetic models focusing on the search for phylogenetic
invariants. A phylogenetic invariant of the model is a polynomial in the leaf proba-
bilities which vanishes for every choice of model parameters. However, phylogenetic
invariants alone do not describe the image of the parametrization map. One needs
to include inequalities in order to obtain a complete description of the set of leaf
probabilities corresponding to phylogenetic tree models.

This paper focuses on the study of continuous-time group-based models. In the rest
of the paper, a phylogeneticmodel is always continuous-time unless written otherwise.
Transition matrices of continuous-time phylogenetic models come from continuous-
timeMarkov processes and they arematrix exponentials of ratematrices. Ratematrices
of group-based models have a special structure that is determined by an abelian group.
A symmetric group-based model assumes that the rate matrices along every edge are
symmetric. In particular, a symmetric group-based model can be a submodel of a non-
symmetric group-based model with extra symmetricity conditions on rate matrices.
The precise definitions are given in Sect. 2.

Generating sets for phylogenetic invariants for group-based models are described
in Sturmfels and Sullivant (2005), Casanellas et al. (2015). These papers consider
discrete-time group-based models that require transition matrices to have a special
structure determined by an abelian group, but they do not require transition matrices to
bematrix exponentials of ratematrices. Generating sets derived in these papers are also
valid under the continuous-time approach. However, inequalities defining both mod-
els differ, because the set of transition matrices is smaller under the continuous-time
approach. A method for deriving the inequalities under the continuous-time approach
is given in Matsen (Matsen 2009, Proposition 3.5). We will explicitly derive the semi-
algebraic description of the leaf probabilities of the CFNmodel on the tripod tree K1,3.

Identifying the equation and inequality characterization of the leaf probabilities is
only one part of the problem. The maximum likelihood estimation aims to find param-
eters that maximize the likelihood of observing the data for the given phylogenetic tree
and phylogenetic model. Estimating the tree topology is another part of phylogenetic
inference not considered here, see for example Dhar and Minin (2016) for a general
overview on phylogenetic inference. Standard methods for the maximum likelihood
estimation of the model parameters are the Newton–Raphson method (Schadt et al.
1998; Kenney and Gu 2012), quasi-Newton methods Olsen et al. (1994) and the EM
algorithm (Felsenstein 1981; Friedman et al. 2002; Holmes and Rubin 2002; Hobolth
and Jensen 2005). It is shown in Steel (1994), Chor et al. (2000) that likelihood func-
tions on phylogenetic trees can have multiple local and global maxima, and thus none
of the above methods can guarantee finding the global MLE as these methods are hill-
climbing methods. It is stated in Dhar andMinin (2016) that currently no optimization

123



Maximum Likelihood Estimation of Symmetric Group-Based… 339

method can guarantee to solve the optimization of the likelihood function over model
parameters.

We suggest an alternative method that theoretically gives the solution to the max-
imum likelihood estimation problem with probability one. This method is based on
numerical algebraic geometry (Sommese and Wampler 2005; Bates et al. 2013). The
main idea behind this method is to use a numerical algebraic geometry package to
compute all critical points of a likelihood function and then choose the critical point
with the highest likelihood value. A similar method has been previously applied in
optimal control (Rostalski et al. 2011) and in the life sciences (Gross et al. 2016).

Since phylogenetic models are not necessarily compact, the MLE might not even
exist. We will use the proposed method to study an example for which the MLE does
not exist for the CFN model on the tripod K1,3 and a particular data vector. In this
example, the global maximum is achieved when one of the model parameters goes
to infinity. The nonexistence of the MLE would be very difficult to discover without
the algebraic methods that we use in this paper, because standard numerical solvers
output a solution close to the boundary of the model as we will demonstrate by solving
the same MLE problem in Mathematica. One should see the example for the CFN
model on the tripod K1,3 as an illustration of a concept. It will be the subject of future
work to develop a package that automatizes the computation in the phylogenetics
setting, so that it can be easily used for studying further examples.

In Sect. 2, we introduce the preliminaries of phylogenetic models and present tools
from Matsen (2009). Based on Matsen (2009), we state in Sect. 3 Proposition 3 that
gives an algorithm for deriving the semialgebraic description of the leaf probabilities
of a symmetric group-based model. A proof of Proposition 3 is given in “Appendix
A”. Algorithm 1 in Sect. 4 outlines how to use numerical algebraic geometry to the-
oretically give the MLE with probability one. This algorithm is applied on the CFN
model on the tripod in Example 5.

2 Preliminaries of Group-BasedModels

The exposition in this section largely follows Matsen (2009). A phylogenetic tree T
is a rooted tree with n labeled leaves and it represents the evolutionary relationship
between different species. Its leaves correspond to current species and the internal
nodes correspond to common ancestors. There is a discrete random variable Xv taking
k ∈ N possible values associated to each vertex v of the tree T . Typical values for k
are two, four or twenty, corresponding to a binary feature, the number of nucleotides
and the number of amino acids. For example, if k = 4, the random variable at a
leaf represents the probability of observing A,C,G or T in the DNA of the species
corresponding to the leaf.

A phylogenetic model assumes a collection of random variables under a Markov
process (see Norris (1998) for a detailed introduction onMarkov chains). TheMarkov
process on the tree is determined entirely by the probability distribution at the root and
the transition matrices P(e) associated to every edge e that reflect the change in the
probabilities when moving from one vertex to another. The transition matrices have
the form
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P(e) = exp(teQ
(e)),

where exp stands for matrix exponentiation, te ≥ 0 represents time and Q(e) is a rate
matrix. The non-diagonal entries of a rate matrix are nonnegative and each row sums
to zero. In the rest of the paper, we assume that te is incorporated in the rate matrix
Q(e).

To define a group-based phylogenetic model, we first fix an abelian group G, a finite
set of labels L and a labeling function L : G → L. Let k = |G|. A rate matrix Q(e) is
a rate matrix in the group-based model if it satisfies Q(e)

g,h = ψ(e)(h − g) for a vector

ψ(e) ∈ R
G with ψ(e)(g1) = ψ(e)(g2) whenever L(g1) = L(g2). Hence transition

matrices of the group-based model form a subset of all the transition matrices that
satisfy P(e)

g,h = f (e)(h−g) for a probability vector f (e) ∈ R
G with f (e)(g1) = f (e)(g2)

whenever L(g1) = L(g2). This is because the matrix exponentiation is defined as
eM = ∑∞

i=0
1
i !M

i and if a matrix M has the structure given by G,L and L , then
one can check that also Mi has the structure given by G,L and L for all i ∈ N. The
phylogenetic models we consider are symmetric, which means Q(e)

g,h = Q(e)
h,g . In the

case of group-based models, this is equivalent to L(g) = L(−g) for all g ∈ G.
We will assume that the root distribution π of a group-based model is uniform or

the root distribution π is such that the matrix P ∈ R
G×G defined by Pg,h := π(h− g)

is a transition matrix in the group-based model (i.e., it is exponential of a rate matrix
in the group-based model). In the latter case, we add a new edge starting from the root
and re-root the tree at the additional leaf. Instead of the previous root distribution, we
use a new root distribution that puts all the mass at the identity and a new transition
matrix which is the transition matrix P defined above. We will consider the new leaf
as a hidden vertex while other leaves are considered as observed vertices. The same
rerooting procedure is used in Sturmfels and Sullivant (2005), Matsen (2009). This
approach does not allow completely arbitrary root distributions. In particular, a root
distribution has to satisfyπ(g1) = π(g2)whenever L(g1) = L(g2) and it has to satisfy
inequalities that guarantee that the transition matrix P defined by Pg,h := π(h − g)
is a matrix exponential of a rate matrix. The latter problem is called the embedding
problem and is studied for 2 × 2 matrices in Kingman (1962) and for the Kimura
3-parameter model in Roca-Lacostena and Fernández-Sánchez (2017). In (Sturmfels
and Sullivant (2005), Section 6), a workaround is described for deriving phylogenetic
invariants for arbitrary root distributions for discrete-time group-based models. We
will describe a workaround for deriving inequalities describing the CFN model for
arbitrary root distributions; however, we do not know how to generalize this approach
to other models.

