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Abstract
In this study, we apply the Bayesian paradigm for parameter identification to a
well-studied semi-linear reaction–diffusion system with activator-depleted reaction
kinetics, posed on stationary as well as evolving domains. We provide a mathemat-
ically rigorous framework to study the inverse problem of finding the parameters of
a reaction–diffusion system given a final spatial pattern. On the stationary domain
the parameters are finite-dimensional, but on the evolving domain we consider the
problem of identifying the evolution of the domain, i.e. a time-dependent function.
Whilst others have considered these inverse problems using optimisation techniques,
the Bayesian approach provides a rigorous mathematical framework for incorpo-
rating the prior knowledge on uncertainty in the observation and in the parameters
themselves, resulting in an approximation of the full probability distribution for the
parameters, given the data. Furthermore, using previously established results, we can
prove well-posedness results for the inverse problem, using the well-posedness of
the forward problem. Although the numerical approximation of the full probability is
computationally expensive, parallelised algorithms make the problem solvable using
high-performance computing.

Keywords Bayesian inverse problems · Parameter identification · Inverse problems ·
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1 Introduction

Parameter identification is the problem of extracting information about the param-
eters of a model from the actual result of some measurement (Tarantola 2005). In
this study, our mathematical models are of the form of partial differential equations
(PDEs) whose variables are elements of a Banach space. The data will be a noisy
measurement of the solution of the system of PDEs, whilst the parameters will be the
coefficients of the mathematical model, i.e. the coefficients of the system of PDEs.
Initial and boundary conditions can also be considered as parameters as well. The data
may also be a functional of the solution, such as an average. Parameter identification
problems are sometimes referred to as inverse problems, thus considering as a direct
problem solving the system of PDEs given the parameters. Note that parameters may
be functions in general. We remark that this approach applies directly to systems of
ordinary differential equations as well, making the theory of interest to a wide range
of fields.

There are two main approaches to solve parameter identification problems. On the
one hand, one can use techniques from optimal control to find the best possible value
for the parameter (see, for instance, Aster et al. (2013), Beck et al. (1985)). Here,
the best possible value is defined in terms of the distance from the solution of the
model to the given data. In a Banach space setting, when the data and the solution
are elements of a Banach space, this corresponds to the problem of minimising the
norm of the difference between the solution and the data. In general, this problem is
ill-posed. A regularisation termmust be added, enforcing the norm of the parameter to
be minimised too, and effectively restricting the candidate parameters. Ill-posedness
may come from different sources, like non-uniqueness or non-continuous dependence
of the solution with respect to the data.

A second approach to parameter identification is to use Bayesian techniques (see,
for instance, Stuart 2010; Kaipio and Somersalo 2006). This approach consists of
a set of techniques built around Bayes’ theorem, which, roughly speaking, allows
one to compute the conditional probability of an event A given the probability of an
event B, in terms of the reverse conditional probability, i.e. the probability of B given
A. In the parameter identification framework, this will correspond to computing the
probability of the parameters given the data, in terms of the probability of the data
given the parameters. Note that the latter is given by themathematical model: when the
parameters are given, the mathematical model predicts the result of the experiment,
in other words the data.

In both cases, numerical algorithms are necessary to approximate the final result. In
the optimal control framework, there are a range of minimisation techniques that may
be used, for instance Gauss–Newton optimisation or the Levenberg–Marquardt algo-
rithm (see Adby 2013 for a general description of these algorithms). An optimal value
can be obtained from the Bayesian framework using maximum a posteriori (MAP)
methods, closely related to themaximum likelihood approach.Additionalmethods can
be used to estimate confidence intervals for the parameters. In theBayesian framework,
the problem will be to estimate a full probability distribution. In this case, usually a
Markov chain Monte Carlo algorithm is used to build a Markov chain with stationary
distribution equal to the target distribution (see Norris 1998; Stuart 2010; Toni et al.
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2009; Battogtokh et al. 2002; Brown and Sethna 2003). This usually requires a lot
of evaluations of the observation functional—the mapping from parameters to obser-
vations, i.e. from parameters to the solution of the mathematical model—solving the
system of PDEs for each evaluation (Stuart 2010).Whilst this is computationally more
expensive than aminimisation algorithm, the amount of useful information obtained—
the full probability distribution—is larger compared to the single value that we get
from the optimal control approach. Note that in both cases a parallel algorithm can be
used to speed up the computations.

From the probability distribution provided by the Bayesian framework, one can
extract information about the uncertainty of the parameters, thus avoiding situations
where despite obtaining a value for the parameters, a more detailed study of the uncer-
tainty shows that they are not well determined (Gutenkunst et al. 2007). In many
practical situations, the exact value of the parameters is not useful in drawing conclu-
sions. For instance, in Ashyraliyev et al. (2008) it is shown that correlations between
parameters in a model for Drosophila Melanogaster gap gene impede the individual
identification of the parameters, but it is still possible to draw conclusions about the
regulatory topology of the gene network. Furthermore, the information provided by
the probability distribution can be used in model selection problems (Vyshemirsky
and Girolami 2008), where several mathematical models are available and the goal is
to find which one fits better to the experimental data.

There are other advantages inherent to the fact that a probability distribution for the
parameters is available. For example, correlations between different parameters can
be observed in the joint probability distribution. These correlations can be invisible
when only a value for the parameters is computed, leading to an overestimation of
the uncertainty (Sutton et al. 2016). Similarly, the correlations between parameters
can suggest a non-dimensionalised form of the equations to eliminate non-relevant
parameters from the problem.

