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Abstract
As mathematical models and computational tools become more sophisticated and
powerful to accurately depict system dynamics, numerical methods that were pre-
viously considered computationally impractical started being utilized for large-scale
simulations. Methods that characterize a rare event in biochemical systems are part of
such phenomenon, as many of them are computationally expensive and require high-
performance computing. In this paper, we introduce an enhanced version of the doubly
weighted stochastic simulation algorithm (dwSSA) (Daigle et al. in J Chem Phys
134:044110, 2011), called dwSSA++, that significantly improves the speed of con-
vergence to the rare event of interest when the conventional multilevel cross-entropy
method in dwSSA is either unable to converge or converges very slowly. This achieve-
ment is enabled by a novel polynomial leapingmethod that uses past data to detect slow
convergence and attempts to push the system toward the rare event. We demonstrate
the performance of dwSSA++ on two systems—a susceptible–infectious–recovered–
susceptible disease dynamics model and a yeast polarization model—and compare its
computational efficiency to that of dwSSA.

Keywords Stochastic simulation · Rare event probability estimation · SSA ·
dwSSA · Gillespie algorithm · Importance sampling

1 Introduction

When Gillespie (1976, 1977) introduced the stochastic simulation algorithm (SSA),
its use was deemed purely academic as computers were not powerful enough
to support SSA simulations except for toy models. SSA is an exact numeri-
cal method in that its trajectories can be used to construct the chemical master
equation (CME) as the number of simulations reach infinity. Every reaction is
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simulated explicitly (reaction time and index) until the final simulation time is
reached for each trajectory. This can be computationally infeasible for a large sys-
tem or even for a small system with many reaction firings. However, as computer
processors became more affordable and powerful, increasing number of researchers
started using the SSA to model a biological system and gained useful insight from
numerical simulations. The dramatic increase in the usage can be seen by the num-
ber of citations SSA received; Gillespie’s paper (1977) was cited less than 100 times
annually until 2003, and the number of annual citations spiked up to over 500 after
2007 (https://scholar.google.com/citations?user=QwXwK6UAAAAJ#).

With the popularity of SSA came new algorithms derived from it. Somewere devel-
oped to increase the computational efficiency of the exact method (Gibson and Bruck
2000; Ramaswamy et al. 2009; Slepoy et al. 2008), while others featured faster com-
putation at the expense of accuracy (Cao et al. 2007; Ben Hammouda et al. 2017; Tian
and Burrage 2004; Auger et al. 2006; Gillespie 2001; Munsky and Khammash 2006).
Specialized methods stemmed from SSA as well when researchers realized various
scientific communities shared an interest in specific system behavior or characteristics,
such as multiple timescale simulation (Chevalier and El-Samad 2009; Ball et al. 2006;
Goutsias 2005; Cao et al. 2004, 2005), model reduction (Kang and Kurtz 2013; Gille-
spie et al. 2009), steady-state dynamics (Mauch and Stalzer 2010; Grima et al. 2012),
and rare event characterization (Donovan et al. 2013; Zelnik et al. 2015; Xu and Cai
2011; Kuwahara andMura 2008; Gillespie et al. 2009; Roh et al. 2010, 2011). The last
area, field of rare event characterization, is relatively new because of the exceptionally
high computational requirements associated with estimating a rare event probability.
In order to obtain an accurate estimate, an exact method must be used. Accuracy lost
from using an approximate method is likely to be much greater than the magnitude of
the rare event probability. Moreover, variance of the estimate decreases slowly, pro-
portional to the square root of the total number of simulations. Despite these hurdles,
many important events in biology, chemistry, and epidemiology are rare and stochas-
tic by nature. Examples of a significant rare event include mutation of a normal cell
into a cancerous cell (Wang et al. 2014; Luebeck and Moolgavkar 2002; Moolgavkar
and Knudson 1981), phage λ (Cao et al. 2010; Arkin et al. 1998), development of
multidrug-resistant bacteria (Nikaido 2009; Maisonneuve et al. 2013), and resurgence
of a disease Watts et al. (2005).

Development of the weighted stochastic simulation algorithm (wSSA) by Kuwa-
hara and Mura (2008) alleviated some of the computational tolls by using importance
sampling (IS) in the reaction selection process. In wSSA bias introduced by IS param-
eters is recorded at each reaction selection step and used at the end of the simulation
to obtain an unbiased estimate of the rare event probability. Doing so does not affect
the accuracy of wSSA, and with a good choice of IS parameters, a significant reduc-
tion in variance can be achieved. However, there are two major drawbacks with the
wSSA. First is that the method does not provide any means to assess the accuracy of
the resulting estimate. It is well known that a bad choice of IS parameters can yield
an estimate whose variance is higher than that of an unbiased estimator. This problem
was solved when Gillespie et al. (2009) demonstrated that running sum of trajectory
weights can be used to compute the uncertainty of the final estimate without affecting
the time complexity of wSSA. Second drawback of wSSA is that it did not provide
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a principled way to choose a good set of IS parameters. Having to guess the value of
each IS parameter, one for every reaction is unreasonable even for a modeler who has
a considerable insight into the system, especially in the presence of nonlinear reac-
tions. This predicament was addressed by Daigle et al. (2011) with doubly weighted
SSA (dwSSA), where both the time to the next reaction and the reaction index are
biased. Significance of double weighting (biasing) is that its mathematical form of a
trajectory weight can be used to compute a closed-form solution for the optimal IS
parameters that minimize cross-entropy, which is used as a proxy to minimum vari-
ance. Calculating variance involves, except for a few simple toy models, computation
of higher moments, which in turn depend on higher moments. Being able to obtain a
closed-form solution is critical for computational efficiency and accuracy, and dwSSA
provides an automated and principled way to compute good IS parameters that yield
a low-variance estimate. In order to achieve this, Daigle et al. modified and incor-
porated a multilevel version of the cross-entropy (CE) method by Rubinstein and his
colleagues (Rubinstein and Kroese 2004; Rubinstein 1997) into the SSA.

