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Abstract
The competition between two pathogen strains during the course of an epidemic rep-
resents a fundamental step in the early evolution of emerging diseases as well as in
the antigenic drift process of influenza. The outcome of the competition, however,
depends not only on the epidemic properties of the two strains but also on the timing
and size of the introduction, characteristics that are poorly captured by deterministic
mean-field epidemic models. We describe those aspects of the competition that can
be determined from the mean-field models giving the range of possible final sizes of
susceptible hosts and cumulated attack rates that could be observed after an epidemic
with two cross-reacting strains. In the limit where the size of the initial infection goes
to zero, the possible outcomes lie on a (one dimensional) curve in the outcome space.

Keywords Epidemic model · Final size · Competition · Cross-immunity

1 Introduction

The outcome of a single epidemic involving two competing types of a pathogen is
key to our theoretical understanding of several important epidemiological questions.
For an outbreak of an emerging disease, e.g., an influenza pandemic, the outcome
of such a mixed epidemic characterizes the early stages of pathogen adaptation to
the new host population (Antia et al. 2003; Holmes 2009; Alexander and Day 2010;
Kubiak et al. 2010). In influenza drift, a similar situation occurs in each season as
the epidemic is seeded by a genetically and antigenically heterogeneous pathogen
population or mutants arise during the early stages of the epidemic (Koelle et al.
2006; Boni et al. 2006; Lipsitch et al. 2007; Omori et al. 2010; Ho and Chao 2017).
For plant disease evolution, the scenario describes the simultaneous spread of a wild-
type and a mutant in an uninfected field (Ohtsuki and Sasaki 2006) and coexistence

Supported by the Independent Research Fund Denmark (Grant 8020-00284).

B Viggo Andreasen
viggo@ruc.dk

1 Department of Science, Roskilde University, 4000 Roskilde, Denmark

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-018-0495-2&domain=pdf
http://orcid.org/0000-0001-8152-3898


2958 V. Andreasen

of multiple strains of (baculo) virus in annual insect populations is determined by
similar epidemic interactions (Fleming-Davies et al. 2015). Furthermore, themodeling
structure is analogous to that describing spontaneous behavioral changes in response
to a severe epidemic (Poletti et al. 2009; Funk et al. 2009; Kiss et al. 2010).

Pathogen competition has been studied extensively in the theoretical literature for
the case where the host–pathogen interaction occurs at an endemic equilibrium, i.e., in
a situation where demographic turn-over and disease transmission have established an
epidemiological equilibrium. Long-term coexistence at the endemic equilibrium is not
possible (Bremermann and Thieme 1989) unless additional factors are included; see,
for example, Gjini et al. (2016) and Lipsitch et al. (2009). The present study differs
in that we are concerned with competition during a single epidemic, i.e., we study
competition occurring in a host population whose immunity structure is dynamically
changing in response to disease transmission and loss of immune hosts.

A previous study on competition during an epidemic by Saunders (1981) and
Kendall and Saunders (1983) has focused on establishing the basic model structure
and on characterizing the possible outcome of the epidemic in the case of full cross-
immunity. Multi-strain epidemics have also been studied in the context of epidemics
on networks (Funk and Jansen 2010; Marceau et al. 2011; Karrer and Newman 2011;
Miller 2013; Hebert-Dufresne et al. 2013), but their results should be compared to the
stochastic formulation by Svensson and Scalia Tomba (2001).

The present paper will rely heavily on themethods of Kendall and Saunders, and the
expression “epidemics in competition” is a reference to the title of their original work.
Specifically, we extend their results to the casewhere the two strains confer only partial
cross-immunity. Partial cross-immunity is particularly important for influenza drift,
though similar issues arise when modeling the introduction of dengue and malaria to
new areas. In addition, partial immunity allows us to model early stages of pathogen
speciation as our formulation will span the full range from two identical pathogens
to two immunologically separate species. The existence of cross-reactions among
strains is well documented. However, the exact effect is often unclear and may vary
from system to system (Ackerman et al. 1990; Gomes and Medley 2001; Gog and
Swinton 2002). In this paper, we focus on the case where infection cofers complete
immunity to the infecting strain while cross-immunity acts by reducing infectivity
during a subsequent infectionwith the other strain. Ourmainmotivation for this choice
is mathematical, as it is well known that this formulation is particularly amenable for
analytic investigation (Gupta et al. 1998; Ferguson and Andreasen 2001).

In its simplest form—and omitting for now the possibility of partial cross-
immunity—the problem may be described as follows: Imagine that a pathogen is
introduced into a susceptible host population and that the pathogen occurs in two vari-
ants which differ in their transmission properties. What will be the outcome of such
an epidemic in terms of the size of the epidemic and its distribution among the two
types?

Clearly, the answer depends on the exact way in which the two pathogens are
introduced. Figure 1 shows the range of possible outcomes, and in particular, Fig. 1a, c
shows the extreme caseswhere one pathogen is introduced sufficiently early that its has
caused and completed its epidemic prior to the arrival of the other type, while Fig. 1b
shows an intermediate situation where the two epidemics overlap. The extreme cases

123



Epidemics in Competition: Partial Cross-Immunity 2959

0

0.1

(a)

t

I

0

0.1

0 50 100 0 50 100

(b)

t

I

0

0.1

0 50 100

(c)

t

I

Fig. 1 Three characteristic epidemics that can arise for a system of two competing viral strains conferring
complete cross-protection in a homogeneously mixing host population. White area indicates prevalence of
the most transmissible type (R0 = 2); black area prevalence of least transmissible type (R0 = 1.25). The
three epidemic curves differ only in initial conditions

are easy to characterize analytically as they consist of a pair of sequential epidemics,
each involving only a single pathogen type (Andreasen and Sasaki 2006; Newman
2005). However, for the overlapping epidemics in Fig. 1b the outcome depends on the
absolute size and composition of the initial introductions, suggesting that it would be
necessary to include the stochastic effects of small pathogen population size during
the early phases of the epidemic to obtain a complete characterization (Svensson and
Scalia Tomba 2001).