A drawback of the Bayesian approach is its computational cost. Many problems
were not suitable for this approach a few years ago due to the lack of computational
power (SIAMWorking Group on CSE 2001). Recent advances in HPC scientific com-
puting now offer new avenues to perform highly efficient, robust and fast computations
within the timescales necessitated by experimental manipulations.

Parameter identification problems arise often in many areas of research such as
biology, biomedicine, chemistry, material sciences, mathematics, statistics. Typically,
a mathematical model needs to be fitted to experimental data. Only in a few cases it
is possible to perform an analytical parameter identification, see, for instance, Fried-
man and Reitich (1992). Note also that parameters are not always directly measurable
from experiments, or have a defined physical meaning. Hence, parameter identifica-
tion through the proposed approach might help guide experimentalists in identifying
regions of interest to which parameters belong as well as helping them sharpen their
experimental hypotheses.

The optimal control approach is applied in Ashyraliyev et al. (2009) to systems
of ordinary differential equations modelling enzyme kinetics. In this case, confidence
regions may be computed using the second derivatives of the cost functional that
is being minimised. Since this only provides local information around the optimal
point, the confidence regions computed with this method tend to be rather large. The
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optimal control approach has also been applied to geometric evolution problems for
cell motility, and to reaction–diffusion–transport systems (Garvie et al. 2010; Croft
et al. 2015; Blazakis et al. 2015; Portet et al. 2015; Yang et al. 2015; Stoll et al. 2016).

Bayesian techniques are common for parameter fitting in statistics (see, for exam-
ple, Ma and Leijon 2011; Fan et al. 2012; Ma et al. 2015). The Bayesian approach
is also used in many fields for forward models governed by PDEs (see Stuart (2010)
and the references therein), for example inverse problems in subsurface flow (Iglesias
et al. 2014) and 3D modelling of the cardiovascular system (Perdikaris and Karni-
adakis 2016). This approach is based on using numerical methods to solve the PDE,
although in some cases it is possible to represent the solution operator via basis func-
tion expansion (Xun et al. 2013).

Turing systems are a family of reaction–diffusion systems introduced by Turing
(1952). Originally intended to model morphogenesis, they have since found many
applications in mathematical biology and other fields (Lacitignola et al. 2017; Das
2017; Wang et al. 2016; Hu et al. 2015; Guiu-Souto and Muñuzuri 2015). The main
feature of these models is that small perturbations of the homogeneous steady states
may evolve to solutions with non-trivial patterns (Murray 2011, 2013). An example
of such a model is the Schnakenberg system, also known as the activator-depleted
substrate model (Gierer and Meinhardt 1972; Prigogine and Lefever 1968; Schnaken-
berg 1979). This model has been widely studied, both analytically and numerically
(Garvie et al. 2010; Venkataraman et al. 2012; Madzvamuse et al. 2005). Note that
for some reaction–diffusion systems with classical reaction kinetics the Turing space
can be obtained analytically, thereby offering us a bench-marking example for our
theoretical and computational framework (see, for instance, Murray 2013).

The parameter identification for Turing systems, using Turing patterns as data,
was studied in Garvie et al. (2010), both with Schnakenberg kinetics and with Gierer–
Meinhardt kinetics, but using an optimal control approach.Garvie andTrenchea (2014)
also used an optimal control approach to identify space–time distributed parameters in
a system with Gierer–Meinhardt kinetics. In contrast, here we use a Bayesian frame-
work that, in particular, allows the consistent computation of credible regions for the
estimated parameters. To the best of our knowledge, this is the first study to address
the inverse problem for Turing patterns in the Bayesian framework, and in particular,
in growing domains. Uzunca et al. (2017) studies a convective FitzHugh–Nagumo
system which is similar to the system arising in growing domains and identifies finite-
dimensional parameters using optimisation techniques.

Our first goal is to identify a time-dependent growth function for a reaction–
diffusion system posed on a one-dimensional growing domain. For this case, the
rest of the model parameters are considered known and fixed. This example illus-
trates an application of our approach to infinite-dimensional parameter identification.
Our second example is that of parameter identification in a finite-dimensional
framework where we consider the reaction–diffusion system posed on a stationary
two-dimensional domain. For both examples, we use synthetic patterns—computer
generated—based on previous works using a fixed set of parameters (Garvie et al.
2010; Madzvamuse et al. 2010).
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2 Parameter Identification

The main ingredients of a parameter identification problem are the data (the mea-
surements from the experiment), the parameters and the mathematical model. In
accordance with the functional analytic framework for the treatment of PDE mod-
els, the data and the parameters are modelled as elements of suitable Banach spaces.
To fix the notation, letU and Y be Banach spaces, let y ∈ Y be the data, and let p ∈ U
be the parameter. Note that in general p is a vector of parameters. When one fixes a
value for the parameter p, one can solve the equations of the model to find the solution
associated with this parameter. This process is known as the solution of the forward
problem; in contrast, the problem of parameter identification is an inverse problem.
The solution of the forward problem is formalised with a mapping G : U → Y such
that a parameter p ∈ U is mapped to the solution of the model with parameter p.
Since G maps parameters to the measurement space, G is called the observation oper-
ator. G is well defined as long as for each possible parameter, there exists a unique
solution to the mathematical model; otherwise, G might not be defined inU or might
be multivalued.