While dwSSA offers automatic selection of good IS parameters, its performance
highly depends on the convergence rate of the multilevel CE method that computes
optimal IS parameters. If the system exhibits low stochasticity, it is likely that dwSSA
converges very slowly to the rare event. The worst-case scenario is that the multilevel
CE method does not converge and is unable to return IS parameters. Since having a
good set of IS parameters is necessary for obtaining a low-variance estimate, failure in
themultilevel CEmethod is detrimental to the performance of dwSSA. In this paperwe
introduce dwSSA++ that contains a novel and improvedmethod for computing optimal
importance sampling parameters when the system is unable to reach the rare event
with sufficient speed. In Sect. 2, we review the doubly weighted stochastic simulation
algorithm and present the polynomial leapingmethod that is used to improve the speed
of convergence. Pseudo-algorithms are provided in addition to the MATLAB code
(https://github.com/minroh/dwSSA_pp) for ease of understanding. We then apply the
dwSSA and the dwSSA++ to a susceptible–infectious–recovered–susceptible (SIRS)
model to compare their computational efficiency and accuracy in Sect. 3. Finally, we
summarize our contributions in Sect. 4.

2 Method

2.1 Stochastic Simulation Algorithm and Stochastic Chemical Kinetics

We focus on awell-stirred stochastic systemwith N species {S1, . . . , SN }, who interact
through any of M reaction channels {R1, . . . , RM } to change its population in discrete
values. The state of the system at time t is denoted by X(t) ≡ (X1(t), . . . , XN (t)),
where Xi (t) corresponds to the number of molecules of Si at time t . Probability
that reaction R j fires in the interval [t, t + dt) is given by its propensity function
a j (x) ≡ a j (X(t)), j ∈ 1, . . . , M , where dt is an infinitesimal time increment. The
sum of all M propensity functions is denoted a0(x).

The SSA simulates time evolution of x by generating a sequence of samples on two
random variables: τ , time elapsing between the current and the next reaction firings;
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and j ′, index of the reaction fired at time t+τ . First random variable τ is exponentially
distributed with mean 1/a0(x), while j ′ is a categorical random variable where the
probability of R j being chosen as the next reaction is a j (x)/a0(x), j ∈ {1, . . . , M}.
After τ and j ′ are computed, we update the state of the system using a M × N
stoichiometry matrix V, whose j th row ν j indicates the amount of change in x due to
one R j reaction firing, i.e., X(t + τ) = X(t) + V′:, j .

2.2 DoublyWeighted Stochastic Simulation Algorithm

We give a brief description of dwSSA here. Further details can be found in Daigle et al.
(2011). The goal of dwSSA is to generate trajectories to characterize the probability of
reaching a rare event E by final time t f . Thus, a trajectory is simulated until either t f
is reached or event E is observed at a stopping timeT < t f , whichever occurs sooner.
The form of rare event probability on which the dwSSA operates is p(x0,E ; t f ); it is
defined as the probability that the system starting at time 0 in state x0 will first reach
rare event E by some time ≤ t f .

Unlike the wSSA (Kuwahara and Mura 2008) or the swSSA (Roh et al. 2010) that
limit importance sampling to reaction selection, dwSSA biases both the time to the
next reaction τ and the next reaction index j ′. There are two significant advantages
of dwSSA over wSSA and swSSA. First, the dwSSA makes possible characterization
of rare events in some systems that cannot be achieved with the wSSA or the swSSA;
second, the dwSSA offers an automated method for choosing importance sampling
parameters, γ = [γ1, . . . , γM ], that yield a low-variance estimate. Under dwSSA,
probability that the reaction R j fires in the interval [t, t+dt) is given by its predilection
function b j (x) instead of the propensity function a j (x), where b j ≡ a j × γ j , b0 =
∑M

j=1 b j (x), and γ j ∈ R
+. Using the predilection function, τ nowhas amean 1/b0(x),

and j ′ is categorically distributed with probability b j (x)/b0(x). Thus, denoting NT
as the total number of reactions that fire in the interval [0,T ], the probability of a
single dwSSA trajectory J ≡ (τ1, j ′1, . . . , τNT , j ′NT

) takes the form

PdwSSA(J) =
NT∏

i=1

[

b0(X(ti ))e
−b0(X(ti ))τi dτi × b j ′i (X(ti ))

b0(X(ti ))

]

=
NT∏

i=1

[
b j ′i (X(ti ))e

−b0(X(ti ))τi dτi

]
, (1)

where ti ≡ ∑i
j=1 τ j . This probability is clearly biased for γ �= 1. Correction factor

for the dwSSA trajectory J, whose product with the probability in (1) equals the
probability of an unbiased SSA trajectory, is
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WdwSSA(J) =
NT∏

i=1

[
a j ′i (X(ti ))e−a0(X(ti ))τi

b j ′i (X(ti ))e−b0(X(ti ))τi

]

=
NT∏

i=1

[
exp {(b0(X(ti )) − a0(X(ti ))) τi } × (γ j ′i )

−1
]
. (2)

It is trivial to check that the product of (1) and (2) is equal to the unbiased probability
of a SSA trajectory J:

PSSA(J) =
NT∏

i=1

[

a0(X(ti ))e
−a0(X(ti ))τi dτi × a j ′i (X(ti ))

a0(X(ti ))

]

=
NT∏

i=1

[
a j ′i (X(ti ))e

−a0(X(ti ))τi dτi

]
. (3)

The Monte Carlo estimate for p(x0,E ; t f ) using dwSSA is thus

p̂dwSSA(x0,E ; t) = 1

K

K∑

k=1

[
I{S(Jk )∩E }WdwSSA(Jk)

]
, (4)

where Jk represents the kth dwSSA trajectory and I{S(Jk )∩E } is 1 if any of the states
visited by Jk (denoted by S(Jk)) includes E and 0 otherwise.