Here, we will take another approach focusing on those aspects of the epidemic
interaction that may be determined deterministically. This implies that we will not
aim at providing a unique answer but rather provide a range of possible outcomes.

Our starting point is the two-strain epidemic with full cross-protection as this case
leads to the least complicated model while still allowing us to present the basic model
structure in Sect. 2, and to develop the necessary mathematical methods in Sect. 3.
In Sect. 4, we extend the analysis to the case where partial cross-immunity acts by
reducing infectivity for infected hosts who are already immune to the other strain, and
in Sect. 5, we show how the strength of cross-immunity can span the full range of
epidemics in competition.

2 Two Pathogen Types and Full Cross-Immunity

For a homogeneously mixing host population, the state of the epidemic may be cap-
tured by specifying the fraction of the host population that is susceptible S and the
fractions that are currently infected by each pathogen type I ,Y . Neglecting the pos-
sibility of coinfection and assuming an exponential infectious period with recovery
rates νK and transmission coefficients βK , K = I ,Y , the transmission dynamics are
described by

Ṡ = −βI S I − βY SY (1)

İ = βI S I − νI I (2)

Ẏ = βY SY − νY Y . (3)
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We will assume that the disease is non-lethal such that the population size remains
constant and omit explicit reference to the dynamics of the recovered class as its size
is redundant.

In the next section, we will show that for any nonnegative initial condition (s, i, y)
there exists a number s∞ such that S(t) → s∞ and that I (t),Y (t) → 0 for t → ∞.

It is convenient to express the outcome in terms of the fraction of the susceptible
population that remains uninfected at the end of the epidemic σ = s∞/s and the
fraction of hosts that became infected by either strain during the entire course of the
epidemic AI = νI

∫ ∞
0 I dt with a similar definition of AY .

We notice that the quantities

Ṡ/S = −βI I − βY Y (4)

Ṡ + İ + Ẏ = −νI I − νY Y (5)

are linear expressions in I and Y . We will refer to quantities with this property as
(generalized) first integrals.

First integrals are useful because we can obtain information about σ, AI , and AY

by integration of (4–5) over the entire epidemic period:

∫ ∞

0
Ṡ/S dt = −βI

∫ ∞

0
I dt − βY

∫ ∞

0
Y dt

∫ ∞

0
Ṡ + İ + Ẏ dt = −νI

∫ ∞

0
I dt − νY

∫ ∞

0
Y dt,

which yields two conditions in the three unknowns (σ, AI , AY )

− log σ = RI
0AI + RY

0 AY (6)

s(1 − σ) + i + y = AI + AY . (7)

It is remarkable that the range of outcomes from the competing epidemics depends
only on the reproduction numbersRK

0 = βK
νK

and not explicitly on the growth rates as
is the case for epidemics on networks (Karrer and Newman 2011).

The condition (7) may be seen as a simple balance equation dividing the total
population between those still susceptible and those who were infected with either
pathogen type at some point during the epidemic. The first condition (6) generalizes
the final size equation to a mixed epidemic.

To determine the three quantities (σ, AI , AY ), one would need one additional con-
dition. However, this third condition will depend on the size and composition of the
pathogen introduction and we will not explore this issue here. We first discuss what
information can be obtained from the two conditions (6–7). Due to the invariance of
the first octant, we observe that every trajectory of the differential equation (1–3) with
initial conditions of the form s, i, y ≥ 0 and s + i + y ≤ 1 will satisfy (6–7). It is,
however, not clear if every positive point (σ, AI , AY ) satisfying (6–7) corresponds to
a solution of the differential equation.
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Fig. 2 Graphical solution of the final size problem for an epidemic with two types of the disease. The
fraction of hosts that are still susceptible at the end of the epidemic is denoted σ . The value of σ depends
on initial conditions, and thus, each value of σ corresponds to a possible outcome of the epidemic. A
vertical line divides the unit interval into three segments representing (from bottom to top) the fraction of
the population infected with type I , those infected with type Y and the fraction of the host population that
remains uninfected during the entire epidemic. Solid points represent the outcomes of numerical solutions
to the model (1–3) for initial conditions of the form I (0) = 0.00001/N ,Y (0) = 0.99998/N with varying
N . Panel a shows the case where sequential epidemics are not possible since σY∞ < RI

0. Parameter values

areRI
0 = 1.6,RY

0 = 1.3, and νI = νY = 1. Panel b shows the case where sequential epidemics may occur.
The open circle represents the sequential epidemics where the inferior type has completed its epidemic prior
to the arrival of the superior competitor. Sequential epidemics can arise only if 1/RI

0 < σY∞. Parameter

values are RI
0 = 2.0, RY

0 = 1.25, and νI = νY = 1

Our primary interest is the condition during a pandemic arising from a newly
introduced pathogen, so for now we focus on the situation where s ≈ 1 and 0 <

i, y � 1. Without loss of generality, we may also assume that RI
0 > RY

0 .
Considering the fraction of the population that remains susceptible σ as a parameter,

we can determine the fraction that become infected with each of the pathogen types
as

AI (σ ) = 1

RI
0 − RY

0

(
RY

0 (1 − σ) + log σ
)

(8)