Noise that is present in the data is naturally modelled by means of a probability
distribution. Let Q0 be a probability distribution. Let η be a realisation of Q0. With
this notation at hand, our measurement can be expressed as

y = G(p) + η. (1)

The Bayesian approach to parameter identification assumes implicitly that a prob-
ability distribution models the state of knowledge about a quantity (Tarantola 2005).
If the quantity is known with infinite precision then the probability distribution will
be concentrated at one point—a Dirac delta distribution. The less we know, the more
spread the distribution will be.

Equation (1) expresses the relation between the probability distribution of the data
y, the parameters p and the noise η. In other words, (1) connects our knowledge
about the different ingredients of the parameter identification problem. Note that the
mathematical model, encoded in G, is assumed to be known; our interest is to find
information about the parameters of a givenmodel, not tofind themodel itself, although
dummy parameters could be used for model selection.

From the modelling point of view, Eq. (1) is well defined as long as the data y
lie in a Banach space. Some systems may require a more general framework, for
instance if the data lie in a manifold or in a metric space, where the operation “+” may
not be defined. The Banach space setting allows us to prove rigorous results on the
parameter identification problem, and it is suitable for the numerical approximation
of the solution (Stuart 2010; Dashti and Stuart 2013; Cotter et al. 2013). In terms of
applicability, in some situations the task of finding the noise distribution is not trivial
(Kaipio and Somersalo 2007; Huttunen and Kaipio 2007).

The parameter identification problem can be now stated as follows: find the proba-
bility distribution of the parameter p given the data y. This probability distribution is
called the posterior and is denoted by P(p|y), or Py(p). All the information available
about the parameter p is encoded in the posterior probability distribution.
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We can now apply Bayes’ theorem to (1). Letμy be the probability density function
of P(p|y). The PDF of P(y|p) is given by ρ(y − G(p)), where ρ is the PDF of the
noise distribution Q0. Denote by μ0 the PDF of the prior distribution. From Bayes’
theorem we obtain (Stuart 2010)

μy(p) ∝ ρ(y − G(p))μ0(p).

Bayes’ theorem can be generalised to an infinite-dimensional setting. The formu-
lation is more technical but analogous to the finite-dimensional case described above.
With the general version of the theorem, the Bayesian approach to parameter identifi-
cation can be applied to infinite-dimensional problems. LetP0 be the prior distribution.
The following result generalises the Bayes’ theorem to infinite-dimensional settings
(Stuart 2010; Dashti and Stuart 2013).

Theorem 1 (Bayes’ theorem) Assume that the potential Φ : U ×Y −→ R is measur-
able with respect to the product measure P0 × Q0, and assume that

Z :=
∫
U
exp (−Φ(p; y))P0(dp) > 0.

Then, the conditional distributionP(p|y), denoted byPy(p), exists, and it is absolutely
continuous with respect to the prior distribution P0. Furthermore,

dPy

dP0
= 1

Z
exp (−Φ(p; y)) .

Proof See (Dashti and Stuart 2013, theorem 3.4). ��
Note that the potential Φ typically corresponds to the negative log-likelihood. Fur-

thermore, since the data y are fixed in the applications, we drop the dependency on y;
that is, we write Φ(p) instead of Φ(p; y).

Using only properties of the forward problem, the following proposition (see Stuart
2010) guarantees that the parameter identification problem is well-posed: the posterior
distribution exists, and it depends continuously on the data y. Denote by B(0, r) ⊂ U
the ball with centre at the origin and radius r , and by ‖ · ‖Σ the Euclidean norm with
weight Σ .

Proposition 1 (Well-posedness of the Bayesian inverse problem) Assume that Q0 is
a Gaussian distribution with covariance Σ and that the potential is Φ(p; y) = ‖y −
G(p)‖2Σ . Assume that the observation operator G satisfies the following conditions.

(i) For all ε, there exists M ∈ R such that for all p ∈ U,

‖G(p)‖Σ ≤ exp
(
ε‖p‖2U + M

)
.

(ii) For all r > 0, there exists a K such that for all p1, p2 ∈ B(0, r),

‖G(p1) − G(p2)‖Σ ≤ K‖p1 − p2‖U .
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Then, the distribution Py(p) defined in Theorem 1 exists and depends continuously on
the data y.

Proof See (Stuart 2010, theorem 4.2). ��
Note that the first condition is a bound on the growth of the solution with respect

to the parameter p, whilst the second condition is the Lipschitz continuity of the
observation operator. The first condition is not necessary to obtain well-posedness if
the parameter space U is finite-dimensional.

We remark that in order to solve a parameter identification problem with
infinite-dimensional parameters, we require that the problem is well-posed in the
infinite-dimensional setting, according to Theorem 1 and Proposition 1. Later, for the
numerical approximation of the problem, we will discretise the parameter space, and
the problemwill become finite-dimensional. However, it is not enough to show that the
problem is well-posed in the finite-dimensional setting. The discrete solution approx-
imates the infinite-dimensional solution, and therefore, we need to know that we are
approximating a meaningful object in the infinite-dimensional setting. See Dashti and
Stuart (2013) for some results on the convergence with respect to the discretisation.

Bayes’ theorem characterises the posterior probability distribution, but involves
the normalisation constant Z (see Proposition 1). Z is defined as an integral over the
entire parameter space, with respect to the prior measure, and it is computationally
expensive to evaluate even for finite-dimensional problems. An alternative is to not
compute the distribution, but to produce samples from it.

Markov chainMonte Carlo (MCMC)methods are a family of methods that produce
a Markov chain with a given distribution (Norris 1998). For the problem at hand, the
target distribution is the posterior. Therefore, for each new state of the Markov chain,
we obtain a sample of the posterior distribution.