Daigle et al. incorporated a modified version of Rubinstein’s cross-entropy method
(Rubinstein 1997; Rubinstein andKroese 2004) in order tominimize the cross-entropy
between the unknown optimal γ ∗ and its numerical estimate γ̂ ∗, which is used to
compute WdwSSA(Jk) in (2). Significance of minimizing cross-entropy instead of
variance is that the former allows for a closed-form solution for γ̂ ∗ while the latter
does not.Minimizing cross-entropy is equivalent tomaximizing the following formula:

max
γ

(
K∑

k=1

[
I{S(Jk )∩E } × ln PdwSSA(Jk; γ )

]
)

. (5)

For many applications, argument inside (5) is convex function of γ (Rubinstein and
Kroese 2004). Assuming convexity, we can obtain a closed-form solution by taking
partial derivatives with respect to each γ j and setting the right-hand side to 0:

K∑

k=1

[

I{S(Jk )∩E } × ∇
γ
ln PdwSSA(Jk; γ̂ ∗)

]

= 0 . (6)

In rare event simulation, (6) can be problematic as most trajectories will not reach
E , i.e., I{S(Jk )∩E } will be 0 for most k. Daigle et al. solved this problem by using a
multilevel version of the cross-entropy method (Rubinstein and Kroese 2004), which
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takes the system closer to E in an iterative manner using favorable signals obtainable
from the current state. Startingwith s = 1 and γ (0) = 1, we define an intermediate rare
event E (s) as the value closest to E that is reachable by top ρ fraction of all trajectories
simulated with γ (s−1). We note that no computation of γ is required in the beginning
(s = 1) as the system starts unbiased, i.e., γ (s−1) = γ (0) = 1. After computing E (s),
we compute the following closed-form solution to obtain γ̂

(s)
j , j ∈ {1, . . . , M}:

γ̂
(s)
j =

∑′
k

(
WdwSSA

(
J(s−1)
k ; γ̂ (s−1)

)
× nkj

)

∑′
k

(
WdwSSA

(
J(s−1)
k ; γ̂ (s−1)

)
× ∑NT k

i=1

[
a j

(
X(s−1)
k (tki )

)
τki

]) , (7)

where nkj is the total number of times R j fires in the kth dwSSA trajectory. In the
above expression, rare event indicator function I{S(Jk )∩E } in (6) has been replaced
by summations

∑′
k , where k iterates only over trajectories reaching the intermediate

rare event E (s). This procedure repeats until the intermediate rare event E (s) either
surpasses or reaches E . At this time we terminate the multilevel CE method and set
γ̂ ∗ ≡ γ̂ (s). The final step is to obtain an estimate for p(x0,E ; t f ) using γ̂ ∗. We note
thatwe cannot derive a closed-form solution for γ̂ ∗ using the probability expression for
wSSAor swSSA. It is a unique feature of the dwSSAand the sdwSSA (Roh et al. 2011),
latter of which also employs double biasing but with state-dependent IS parameters.
Both the closed-form solution and automatic determination of importance sampling
parameters are needed for the algorithm to be of practical use, especially for systems
that contain nonlinear reactions.

The algorithm for estimating p(x0,E ; t f ) with uncertainty (Gillespie et al. 2009)
using γ̂ ∗ is as follows:

Algorithm 1 Estimation of the Rare Event Probability
1: m1 ← 0
2: m2 ← 0
3: for k = 1 to K do
4: t ← 0, x ← x0, w ← 1
5: evaluate all a j (x) and b j (x); calculate a0(x) and b0(x)
6: while t ≤ t f do
7: if x ∈ E then
8: m1 ← m1 + w

9: m2 ← m2 + w2

10: break out of the while loop
11: end if
12: generate two unit-interval uniform random numbers r1 and r2
13: τ ← b0

−1(x) ln(1/r1)
14: j ← smallest integer satisfying

∑ j
i=1 bi (x) ≥ r2b0(x)

15: w ← w × (γ j )
−1 × exp{(b0(x) − a0(x))τ }

16: t ← t + τ , x ← x + ν j
17: update all a j (x) and b j (x); recalculate a0(x) and b0(x)
18: end while
19: end for
20: σ 2 = (m2/K ) − (m1/K )2

21: return p̂(x0,E ; t f ) = m1/K and uncertainty σ/
√
K

123



Data-Driven Method for Efficient Characterization of Rare… 3103

The uncertainty in step 21 can be used to assess quality of the estimate p̂(x0,E ; t f ).
Denoting the true probability as p(x0,E ; t f ), the probability that

(
p̂(x0,E ; t f )−σ/K

)

≤ p(x0,E ; t f ) ≤ (
p̂(x0,E ; t f ) + σ/K

)
is 68%. Doubling the interval (2σ/K ) raises

the confidence level to 95% and tripling to 99.7%. Thus, the smaller the uncertainty
is, the tighter the confidence interval will be. If the uncertainty has the same order
magnitude as the rare event probability estimate, then there is little to no trust in
the value of p̂dwSSA(x0,E ; t f ), and the user is advised to increase K and rerun the
algorithm.

2.3 Extrapolation of Biasing Parameters Using Past Simulation Data

The only difference between the dwSSA and dwSSA++ lies on how γ̂ ∗ is computed;
given a set of IS parameters, both algorithms compute p̂(x0,E ; t f ) using Algorithm 1.
However, automatic computation of γ̂ ∗ is the most important component that makes
the dwSSA efficient and practical compared to the earlier and related methods (Kuwa-
hara and Mura 2008; Roh et al. 2010, 2011). Without automatic computation of γ̂ ∗,
dwSSA becomes impractical as the user is expected to provide an importance sam-
pling parameter for each reaction in the system. Although a user may be able to guess
the general direction of biasing, i.e., encouraging (γ j > 1) or discouraging (γ j < 1),
it is almost impossible for the user to guess values of all IS parameters in the system
that can produce a low-variance estimate. In addition, manually tuning IS parameters
(Roh et al. 2010, 2011) is not computationally feasible for any large systems. There-
fore, except for very simple models, multilevel CEmethod is expected to run to obtain
γ̂ ∗ prior to starting Algorithm 1.