AY (σ ) = −1

RI
0 − RI

0

(
RI

0(1 − σ) + log σ
)

(9)

The two curves are shown in Fig. 2. Remarkably, the magnitudes of AI and AY

are proportional to the final size expression fL : σ �→ RL
0 (1 − σ) + log σ for the

other type L = Y , I . The graph for f I may be seen from the curve marked AY in
Fig. 2, and we have fK (0+) = −∞, fK (1) = 0, and f ′

K (1) = 1 − RK
0 so that for

RK
0 > 1, fK has a unique root σ K∞ in the interval (0, 1) giving the fraction of hosts

that are susceptible at the end of an epidemic consisting entirely of type K pathogens.
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We observe that AI is positive for σ < σ Y∞. Similarly, AY is positive for σ > σ I∞, and
hence, feasible solutions occur only in the interval σ I∞ ≤ σ ≤ σ Y∞. Figure 2b suggests
that not all feasible solutions may arise as outcome of the epidemic. We shall discuss
this issue in the next section.

Remark In this section, we have characterized the epidemic in terms of the cumu-
lated attack rate AI as this allows for the simple interpretation of Fig. 2. For the more
complex situation in Sect. 4, the cumulated force of infectionα = ∫

Λ dt = ∫
β I dt—

or alternatively the probability of remaining uninfected π = exp(− ∫
Λ dt)—gives a

more compact description.

3 Elementary Properties of theModel

From a mathematical view point, model (1–3) is somewhat awkward as it has a con-
tinuum of equilibria where every point of the form (s, 0, 0) is a stationary point. Thus,
the model is not “generic” and results from dynamical systems theory are of limited
use. For the classical model of an epidemic with a single infectious agent, the model is
typically solved by explicitly determining the solution curves using S as the indepen-
dent variable. A similar approach is not available for our model, so instead we will in
this section use elementary methods to study the map Φ that connects to every possi-
ble initial condition the corresponding final outcome of the epidemic. The results are
essentially reformulations of the statements in (Kendall and Saunders 1983, Theorem
1).

Although our main interest is the limiting case where the initial infectious seed
is small 0 < I (0),Y (0) ≈ 0, we first expand our problem allowing for any initial
condition where no hosts are immune at the onset of the epidemic. This allows us to
separate limiting processes in the time domain from limiting processes in the initial
conditions.

If the entire population is either susceptible or infected at the onset of the epidemic,
the initial condition (S(0), I (0),Y (0)) = (s, i, y) satisfies s + i + y = 1 so that the
set of initial conditions may be described by the 2-D simplex

Γ = { (i, y) | i, y ≥ 0, 1 ≥ i + y}.

For the methods, we develop in this section it is natural to express the final size in
terms of s∞—the actual size of the susceptible population—rather than to measure the
final size relative to the size of the susceptible population at epidemic onset σ = s∞/s
as we do in Sects. 2 and 4, but the conversion between σ and s∞ is straightforward.

We first prove (the expected fact) that every trajectory goes to a limit point as time
goes to infinity.

Theorem 1 For every initial condition in Γ , there exists a number s∞ so that the
corresponding solution (S(t), I (t),Y (t)) to model (1–3) satisfies

lim
t→∞ S(t) = s∞ lim

t→∞ I (t) = lim
t→∞ Y (t) = 0.
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The theorem and its proof are generalizations of results by Brauer (2008). The proof
builds on the following elementary

Lemma 1 (Brauer 2008) If f (t) is a nonnegative monotone non-increasing contin-
uously differentiable function, then there exists f∞ ≥ 0 such that as t → ∞,

f (t) → f∞, and in addition f ′(t) → 0.

To see that Theorem 1 holds, observe that by the invariance of the planes I = 0 and
Y = 0, we have that I ,Y ≥ 0 and hence that S is a non-increasing function. Since
(S + I + Y )′ = −(νI I + νY Y ), we conclude that if I (0) + Y (0) > 0 then S + I + Y
is decreasing and hence there exists s∞ ≥ 0 such that (S(t) + I (t) + Y (t)) → s∞ as
t → ∞. By Brauer’s lemma, we know that νI I + νY Y → 0 for t → ∞. Hence, by
the positivity of I and Y we have that I (t),Y (t) → 0 for t → ∞ and thus S(t) → s∞
for t → ∞.

Theorem 1 shows that we can define a map from the initial conditions to the corre-
sponding limit point of the solution to (1–3)

Φ : (i, y) �→ s∞

as a map of the form

Φ : Γ → [0, 1]

Keeping in mind that by assumption RI
0 > RY

0 , we can now state our main result
about this map.

Theorem 2 (Kendall and Saunders 1983) The map Φ : Γ �→ [0, 1] has the following
properties

1. If Φ(i, y) < 1/RI
0 then Φ is continuous at (i, y).

2. If Φ(i, y) > 1/RI
0 then i = 0.

3. Assume thatΦ(0, y0) > 1/RI
0 and letΨ denote the unique solution to the equation

logΨ + RI
0Φ(0, y0)(1 − Ψ ) = 0, (10)

then

Φ(i, y) → Ψ for (i, y) → (0, y0) and (i, y) ∈ Γ+,

where Γ+ denotes the interior of Γ .

Remark Properties 2 and 3 characterize sequential epidemics. Property 2 states that
after the conclusion of an epidemic, the population can only support an additional
epidemic if the first epidemic did not involve the superior competitor and Property
3 then states that if in addition the inferior competitor (Y ) caused an epidemic suffi-
ciently small such that the effective reproduction number of the superior competitor
Φ(0, y)RI

0 exceeds unity, then the superior strain (I ) will produce a sequential epi-
demic if it is present (i > 0).
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Property 3 also shows that in this situation, the map Φ is discontinuous at (0, y0).
The limitΨ definedby (10) gives thefinal size—in terms of the fraction still susceptible
after a double epidemicwhere the inferior strain (Y ) has completed its epidemic before
the superior strain (I ) gives rise to an epidemic among those hosts that were still
susceptible.