MCMC methods are robust but slow. The distribution of the Markov chain con-
verges, under general conditions, to the target distribution, but long chains are
necessary to obtain good approximations (Norris 1998). Also, the methods are inher-
ently sequential. Furthermore, in the parameter identification framework, evaluation
of the acceptance probability typically involves, at least, one evaluation of the poten-
tial Φ, and in consequence, one evaluation of the observation operator G. This is an
expensive operation in terms of computing time in cases where the model is a system
of PDEs because it entails solving the system.

To overcome these difficulties we shall use a parallel Metropolis–Hastings
algorithm (Calderhead 2014; Tjelmeland 2004). The key idea is to generate an
N-dimensional Markov chain such that its distribution is N copies of the target dis-
tribution. This can be done in a way that allows parallel evaluations of the potential
Φ.

Let xk be the current state of the Markov chain, and let k(xk, x) be a proposal
kernel—the probability to propose a state x if the present state is xk . For ease of
presentation assume that the proposal kernel is symmetric, i.e. k(xk, x) = k(x, xk).
Let a(xk, x) be the probability of accepting a new state x if the present state is xk .

The choice of the proposal kernel k is critical to the performance of the algorithm.
Furthermore, the choice of the acceptance probability a depends on the proposal
kernel in order to ensure that the Markov chain is reversible with respect to the target
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probability. Reversibility implies, in turn, that the Markov chain preserves the target
probability. We refer to Tierney (1998) for details on the choice of a, in general, and
to Cotter et al. (2013) for the case of infinite-dimensional states.

In the present work, we restrict ourselves to a simple proposal kernel. Given the
prior distribution P0, take the proposal kernel k satisfying

k(xk, ·) ∼ P0(·).

Together with the acceptance probability given by

a(xk, x) = min {1, exp (Φ(xk) − Φ(x))} , (2)

this choice corresponds to the standard Metropolis–Hastings method known as inde-
pendence sampler. We refer to Cotter et al. (2013) for other choices suitable for
infinite-dimensional problems. Note that the acceptance probability in this case, as
well as for many other popular choices, depends only on the potential Φ.

Although the independence sampler is useful for a general exploration of the param-
eter space, it does not offer any tunable parameters, and therefore, it may work poorly
when the values of the potential Φ have significant differences depending on where it
is evaluated.

Another popular sampler is the preconditioned Crank–Nicolson (pCN). For a Gaus-
sian prior with mean 0 and covariance Γ , the proposal kernel for the pCN is given
by

k(xk, x) ∼ N ((1 − β)
1
2 xk, β

2Γ ),

where N (m,C) denotes a Gaussian distribution with mean m and covariance C , and
β ∈ [0, 1]. The acceptance probability is the same as in the independence sampler, (2).
With the pCN, we can adjust the variance of the proposals by tuning the parameter β.
The proposals account for the local information provided by the current state xk . For
β = 1, we recover the independence sampler. Taking smaller values of β entails that
the samples are closer to the current state and the acceptance probability increases.

Both independence sampler and pCN are suitable for infinite-dimensional param-
eters. Cotter et al. (2013) consistently derive these and other proposal kernels by
discretising a Langevin-type stochastic differential equation.

We note that for some problems of interest, the evaluation of the potential Φ is
computationally intensive, and therefore, proposal kernels that require evaluations of
quantities like ∇Φ may not be feasible.

In the standard Metropolis–Hastings method, given a current state xk , we generate
a proposal x from the proposal kernel. We accept the new proposal with probability
a(xk, x), i.e. xk+1 = x with probability a(xk, x), and xk+1 = xk otherwise. Note that
the evaluation of a(xk, x) involves the evaluation of Φ(x), which in turn involves the
evaluation of the observation operator G. Since this evaluation of G is an expensive
operation, the aim of the parallel Metropolis–Hastings method is to evaluate Φ in
parallel for many proposals.
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The parallel Metropolis–Hastings algorithm goes as follows. We generate N new
proposals {x j }Nj=1 from the proposal kernel k(xk, ·). Take x0 = xk . Then, in parallel,

we evaluate the potentials Φ(x j ), j = 1 . . . N . Note that this will be done by N
instances of the PDE solver running in parallel, but the solver itself need not be
parallel. Parallelising the solver for the model will reduce the time spent solving the
model system and therefore is, in some cases, worth implementing. With the values
of Φ(x j ) at hand, the acceptance probability of each proposal is computed by finding
the stationary distribution of a Markov chain with N +1 states, given by the transition
matrix

A(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1

N
a(xi , x j ) if j �= i,

1 −
∑
j �=i

A(i, j) if j = i .

Finally, we sample N times from the stationary distribution to produce N new states
(see Algorithm 1). Note that this approach is non-intrusive, in the sense that it does
not require modifications of the solver of the PDEs.

Algorithm 1 One step of the parallel Metropolis–Hastings algorithm. This will gen-
erate N new samples.

1. Draw N new points {x j }Nj=1 from the proposal kernel k(xk , x
j ). Take x0 = xk .

2. Evaluate, in parallel, Φ(x j ), j = 1 . . . N .
3. Compute the acceptance probabilities of the proposals, given by the stationary distribution of a Markov
chain with transition matrix

A(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1

N
a(xi , x j ) if j �= i,

1 −
∑
j �=i

A(i, j) if j = i .