While the multilevel CE method allows for automatic computation of γ̂ ∗ that min-
imizes cross-entropy, its performance largely depends on the speed of convergence to
the rare event. For many applications, computational cost of multilevel CE method is
negligible compared to the total cost of the simulation since the number of simula-
tions used in multilevel CE method is often orders of magnitude less than that used in
Algorithm 1 (Daigle et al. 2011; Roh et al. 2011). It is possible, however, for the com-
putation time in multilevel CE method to dominate the total simulation time. This can
happen when the system under study exhibits low stochasticity. If population count
is high for all species, there will be little variability among trajectories. Even for a
system with small population, IS parameters computed in a prior iteration can bring
the system to a strongly stable stochastic equilibrium. In both cases, lack of variability
in x among trajectories is likely to result in an intermediate event that is either close
or equal to the system’s average behavior. In fact, it is possible that E (s) is farther
from E than E (s−1) . In the worst case, E (s) may never converge to E and no γ̂ ∗ is
computed. For this reason, it is recommended that the user sets a limit of iterations on
the multilevel CE method to avoid running ad infinitum. For simulations in this paper,
we set this number to 20.

In an attempt to address such slow or no-convergence scenarios, we developed a
method called polynomial leaping that tries to take the system out of the low-variance
region and toward the rare event using past simulation data. When sufficient signal
is present, a polynomial interpolant is constructed for each reaction, where the input
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values are past importance sampling parameter values. Depending on the system’s
behavior, polynomial leaping utilizes one of the following two data types as the output
variable for the interpolant: number of trajectories that reachedE and the value of inter-
mediate rare events from past simulations. Once the output variable is chosen, a low-
degree (1 or 2) polynomial interpolant is computed for each reaction,which is then used
to extrapolate the next set of IS parameters. The amount of extrapolation depends on
the system’s proximity to the rare event as well as on the current speed of convergence.
Whenever polynomial leapingmethod is used to compute the next set of IS parameters,
computation of (7) is omitted in the multilevel CE method. Thus, employing polyno-
mial leaping method could not only increase the speed of convergence but also reduce
the total number of simulations required to obtain p̂(x0,E ; t f ). The modified multi-
level CE method for dwSSA++ with polynomial leaping is described in Algorithm 2.

Algorithm 2 Optimal dwSSA++ Parameter Estimation

1: γ (0) ← [1 1 · · · 1], s ← −1
2: repeat
3: s ← s + 1
4: run Algorithm 1 with γ (s−1)

5: E (s) ← ρK � trajectories in step 4 evolving farthest in the direction of E
6: if (|E − E (s−q−1)| ≤ |E − E (s−q)| for any q ∈ {0, . . . , ld − 1}) or μ in (8) > σ then
7: if binary decision tree in Figure 1 returns mCE then
8: go to step 15
9: else if binary decision tree in Figure 1 returns no signal then
10: Exit

{System does not exhibit enough signal. No γ̂ ∗ is found.}
11: else
12: γ (s) ← result of running Algorithm 3
13: end if
14: else
15: γ (s) ← result of Equation (7) evaluated using E (s) and trajectories from step 4
16: end if
17: until E (s) ⊆ E or s == smax
18: if s == smax then
19: Exit

{Method did not converge in smax iterations. No γ̂ ∗ is found.}
20: else
21: γ̂ ∗ ← γ

22: return γ̂ ∗
23: end if

Here, smax denotes the maximum number of iterations allowed to compute γ̂ ∗ before
declaring the algorithm failed to converge. For examples shown in Sect. 3, we set
smax to 20. The number of past data used to assess convergence rate and form an
interpolant is defined as ld , which is shown in step 6 of Algorithm 2. While ld can
be any integer greater than 1, we recommend that it does not exceed 5. The reason is
that increasing the number of data required for interpolation is not likely to increase
the quality of the resulting interpolant. If good progress is made toward E with the
conventional multilevel CEmethod, polynomial leaping method will not be called. On
the other hand, if the system is converging slowly or not at all, having a large value of
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ld delays the initial calling of the polynomial leaping method until at least ld iterations
of multilevel CE method are executed. Starting the polynomial leaping method also
implies that past intermediate rare events (IREs) are similar in their values; the same
must be true for the importance sampling parameters corresponding to these IREs.
Thus, requiring a large number of past data is not expected to significantly increase
the quality of resulting interpolant and will delay the system from leaping. For these
reasons, we set the default value for ld to 3.

There are two conditions that can prompt leaping in Algorithm 2 (step 6). If any
one of the two conditions evaluates to be true, then the polynomial leaping method
(Algorithm 3) is used to compute γ (s) instead of step 15. First condition is true when
ld past intermediate rare events form a non-strictly converging sequence to E . This
means any stalling or regressing in E (s) values during ld stages of multilevel CE
method will trigger polynomial leaping. Second condition is satisfied if the estimated
number of iterations to reach the rare event exceeds a preset threshold σ , which is set
to 5 by default. We obtain the estimated number of iterations, μ, by first computing
the speed of progress based on the last two multilevel CE iterations:

h ← |E (s) − E (s−1)|,where E (s) and E (s−1) are two most recent IREs

μ = |E − E (s)|/h�. (8)

We note that the above method is based on the relative rate of convergence to E and
does not depend on the absolute distance to the rare event, which depends on the
randomly assigned initial reaction rate values.

In order to determine the leaping eligibility, Algorithm 2 executes a series of diag-
nostic questions via binary decision tree shown in Fig. 1. The two conditions that
trigger leaping correspond to the first node and its left child node, respectively. If nei-
ther condition is met, then the multilevel CE method is resumed to determine γ (s) as
sufficient progress is being made toward E , i.e.,μ <= σ . This case corresponds to the
leaf node with value Run mCE in Fig. 1. On the other hand, if the underlying system
is neither making a progress toward the rare event nor exhibiting any signal, Algorithm
2 is unable to determine the direction of bias required to reach E . While unlikely to
occur for most systems, it is theoretically possible. For example, this may happen if
the chosen initial state coincides with the system’s strong equilibrium state with very
low variance. This case is indicated by leaf node with value No signal in Fig. 1. In
all other cases, the binary decision tree returns two pieces of information required to
initiate leaping (Algorithm 3): method of extrapolation and the type of input data. The
method can be either polynomial interpolation or bisection and is decided based on
the number of input data available. Bisection is employed only when there is a single
eligible data for extrapolation. Polynomial interpolation is used otherwise. Here, we
fit a low-degree polynomial according to specifications returned by the binary decision
tree. Interpolants constructed by the polynomial leapingmethod are kept at low degree
(1 or 2) since (7) was derived assuming convexity Daigle et al. (2011) and a small
number of data, ld , is used to compute the interpolants. We note that the default value
for ld (=3) is set such that it is the minimum number of data required to construct a
polynomial interpolant of degree 2. Leaves of the binary decision tree that correspond
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Fig. 1 Binary decision tree used in polynomial leaping method. Larger boxes in the figure contain questions
used in the decision making process, and its outline color indicates the type of response from its parent
node. Box outlined in green is reached if the response to its parent node is positive. Similarly, red box is
reached if the response is negative. Leaves of the decision tree represent the type of acceleration method
and input data type

to polynomial interpolation contain value Poly. with its degree (Deg. 1 or Deg. 2).
Bisection is indicated by the keyword Bisection.