The joint probability distributions pi1,...,in = Pr(X1 = i1, . . . , Xn = in) at the
n leaves can be written as polynomials in the root probabilities and in the entries
of the transition matrices. Denote by p the vector of joint probabilities pi1,...,in . As
it is common in phylogenetic algebraic geometry, we will use the discrete Fourier
transform for the groups G and Gn to study the set of transition matrices and the set
of joint probabilities at the leaves for a given phylogenetic tree and a group-based
model. The reason for this is that phylogenetic invariants are considerably simpler in
the Fourier coordinates (see Sturmfels and Sullivant 2005).
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Denote by Ĝ the dual group of G whose elements are the group homomorphisms
from G to the multiplicative group of complex numbers of magnitude one. Given a
function a : G → C, its discrete Fourier transform is the function ǎ : Ĝ → C defined
by

ǎ(ĝ) =
∑

h∈G
ĝ(h)a(h).

It is an invertible linear transformation given by the matrix K , where Kg,h = ĝ(h).
The group-based model being symmetric is equivalent to the vectors ψ̌(e) and f̌ (e)

being real, see (Matsen 2009, Section 2). If we regard the vector p of joint probabilities
as a function of Gn , i.e., as an element of Hom (Gn,C), then the image of p under the
Fourier transform of Gn is denoted q.

The map from the entries of the rate matrices to the joint probabilities at leaves can
be seen as a composition of four maps:

{ψ(e)}e∈E → {ψ̌(e)}e∈E → { f̌ (e)}e∈E → q → p. (1)

• The map from {ψ(e)}e∈E to {ψ̌(e)}e∈E is given by the discrete Fourier transform
of G. It is an invertible linear transformation given by the matrix K .

• The map from {ψ̌(e)}e∈E to { f̌ (e)}e∈E is given by

f̌ (e)(g) = exp(ψ̌(e)(g)) (2)

by (Matsen 2009, Lemma 2.2). It is an isomorphism between R
E×G and R

E×G
>0 .

• In the case when root distribution puts all the mass at the identity, the map from
{ f̌ (e)}e∈E to q is given by

qg =
∏

e∈E
f̌ e(∗ge) (3)

by (Székely et al. 1993, Theorem 3), where ∗ge = ∑
i∈�(e) gi and �(e) is the set

of observed leaves below e. See also (Sturmfels and Sullivant 2005, Sections 2
and 3) for a nice exposition of this result.
In the case of the uniform root distribution, the identity (3) holds whenever g1 +
· · ·+gn = 0. Otherwise qg = 0. This follows from (Sturmfels and Sullivant 2005,
Lemma 4 and formula (12)).
On the domain R

E×G
>0 , this map is injective: (Matsen 2009, Proposition 3.3 and

Proposition 3.4) give a map from q to {[ f̌ (e)]2}e∈E . Taking nonnegative square
roots results in a left inverse to the map (3).

• The map from q to p is given by the inverse of the discrete Fourier transform of
Gn . It is an invertible linear transformation given by the matrix H−1, where H is
the n-fold Kronecker product of the matrix K .

Example 1 We will consider in detail the Cavender–Farris–Neyman (CFN) model
(Cavender 1978; Farris 1973; Neyman 1971) on the rooted claw tree T = K1,3.
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This example has been previously studied in (Sturmfels and Sullivant 2005, Example
3) and (Hosten et al. 2005, Example 14). The CFNmodel is a group-based model with
G = Z2,L = {0, 1} and the labeling function L defined by L(0) = 0 and L(1) = 1.
Denote the root distribution by π = (π0, π1) and the transition matrices at edges
e1, e2, e3 by

P(e1) =
(

αe1 βe1

βe1 αe1

)

, P(e2) =
(

αe2 βe2

βe2 αe2

)

, P(e3) =
(

αe3 βe3

βe3 αe3

)

.

Since πi , α
ei , βei are probabilities, they are real numbers in [0, 1], π0 + π1 = 1 and

αei + βei = 1. Moreover, the restriction on the root distribution that it is uniform or
defines a valid transition matrix in the CFNmodel gives 1 ≥ π0 ≥ 1

2 and
1
2 ≥ π1 ≥ 0;

however, in Example 2 we will show that for the CFN model we can consider arbi-
trary root distributions. The determinant of P(ei ) is positive, because P(ei ) is thematrix
exponential of a rate matrix Q(ei ). Conversely, for every P(ei ) satisfying these con-
straints, there exists a rate matrix Q(ei ) such that P(ei ) = exp(tei Q

(ei )) by (Kingman
1962, Proposition 2).

The joint probabilities at the leaves have the parametrization

p000 = π0α
e1αe2αe3 + π1β

e1βe2βe3 , p001 = π0α
e1αe2βe3 + π1β

e1βe2αe3 ,

p010 = π0α
e1βe2αe3 + π1β

e1αe2βe3 , p011 = π0α
e1βe2βe3 + π1β

e1αe2αe3 ,

p100 = π0β
e1αe2αe3 + π1α

e1βe2βe3 , p101 = π0β
e1αe2βe3 + π1α

e1βe2αe3 ,

p110 = π0β
e1βe2αe3 + π1α

e1αe2βe3 , p111 = π0β
e1βe2βe3 + π1α

e1αe2αe3 .

In Sect. 3, we characterize thismodel in joint probabilities pi jk andwithout parameters
πi , α

ei , βei . This is called the implicit description of amodel. It consists of polynomial
equations and inequalities in pi jk that describe the joint probabilities that come from
a parametrization by rate matrices. In the Fourier coordinates, these equations can
always be chosen to be binomials for any group-based model and tree (Evans and
Speed 1993; Székely et al. 1993). These binomials are characterized in (Sturmfels and
Sullivant 2005, Theorem 1). In the case of the CFN model on K1,3, these binomials
are

{q001q110 − q000q111, q010q101 − q000q111, q100q011 − q000q111},

as was shown in (Sturmfels and Sullivant 2005, Example 3). The equations defin-
ing the model in the original coordinates can be obtained by applying the Fourier
transformation of (Z2)

3 on these binomials:

q000 = p000 + p001 + p010 + p011 + p100 + p101 + p110 + p111,

q001 = p000 − p001 + p010 − p011 + p100 − p101 + p110 − p111,

q010 = p000 + p001 − p010 − p011 + p100 + p101 − p110 − p111,

q011 = p000 − p001 − p010 + p011 + p100 − p101 − p110 + p111,

q100 = p000 + p001 + p010 + p011 − p100 − p101 − p110 − p111,
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q101 = p000 − p001 + p010 − p011 − p100 + p101 − p110 + p111,

q110 = p000 + p001 − p010 − p011 − p100 − p101 + p110 + p111,

q111 = p000 − p001 − p010 + p011 − p100 + p101 + p110 − p111.

Finally, we introduce basic notions from commutative algebra and algebraic geom-
etry. A good introduction is given in Cox et al. (1992). Let R = R[x1, . . . , xn] be a
polynomial ring. A subset I ⊆ R is an ideal if it is an additive subgroup of R and is
closed under multiplication by elements of the ring. The radical of an ideal I , denoted
by

√
I , consists of all the polynomials f ∈ R such that some power f m of f is in I .