4. Sample N times from the stationary distribution to produce xk+1, . . . , xk+N .

There are many other sampling methods to approximate a probability distribution
characterised by the Bayes’ theorem. The parallelised Metropolis–Hastings method
presented above is suitable when a PDE solver for the mathematical model is already
available, and the only interest is in speeding up the computations using a parallel HPC
environment, without doing any changes to the solver. In other words, it is a parallel
sampling algorithm that works unintrusively with a given PDE solver to evaluate the
potential Φ. Furthermore, the Metropolis–Hastings methods work well for problems
with infinite-dimensional parameters (Stuart 2010; Dashti and Stuart 2013).

We remark that in this context, we assume that we can explicitly compute the poten-
tial Φ; that is, we can compute the likelihood. This is a consequence of (1) and allows
us to incorporate in the modelling the information available on the experimental noise.
In other problems, specially when the noise distribution is completely unknown, or
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when the likelihood cannot be computed in general, approximate Bayesian compu-
tation can be more suitable. See Ross et al. (2017) for an example of application of
approximate Bayesian computation in mathematical biology.

The method described in this study has been implemented in Python, using the
module Scipy (Jones et al. 2001) and the module multiprocessing from the Python
Standard Library. The evaluation of the potential Φ can be implemented using a
different language and then invoked from the Python code. In this paper, we use
Python also for the evaluation of Φ; see Sect. 3 for details.

2.1 HPC Computations

For each of the examples shown in Sect. 3, we generate 10 Markov chains for a
total of approximately 106 samples. The mean and the correlation of each chain are
examined and are used to decide the burn-in—the fraction of the chain discarded due
to the influence of the initial value. The burn-in fraction is determined by checking
the convergence of the mean for each chain. Finally, the chains are combined in a big
set that we use to generate the plots.

All the results shown are generated using the local HPC cluster provided and man-
aged by the University of Sussex. This HPC cluster consists of 3000 computational
units. The specifications of the computational units are AMD64, x86_64 or 64 bit
architecture, made up of a mixture of Intel and AMD nodes varying from 8 cores up
to 64 cores per node. Each unit is associated with 2 GB memory space. Most of the
simulations in this paper are executed using 8–48 units. The wall-clock computation
time for one chain ranged from 1 to 4 days, and the CPU time ranged from 10 to 35
days for one chain. It must be noted that there are two levels of parallelisation: first the
algorithm is parallelised and uses 8 of the available cores, and then many instances of
the algorithm run at the same time to produce independent chains. We remark that we
produce independent chains in order to test the convergence of the algorithm.

3 Turing Systems

We consider infinite-dimensional (as well as finite-dimensional) parameter identifica-
tion for a well-known mathematical model, a reaction–diffusion system on evolving
and stationary domains. As mentioned earlier, we take the Schnakenberg kinetics
(Gierer and Meinhardt 1972; Prigogine and Lefever 1968; Schnakenberg 1979) for
illustrative purposes.

3.1 Reaction–Diffusion System Posed on Uniform Isotropic Evolving Domains

Let Ωt ⊂ Rm (m = 1, 2) be a simply connected bounded evolving domain for all
time t ∈ I = [0, tF ], tF > 0 and ∂Ωt be the evolving boundary enclosing Ωt .
Also let u = (u (x(t), t) , v (x(t), t))T be a vector of two chemical concentrations at
position x(t) ∈ Ωt ⊂ Rm . The growth of the domain Ωt generates a flow of velocity
v. For simplicity, let us assume a uniform isotropic growth of the domain defined by
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x(t) = ρ(t)x(0), where x(0) ∈ Ω0 is the initial domain and ρ(t) ∈ C1(0, 1) is the
growth function (typically exponential, linear or logistic). We further assume that the
flow velocity is identical to the domain velocity v := dx

dt . The evolution equations
for reaction–diffusion systems can be obtained from the application of the law of
mass conservation in an elemental volume using Reynolds transport theorem. Since
the domain evolution is known explicitly, a Lagrangian mapping from an evolving to
a stationary reference initial domain yields the following non-dimensional reaction–
diffusion system with time-dependent coefficients (Crampin et al. 2002; Mackenzie
andMadzvamuse2011;Madzvamuse andMaini 2007;Madzvamuse et al. 2010, 2016)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
ut + mρ̇(t)

ρ(t) u = 1
ρ2(t)

�u + γ f (u, v),

vt + mρ̇(t)
ρ(t) v = d

ρ2(t)
�v + γ g(u, v),

x ∈ Ω0,

n · ∇u = n · ∇v = 0, x on ∂Ω0,

u(x, 0) = u0(x), and v(x, 0) = v0(x), x on Ω0,

(3)

where� is the Laplace operator on domains and volumes, d is the ratio of the diffusion
coefficients, and ρ̇ := dρ

dt . Here, n is the unit outward normal to Ωt . Initial conditions
are prescribed through non-negative bounded functions u0(x) and v0(x). In the above,
f (u, v) and g(u, v) represent nonlinear reactions and these are given by the activator-
depleted kinetics (Crampin et al. 1999; Gierer and Meinhardt 1972; Prigogine and
Lefever 1968; Schnakenberg 1979)

f (u, v) = a − u + u2v, and g(u, v) = b − u2v. (4)

To proceed, let us fix the parameters a, b, d, γ ≥ 0, and use the Bayesian approach
to identify the domain growth rate function ρ(t), assuming ρ(0) = 1, ρ(t) > 0 for
t > 0 and that the domain size at the final time, ρ(T ), is known.