Second piece of information returned by the binary decision tree, type of input
data, can be either past counter values or past IRE values. Between these two types,
the former is preferred to the latter. Counter data represent the number of trajectories
that reached E from past ld iterations of multilevel CE method. Cardinality of the
set of possible values for counters is card({0, 1, . . . , �K × ρ�}), which is large for
commonly chosen values of K (105 to 108) and ρ(10−4 to 10−2), where smaller value
of ρ is associated with larger K . Upper limit of this set is �K × ρ�, as the multilevel
CE method is able to compute γ̂ ∗ once (K × ρ) or more number of trajectories
reach E . The large range allows the algorithm to easily assess the effect of change
in biasing parameter values and compute reliable interpolants. On the other hand,
the range of intermediate rare events varies greatly depending on the definition of a
rare event for a given system; a wide range of biasing parameters may correspond to
the same intermediate rare event. There is one notable advantage in using past IREs,
however. We do not need to worry about its existence; unlike counters data, past IRE
data is always available regardless of the system’s proximity to E . Unless the system
starts in a strong stochastic equilibrium, which is very unlikely given myriad possible
combinations of random initial reaction rate values, multilevel CE method will make
a progress toward the rare event. The progress does not guarantee any trajectories to
reach the rare event, and thus counter data may be 0. Nevertheless, its IRE value will
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be closer to E due to the progress. And if the system reaches a strong equilibrium
during the simulation and produce ld IREs with the same value, we can extract more
signal by accessing IRE values beyond past ld iterations. This is the reason queries in
the binary decision tree contain checks for all past IREs if the last ld IRE values are
identical. Thus, the order of preferred data type in the algorithm is counters, past ld
IRE values, and all past IRE values.

Once interpolants are constructed, we decide on the value of the output variable ξ

that we want the system to produce on the next iteration of Algorithm 2. This value is
assigned as the RHS of each M interpolant to compute γ

(s)
j . Since ξ is an unobserved

value outside the range of past behavior, obtaining γ
(s)
j is considered extrapolation.

We note that computing γ (s) via extrapolation replaces the traditional multilevel CE
routine (Algorithm 2, step 15), saving K trajectory simulations per each leaping.

Computing a robust target ξ using past counters is straight forward:

ξ =
{

2ρK � if
(
max( ypast) >

ρK �
2

)

ρK � otherwise,
(9)

where ypast represents past counters data. Ideally, we would like to compute IS param-
eters for E , but doing so can result in a large extrapolation error if the current system
is far from the rare event. When the maximum of the past counters is greater than
half the minimum number of data required to compute γ̂ ∗, we set the target counter ξ

to twice this minimum value (2ρK �) to ensure enough trajectories reach E without
over-perturbing the system. When this condition is not met, system is considered far
from observing the rare event, and we set the target to a more conservative value of
ξ = ρK �.

Using the past IREs for extrapolation is not as straightforward. Speed of conver-
gence can vary greatly depending on the function that defines a rare event. In order
to assess the convergence speed, we compute the first order approximation using the
amount of progress made by two most recent intermediate rare events. Denoting these
two values as y1 and y2, where y1 is the last computed IRE, the target output is
computed as following:

h ← |y1 − y2|
μ = |E − y1|/h
δ = min(μ/2, 3h)�
if (E − y1) < 0

ξ ← y1 − δ

else

ξ ← y1 + δ

endif

(10)

In the above equation, the quantity h reflects the absolute amount of progress made in
IRE from the most recent simulation, and μ denotes the number of iterations required
to reach the rare event assuming the amount convergence per iteration stays at h. We
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then compute the desired amount of progress for the next iteration, δ, which is the lesser
of μ/2 and 3h. The first quantity, μ/2, indicates that we aim to halve the distance to
E in the next simulation by utilizing leaping. The fact that past IRE values are used
to construct interpolants instead of past counter data indicates that the system is not
producing trajectories that observe E under the current parametrization. Therefore,
setting the next target to E would be too aggressive and likely result in extrapolation
beyond what the data can reliably predict. The second quantity 3h sets a maximum
limit on the target progress to three times the size of current progress. This limit also
ensures extrapolation is not too extreme using the absolute distance to the rare event. If
the current state is far from E , halfway point between the latest IRE and E still may be
too far for an accurate extrapolation. By imposing these two limits, we compute ξ more
conservatively with IREs than with counters data to account for lack of trajectories
reaching the rare event. Pseudo-algorithm for polynomial leaping method is shown in
Algorithm 3.