Let S be a set of polynomials in R and let k be a field. In this article, k is always R or
C. The affine variety defined by S is

V (S) = {(a1, . . . , an) ∈ kn : f (a1, . . . , an) = 0 for all f ∈ S}.

Let 〈 f1, . . . , fs〉 be the ideal generated by f1, . . . , fs , i.e., the smallest ideal containing
f1, . . . , fs . Then

V ( f1, . . . , fs) = V (〈 f1, . . . , fs〉).

A point of the variety V ( f1, . . . , fs) is a smooth point if the Jacobian of f1, . . . , fs
has maximal possible rank. Otherwise a point of the variety is called singular. Let T
be a subset of kn . The Zariski closure T of T is the smallest affine variety containing
T .

3 Implicit Descriptions of Symmetric Group-BasedModels

Phylogenetic invariants are polynomials that vanish at joint probabilities at leaves for
a given model and tree. They were introduced in Cavender and Felsenstein (1987)
and Lake (1987) and have been characterized for group-based phylogenetic models
in (Sturmfels and Sullivant 2005, Theorem 1). Phylogenetic varieties are algebraic
varieties derived from phylogenetic models and were first introduced in Allman and
Rhodes (2003, 2004). In this paper, an algebraic variety is not necessarily irreducible.
Phylogenetic invariants are elements of the ideal of a phylogenetic variety. Specifying
a system of generators of the ideal of a phylogenetic variety is an important problem in
phylogenetic algebraic geometry. However, the set of probability distributions forms
only a (real, semialgebraic) subset of the phylogenetic variety, therefore providing a
complete system of generators might have no biological interest. In Casanellas et al.
(2015), a minimal set of phylogenetic invariants is constructed that defines the inter-
section of a phylogenetic variety with a Zariski open set. In the case of the Kimura
3-parameter model, all the leaf probabilities that are images of real parameters in the
phylogenetic model (not in the complexification of the model) lie in this Zariski open
set. The number of polynomials in this set is equal to the codimension of the phylo-
genetic variety and each polynomial has degree at most |G|. This reduces drastically
the number of phylogenetic invariants used: For the Kimura 3-parameter model on a
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quartet tree, it drops from 8002 generators of the ideal to the 48 polynomials described
in (Casanellas and Fernández-Sánchez 2008, Example 4.9).

Besides phylogenetic invariants, polynomial inequalities are needed to give an exact
characterization of joint probabilities at leaves for a givenmodel and a tree. For general
symmetric group-based models, polynomial inequalities that describe joint probabil-
ities at leaves are studied in Matsen (2009). We recall (Matsen 2009, Propositions 3.3
and 3.4) that give the left inverse to the map (3) on the domain R

E×G
>0 .

Proposition 1 (Matsen (2009), Proposition 3.3) Given some leaf edge e, let i denote
the leaf vertex incident to e and let v be the internal vertex incident to e. Let j, k be leaf
vertices different from i such that the path from j to k containsv. Letw(gi , g j , gk) ∈ Gn

assign state gx to leaf x for x ∈ {i, j, k} and zero to all other leaf vertices. Then

[ f̌ (e)(h)]2 = qw(h,−h,0)qw(−h,0,h)

qw(0,−h,h)

.

Proposition 2 (Matsen (2009), Proposition 3.4) Given some internal edge e, let the
two vertices incident to e be v and v′. Let i, j (respectively, i ′, j ′) be leaf vertices
such that the path from i to j (respectively, the path from i ′ to j ′) contains v but not
v′ (respectively, v′ but not v). Let z(gi , g j , gi ′ , g j ′) ∈ Gn assign state gx to leaf x for
x ∈ {i, j, i ′, j ′} and zero to all other leaf vertices. Then

[ f̌ (e)(h)]2 = qz(h,0,−h,0)qz(0,−h,0,h)

qz(h,−h,0,0)qz(0,0,−h,h)

.

The next proposition will summarize the procedure in Matsen (2009) to con-
struct inequalities that describe joint probabilities. We will denote by (K−1)g,: the
row of the matrix K−1 labeled by g and by ( f̌ (e))(K

−1)g,: the Laurent monomial
∏

h∈G( f̌ (e)(h))(K
−1)g,h .

Proposition 3 Assume that the labeling function L satisfies L(g) = L(−g) for all
g ∈ G. Consider the set of {ψ(e)}e∈E that satisfies

∑
g∈G ψ(e)(g) = 0, ψ(e)(g1) =

ψ(e)(g2)whenever L(g1) = L(g2) andψ(e)(g) ≥ 0 for all nonzero g ∈ G. The images
of this set under the maps in (1) are:

(i) The constraints for {ψ̌(e)}e∈E are obtained by substitutingψ(e) by K−1ψ̌(e) in the
constraints for {ψ(e)}e∈E . In particular, this gives ψ̌(e)(0) = 0, (K−1ψ̌(e))(g1) =
(K−1ψ̌(e))(g2)whenever L(g1) = L(g2) and (K−1ψ̌(e))(g) ≥ 0 for all nonzero
g ∈ G.

(ii) The constraints for { f̌ (e)}e∈E are f̌ (e)(0) = 1, ( f̌ (e))(K
−1)g1,: = ( f̌ (e))(K

−1)g2,:

whenever L(g1) = L(g2), ( f̌ (e))(K
−1)g,: ≥ 1 for all nonzero g ∈ G and f̌ (e)(g) >

0 for all g ∈ G. This equation and inequalities are equivalent to f̌ (e)(0) = 1,
( f̌ (e))(K

−1)g1,: = ( f̌ (e))(K
−1)g2,: whenever L(g1) = L(g2), ( f̌ (e))2(K

−1)g,: ≥ 1
for all nonzero g ∈ G and f̌ (e)(g) > 0 for all g ∈ G. Here we have squared the
inequalities ( f̌ (e))(K

−1)g,: ≥ 1.
(iii) The constraints for q are given by phylogenetic invariants, equation q00...0 = 1,

inequalities q > 0 and inequalities that are obtained by substituting expressions
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for [ f̌ (e)]2 in Propositions 1 and 2 to inequalities ( f̌ (e))2(K
−1)g,: ≥ 1 in the

previous item.
(iv) The constraints for p are obtained by substituting q by Hp in the constraints for

q.

For the sake of completeness, a proof of Proposition 3 is given in “Appendix A”.

Remark 1 In Proposition 3 item (iii), one applies Propositions 1 and 2 to obtain inequal-
ities in the Fourier coordinates. However, in Propositions 1 and 2 one has a choice
in choosing the leaf vertices. Since the Fourier coordinates are strictly positive, then
any choice of leaf vertices in Propositions 1 and 2 gives equivalent inequalities in
Proposition 3 item (iii) and it does not matter which choice we make.

Example 2 We will derive the implicit description of the CFN model on the rooted
claw tree T = K1,3. We start with the case when 1 ≥ π0 > 1

2 and 1
2 > π1 ≥ 0.

In addition to phylogenetic invariants in Example 1, applying Proposition 3 gives the
following inequalities in Fourier coordinates:

q000 = 1,

q > 0,
q100q010
q110

≤ 1,
q110q101
q011

≤ 1,
q110q011
q101

≤ 1,
q101q011
q110

≤ 1. (4)

The inequality q100q010
q110

≤ 1 is for the hidden leaf corresponding to the root. Since
q000 = 1, we can multiply all the denominators by q000 without changing the inequal-
ities (4). Clearing denominators gives the following polynomial inequalities

q000 = 1,

q > 0,

q000q110 − q100q010 ≥ 0, q000q011 − q110q101 ≥ 0,

q000q101 − q110q011 ≥ 0, q000q110 − q101q011 ≥ 0.