Well-posedness results for the system of Eq. (3), as well as stability results, can
be found in Venkataraman et al. (2012). Furthermore, the positivity of solutions is
established. These results ensure that the conditions in Proposition 1 are satisfied, and
thus, we can conclude the well-posedness of the parameter identification problem.

Proposition 2 (Well-posedness of the parameter identification problem) Let G be the
observation operator associated with the reaction–diffusion system (3) with reaction
kinetics (4). Assume that a, b, d, γ > 0, andρ ∈ C1(0, T ),ρ > 0. Then, the conditions
in Proposition 1 are satisfied, and thus the parameter identification problem is well-
posed.

Proof The result follows from the analysis in Venkataraman et al. (2012), where well-
posedness for problem (3) is shown. In particular, the first condition in Proposition 1 is
a consequence of the a priori estimates for the solution. More precisely, the estimates
in Venkataraman et al. (2012) show in particular that the L2-norm of the solution to (3)
is controlled by the square of the L2-norm of the domain growth, a bound tighter than
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the one required in Proposition 1. As noted, this bound is only required for parameters
in an infinite-dimensional space. ��

Although this example is synthetic, it is biologically plausible. First, we generate
the data by adding noise to a numerical solution of the system, but the parameter
identification problem would be analogous in the case of experimental data (see, for
instance, Vigil et al. (1992) for an experiment that produces Turing patterns similar to
the patterns that we use as data in Example 2).

Since the noise follows a Gaussian distribution, we evaluate the potentialΦ accord-
ing to Proposition 1. Let G̃ be the observation operator associated with the numerical
solver that maps a parameter p to the numerical approximation of the solution of (3).
Let y be the data, and let Σ be the covariance of the noise. Then,

Φ(p; y) = ‖G̃(p) − y‖2Σ.

3.1.1 Example 1: Infinite-Dimensional Parameter Identification

Without any loss of generality, we restrict our first example to the one-dimensional
case (m = 1) where we fix model parameters with standard values in the literature as
(Murray 2013)

a = 0.1, b = 0.9, d = 10, γ = 1000.

We want to identify the growth function ρ(t) given synthetic data generated from
two different growth profiles defined by the exponential and logistic functions

ρexp(t) = exp(0.001t), and ρlog(t) = exp(0.01t)

1 + exp(0.01t)−1
exp(0.006)

. (5)

We fix the final time T = 600. Note that the size of the domain at time T is the same
in both cases.

Initial conditions are taken as small fixed perturbations around the homogeneous

steady state, (u∗, v∗) =
(
a + b, b

(a+b)2

)
, and these are given by

u0(x) = 1 + 0.005
9∑

k=1

sin(kπx), and v0(x) = 0.9 + 0.005
9∑

k=1

sin(kπx). (6)

We solve the system using the finite difference method both in space and in time.
The system of partial differential equations is solved on the mapped initial unit square
domain using a finite difference scheme. Similar solutions can be obtained by employ-
ing finite element methods for example or any other appropriate numerical method.
The algebraic linear systems are solved using a conjugate gradient method from the
module SciPy (Jones et al. 2001).

The time-stepping scheme is based on a modified implicit–explicit (IMEX) time-
stepping scheme where we treat the diffusion part and any linear terms implicitly
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and use a single Picard iterate to linearise nonlinear terms (Ruuth 1995; Madzvamuse
2006; Venkataraman et al. 2012). This method was analysed in Lakkis et al. (2013) for
finite element discretisation. It is a first-order, semi-implicit backward Euler scheme,
given by

un+1 − un

τ
+ ρ̇n

ρn
un+1 = 1

ρ2n �hu
n+1 + γ (a − un+1 + unun+1vn),

vn+1 − vn

τ
+ ρ̇n

ρn
vn+1 = d

ρ2n �hu
n+1 + γ (b − (un)2vn+1),

(7)

where �h is the standard 3-point (or 5-point) stencil finite difference approximation
of the Laplacian operator in 1-D (or 2-D), respectively, with Neumann boundary
conditions. The parameters of the solver are h = 10−2 and τ = 10−4 for all the
computations.

We remark that our aimhere is to illustrate the applicability of theBayesian approach
and theMonte Carlomethods for parameter identification to problems emanating from
mathematical biology. More sophisticated solvers can be used and will improve the
computational time (Venkataraman et al. 2013). The synthetic data are generated by
solving the reaction–diffusion system (3) with reaction kinetics (4) up to the final time
T = 600, and then perturbing the solution with Gaussian noise with mean zero and
standard deviation equal to 5% of the range of the solution. The data are illustrated in
Fig. 1.

In order to identify a time-dependent parameter ρ(t), we approximate it on a finite-
dimensional space by using a polynomial of degree four, with only three degrees of
freedom. The coefficients of order zero and four are fixed in order to satisfy the condi-
tions for ρ(t) at times t = 0 and t = T , respectively. The priors for the coefficients of
the polynomial approximation of ρ(t) are Gaussian distributions, adjusted to ensure
that 95% of the samples lie in the large shaded region in Fig. 2 (yellow in colour
version).

The same prior is used for both the logistic and the exponential growth data sets. In
Fig. 2 we depict the regions where 95% of the samples from the posteriors lie, and also
the region where 95% of the samples of the prior lie. Observe that we could also plot
the credible regions for the coefficients of the finite-dimensional approximation of ρ,
but it is more difficult to visualise the result from it.We compute these credible regions
as highest posterior density regions; that is, the smallest region of the parameter space
has probability 0.95 with respect to the posterior distribution.