Algorithm 3 Importance Sampling Parameter Computation with Polynomial Leaping
1: ypast ← relevant past data returned by the binary decision tree in Figure 1
2: γ past ← importance sampling parameters corresponding to ypast

3: if binary decision tree in Figure 1 returns Bisec. then {Only one data with signal to E . Perform bisection
on this data.}

4: for all j ∈ 1, . . . , M do
5: if γ

past
j < 1 then

6: γ l
j ← γ

past
j /2

7: else if γ
past
j > 1 then

8: γ l
j ← γ

past
j × 2

9: end if
10: end for
11: go to step 26
12: end if
13: if type of ypast is counters then
14: ξ ← result of Equation (9)
15: else
16: ξ ← result of Equation (10)
17: end if
18: d ← degree returned from the binary decision tree
19: for all j ∈ 1, . . . , M do
20: fit a polynomial of degree d with input γ past

j and output ypastj

21: γ l
j ← root of the polynomial from step 20 with the RHS set to ξ

22: if under-perturbation is detected then
23: γ l

j ← 10% more extreme of the most perturbing value from γ
past
j

24: end if
25: end for
26: return γ l

We note that extrapolation of biasing parameters with leaping method can be selec-
tively applied for large systems, where only few reactions may play an important role
in observing the rare event. Second example in Sect. 3 illustrates this point.
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3 Results

In this section, we illustrate the performance of dwSSA++ by comparing it to that
of dwSSA on two example systems—a susceptible–infectious–recovered–susceptible
(SIRS) disease dynamics model and a yeast polarization model. In order to minimize
the difference in results due to stochasticity, same random number seeds were used for
the corresponding dwSSA and dwSSA++ simulations. Default parameterizations are
used for dwSSA++-specific parameters, i.e., ld = 3 and σ = 5. We emphasize again
that the two algorithms differ only in themethod for computing optimal biasing param-
eters, i.e., conventional multilevel CE method vs modified multilevel CE method with
polynomial leaping. Once γ̂ ∗ is computed, both dwSSA and dwSSA++ run Algorithm
1 to estimate the rare event probability. All simulations were run using MATLAB®

2017a and Parallel Computing Toolbox™ on Intel® Core™ i7-6400U CPU. All codes
used in simulations are available at https://github.com/minroh/dwSSA_pp.

3.1 SIRS

Our first example is a susceptible–infectious–recovered–susceptible (SIRS) disease
transmission model, which consists of the following three reactions:

R1 : S + I
β→ 2I , β = 0.0675

R2 : I λ→ R, λ = 3.959

R3 : R ω→ S, ω = 2.369,

with x0 = [100 1 0], where x = [S I R]. In this model a susceptible individual
in S becomes infected by an infectious individual in I at rate β. Infectious individ-
uals recover at rate λ. However, the immunity wanes and the members of R rejoin
the susceptible pool S at rate ω. For this system we examine the event probability
p(x0, θ I ; t f ) ≡ p([100 1 0], 60; 30), i.e., probability that the population of I reaches
60 before t f = 30 given x0 and k0 = [β λ ω]. Although the population of all
three species stay small throughout the simulation, this particular parameter combi-
nation causes the system to exhibit low stochasticity, and the multilevel CE method of
dwSSA does not converge by iteration 20 when default simulation parameter values
(ρ = 0.01, K = 105) are used. The most extreme IRE observed in this simulation is
45.

There are two algorithmic parameters—ρ and K—that can be tuned to improve
speed of convergence albeit each having an associated drawback. The first parameter
ρ indicates the fraction of trajectories used to determine an intermediate rare event.
Lowering the value of ρ will likely result in an IRE closer to the rare event. How-
ever, this also lowers the number of data used to compute the corresponding biasing
parameters. Biasing parameters computed with only few data may not be reliable and
yield an estimate with high variance. This drawback can be mitigated by increasing
the total simulation size K . A big disadvantage of increasing the value of K for most
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systems is longer simulation time. However, doing so could lead to convergence for
some systems that do not converge with a smaller K . Precise relationship between
convergence rate and the two parameters is system dependent and often difficult to
gauge when nonlinear reactions, such as R2 in the SIRS model, are present.

In order to study the sensitivity of these two parameters in the SIRS model,
we computed γ̂ ∗ using both the dwSSA and dwSSA++ with ρ ∈ {10−4, 5 ×
10−4, 0.001, 0.005, 0.01} for K = 105 and ρ ∈ {10−5, 5 × 10−5, 10−4, 5 ×
10−4, 0.001, 0.005, 0.01} for K = 106. We set the maximum number of iterations
(smax in Algorithm 2) to 20 in order to avoid running simulations ad infinitum. If either
method did not compute the final biasing parameters by iteration 20, we declared the
simulation to be inconvergent. For each run wemeasured the total simulation time and
used it to calculate computational gain of using Algorithm 2 over the conventional
multilevel CE method, where Gain := t(dwSSA)/t(dwSSA++). Results from this
parameter sweep is summarized in Table 1.

Several interesting observations can be made from Table 1. First, it is clear that
lowering ρ for a given K increases the rate of convergence to the rare event, espe-
cially for the conventional multilevel CE method simulations. However, the number
of data used to compute γ̂ ∗ decreases too, and this results in high variability in γ̂ ∗.
For example, dwSSA++ does not employ polynomial leaping when using ρ = 10−4

and K = 105 (6th row in Table 1), making the algorithm equivalent to the conven-
tional multilevel CE method. However, the two simulations yielded γ̂ ∗ values that
are noticeably different, e.g., 26% difference in γ̂ ∗

2 . The difference is not due to R2
being insignificant in producing θ I since γ2 stays consistently below 1 throughout the
simulation. This is because each iteration of multilevel CE method relied on only the
top 10 data (105 × 10−4 = 10) to compute the next IRE and its corresponding biasing
parameters. When either ρ or K increases, we see that this variability disappears.
For dwSSA++ runs that employ polynomial leaping, extrapolation leads to deviation
from minimizing cross-entropy, and resulting γ̂ ∗ is expected to differ from the one
obtained by using the conventional multilevel CE method. And the difference does
not imply better or worse performance. However, γ̂ ∗

j values obtained from multiple
simulations using the same algorithm and parameterization should be consistent given
R j is involved in rare event production.