Proof of Theorem 2 The basic idea is to break Φ into a composite map where the first
map takes (i, y) into the value of the solution at a (suitably chosen) fixed time T . This
map is continuous in general (Coddington and Levinson 1955). The second map takes
(S(T ), I (T ),Y (T )) into (S(∞), I (∞),Y (∞)). For the selected T , we show that this
map is bounded by suitable exponential decays toward the limit point and use this
observation to establish continuity. The detailed proofs may be found in Kendall and
Saunders (1983); we will only sketch how to prove claim 1. ��

Claim 1 Consider a point (i0, y0) ∈ Γ with Φ(i0, y0) < 1/RI
0 and let X0(t) =

(S0(t), I0(t),Y0(t)) denote the solution to (1–3) with initial conditions (i0, y0). Let
X∗
0 = (Φ(i0, y0), 0, 0)be the limit of X0(t) as t → ∞. Set κ = 1/RI

0−Φ(i0, y0) > 0.
For a given 1 > ε > 0 set ε1 = εκ/4 and observe that there exists a T such

that ||X0(t) − X∗
0 || < ε1 for all t ≥ T where ||.|| denotes the 2 or 3 dimensional

Euclidean norm as appropriate. Since the solution of (1–3) at the finite time T depends
continuously on initial conditions (Coddington and Levinson 1955), we can find δ > 0
such that

||(i, y) − (i0, y0)|| < δ ⇒ ||X(T ) − X0(T )|| < ε1

for the solution X(t)with initial conditions (i, y).Weneed to show that ||X∗−X∗
0 ||<ε.

We first observe that by construction, S(T ) ≤ Φ(i0, y0) + κ/2, such that 1/RI
0 −

S(T ) > 1/RI
0−(Φ(i0.y0)+κ/2) > κ/2. Since S(t) is decreasing, the inequality holds

for all t ≥ T . This result provides an estimate for I (t) since I ′ = βI (S − 1/RI
0)I ≤

− 1
2 β1 κ I , for t ≥ T . We deduce that for t ≥ T we have

I (t) ≤ I (T ) exp

(

− 1

2
βI κt

)

,

with a similar expression for Y (t). This provides us with suitable bound on how fast
I and Y decay and thus a bound for the decay of S(t) − S(∞).

We can now study S(T ) − S(∞) and first observe that

log S(∞)/S(T ) = −
∫ ∞

T
βI I (τ ) + βY Y (τ ) dτ

≥ −
∫ ∞

T
βI I (T )e− 1

2 βI κτ + βY Y (T )e− 1
2 βY κτ dτ

= − 2

κ
(I (T ) + Y (T )).
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Fig. 3 The map Φ for values of (i, y) close to the origin. Along the i-axis Φ(i, 0) → sY∞—the size of
an epidemic consisting only of type Y pathogens. On the y-axis Φ(0, y) → s I∞—the size of an epidemic
consisting only of type I. If sequential epidemics are possible—that is, if RI

0s
∞
Y > 1, the value of double

limit is limy→0+ limi→0+ Φ(i, y) = s†—the final size of the susceptible population in an i-epidemic
that occurs in a host population that has already been exposed to a y-epidemic (case shown). If sequential
epidemics cannot occur (case not shown), we have limy→0+ limi→0+ Φ(i, y) = sY∞. In both cases, the

map Φ is discontinuous at (0, 0). Parameter values used RI
0 = 2,RY

0 = 1.2

A simple rearrangement yields

0 < S(T ) − S(∞) ≤
(

1 − exp

(

− 2

κ
(I (T ) + Y (T ))

))

S(T )

≤ 2

κ
((I (T ) + Y (T ))S(T ) ≤ 4

κ
ε1 ≤ ε.

Finally, we notice that

||X∗ − X∗
0 || ≤ ||X∗ − X(T )|| + ||X(T ) − X0(T )|| + ||X0(T ) − X∗

0 ||,

and that we have shown that each term is smaller than ε.

This concludes our discussion of the proof of Theorem 2.
To finish our characterization of the possible outcomes of the mixed epidemic for

the case where i, y � 1, we combine Theorem 2 with our observations in Sect. 2.
Figure 3 shows the nature of Φ in a neighborhood of origin, and in particular, we
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notice that

lim
i→0+ Φ(i, 0) = s I∞

lim
y→0+ Φ(0, y) = sY∞

lim
y→0+ lim

i→0+ Φ(i, y) = s†

where s† is the final size of the susceptible population after sequential epidemics if
RI

0s
Y∞ > 1, and s† = sY∞ if sequential epidemics are not possible. Thus, the map Φ is

discontinuous at the origin—and if sequential epidemics are possible, it is in addition
also discontinuous along the y-axis. Therefore, every neighborhood of the origin will
contain (1) a point that is mapped into a value close to s I∞ and (2) a point that is mapped
into a value close to s† and (3) a point that is mapped into a value close to sY∞—where
the two latter points may be identical in the case of no sequential epidemics. Since
Φ is continuous in the interior of Γ and Γ is connected, we can find points that are
mapped into every value in the interval [s I∞, s†) while sY∞ may be an isolated point
in the image when sequential epidemics can occur. This result explains the range of
outcomes that is indicated in Fig. 2b.