By applying the discrete Fourier transformation, we get the implicit description in
the original coordinates

p001 p010 − p000 p011 + p001 p100 − p000 p101 − p011 p110 − p101 p110
+ p010 p111 + p100 p111 = 0, (5)

p001 p010 − p000 p011 + p010 p100 − p011 p101 − p000 p110 − p101 p110
+ p001 p111 + p100 p111 = 0, (6)

p001 p100 + p010 p100 − p000 p101 − p011 p101 − p000 p110 − p011 p110
+ p001 p111 + p010 p111 = 0, (7)

p000 + p001 + p010 + p011 + p100 + p101 + p110 + p111 − 1 = 0, (8)

p000 − p001 + p010 − p011 + p100 − p101 + p110 − p111 > 0, (9)

p000 + p001 − p010 − p011 + p100 + p101 − p110 − p111 > 0, (10)
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p000 − p001 − p010 + p011 + p100 − p101 − p110 + p111 > 0, (11)

p000 + p001 + p010 + p011 − p100 − p101 − p110 − p111 > 0, (12)

p000 − p001 + p010 − p011 − p100 + p101 − p110 + p111 > 0, (13)

p000 + p001 − p010 − p011 − p100 − p101 + p110 + p111 > 0, (14)

p000 − p001 − p010 + p011 − p100 + p101 + p110 − p111 > 0, (15)

− p010 p100 − p011 p100 − p010 p101 − p011 p101 + p000 p110 + p001 p110
+ p000 p111 + p001 p111 ≥ 0, (16)

− p001 p010 + p000 p011 + p000 p100 − p001 p101 − p010 p110 − p101 p110
+ p011 p111 + p100 p111 ≥ 0, (17)

p000 p010 − p001 p011 − p001 p100 + p000 p101 − p011 p110 − p100 p110
+ p010 p111 + p101 p111 ≥ 0, (18)

p000 p001 − p010 p011 − p010 p100 + p011 p101 − p100 p101 + p000 p110
+ p001 p111 + p110 p111 ≥ 0. (19)

If 1 ≥ π1 > 1
2 and 1

2 > π0 ≥ 0, we can switch 0 and 1 and apply the previ-
ously considered case. We obtain the implicit description by switching 0 and 1 in
the subindices of the equations and inequalities (5)–(19). This operation leaves all
the equations and the inequalities (11), (13), (14), (16)–(19) the same. It changes the
inequalities (9), (10), (12) and (15). Explicitly, the implicit description is

p001 p010 − p000 p011 + p001 p100 − p000 p101 − p011 p110 − p101 p110
+ p010 p111 + p100 p111 = 0, (20)

p001 p010 − p000 p011 + p010 p100 − p011 p101 − p000 p110 − p101 p110
+ p001 p111 + p100 p111 = 0, (21)

p001 p100 + p010 p100 − p000 p101 − p011 p101 − p000 p110 − p011 p110
+ p001 p111 + p010 p111 = 0, (22)

p000 + p001 + p010 + p011 + p100 + p101 + p110 + p111 − 1 = 0, (23)

p000 − p001 + p010 − p011 + p100 − p101 + p110 − p111 < 0, (24)

p000 + p001 − p010 − p011 + p100 + p101 − p110 − p111 < 0, (25)

p000 − p001 − p010 + p011 + p100 − p101 − p110 + p111 > 0, (26)

p000 + p001 + p010 + p011 − p100 − p101 − p110 − p111 < 0, (27)

p000 − p001 + p010 − p011 − p100 + p101 − p110 + p111 > 0, (28)

p000 + p001 − p010 − p011 − p100 − p101 + p110 + p111 > 0, (29)

p000 − p001 − p010 + p011 − p100 + p101 + p110 − p111 < 0, (30)

− p010 p100 − p011 p100 − p010 p101 − p011 p101 + p000 p110 + p001 p110
+ p000 p111 + p001 p111 ≥ 0, (31)

− p001 p010 + p000 p011 + p000 p100 − p001 p101 − p010 p110 − p101 p110
+ p011 p111 + p100 p111 ≥ 0, (32)
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p000 p010 − p001 p011 − p001 p100 + p000 p101 − p011 p110 − p100 p110
+ p010 p111 + p101 p111 ≥ 0, (33)

p000 p001 − p010 p011 − p010 p100 + p011 p101 − p100 p101 + p000 p110
+ p001 p111 + p110 p111 ≥ 0. (34)

Finally, we consider the case when the root distribution is uniform. By (Sturmfels
and Sullivant 2005, Proposition 31), one gets additional phylogenetic invariants

q100 = 0, q010 = 0, q001 = 0 and q111 = 0.

Moreover, we have the following equation and inequalities:

q000 = 1,

q110 > 0, q101 > 0, q011 > 0,
q110q101
q011

≤ 1,
q110q011
q101

≤ 1,
q101q011
q110

≤ 1.

In original coordinates, we get the following implicit description:

p001 p010 − p000 p011 + p001 p100 − p000 p101 − p011 p110 − p101 p110
+ p010 p111 + p100 p111 = 0, (35)

p001 p010 − p000 p011 + p010 p100 − p011 p101 − p000 p110 − p101 p110
+ p001 p111 + p100 p111 = 0, (36)

p001 p100 + p010 p100 − p000 p101 − p011 p101 − p000 p110 − p011 p110
+ p001 p111 + p010 p111 = 0, (37)

p000 + p001 + p010 + p011 + p100 + p101 + p110 + p111 − 1 = 0, (38)

p000 − p001 + p010 − p011 + p100 − p101 + p110 − p111 = 0, (39)

p000 + p001 − p010 − p011 + p100 + p101 − p110 − p111 = 0, (40)

p000 − p001 − p010 + p011 + p100 − p101 − p110 + p111 > 0, (41)

p000 + p001 + p010 + p011 − p100 − p101 − p110 − p111 = 0, (42)

p000 − p001 + p010 − p011 − p100 + p101 − p110 + p111 > 0, (43)

p000 + p001 − p010 − p011 − p100 − p101 + p110 + p111 > 0, (44)

p000 − p001 − p010 + p011 − p100 + p101 + p110 − p111 = 0, (45)

− p001 p010 + p000 p011 + p000 p100 − p001 p101 − p010 p110 − p101 p110
+ p011 p111 + p100 p111 ≥ 0, (46)

p000 p010 − p001 p011 − p001 p100 + p000 p101 − p011 p110 − p100 p110
+ p010 p111 + p101 p111 ≥ 0, (47)

p000 p001 − p010 p011 − p010 p100 + p011 p101 − p100 p101
+ p000 p110 + p001 p111 + p110 p111 ≥ 0. (48)
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The implicit description of the CFN model on the tree K1,3 for an arbitrary root
distribution is given as the union of three sets: the set defined by equations and inequali-
ties (5)–(19), the set defined by equations and inequalities (20)–(34) and the set defined
by equations and inequalities (35)–(48).

Remark 2 Identifiability of parameters of a phylogeneticmodelmeans that if for a fixed
tree two sets of parameters map to the same joint probabilities at leaves, then these
sets of parameters must be equal. Generic identifiability means that this statement is
true with probability one. The identifiability of the CFN model was shown in (Hendy
1991, Theorem 1), of the Kimura 3-parameter model in (Steel et al. 1998, Theorem
7) and the generic identifiability of the general Markov model in Chang (1996). The
identifiability of any group-based model follows also from the proof of Proposition 3,
since each of the maps in (1) is an isomorphism in the region we are interested in.