For the final time T = 600, we find that the region corresponding to the parameters
identified from the exponential growth rate and the region corresponding to the logistic
growth rate are completely separated: we can distinguish the type of growth from the
solutions at the final time T .

3.1.2 Example 2: Finite-Dimensional Parameter Identification

Next, we demonstrate the applicability of our approach to identifying credible regions
for parameters which are constant and not space nor time dependent. This is an often
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Fig. 1 Synthetic data for the reaction–diffusion system (3) with reaction kinetics (4) on a one-dimensional
growing domain with exponential and logistic growth functions. The figure depicts only the v-component
of the solution; the u-component is 180 degrees out of phase (Color figure online)

Fig. 2 Regions that contain 95% of the samples of the prior (light colour, larger region) and the posteriors
for exponential growth (darker colour, bottom region) and logistic growth (darker colour, upper region).
The exact growth used to generate the data is traced with triangles (logistic) and circles (exponential). The
solid lines are the growth rates computed using the mean of each posterior distribution (Color figure online)
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Table 1 Exact values of the
parameters used to generate the
noisy data shown in Fig. 3

Parameter Value

a 0.126779

b 0.792366

d 10

γ 1000

encountered problem in parameter identification. We will again use the reaction–
diffusion system (3) with reaction kinetics (4) in the absence of domain growth, i.e.
ρ(t) = 1 for all time. Our model system is therefore posed on a stationary domain,
for the purpose of demonstration, and we assume a unit square domain. We seek to
identify a, b, d and γ . For ease of exposition, we will seek parameters in a pair-wise
fashion.

Our “experimental data” are measurements of the steady state of the system. We
fix the initial conditions as a given perturbation of the spatially homogeneous steady
state given by (a + b, b

(a+b)2
). For the values of the parameters given in Table 1, the

initial conditions are given by

u0(x, y) = 0.919145 + 0.0016 cos(2π(x + y)) + 0.01
8∑
j=1

cos(2π j x),

v0(x, y) = 0.937903 + 0.0016 cos(2π(x + y)) + 0.01
8∑
j=1

cos(2π j x).

(8)

We let the system evolve until the L2-norm of the discrete time derivative is smaller
than a certain threshold. For the numerical experiments presented here, the threshold
is 10−5. At that point, we assume that a spatially inhomogeneous steady state has been
reached. We record the final time T and save the solution. To confirm that the solution
is indeed stationary, we keep solving the system until time t = 2T and check that the
difference between the solutions at time T and 2T is below the threshold. To generate
our synthetic measurement, we add Gaussian noise to the solution, as illustrated in
Fig. 3.

This synthetic experiment is a situation similar to what one will face in an actual
experiment, although some assumptions, in particular the fixed known initial condi-
tions, are not realistic. A detailed study of the dependence of the solution with respect
to initial conditions will be necessary to drop this assumption. Alternatively, the initial
conditions could be included as a parameter to identify.

Case 1: Credible Regions for a and bwith Little Knowledge

For our first example, we assume that the values of the parameters γ and d are known
and that we would like to find the values for the parameters a and b. In a first approach,
we assume very little knowledge about a and b: only their order of magnitude is
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Fig. 3 The u-component of the
solution to the Schnakenberg
system (Gierer and Meinhardt
1972; Prigogine and Lefever
1968; Schnakenberg 1979),
without noise (a), and with
added Gaussian noise with mean
zero and standard deviation 5%
(b) and 10% (c) of the range of
the solution. Solutions of the
v-component are 180 out of
phase with those of u, and as
such, their plots are omitted
(Color figure online)

assumed to be known. This knowledge is modelled by a uniform prior distribution on
the region given by [0.1, 10]2. The data for this example have Gaussian noise with
standard deviation 5% of the range of the solution. We can see in Fig. 4 a 95% prob-
ability region for the posterior distribution. Observe how this region is concentrated
around the exact value, in contrast to our original knowledge of a uniform distribu-
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Fig. 4 95% credible region for the posterior distribution for the parameters a and b, using a uniform prior
on the region [0.1, 10]2. Note that for ease of visualisation, scales for a and b are different (Color figure
online)

tion on the region [0.1, 10]2. More precisely, the credible region is contained within
the range [0.126, 0.128] × [0.789, 0.796]. The length of the credible region in the
b-direction is approximately 3.5 times larger than in the a-direction, although the size
relative to the magnitude of the parameters is smaller in the b-direction.

For the Schnakenberg reaction kinetics (Gierer and Meinhardt 1972; Prigogine and
Lefever 1968; Schnakenberg 1979), it is possible to compute the region that contains
the parameters that can lead to non-homogeneous steady states, the Turing space (see
next example for details). We can see that our original prior covered an area much
larger than the Turing space (almost 100 times larger), but the posterior is concentrated
in a small region completely contained within it (see Fig. 5).