Although it seems obvious, it is hard to prove that Φ does not have extreme values
outside the interval [s I∞, s†).Kendall and Saunders (1983) provide a quite complicated
proof of the claim—we will return to the issue in the discussion.

We conclude that it is not possible to uniquely determine a final size of the suscep-
tible population in a mixed epidemic unless one makes further assumptions about the
size and composition of the initial infection. We did, however, show that the final size
of the susceptible population falls in the set [s I∞, s†) ∪ {sY∞}. Once s∞ is determined,
the corresponding attack rates for the two pathogens can be found using Eqs. (6–7).

4 Partial Cross-Immunity

A somewhat more complicated situation arises if infection with one strain confers
only partial protection against infection with the other strain. Here, we assume that
cross-immunity acts by reducing infectivity by a factor τ, 0<τ <1 during the second
infection. Furthermore, we will assume that the two infections are independent in the
sense that a host can become infected by the second strain while still being infected
with the first strain and that recovery from the two infections is independent.

Let I0 denote the fraction of hosts that are currently infected with strain I and
who have no immunity to strain Y , while I1 denotes the fraction of hosts who are
infected with strain I and who are immune to strain Y at the time of infection. With
our assumptions, the force of infection of strain I is

ΛI = βI (I0 + τY I1), (11)

with similar expressions for strain Y .
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Let RK , K = I ,Y denote the fraction of hosts that are or have been infected with
strain K and who have not yet been infected with strain L = Y , I . Since we assume
that hosts are susceptible to a second infection immediately after acquiring their first
infection, hosts infected with strain I flow directly from the susceptible class S into
the RI -class and we have

Ṡ = −(ΛI + ΛY )S (12)

ṘK = ΛK S − ΛL RK , for K = I ,Y L = Y , I . (13)

In addition, we can keep track of infected hosts and their immune status at the time of
infection

K̇0 = ΛK S − νK K0 for K = I ,Y

K̇1 = ΛK RL − νK K1 for K = I ,Y

which—using Eq. (11)—simplifies to

Λ̇K = βK ΛK (S + τL RL) − νKΛK . for K = I ,Y L = Y , I . (14)

Equations (12, 13, 14) give a total of 5 equations yielding a closed system, describing
the transmission dynamics of the two strains.

In addition, we need to specify initial conditions S(0) = s, RI (0) = rI , RY (0) =
rY . Here, 0 ≤ s + rI + rY ≤ 1 and 0 < ΛK (0) = lK as in the previous section.

In order to obtain simple first integrals, we change to variables that account for the
fraction of totally susceptible individuals S and the fraction of hosts susceptible to
each of the two strains PK = S + RL . In this representation, the model is

Ṡ = −(ΛI + ΛY )S

ṖK = −ΛK PK for K = I ,Y L = Y , I

Λ̇K = βK ((1 − τL)S + τL PK ))ΛK − νKΛK

(15)

with initial conditions (s, pK , lK ) satisfying 0 ≤ pI + pY − s ≤ 1, 0 < s ≤ pK ≤ 1
and 0 ≤ lK . An extension of Theorem 1 shows that the trajectories all have ω-limits
of the form S(∞) = s∞ > 0, PK (∞) = pK∞ ≥ 0 and ΛK (∞) = 0.

One may now look for first integrals as in the previous sections. There are three
trivial integrals: Ṡ/S, ṖI /PI , ṖY /PY .We next look for a suitable linear combination of
the five dynamical equations that yields a generalization of the balance equation (7). To
find such a combination, we seek a linear combination of the five dynamical equations
such that the four quadratic termsΛK S andΛK PK vanish. Thus, the coefficients of the
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quadratic terms must satisfy the (under-determined) homogeneous linear equations

⎛

⎜
⎜
⎝

Ṡ ṖI ṖY Λ̇I Λ̇Y

ΛI S − 1 0 0 βI (1 − τY ) 0
ΛY S − 1 0 0 0 βY (1 − τI )

ΛI PI 0 − 1 0 βI τY 0
ΛY PY 0 0 − 1 0 βY τI

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

x1
x2
...

x5

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠

where a row corresponds to a quadratic term and a column to a dynamical equation.
Since the coefficient matrix has rank 4, the solution

(

(1 − τI )(1 − τY ), τY (1 − τI ), τI (1 − τY ),
1 − τI

βI
,
1 − τY

βY

)T

is unique up to a scaling factor. We conclude that

(1 − τI )(1 − τY )Ṡ + τY (1 − τI )ṖI + τI (1 − τY )ṖY + 1 − τI

βI
Λ̇I + 1 − τY

βY
Λ̇Y

= −νI (1 − τI )

βI
ΛI − νY (1 − τY )

βY
ΛY , (16)

which gives us our fourth and last first integral.
We can now formulate a necessary condition that must be satisfied by the outcome

of the mixed epidemic in terms of σ = s∞/s (the fraction of those hosts that were
fully susceptible at onset of the epidemic who are still fully susceptible at the end of
the epidemic) πK = PK (∞)/pK , (with similar interpretation) and αK = ∫ ∞

0 ΛK dt,
(the cumulated force of infection). We find that the outcome of the epidemic must
satisfy

log σ = −(αI + αY )

logπK = −αK K = I ,Y

0 = s(1 − τI )(1 − τY )(1 − σ) + pI τY (1 − τI )(1 − πI )

+ pY τI (1 − τY )(1 − πY ) − νI (1 − τI )

βI
αI − νY (1 − τY )

βY
αY

− 1 − τI

βI
(ΛI (∞) − lI ) − 1 − τY

βY
(ΛY (∞) − lY )

(17)

Condition (17) gives us four equations in the five unknowns (σ, πI , πY , αI , αY ), and
we conclude that the outcome of the competing epidemics is determined up to one
parameter, the value of which will depend on the details of the initial conditions—as
in Sect. 2.