Corollary 1 Consider a symmetric group-based model. Any p satisfying the equations
and inequalities described in Proposition 3 that satisfies one of the inequalities with
equality comes from a parametrization with an off-diagonal zero in the rate matrix
Q(e) for some e ∈ E.

Proof There are two different kinds of inequalities in item (4) of Proposition 3. The
strict inequalities can never be satisfied with equality. The non-strict inequalities in
each step are obtained by substituting the inversemap to the inequalities in the previous
step. Hence p satisfies one of the non-strict inequalities with equality if and only if
it has a preimage {ψ(e)}e∈E that satisfies one of the inequalities ψ(e)(g) ≥ 0 with
equality. 
�
Example 3 We consider the CFN model. A joint probability vector p satisfying the

assumptions of Corollary 1 has in its parametrization the ratematrix Q(e) =
(
0 0
0 0

)

for

some e ∈ E . The transition matrix corresponding to the same edge is P(e) =
(
1 0
0 1

)

.

4 Maximum Likelihood Estimation via Numerical Algebraic Geometry

In this section, we use the terminology and notation introduced in Sect. 2. In par-
ticular, pi1,...,in are the joint probability distributions at the n-leaves. Let u =
(ui1,...,in )(i1,...,in)∈Gn be a vector of observations at leaves. The log-likelihood func-
tion of a phylogenetic model is

lu(p) =
∑

(i1,...,in)∈Gn

ui1,...,in log pi1,...,in .

Maximum likelihood estimation aims to find a vector of joint probability distributions
at leaves or model parameters (if the joint probabilities are considered as polynomials
in model parameters) that lies in the model and maximizes the log-likelihood function
for a given observation u.
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Example 4 In (Hosten et al. 2005, Example 14), maximum likelihood estimation on
the Zariski closure of the CFN model on K1,3 is considered. This is the model that
is defined by the equations in Example 2. For generic data, the number of complex
critical points of the likelihood function on the Zariski closure of a model is called the
ML degree. It is shown in (Hosten et al. 2005, Example 14) that the ML degree of the
CFN model on K1,3 is 92. Using tools from numerical algebraic geometry, one can
compute the 92 critical points and among the real critical points choose the one that
gives the maximal value of the log-likelihood function.

However, the MLE can lie on the boundary of a statistical model or even not exist.
Neither of this can be detected by considering only the Zariski closure of the model.
We will see the latter happening for the CFN model on K1,3 in Example 5.

In practice, the MLE is solved using numerical methods such as the Newton–
Raphson method (Schadt et al. 1998; Kenney and Gu 2012), quasi-Newton methods
Olsen et al. (1994) and the EM algorithm (Felsenstein 1981; Friedman et al. 2002;
Holmes and Rubin 2002; Hobolth and Jensen 2005). However, since these methods
are hill-climbing methods and the likelihood function on phylogenetic trees can have
multiple local maxima (Steel 1994; Chor et al. 2000), they are only guaranteed to give
a local maximum or a saddle point of the log-likelihood function and not necessarily
the global maximum. Usually one uses a heuristic to find a good initialization for
these methods or runs them for different starting points and chooses the output that
maximizes the log-likelihood function.

We suggest a global method based on numerical algebraic geometry that theoreti-
cally gives the solution to themaximum likelihood estimation problemonphylogenetic
trees with probability one. The main idea behind numerical algebraic geometry is
homotopy continuation. Homotopy continuation finds isolated complex solutions of a
system of polynomial equations starting from the known solutions of another system
of polynomial equations. Numerical algebraic geometry methods give theoretically
correct results with probability one, meaning that bad phenomena can happen when
certain parameters are chosen from a measure zero set. An introduction to numerical
algebraic geometry can be found in Sommese andWampler (2005), Bates et al. (2013).
In our context, the system of polynomial equations that we wish to solve comes from
the Karush–Kuhn–Tucker (KKT) conditions (Karush 1939; Kuhn and Tucker 1951)
for the optimization problem that maximizes the likelihood function on a phyloge-
netic model. The set of solutions of this polynomial system contains all the critical
points of the likelihood function. The global maximum of the likelihood function is
the solution of the polynomial system that maximizes the likelihood function among
all the solutions that lie in the model.

This global approach for solving a nonconvex optimization problem on a set that is
described by polynomial equations and inequalities has been previously employed in
optimal control Rostalski et al. (2011) and in the life sciences (Gross et al. 2016). Our
setup and algorithm are similar to those in Rostalski et al. (2011), although we provide
further lemmas that allow us to decompose the system of polynomial equations that
we want to solve to simpler systems of polynomial equations. The article Gross et al.
(2016) uses Fritz John conditions instead of KKT conditions and focuses mostly on
optimization problems on sets that are described by polynomial equations only. Sets
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that are described by polynomial equations and inequalities are considered in Section
3 of the supplementary material of Gross et al. (2016). In particular, the ideas for
Theorem 1 and Remark 3 appear there.

More specifically, consider the optimization problem

max F(x)

subject to

Gi (x) ≥ 0 for i = 1, . . . ,m,

Hj (x) = 0 for j = 1, . . . , l. (49)

If x∗ is a local optimum and the optimization problem satisfies first-order constraint
qualifications, then there exist μi , where i = 1, . . . ,m, and λ j , where j = 1, . . . , l,
such that x∗ satisfies the KKT conditions:

− ∇F(x) +
m∑

i=1

μi∇Gi (x) +
l∑

j=1

λ j∇Hj (x) = 0, (50)

Gi (x) ≥ 0 for i = 1, . . . ,m, (51)

Hj (x) = 0 for j = 1, . . . , l, (52)

μi ≥ 0 for i = 1, . . . ,m, (53)

μi Gi (x) = 0 for i = 1, . . . ,m. (54)

One first-order constraint qualification is the constant rank constraint qualification
(CRCQ) defined in Janin (1984). A point satisfies the CRCQ if there is a neighborhood
of the point where gradients of the equations and gradients of the active inequalities,
i.e., inequalities that the point satisfies with equality, have constant rank.

We also consider the optimization problem

max F(x)

subject to

Hj (x) = 0 for j = 1, . . . , l. (55)

If x∗ is a local optimum of the optimization problem (55), then there exist λ j , where
j = 1, . . . , l, such that x∗ satisfies the Lagrange conditions:

− ∇F(x) +
l∑

j=1

λ j∇Hj (x), (56)

Hj (x) for j = 1, . . . , l. (57)

In the rest of the section, we assume that the KKT conditions (50)–(54) and the
Lagrange conditions (56)–(57) are polynomial. In this case, a point satisfies the CRCQ
if it is a smooth point of the variety defined by the equations and active inequalities.
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Let L ⊆ C[μ, λ, x] be the ideal generated by the polynomials on the left-hand
sides of the equations (50), (52) and (54) in the KKT conditions. For S ⊆ [m],
let LS ⊆ C[μS, λ, x] be the ideal generated by the polynomials in the Lagrange
conditions for the optimization problem

max F(x)

subject to

Gi (x) = 0 for i ∈ S,

Hj (x) = 0 for j = 1, . . . , l.

Specifically, let LS ⊆ C[μS, λ, x] be generated by the polynomials

− ∇F(x) +
∑

i∈S
μi∇Gi (x) +

l∑

j=1

λ j∇Hj (x),

Gi (x) for i ∈ S,

Hj (x) for j = 1, . . . , l.