In order to demonstrate how high variance in γ̂ ∗ could negatively affect a rare event
probability estimate, we compute p̂([100 1 0], 60; 30) using γ̂ ∗ obtained by both
algorithms with ρ = 10−4 and K = 105. Running Algorithm 1 with K = 107 and
γ̂ ∗
dwSSA = [1.356 0.588 1.318] yields the following estimate with a 95% confidence

interval (Gillespie et al. 2009):

p̂5dwSSA([50 2 0 50 0 0 0], 50; 20) = 1.36 × 10−8 ± 0.03 × 10−8. (11)

Using γ̂ ∗
dwSSA++ = [1.197 0.793 1.264], on the other hand, yields:

p̂5dwSSA++([50 2 0 50 0 0 0], 50; 20) = 1.44 × 10−8 ± 0.08 × 10−8. (12)
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We can see that the uncertainty from latter simulation is almost three times as large
as the one from former even though both were obtained using the same method and
same parameter values. Poor sampling and insufficient number of data resulted in this
discrepancy. If we increase the total sampling rate by using K = 106 but keep the
sample size at 10 by decreasing ρ = 10−5, the dwSSA++ simulation still remains
equivalent to the dwSSA simulation as no leaping is triggered. However, since the total
sample size is ten times larger than the former simulation, we see more consistency
in the rare event estimate:

p̂6dwSSA([50 2 0 50 0 0 0], 50; 20) = 1.43 × 10−8 ± 0.04 × 10−8, (13)

p̂6dwSSA++([50 2 0 50 0 0 0], 50; 20) = 1.37 × 10−8 ± 0.04 × 10−8. (14)

The only way to assess the performance of γ̂ ∗ is by computing a rare event probability
estimate with a large number of simulations, which is often orders of magnitude
greater than the number of simulations used to compute γ̂ ∗. The goal of running
either the dwSSA or the dwSSA++ is to produce a low-variance estimate, and thus
it is important to obtain reliable biasing parameters using sufficient number of data
and sampling size. Although lowering ρ and K results in faster convergence, it is not
worth the computational gain if the resulting biasing parameters yield a high variance
estimate.

It is worth noting that the conventional multilevel CE method was not able to
compute γ̂ ∗ for five of the twelve runs in this parameter sweep. We see from
Table 1 that dwSSA simulations using ρ ∈ {0.005, 0.01} for K = 105 and
ρ ∈ {0.001 0.005, 0.01} for K = 106 did not converge within 20 iterations, while
all dwSSA++ simulations converged by iteration 12. It is also clear from Table 1 that
performance of conventional multilevel CE method is sensitive to changes in both ρ

and K . On the other hand, performance of Algorithm 2 is robust with respect to both
parameters and exhibits superior convergence. Furthermore, because Algorithm 2 uti-
lizes leaping only when it detects slow convergence, it reduces to the conventional CE
method when enough progress is being made toward the rare event. This is illustrated
by a gradual decline in the number of times polynomial leaping is employed with
decreasing ρ (Row 3 in Table 1).

Figure 2 displays the spread of biasing parameter values listed in Table 1. We
see that γ̂ ∗ computed by dwSSA++ are more consistent in their values and slightly
more perturbing than γ̂ ∗ computed by the dwSSA. We hypothesize that the former
phenomenon may be due to dwSSA data having a smaller sample size (7 vs 12 from
dwSSA++) and the latter due to polynomial leaping, as it pushes the system further
than what the multilevel CE method observes.

3.2 Yeast Polarization

For our second example, we use a modified version of the pheromone-induced
G-protein cycle in Saccharomyces cerevisiae Drawert et al. (2010) in a similar
fashion as Daigle et al. (2011). Our modified system consists of seven species
x = [R L RL G Ga Gbg Gd ] and is characterized by the following eight reac-
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Fig. 2 Comparison of γ̂ ∗
obtained from dwSSA and
dwSSA++ applied to the SIRS
model for p(x0, θ I ; t f ) using
ρ = 0.0001 and K = 105

1 2 3

0.6

0.8

1

1.2

1.4
dwSSA
dwSSA++

tions:

R1 : ∅ k1→ R k1 = 3.80 × 10−3

R2 : R k2→ ∅ k2 = 4.00 × 10−4

R3 : L + R
k3→ RL + L k3 = 0.084

R4 : RL k4→ R k4 = 0.0100

R5 : RL + G
k5→ Gα + Gβγ k5 = 0.022

R6 : Gα
k6→ Gd k6 = 0.100

R7 : Gd + Gβγ
k7→ G k7 = 2.10 × 103

R8 : ∅ k8→ RL k8 = 3.21,

with x0 = [300 12 0 300 0 0 0]. Past studies showed that the subunit Gβγ plays an
important role of signaling for the downstream Cdc42 cycle (McClure et al. 2015; Bar
et al. 2003). Here we aim to characterize the probability p(x0, θGbg ; t f ), where θGbg

is defined as the population of Gbg reaching 300 and t f = 5.
Daigle et al. (2011) studied this system under a different parameterization. While

the reaction rates and the rare event definition differ, their rare event also examines the
population of Gβγ (θGbg = 50). The authors note that the two reaction rates that are
most consistently differed from 1 are γ6 and γ8, both of which do not directly affect
the population of Gβγ . This is illustrated in their paper by running 100 independent
runs ofmultilevel cross-entropymethod and computing variability among final biasing
parameters. They also show that most simulations converge in three iterations. In our
example, multilevel CE method with the same simulation parameters (ρ = 0.01 and
K = 105) does not converge by iteration 20 and no biasing parameters are computed
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Fig. 3 Biasing parameters for the yeast polarization model obtained with the conventional multilevel
CE method using ρ = 0.01 and K = 105. a Displays biasing parameter values for reactions
R1, R2, R3, R4, R5, and R7, where their values are not consistently different from 1. b Displays bias-
ing values for reactions R6 and R8 using the left y-axis. These two biasing parameters consistently deviate
from 1 throughout 20 iterations. Right y-axis is used to display the intermediate rare event corresponding
to the iteration specified by the x-axis

to estimate the rare event probability. However, when analyzing the resulting biasing
parameters in each iteration of the multilevel CE method, same trend emerges; only
biasing parameters γ6 and γ8 are consistently and significantly different from 1. Rest
of the biasing parameters are either not consistent in the direction of basing or remain
close to 1. We show the two different trends in Fig. 3. In Fig. 3a we see that all six
parameters either fluctuate above and below 1 (γ1, γ2, γ4, and γ7) or stays very close
to it (γ3 and γ5). On the other hand, γ6 and γ8 values in Fig. 3b are consistently and
significantly below and above 1, respectively. It is worth pointing out that γ1, γ2, and γ4
all degenerate to 0 as intermediate rare event gets closer to the rare event. The first two
parameters quickly approach 0 by iteration 5, and γ4 is “turned off” by iteration 8. We
can interpret this as multilevel CE method reducing the system to a lower dimensional
model as some reactions become unnecessary in observing the rare event. When there
is no observation of a reaction, we set its biasing parameter to the minimum positive
number allowed in the computing hardware. This way the reaction is always possible
to fire in the next iteration, however unlikely it may be.