To further simplify the discussion, we assume that the initial infection is small
0 ≤ lk � 1 such that the last line of (17) vanishes. Substituting σ = πIπY and
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(b)(a)

Fig. 4 Geometric analysis of the number of solutions to F(πI , πY ) = 0, Eq. (18). Since F is concave
for fixed πK , the equation has at most two solutions along a horizontal line (or along a vertical line). a
(Sequential epidemics do not occur). The sign of F at the boundary of the unit square gives the number
of solutions in the different regions. In the gray region, there is exactly one solution along each horizontal
line; in the white area, there is between 0 and 2 solutions. The points πK∞, K = I , Y denote the probability
of remaining uninfected to strain K at the end of an epidemic consisting only of strain K . b (A sequential
epidemic with a Y epidemic followed by an I epidemic may occur). The sign variation along the lines
πI = π I∞ depends on the existence and magnitude of a IY -sequential epidemic π IY∞ . In the gray areas of
region I + I I , there is one solution along a horizontal line—in the white areas of I + I I , there is none.
The same analysis may be applied to vertical lines

αK = − logπK into the last equation in (17), we obtain after a suitable rearrangement,
the condition

F(πI , πY ) = −(1 − τI )(1 − τY )(1 − πI )(1 − πY )

+ 1 − τI

sRI
0

(
RI

e (1 − πI ) + logπI

)
+ 1 − τY

sRY
0

(
RY

e (1 − πY ) + logπY

)
= 0,

(18)

where RK
e = RK

0 ((1 − τL)s + τL pK ) is the effective reproduction number of the
strain considering the preexisting immunity in the population. Equation (18) gives
one equation in the two unknowns (πI , πY ), and the corresponding curve in (πI , πY )-
space gives us the range of possible outcomes of the competing epidemics in the sense
that once (πI , πY ) is determined, σ and (αI , αy) may be found from (17).

Thus, to characterize the possible outcomes of the competing epidemics it suffices
to describe the solutions to Eq. (18). We will assume that both strains can grow at the
onset of the epidemic so thatRK

e > 1 for both strains. In addition, we must have that
0 ≤ πK ≤ 1 to ensure that the solution is biologically meaningful.

The structure of Eq. (18) allows for an elementary analysis of its solutions as
shown in Fig. 4. Let πK∞ denote the non-trivial solution to the one-strain final size of
the susceptible population, i.e., 0 < πK∞ < 1 is the (unique) solution to

RK
e (1 − π) + logπ = 0.
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Clearly, the equation F(πI , πY ) = 0 has three simple solutions:

(π I∞, 1) (1, πY∞) (1, 1).

The lines πK = πK∞, K = I ,Y divide the unit square into four regions as indicated in
Fig. 4. Along the line πI = 1, F changes sign as indicated in Fig. 4, while F(x, y) →
−∞ for x → 0+ ensuring that F is negative close to the axis. Since ∂2F/∂π2

I =
−RI

0/π
2
I < 0, the function πI �→ F(πI , πY ) is concave and along a horizontal line

we have that

Lemma 2 For fixed π∗
Y ∈ (πY∞, 1), Eq. (18) has exactly one solution πI ∈ (0, 1).

For fixed π∗
Y ∈ (0, πY∞), Eq. (18) has 0, 1 or 2 solutions. The case of one solution

occurs iff ∂F/∂πI vanishes at the solution point.

To determine more precisely the location of the solutions in the interval (πY∞, 1),
consider the function

πY �→ F
(
π I∞, πY

)

= 1 − τY

sRY
0

((
− (1 − τI )

(
1 − π I∞

)
sRY

0 + RY
e

)
(1 − πY ) + logπY

)

= 1 − τY

sRY
0

(
RIY

e (1 − πy) + logπy

)
,

(19)

where

RIY
e = RY

0

(
(1 − τI )π

I∞s + τI pY
)

(20)

is the effective sequential reproduction number for strain Y if the population has
already experienced the full course of an epidemic with strain I . If RIY

e > 1, an IY
sequential epidemic is possible and F = 0 has a solution of the form (π I∞, π IY∞ )where
π IY∞ solves the final size equation F(π I∞, y) = 0.

If RIY
e < 1, then F is negative on the line segment (π I∞, y). Looking along a

horizontal line segment, y ∈ (0, 1) there is one solution in region I and none in
region I I .

If RIY
e > 1, then F is positive on the line segment (π I∞, y), y ∈ (1, π IY∞ ) and for

each fixed πY in this interval, F = 0 has exactly one solution in region I I and none
in region I . For y < π IY∞ , F is negative on the line πI = π I∞ and the location of the
solution is reversed.

We can now use the implicit function theorem to see that the set of solutions consists
of one or more smooth curves in the unit square and exclude the possibility of singular
points:

Lemma 3 If (πI , πY ) ∈ (0, 1) × (0, 1), then

1. ∂F/∂πI = 0 ⇒ πI > 1/RI
e

2. F = 0 ∧ ∂F/∂πI = 0 ⇒ πY < πY∞
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Proof We have that

∂F/∂πI = (1 − τI )(1 − τY )(1 − πY ) + 1 − τI

sRI
0

(

−RI
e + 1

πI

)

>
1 − τI

sRI
0

(

−RI
e + 1

πI

)

.

The last term can be negative only if πI > 1/RI
e .