We denote by IS ⊆ C[x] the ideal generated by the constraints in the above optimiza-
tion problem, i.e., IS = 〈Gi , Hj : i ∈ S, j = 1, . . . , l〉.
Theorem 1 Let L and LS be as defined above. Then

V (L ∩ C[x]) =
⋃

S⊆[m]
V (LS ∩ C[x]) .

The idea behind Theorem 1 is that instead of optimizing a function over a semialge-
braic set, one can optimize the function over the Zariski closure of the semialgebraic
set and the Zariski closures of each of the boundaries of the semialgebraic set. This
concept is discussed in Section 3 of the supplementary material of Gross et al. (2016).

Proof First take an element (μ, λ, x) of V (L). Let S be such that Gi (x) = 0 for all
i ∈ S. Then (μS, λ, x) ∈ V (LS), where μS is the projection of μ to the coordinates
in S. Conversely, let (μS, λ, x) ∈ V (LS). Let μ ∈ C

m be such that μi = (μS)i for
i ∈ S and μi = 0 otherwise. Then (μ, λ, x) ∈ V (L).

We have shown that πx (V (L)) = ∪πx (V (LS)), where πx is the projection of
(μ, λ, x) or (μS, λ, x) on x . By the Closure Theorem (Cox et al. 1992, Theorem
3.2.3), V (L∩C[x]) is the smallest algebraic variety containing πx (V (L)) and V (LS∩
C[x]) is the smallest algebraic variety containing πx (V (LS)). The inclusion V (L ∩
C[x]) ⊆ ∪V (LS ∩ C[x]) holds, because the right-hand side is a variety and contains
∪πx (V (LS)) and hence πx (V (L)). On the other hand, since πx (V (LS)) ⊆ πx (V (L))

for every S, also V (LS ∩ C[x]) ⊆ V (L ∩ C[x]) for every S. Hence V (L ∩ C[x]) =
∪V (LS ∩ C[x]). 
�

Theorem 1 suggests Algorithm 1 for solving the equations in the KKT conditions.
Algorithm 1 is related to (Rostalski et al. 2011, Algorithm 1) and (Gross et al. 2016,
Algorithm 3).
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Algorithm 1 Global maximum of a polynomial optimization problem
Input: An optimization problem

max F(x)

subject to

Gi (x) ≥ 0 for i = 1, . . . ,m,

Hj (x) = 0 for j = 1, . . . , l.

Step 1: Let C = {}.
Step 2: For every S ⊆ [m], if dim(V (LS)) = 0, then add all elements of V (LS) to C.
Step 3: Remove the elements ofC that are not real or do not satisfy Gi (x) ≥ 0 or μi ≥ 0 for i = 1, . . . ,m.
Step 4: Find the element (μ∗

S , λ∗, x∗) of C that maximizes F.
Output: The element x∗ from Step 4.

Corollary 2 If V (L) is finite and the global maxima of the optimization problem (49)
satisfy CRCQ, then Algorithm 1 outputs the global maxima.

Proof Theorem 1 implies that V (L ∩ C[x]) = ∪V (LS ∩ C[x]). The variety V (L)

being finite implies that V (L ∩ C[x]) and hence all V (LS ∩ C[x]) are finite. Hence
after Step 2, the list C contains all solutions of Eqs. (50), (52) and (54) in the KKT
conditions. Since the global maxima satisfy the CRCQ, theymust be solutions of these
equations. By choosing among the real solutions that satisfy inequalities (51) and (53)
in the KKT conditions the ones that maximize the value of the cost function F , we
get the global maxima. 
�

We are interested in the optimization problem, when the cost function is the log-
likelihood function lu(p) = ∑

ui1,...,in log pi1,...,in and the constraints are polynomial
equations and inequalities that describe a statistical model (written as Hj (p) = 0 for
j = 1, . . . , l and Gi (p) ≥ 0 for i = 1, . . . ,m, respectively). Although Eq. (50) is not
polynomial for F = lu, it can be made polynomial by multiplying the equation

∂lu(p)

∂ pi1,...,in
=

m∑

i=1

μi
∂Gi (p)

∂ pi1,...,in
+

l∑

j=1

λ j
∂Hj (p)

∂ pi1,...,in

with the variable pi1,...,in .
One of the reasons why the variety V (LS) in Step 2 of Algorithm 1 might not be

finite is that the Lagrange conditions forMLEmight be satisfied by higher-dimensional
components where some variable is identically zero. For MLE, Gross and Rodriguez
have defined amodification of the Lagrange conditions, known as Lagrange likelihood
equations (Gross and Rodriguez 2014, Definition 2), whose solution set does not
contain solutions with some variable equal to zero if the original data does not contain
zeros (Gross and Rodriguez 2014, Proposition 1). However, the Lagrange likelihood
equations can be applied only to homogeneous prime ideals. This motivates us to study
Lagrange conditions for decompositions of ideals.

Lemma 1 Assume that the ideal J = 〈Gi : i = 1, . . . ,m〉 decomposes as J = J1∩ J2,
where J1 = 〈G(1)

j : j = 1, . . . ,m1〉 and J2 = 〈G(2)
k : k = 1, . . . ,m2〉. If x∗ satisfies
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the Lagrange conditions for the optimization problem max F(x) subject to Gi (x) = 0
for i = 1, . . . ,m, then x∗ satisfies the Lagrange conditions for the optimization
problem max F(x) subject to G(1)

j (x) = 0 for j = 1, . . . ,m1 or for the optimization

problem max F(x) subject to G(2)
k (x) = 0 for k = 1, . . . ,m2.

Proof Since J = J1 ∩ J2, we have J = 〈G(1)
j G(2)

k : j = 1, . . . ,m1, k = 1, . . . ,m2〉.
Hence the optimization problem max F(x) subject to Gi (x) = 0 for i = 1, . . . ,m
is equivalent to max F(x) subject to G(1)

j G(2)
k (x) = 0 for j = 1, . . . ,m1, k =

1, . . . ,m2. The Lagrange conditions for the latter optimization problem are

∂F

∂x
=

∑

j,k

λ jk

(
∂G(1)

j

∂x
G(2)

k + ∂G(2)
k

∂x
G(1)

j

)

=
∑

j

∂G(1)
j

∂x

(
∑

k

λ jkG
(2)
k

)

+
∑

k

∂G(2)
k

∂x

⎛

⎝
∑

j

λ jkG
(1)
j

⎞

⎠ ,

G(1)
j G(2)

k = 0 for j = 1, . . . ,m1, k = 1, . . . ,m2.

If there exists k such that G(2)
k (x∗) �= 0, then we must have G(1)

j (x∗) = 0 for
j = 1, . . . ,m1. Hence x∗ satisfies

∂F

∂x
=

∑

j

∂G(1)
j

∂x

(
∑

k

λ jkG
(2)
k

)

+
∑

k

∂G(2)
k

∂x

⎛

⎝
∑

j

λ jkG
(1)
j

⎞

⎠

=
∑

j

∂G(1)
j

∂x

(
∑

k

λ jkG
(2)
k

)

,

G(1)
j = 0 for j = 1, . . . ,m1.

Defining λ
(1)
j = ∑

k λ jkG
(2)
k , we see that x∗ satisfies Lagrange conditions for the

optimization problem max F(x) subject to G(1)
j (x) = 0 for j = 1, . . . ,m1. Other-

wise G(2)
k (x∗) = 0 for k = 1, . . . ,m2 and x∗ satisfies Lagrange conditions for the

optimization problem max F(x) subject to G(2)
k (x) = 0 for k = 1, . . . ,m2. 
�

Lemma 2 Let J = J1 ∩ J2 and K = K1 ∩ K2. If x∗ satisfies the Lagrange conditions
for the optimization problem max F(x) subject to the generators of J + K, then
x∗ satisfies the Lagrange conditions for one of the optimization problems max F(x)
subject to the generators of J j + Kk, where j, k ∈ {1, 2}.