As system size grows, it is likely that some, if not most, of the reactions do not affect
observation of the rare event. Biasing parameters for reactions that do not matter in
rare event production will show high variability in their values and are easy to detect
Daigle et al. (2011). When leaping method is utilized, these biasing parameters should
be excluded from being extrapolated for computational efficiency. Incorporating these
spurious parameters in polynomial leapingwill not only increase the total computation
time but also produce mathematically meaningless interpolant. Therefore, we apply
polynomial leaping on only the two parameters, γ6 and γ8, that affect observation of
the rare event. The rest of the biasing parameters retain their value from the previous
iteration as they are deemed unimportant in rare event observation. However, their
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values are updated when the multilevel CE method (Algorithm 2 step 15) is run
instead of the polynomial leaping method. This enables the algorithm to collect data
and use them to decide which reactions need to be extrapolated when there is slow
or no convergence. Table 2 summarizes simulation results from running both dwSSA
and dwSSA++ to compute γ̂ ∗ for p(x0, θGbg ; t f ) using K = 105 and ρ ∈ {10−4 5×
10−4 0.001 0.005 0.01}.

Similar to the SIRmodel, we see a gradual increase in performance with decreasing
value of ρ when using the conventional multilevel CE method, while the performance
of Algorithm 2 is relatively robust with respect to ρ. Algorithm 2 converges in all five
sets of simulations while the multilevel CE method does in only three. As the conver-
gence rate increases with decreasing ρ, leaping method is triggered less frequently,
and the two methods eventually become equivalent when no leaping is employed.
When there is no leaping, any difference in the performance is purely due to stochas-
ticity. We note that it is possible to modify Algorithm 2 to dynamically choose biasing
parameters that can be used for extrapolation when leaping method is triggered. When
slow convergence is detected, past biasing parameter values can be scanned to select
leaping indices prior to entering Algorithm 3. Therefore, it is not necessary to run
simulations prior to decide which reactions are to be extrapolated.

We illustrate effectiveness of leaping with ρ = 0.01 and K = 105 on Fig. 4. Only
the dwSSA++ converges using this parameter combination after utilizing leaping twice
in iterations 7 and 9. The conventional multilevel CE method gets close to producing
the rare event but never reaches it by iteration 20. We see from Fig. 4a that lack
of time is not the main cause, as the dwSSA observes Gβγ > 290 after iteration
6. The maximum Gβγ population in this simulation is 298, and it is first observed
during iteration 13. We hypothesize that the system entered a stochastic equilibrium
around this time, and that prevented the algorithm from converging. On the other hand,
dwSSA++ recognizes slow convergence first at iteration 7 and then again at iteration
9. By extrapolating γ6 and γ8 values using past IRE data, the algorithm reaches the
rare event by iteration 10 and successfully computes γ̂ ∗. Figure 4b shows γ6 and γ8
values computed by both algorithms. We see that the most significant change in γ6
from dwSSA++ occurred during the first leaping and γ8 during the second leaping.

4 Conclusion and Discussion

This paper describes dwSSA++ and its novel contribution in improving automatic
computation of biasing parameters required to characterize a rare event probability.
Numerical results from two example systems in Sect. 3 support our claim that the
polynomial leaping method employed by dwSSA++ can significantly shorten simu-
lation time in computing biasing parameters. We showed that the 12 simulations that
employed polynomial leaping at least once performed better than its corresponding
dwSSA simulations. Furthermore, the dwSSA++ converged on all 17 sets while the
dwSSA failed to compute biasing parameters on 6 of them. Thus, the benefit of using
dwSSA++ is not limited to computational efficiency but also lowering the failure rate
in computing biasing parameters.
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Fig. 4 Comparison of results between dwSSA and dwSSA++ applied to the yeast polarization model.
Both algorithms were run to estimate γ̂ ∗ for p(x0, θ

Gbg ; t f ) using ρ = 0.01 and K = 105. a Displays
progression of intermediate rare events by iteration. b The two biasing parameters chosen for leaping—γ6
and γ8 are shown by iteration

We note that the main contribution of dwSSA is in automatic computation of bias-
ing parameters. Similar methods existed prior to dwSSA that utilized importance
sampling to efficiently estimate a rare event probability (Kuwahara and Mura 2008;
Gillespie et al. 2009; Roh et al. 2010), but they were all impractical for large systems
because there was no principled method to compute biasing parameters that could
yield a low-variance probability estimate. Therefore, the dwSSA is as impractical as
its predecessors without automatic computation of the biasing parameters. Although
the multilevel CE method used in dwSSA works well for many systems, it can fail to
converge when a system is in a stochastic equilibrium or exhibiting low stochasticity.
The dwSSA++ attempts to resolve this problem by extrapolating biasing parame-
ters using past simulation data when slow convergence is detected. The algorithm
also offers tuning parameters that define the threshold for slow convergence and the
amount of past data utilized in polynomial leaping method. This allows for flexible
controlling of the algorithm.

We point out that simulations run with the default parameter values (ρ = 0.01
and K = 105) described in Daigle et al. (2011) are inconvergent for both examples
shown in this paper. However, we note that these values work well for many systems
(Daigle et al. 2011; Roh et al. 2011) that do not suffer from low stochasticity. Default
parameter values ρ = 0.01 and K = 105 ensure both sampling frequency (105) and
the number of data used to compute IREs (105 × 0.01 = 103) are adequate. Thus,
unless a user is aware that the system under study exhibits low stochasticity prior to
simulation, we suggest the user to run the dwSSA++ with default parameter values and
allow the algorithm to extrapolate the biasing parameters when necessary. As shown
with examples in Sect. 3, dwSSA++ adaptively switches between the polynomial
leaping method and the multilevel CE method depending on the system behavior.
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