To see the last claim, we observe that by the elementary inequality− log u+u−1 >

0 we have that

F + (1 − πI )
∂F

∂πI
= 1 − τI

sRI
0

(

logπI + 1

πI
− 1

)

+ 1 − τY

sRY
0

(
RY

e (1 − πY ) + logπY

)

>
1 − τY

sRY
0

(
RY

e (1 − πY ) + logπY

)
.

The last term can be negative only if πY < πY∞.
Since 1/RK

e > πK∞, we observe that the curve of solutions can have a horizontal
tangent only in region I V and a vertical tangent only in region I I and that there are
no singular points.

Considering the curve in terms of a function ofπY , we have that at the point (π I∞, 1)

0 = F ′
I ((π

I∞), 1)π ′
I + F ′

Y (π∞, 1) = 1 − τI

sRI
0

(

−RI
e + 1

π I∞

)

π ′
I

+1 − τY

sRY
0

(
−RIY

e + 1
)

,

showing that πI is negative when RIY
e > 1 and positive when the condition is not

satisfied.
We can now summarize this observation and Lemmas 2 and 3 in the following

Theorem 3 Assume that RK
e > 1, K = I ,Y , let πK∞ denote the final size of the

susceptible population for each strain and letRIY
e given byEq. (20)denote the effective

reproduction number of strain Y for a IY -sequential epidemic. When RIY
e > 1, the

size of the sequential epidemic is denoted π IY∞ .
The lines πK = πK∞ divide the unit square into four regions. The region (π I∞, 1) ×

(πY∞, 1) is named region I, and the other three regions are named II, III and IV counter-
clockwise as indicated in Fig. 4.

The solutions to Eq. (18) in the unit square consist of the isolated point (1, 1) and
a curve γ (u) = (πI (u), πY (u)) with the following properties:

1. The curve γ enters the top of the unit square at (π I∞, 1).

(a) If RIY
e > 1, the tangent of γ at the point of entry lies in region II. In region II,

γ is concave and it leaves region II at the point (π I∞, π IY∞ ) (cf. Fig. 5c, d).
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b) If RIY
e < 1, the tangent of γ at the entry point lies in region I and γ does not

intersect region II (cf. Fig. 5a, b).

2. In region I, γ is a monotonically decreasing single-valued function of πI .
3. The properties of γ are symmetric in I and Y .
4. No point in region III satisfies F = 0.

The curve γ describes a necessary condition that must be satisfied by solutions to
Eqs. (12, 13, 14) or equivalently to Eq. (15). More precisely, any ω-limit point of a
solution to the differential equation with initial conditions lI , lY � 1 satisfies

(S(∞)/S(0), PI (∞)/PI (0), PY (∞)/PY (0),ΛI (∞),ΛY (∞))=(πiπy, πi , πy, 0, 0),

where (πI , πY ) lies on γ . One can use methods from the proof of Theorem 2 to prove
that not all points on γ are limit points for solutions to (15). In fact, we find that the
size of the sequential epidemic bounds the possible outcomes for epidemics where
both strains are present, such that only those points in γ that lie in Region I of Fig. 4
plus the final outcome of single-strain epidemics are possible final sizes.

This gives our final characterization of the outcome of “epidemics in competition.”

Theorem 4 Let

Γδ = {
(s, pI , pY , lI , lY )

∣
∣ 0 ≤ pI + pY − s ≤ 1,

0 < s ≤ pK ≤ 1, 0 ≤ lk < δ
}

denote the set of biologically feasible initial conditions to Eq. (15)with initial infection
less than δ > 0 and let

Φ : Γδ → [0, 1] × [0, 1]

denote the map from initial conditions to (πI , πY ), the limit of (PI (t)/PI (0), PY (t)/
PY (0)) for t → ∞. Then, for δ → 0 the set Φ(Γδ) approaches the set consisting of
the segment of the curve γ that lies in Region I in Fig. 4 combined with the three points
(π I∞, 1), (1, πY∞) and (1, 1).

5 The Effect of Cross-Immunity on the Final Epidemic

To describe the biological implications of Theorem 4, let us consider how the strength
of cross-immunity affects the possible outcomes in the situation where all hosts are
initially susceptible to both strains such that s = pI = pY = 1. The two extreme
situations are well known: If there is no cross-immunity τK = 1, the two diseases act
independently and if both strains are initially present in the population, we expect the
final size of the susceptible population to the strains to be (π I∞, πY∞). The case of full
cross-immunity τK = 0 was discussed in Sects. 2–3.
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(a)

πI
∞

πY
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1

1

III
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∞

1
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III IV
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(b)

πI
∞

πY
∞

1

1

III

III IV

πI

πY

(d)

πI
∞

πY
∞

1

1

III

III IV

πI

πY

Fig. 5 The possible outcomes of a two-strain epidemic. The solutions to the necessary condition (18) are
shown in thin line, while the heavy line indicate those points that can arise as solutions to the epidemic
model (15). Open circles indicate sequential epidemics, while filled circles indicate epidemics where at
least one strain is absent. The panels a and b correspond to the two panels in Fig. 4. Parameter values
common to all graphs are RI