Proof Assume J1 = 〈G(1)
j : j = 1, . . . ,m1〉, J2 = 〈G(2)

k : k = 1, . . . ,m2〉, K1 =
〈H (1)

j : j = 1, . . . , n1〉 and K2 = 〈H (2)
k : k = 1, . . . , n2〉. Then J = 〈G(1)

j G(2)
k : j =

1, . . . ,m1, k = 1, . . . ,m2〉 and K = 〈H (1)
j H (2)

k : j = 1, . . . , n1, k = 1, . . . , n2〉.

123



354 D. Kosta, K. Kubjas

The Lagrange conditions for the generators of J + K are

∂F

∂x
=

∑

j

∂G(1)
j

∂x

(
∑

k

λ jkG
(2)
k

)

+
∑

k

∂G(2)
k

∂x

⎛

⎝
∑

j

λ jkG
(1)
j

⎞

⎠

+
∑

j

∂H (1)
j

∂x

(
∑

k

μ jk H
(2)
k

)

+
∑

k

∂H (2)
k

∂x

⎛

⎝
∑

j

μ jk H
(1)
j

⎞

⎠ ,

G(1)
j G(2)

k = 0 for j = 1, . . . ,m1, k = 1, . . . ,m2,

H (1)
j H (2)

k = 0 for j = 1, . . . , n1, k = 1, . . . , n2.

If there exists k1 such that G(2)
k1

(x∗) �= 0 and k2 such that H (2)
k2

(x∗) �= 0, then we

must have G(1)
j (x∗) = 0 for j = 1, . . . ,m1 and H (1)

j (x∗) = 0 for j = 1, . . . , n1.
Hence x∗ satisfies

∂F

∂x
=

∑

j

∂G(1)
j

∂x

(
∑

k

λ jkG
(2)
k

)

+
∑

j

∂H (1)
j

∂x

(
∑

k

μ jk H
(2)
k

)

,

G(1)
j = 0 for j = 1, . . . ,m1,

H (1)
j = 0 for j = 1, . . . , n1.

Defining λ
(1)
j = ∑

k λ jkG
(2)
k and μ

(1)
j = ∑

k λ jk H
(2)
k , we see that x∗ satisfies

Lagrange conditions for the optimization problem max F(x) subject to the gener-
ators of J1 + K1. If G

(2)
k (x∗) = 0 for all k and/or H (2)

k (x∗) = 0 for all k, then we get
other combinations J1 + K2, J2 + K1 or J2 + K2. 
�

Lemma 1 suggests that if S is a singleton in Step 2 of Algorithm 1, then we can
replace the ideal LS of Lagrange conditions for IS in Step 2 of Algorithm 1 by the
ideals of Lagrange conditions for minimal primes of IS . If S = {i1, . . . , i|S|}, then
IS = I{i1} + . . . + I{i|S|}. Hence by Lemmas 1 and 2, we can replace the ideal LS

by the ideals of Lagrange conditions for the sum of minimal primes of I{i j }, where
1 ≤ j ≤ |S|.
Remark 3 As discussed in Section 3.2 of the supplementary material to Gross et al.
(2016), one can ignore all the components where one of the constraints is xk = 0 or
the sum of some variables is zero. If one of the variables is zero, then the value of the
log-likelihood function is −∞. If the sum of some variables is zero, then all of them
have to be zero, because none of them can be negative.

We summarize the results of Lemmas 1, 2 and Remark 3 in Algorithm 2. The
output of Algorithm 2 is a list of ideals. For each of the ideals consider the optimization
problemwhere equation constraints are given by the generators of the ideal. The ideals
generated by the Lagrange conditions for the optimization problems can be used in
Step 2 of Algorithm 1 instead of the ideals LS for every S ⊆ [m].

123



Maximum Likelihood Estimation of Symmetric Group-Based… 355

Algorithm 2 A list of ideals for Step 2 of Algorithm 1
Input: An optimization problem

max F(x)

subject to

Gi (x) ≥ 0 for i = 1, . . . ,m,

Hj (x) = 0 for j = 1, . . . , l.

Step 1: Let P be the power set of [m].
Step 2: For each S ∈ P associate a list of ideals:

• If S = {}, then the list of ideals associated to S consists of these minimal primes of 〈Hj (x) : j =
1, . . . , l〉 that do not contain any sums of the variables.

• If S = {s} for some 1 ≤ s ≤ m, then the list of ideals associated to S consists of these minimal
primes of 〈Gs (x), Hj (x) : j = 1, . . . , l〉 that do not contain any sums of the variables.

• If |S| > 1, write S2 = {max(S)} and S1 = S\S2. The list of ideals associated to S consists of these
minimal primes of the pairwise sums of the ideals in the list associated to S1 and in the list associated
to S2 that do not contain any sums of the variables.

Step 3: Take the union of all lists in Step 2 and remove repeated ideals.
Output: The list of ideals from Step 3.

Remark 4 In practice, it is crucial to know the degrees of the ideals LS of Lagrange
conditions. We recall that these degrees are also known as ML degrees. Although in
theory, polynomial homotopy continuation finds all solutions of a system of polyno-
mial equations with probability one, in practice, this can depend on the settings of
the program. Without knowing the ML degree, there is no guarantee that any numer-
ical method finds all critical points. For the CFN model on K1,3, we experimented
with Bertini Bates et al. (2006), NumericalAlgebraicGeometry package
in Macaulay2 Leykin (2011) and PHCpack Verschelde (1999). We ran these three
programs with default settings to find the critical points of the log-likelihood function
on the Zariski closure of the CFN model on K1,3. For our example, only PHCpack
found all 92 critical points discussed in Example 4.

Example 5 We aim to compute the MLE for the CFN model on K1,3 and the data
vector u = (17, 5, 27, 5, 16, 5, 19, 6). This data vector is obtained by generating 100
samples from the distribution inside the CFN model with rate parameters

ψ(eroot) = (−0.25, 0.25), ψ(e1) = (−0.75, 0.75),

ψ(e2) = (−50, 50), ψ(e3) = (−0.25, 0.25).

The corresponding tree is depicted in Figure 1. It has two short edges, one long edge
and the root distribution is very close to the uniform distribution.

To find the MLE, we have to consider three different optimization problems cor-
responding to the three different cases in Example 2. In each of the cases, we relax
the implicit characterization given in Example 2 by replacing strict inequalities with
non-strict inequalities. Specifically, in the first case, the polynomials Gi are given by
the left-hand sides of the inequalities (9)–(19) and the polynomials Hj are given by
the left-hand sides of Eqs. (5)–(8); in the second case, the polynomialsGi are given by
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Fig. 1 The tree in Example 5 has
two edges with short branch
lengths ε1 and ε3, one edge with
a long branch length M and the
root distribution is very close to
the uniform distribution