Case 2: Credible Regions for a and b Using the Turing Parameter Space

Unlike the previous example, where we assume little knowledge of the prior, here we
exploit the well-known theory for reaction–diffusion systems on stationary domains
and use a much more informed prior based on analytical theory of the reaction–
diffusion system. On stationary domains, diffusion-driven instability theory requires
reaction–diffusion systems to be of the form of long-range inhibition, short-range
activation for patterning to occur (i.e. d > 1). More precisely, a necessary condition
for Turing pattern formation is that the parameters belong to a well-defined parameter
space (Murray 2013) described by the inequalities [for the case of reaction kinetics
(4)]
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Fig. 5 Darker region (blue in the online version) is the Turing space for the parameters a and b of the
Schnakenberg reaction kinetics (Gierer and Meinhardt 1972; Prigogine and Lefever 1968; Schnakenberg
1979). Lighter region (red in the online version) is the region plotted in Fig. 4, depicting where the credible
region is contained (Color figure online)

fu + gv = b − a

b + a
− (a + b)2 < 0,

fugv − fvgu = (a + b)2 > 0,

d fu + gv = d

(
b − a

b + a

)
− (a + b)2 > 0,

(d fu + gv)
2 − 4d( fugv − fvgu)

=
(
d

(
b − a

b + a

)
− (a + b)2

)2

− 4d(a + b)2 > 0, (9)

where fu , fv , gu and gv denote the partial derivatives of f and g with respect to u and
v, evaluated at the spatially homogeneous steady state (a + b, b

(a+b)2
). In Fig. 5 we

plot the parameter space obtained with Schnakenberg kinetics.
In this second example, we use data with added Gaussian noise with standard

deviation 10% of the solution range. For the prior, we now use a uniform distribution
on the Turing space of the system. In Fig. 6 we can now see that despite the increased
noise, the improved prior reduced the size of the 95% probability region dramatically.

Case 3: Credible Regions for d and �

In a third example, we assume that a and b are known, and we would like to find γ

and d. To illustrate the use of different types of priors, here we assume a log-normal
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Fig. 6 95% credible region for the posterior distribution for the parameters a and b, using a uniform prior
on the Turing space (Color figure online)

prior that ensures positivity of γ and d, which in the case of d is necessary to ensure
a well-posed problem. We use the data with 5% noise and the prior distribution of a
log-normal with mean (5, 500) and standard deviation 0.95. A 95% probability region
of the posterior is depicted in Fig. 7. Note that the use of a log-normal or similar prior
is essential here to ensure positivity of the diffusion coefficient which is required for
the well-posedness of the forward problem. The prior distribution covers a range of
one order of magnitude for each parameter, and the posterior distribution suggests
relative errors of order 10−3.

Case 4: Credible Regions for a, b, d and �

Finally, we identify all four parameters a, b, d and γ from the set of data with 10%
noise, respectively. We use the priors from Case 1 for a and b, and from Case 3 for d
and γ . We do not apply any further restrictions.

In Fig. 8 we depict the credible regions for the projection of the parameters to four
different coordinate planes. The noise for this experiment is higher than inCases 1 and
3. Also note that compared to the previous experimentswe assume here less knowledge
a priori about the parameters. It must be noted that assuming that a parameter is
known is equivalent in the Bayesian formulation to use a Dirac delta for the prior
on the parameter; in comparison, the prior distributions for Case 4 are more spread;
therefore, they represent less knowledge. Since the level of noise is higher, and the
prior knowledge is lower, the credible regions that we obtain are larger. In this case,
the relative errors are of order 10−2–10−1.
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Fig. 7 95% credible region for the posterior distribution for the parameters d and γ , a log-normal prior
with mean (5, 500) and standard deviation 0.95 (Color figure online)

Fig. 8 95% credible region for the posterior distribution for the parameters a, b, d and γ . See Cases 1 and
3 for a description of the priors. The data have a noise of 10% of the range of the solution. Each subplot
corresponds to the projection of the credible region onto a coordinate plane for two of the parameters, given
by the row and the column of the subplot. The exact value of the parameters is marked with a triangle (Color
figure online)
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4 Conclusion

The Bayesian framework offers a mathematically rigorous approach that allows for
the inclusion of prior knowledge about the parameters (or more generally functions).
Furthermore, the well-posedness results for the identification problem are often pos-
sible to obtain under minimal assumptions other than those needed to ensure the
well-posedness of the forward problem.

Although exploring a whole probability distribution can be computationally expen-
sive, very useful information about the uncertainty or correlation of the parameters
can be inferred from it. The use of a parallel Metropolis–Hastings algorithm makes
the computations feasible using HPC facilities.

We studied the parameter identification problem for reaction–diffusion systems
usingTuring patterns as data for both scenarios: infinite- andfinite-dimensional param-
eter identification cases. We provided a rigorous proof for the well-posedness of the
parameter identification problem in the Bayesian sense, and we performed several
numerical simulations to find credible regions for the parameters. In particular, we
provided numerical evidence that we can distinguish between different growth func-
tions based solely on noisy observations of the data at the end time.

4.1 FurtherWork

This approach opens many possibilities in the study of inverse problems connected
with Turing patterns. As mentioned in Sect. 3.1.2, the initial conditions are not known
in a real application with experimental data and can be treated as a parameter as well.

We can also study qualitative properties of the patterns, by means of alternative
definitions of the noise and the likelihood. For example, we could take data on the
Fourier transform of the pattern in order to identify parameters for different modes—
i.e. spots, stripes—in the patterns.

We used synthetic data in this work, but we presented the method keeping in mind
the applicability for problems with experimental data. Furthermore, with an adequate
PDE solver, we can also apply this approach to problems posed on manifolds. A
manuscript presenting the application of these methods with experimental data is in
preparation.

A comparison between different methods to estimate posterior distributions in the
context of problems involvingPDEs and infinite-dimensional parameterwould provide
more insights into the performance of different algorithms. For example, we could
compare the method presented here with approximate Bayesian computation.

The comparison of the approach presented here with the optimal control approach
would allow a better understanding of the trade-off between the information about the
parameters and the computational cost of the method.
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