0 = 2.0, RY
0 = 1.5 and s = pI = pY = 1. In a τI = 0.0, τY = 0.0; in b

τI = 0.8, τY = 0.2; in c τI = 0.5, τY = 0.6; in d τI = 0.9, τY = 0.8

For intermediate values of τK , we first observe that with initial conditions s = pI =
pY = 1 both strains have effective reproduction numbersRK

e > 1 that are independent
of the strength of the cross-immunity τK . Consequently, the final size of the susceptible
population for a one-strain epidemic πK∞ is also independent of τK and the effective
reproduction number for the sequential epidemic RIY

e = RY
0 s

(
(1 − τI )π

I∞ + τI
)
is

linear in τI .
When there is no cross-immunity, τk = 1, we have RIY

e = RY
0—corresponding

to the fact that an initial epidemic with strain I does not affect strain Y . When cross-
immunity is perfect τK = 0,weobtain (as expected) the samecondition for a sequential
epidemic as we found in Sect. 2. Thus, for weaker cross-immunity (τK larger) the
effective reproduction number of a K L-sequential epidemic increases and for some
value of 1 > τK ≥ 0, a K L-sequential epidemic is possible.
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This scenario is depicted in Fig. 5. For strong cross-immunity (small τK ), the
possible outcomes lie as shown in Fig. 5a—or if one type of sequential epidemic is
possible either in (b) or (c). As cross-immunity weakens, the outcomes look like (b)
or (c) and for even weaker cross-immunity as (d). As both τk approaches zero, the two
sequential final sizes move down toward the point (π I∞, πY∞) describing the final sizes
of two independent epidemics.

6 Discussion

In this article, we have described the outcome of a mixed epidemic where two related
strains of a pathogen compete for susceptible hosts during a single epidemic episode.
The final result of such “epidemics in competition” depends critically on details of the
initial conditions and possibly on stochastic variation during the early period of low
disease prevalence. Rather than making specific assumptions about conditions during
the onset, we have focused on those aspects of the epidemic that may be assessed by
deterministic methods.

In general, the final outcome may be characterized by the number of hosts that
have experienced each of the possible histories of infection during the epidemic. In
the cases we have studied, these numbers fall on a single curve in the space of possible
outcomes, with the caveat that epidemics where only one of the strains is present may
lead to an outcome that is an isolated point which is not part of the curve for mixed
epidemics. Such isolated points arise when conditions support a sequential epidemic,
i. e. when a strain can produce an epidemic in a population that has already experienced
the full course of an epidemic with the other strain.

These observations hold also for the case where strains exert only partial cross-
immunity in the sense that infection with one strain reduces the transmission of
the alternate strain during a subsequent infection. We finally showed that—as cross-
immunity weakens—this model spans the full range of outcomes from the case of full
cross-immunity to the case of completely unrelated strains.

This type of competition between two closely related strains represents the first
step in the natural selection among new variants of a disease during outbreaks or
pandemics. In focusing on the interaction during the course of the epidemic, the
analysis offers a somewhat unusual way to study natural selection among micro-
parasites as most studies of natural selection assumes that the disease is in a quasi-
steady state determined by the balance between disease transmission and demographic
turn-over in the host population. The present approach may be especially useful for
rapidly evolving pathogens such asmanyRNA-viruseswhere the demographic balance
is of little importance.

From a mathematical view point, the paper raises several interesting questions. As
all models of a single epidemic, the present models are structurally unstable in the
technical sense that small changes of the right hand side of the equations may lead to
qualitatively different final states. This fact is somewhat obvious because even small
levels of demographic turn-over alter the long-term behavior of the solutions. Still the
single epidemic is worth studying as it is of major interest in applications to zoonotic
outbreaks and pandemic influenza as well as forming the basic structure for much
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current theoretical work in particular in network theory. It would be interesting to
know which types of perturbations—if any—the models are robust to.

The structural instability of the model also limits the available mathematical tools
as most results from dynamical systems require that the model is generic. Thus, our
basic results concerning the continuity of the map from initial conditions to outcome
rely on quite basic theory, namely the fact that the value of the solution to an ODE
after finite time depends continuously on initial conditions combined with explicit
evaluation of the approach to the semi-stable equilibrium. How and when may this
method be generalized?

Kendall and Saunders (1983) showed that the map from initial conditions to final
size is monotonic in the sense that if the inoculum of one strain is reduced by a certain
amount while the inoculum of the second strain is increased by the same amount, then
the final number of hosts infected with the second type increases while the number
infected with the first type decreases. To prove monotonicity, Kendall and Saunders
used a complicated coupling argument; seeBall (1995). Itmaybepossible to generalize
this proof to the case of partial cross-immunity.

The most important mathematical challenge lies in the determination of the set
of possible outcomes of two-strain epidemics. Locating the outcome involves two
distinct limits: the ω-limit for the solutions of the model’s differential equations and
subsequently the limit where initial conditions for the infected classes go to zero
mimicking the epidemic situation of a newly introduced pathogen. To handle the
last limit, we relied on the fact that ad hoc methods yield a suitable number of first
integrals of the model so that the relation between initial conditions and the ω-limit
was analytically available. The model of infectivity-reduction was carefully chosen to
allow for this process. It is straightforward to see that the methods we have developed
in Sect. 4 may also be applied to the case of polarized immunity. Polarized immunity
refers to the situation where after infection with the first strain, a fraction of the hosts
recognizes perfectly a challenge from the a second strain while the remainder of
the hosts experience the second strain as a novel infection (Gog and Swinton 2002).
However, it is not clear if our results—and in particular the one-dimensional nature
of the outcome space—will generalize to the case where cross-immunity leads to a
reduction in susceptibility.

Throughout the paper, we have assumed that the host population mixes homo-
geneously. It is well known that for a single pathogen in a heterogeneously mixing
population, there exists a unique final size, but the size is in general not analytically
available (Magal et al. 2016; Miller 2012; Andreasen 2011; Rass and Radcliffe 2003).
The generalization to multi-strain epidemics is not clear. In fact, for heterogeneously
mixing populations it is easy to find examples where the space of outcomes for a
two-strain epidemic is multi-dimensional.
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