Table 1 Table summarizing
different boundary components

Dim I Degree L # of ideals

5 92 1

4 9 4

4 1 8

3 1 24

2 1 6

1 1 1

Total 167 44

the left-hand sides of the inequalities (24)–(34) and the polynomials Hj are given by
the left-hand sides of Eqs. (20)–(23); in the third case, the polynomials Gi are given
by the left-hand sides of the inequalities (41), (43), (44), (46)–(48) and the polyno-
mials Hj are given by the left-hand sides of Eqs. (35)–(40), (42) and (45). We apply
the modified version of Algorithm 1 that uses the output of Algorithm 2 in Step 2.
It is enough to run Algorithm 2 and Step 2 of Algorithm 1 for the first optimization
problem only as the polynomials Gi and Hj are the same for the first two optimization
problems; in the third optimization problem there is one polynomial less and some
polynomials Gi are among polynomials Hj , but all ideals considered in Algorithm 2
and Step 2 of Algorithm 1 for the third optimization problem are among the ideals for
the first optimization problem. In Step 3 we have to check whether elements satisfy
Gi (x) ≥ 0 and Hj (x) = 0 for any of the three optimization problems. The code for
this example can be found at the link:

https://github.com/kaiekubjas/phylogenetics

As a result, we obtain 44 ideals summarized in Table 1. The first row of this table
corresponds to the Zariski closure of the CFN model on K1,3. It has degree 92 which
agrees with theMLdegree 92 computed in (Hosten et al. 2005, Example 14). However,
to find the MLE one has to consider critical points of the likelihood function in the
interior and on all the boundary components, in total 167 of them. We compute all the
167 complex critical points using numerical algebraic geometry software PHCpack.
Out of the 167 complex critical points 99 are real and 51 are positive. We list the
seven points among them that have the highest value of the log-likelihood function in
Table 2.
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Table 2 Critical points with the highest values of the log-likelihood function

p lu MLE

(.183, .051, .256, .055, .147, .053, .204, .052) −188.451 No

(.183, .049, .243, .065, .156, .042, .207, .055) −188.722 No

(.191, .053, .243, .042, .156, .065, .199, .051) −188.803 No

(.165, .05, .23, .055, .165, .05, .23, .055) −188.927 No

(.17, .045, .225, .06, .17, .045, .225, .06) −189.042 No

(.174, .059, .221, .046, .174, .059, .221, .046) −189.303 No

(.22, .05, .22, .05, .175, .055, .175, .055) −189.488 Yes

The first six critical points in Table 2 satisfy

p000 − p001 + p010 − p011 + p100 − p101 + p110 − p111 > 0

and

p000 + p001 − p010 − p011 + p100 + p101 − p110 − p111 < 0.

Hence these critical points are not in the CFN model on K1,3 as in all three cases in
Example 2, the two linear inequalities are satisfied with the same sign.

The critical point with the seventh highest log-likelihood value is in the image of
the following parameters:

ψ(eroot) = (−0.192, 0.192), ψ(e1) = (−1.071, 1.071),

ψ(e2) = (−∞,∞), ψ(e3) = (−0.080, 0.080).

This implies that the MLE for the CFN model on K1,3 and the data vector u =
(17, 5, 27, 5, 16, 5, 19, 6) does not exist—the global maximum of the log-likelihood
function is achieved when we allow one of the parameters to go to infinity. Strictly
speaking this statement is true for the set of points in the model that satisfy CRCQ.We
believe that for random data the global maximum will satisfy CRCQ with probability
one. When we run the same optimization problem inMathematica, then we get a solu-
tionwith similar value for the log-likelihood function and all parameters besidesψ(e2),
which is equal to ψ(e2) = (−8.120, 8.120). Without having the implicit description
of the CFNmodel on K1,3 and using numerical algebraic geometry to study the MLE,
it would be very difficult to say that the MLE does not exist.

Remark 5 In Example 5, we chose the rate parameters of the true data generating
distribution such that the joint leaf probabilities of this distributionwould be close to the
boundary of themodel. In particular, the Fourier leaf probabilitiesq010, q011, q110, q111
are almost zero.We recall that the semialgebraic description of theCFNmodel includes
strict inequalitiesq > 0. The globalmaximumof the likelihood function on the closure
of the CFN model on K1,3 satisfies q010 = q011 = q110 = q111 = 0. Since this
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global maximum is not in the model, the MLE does not exist. We expect the similar
phenomenon that if our true data generating distribution is close to the boundary,
then the MLE does not exist to happen with nonzero probability. In particular, if the
normalized data vector lies on the part of the boundary that is not in the model, then
we know that the MLE does not exist.
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A Proof of Proposition 3

Proof The constraints in items (i) and (iv) are obtained, because the corresponding
maps are invertible linear transformations. We will prove that the constraints in items
(ii) and (iii) are correct.

Lemma 3 The image of {ψ̌(e) : ψ̌(e)(0) = 0, (K−1ψ̌(e))(g1) = (K−1ψ̌(e))(g2)
wheneverL(g1) = L(g2) and (K−1ψ̌(e))(g) ≥ 0for all nonzero g ∈ G} under the
map (2) is described by the equation and inequalities in item (ii).

Proof The inequalities f̌ (e)(g) > 0 hold because the image of the exponentiation map
is positive. The inequality aT x ≥ 0 is equivalent to ea

T x ≥ 1, and since ea
T x =

(ex )a
T
, it is also equivalent to (ex )a

T ≥ 1. Similarly, the equation aT1 x = aT2 x is

equivalent to (ex )a
T
1 = (ex )a

T
2 . Hence the equations and inequalities for {ψ̌(e)}e∈E

imply f̌ (e)(0) = 1, ( f̌ (e))(K
−1)g1,: = ( f̌ (e))(K

−1)g2,: whenever L(g1) = L(g2) and
( f̌ (e))(K

−1)g,: ≥ 1 for all nonzero g ∈ G. 
�
Lemma 4 The image of { f̌ (e) : f̌ (e)(0) = 1, ( f̌ (e))(K

−1)g1,: = ( f̌ (e))(K
−1)g2,:

wheneverL(g1) = L(g2), ( f̌ (e))(K
−1)g,: ≥ 1 for all nonzero g ∈ G and f̌ (e)(g) >

0 for all g ∈ G} under the map (3) is described by the equations and inequalities in
item (iii).

Lemma 4 is very similar to (Matsen 2009, Proposition 3.5); however, for the sake
of completeness, we will give a proof here. We also include the inequalities q > 0
that do not appear in (Matsen 2009, Proposition 3.5).

Proof The inequalities q > 0 are clearly valid inequalities. We will show that we do
not have to additionally consider the inequalities f̌ (e) > 0 to construct inequalities
for q. Assume there is { f̌ (e)}e∈E with not all entries positive that satisfies all other
inequalities in item (ii) and maps to q > 0. We claim that {| f̌ (e)|}e∈E also satisfies
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the same inequalities in item (ii) and it clearly maps to the same q. Indeed, since
the inequalities are of the form ( f̌ (e))2(K

−1)g,: ≥ 1, it means that in the product
( f̌ (e))2(K

−1)g,: minus signs cancel out and hence the absolute values give the same
product.

The map (3) is an isomorphism between { f̌ (e) : f̌ (e) > 0} and the positive part
of the Zariski closure of the image of { f̌ (e) : f̌ (e) > 0} under the map (3). Indeed,
let the composition of the maps in Propositions 1 and 2 with the map (3), map q

to {
√

qag

qbg
}g∈Gn for some vectors ag,bg ∈ R

Gn
. Since qg =

√
qag

qbg
, or equivalently

q2gq
bg = qag , for all q in the image, the same equation must be satisfied for all

elements in the Zariski closure of the image. Moreover,
√

qag

qbg
is well-defined on the

positive part of the Zariski closure, hence we have the isomorphism. It follows that
on the positive part of the Zariski closure we get the inequalities for q by substituting
expressions for [ f̌ (e)]2 to inequalities ( f̌ (e))2(K

−1)g,: ≥ 1. 
�
This completes the proof that the equations and inequalities in items (i)–(iv) are

correct. 
�
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