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Abstract
For a susceptible–infectious–susceptible infection model in a heterogeneous popu-
lation, we derive simple and precise estimates of mean persistence time, from a
quasi-stationary endemic state to extinction of infection. Heterogeneity may be in
either individuals’ levels of infectiousness or of susceptibility, as well as in individu-
als’ infectious period distributions. Infectious periods are allowed to follow arbitrary
non-negative distributions. We also obtain a new and accurate approximation to the
quasi-stationary distribution of the process, as well as demonstrating the use of our
estimates to investigate the effects of different forms of heterogeneity. Our model may
alternatively be interpreted as describing an infection spreading through a heteroge-
neous directed network, under the annealed network approximation.

Keywords Stochastic epidemic models · Large deviations · Endemic fade-out ·
Stochastic networks · Superspreaders

1 Introduction

Formodels of infectious spread inwhich long-termquasi-stable endemicity is possible,
a random variable of particular interest is the persistence time until infection dies
out from the population. For a number of such models, it is known (Andersson and
Djehiche 1998; Ball et al. 2016; vanHerwaarden andGrasman 1995) that as the typical
population size N tends to infinity, the expected persistence time τ for an infection
that has become endemic in the population satisfies

τ ∼ C√
N

exp(N A) (1)
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where we use ∼ to denote that the ratio of the two sides converges to 1 as N → ∞,
and A,C are constants whose values depend upon parameters of the process, but not
upon N . We assume here, and from now on, that the basic reproduction number R0
(the average number of new infections caused by a typical infected individual in an
otherwise susceptible population) is greater than one, so that the process is super-
critical, or ‘above threshold’.

A pioneering piece of work in this direction was van Herwaarden and Gras-
man (1995), where it was shown that the relationship (1) holds for a particular
susceptible–infectious–removed (SIR) infection model. Evaluation of A required
numerical solution of a system of ordinary differential equations, while no method
for evaluating C was given. It should be noted that van Herwaarden and Grasman
(1995) studied a diffusion approximation to the infection model, but it is now well
known (see, e.g., Clancy and Tjia 2018; Doering et al. 2005) that such a diffusion
approximation does not, in general, give correct leading-order asymptotics—that is,
the value of the constant A computed from the diffusion approximation is not nec-
essarily equal to the correct A value for the underlying discrete state-space model.
Using rather different techniques, Andersson and Djehiche (1998) derived a result of
the form (1), together with explicit expressions for the constants A,C , for the classic
susceptible–infectious–susceptible (SIS) model of Weiss and Dishon (1971).

In recent years, a number of authors have applied techniques from statistical physics
to study persistence times for a range of population models, including infection
models. For models which are naturally one-dimensional, including the classic SIS
model, a relationship of the form (1) together with explicit formulae for A,C can be
obtained (Assaf and Meerson 2010, 2017). For multidimensional models (including
most infection models), it is usually only possible to establish results of the cruder
form limN→∞(ln τ)/N = A, and to evaluate the leading-order constant A via numer-
ical solution of a system of ordinary differential equations (Dykman et al. 1994; Elgart
and Kamenev 2004; Hindes and Schwartz 2016; Kamenev and Meerson 2008; Lind-
ley et al. 2014). One reason why the technique has not been more widely exploited
is that for a k-dimensional model, it is necessary to solve a system of ordinary differ-
ential equations in 2k dimensions subject to boundary conditions at times t = −∞
and t = +∞. Progress has been made by a number of authors in the development
of efficient numerical procedures (e.g. Forgoston et al. 2011; Lindley and Schwartz
2013), but implementation for models in dimensions k > 2 remains far from trivial.

Much of the above work on infection models assumes that individuals’ infectious
periods are exponentially distributed. This is not biologically realistic for most infec-
tions and is done purely for reasons of mathematical tractability, so that it is of interest
to understand the effect of this simplifying assumption upon the resulting persistence
time estimates. Ball et al. (2016) extended the result of Andersson andDjehiche (1998)
for the classic SIS model to allow for a quite general infectious period distribution, by
applying a result on insensitivity in stochastic networks from Zachary (2007), finding
that the leading-order constant A takes the same value regardless of the infectious
period distribution (provided only that its mean is held constant), but that the prefactor
constant C must be appropriately modified.

A different extension of the result of Andersson and Djehiche (1998) has recently
been established in Clancy (2018). For an SIS model incorporating heterogeneity
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in susceptible individuals’ levels of susceptibility or infected individuals’ levels of
infectiousness, an explicit formula was found for the leading-order constant A in the
relationship limN→∞(ln τ)/N = A. Infectious periods were allowed to follow an
Erlang distribution, and the value of A shown to depend only upon the mean of the
distribution, under this assumption. In the current paper,webuild on thework ofClancy
(2018) to establish results of the muchmore precise form (1), including simple explicit
formulae for the prefactor constantC . At the same time,we extend themodel of Clancy
(2018) in twoways: firstly, we allow for heterogeneity in individuals’ infectious period
distributions in addition to the heterogeneities in susceptibility and infectiousness of
Clancy (2018); secondly, following the approach of Ball et al. (2016), we allow for
infectious periods following quite general (not necessarily Erlangian) distributions.
Clancy (2018) showed that for a sufficiently large population, greater heterogeneity (in
the sense of majorization ordering, see Marshall et al. 2011), whether in susceptibility
or infectiousness, leads to a reduction in mean persistence time of infection in the
population. Using our more general model, we are also able to investigate the effect
of heterogeneity in infectious period distributions; see Sect. 5.2.

We note that the only infection model for which such explicit formulae for A,C
have previously been available is the SISmodel in a homogeneouslymixing population
(with general infectious period distribution); in general, the leading-order constant A
must be evaluated via numerical solution of a system of ordinary differential equations
(a non-trivial exercise, as noted above), while no general method exists to evaluate the
prefactor constant C for multidimensional models.

The remainder of the paper is structured as follows. In Sect. 2, we define our model
and state our main result, Theorem 1. Section 3 recalls some standard approxima-
tions for infection models and general theory that we will require in the sequel. The
proof of our results occupies Sect. 4. In Sect. 5, we demonstrate the accuracy of our
approximations, both for mean persistence time and for the quasi-stationary distribu-
tion of the process; we apply our results to investigate the effects of different forms
of heterogeneity; and we outline the application of our results to network models via
the annealed network approximation (Hindes and Schwartz 2016, 2017). Finally, in
Sect. 6, we present some concluding discussion and suggestions for further work.

2 TheModel and Asymptotic Persistence Time Formulae

Consider a closed population of N individuals divided into k groups, with group i
(i = 1, 2, . . . , k) consisting of Ni individuals. Denote by fi = Ni/N the proportion
of the population belonging to group i , so that

∑
i fi = 1. When a group i individual

becomes infected, it remains so for a time distributed as a random variable Ti of mean
αi = E [Ti ], afterwhich it returns to the susceptible state.During this infectious period,
the group i infectivemakes contactswith each individual in each group j = 1, 2, . . . , k
at the points of a Poisson process of rate βλiμ j/N , where β is some overall measure
of infectiousness, λi represents the relative infectiousness of group i individuals and
μ j represents the relative susceptibility of group j individuals. (The assumption that
the group i to group j infection rate factorises in this way is sometimes referred
to as ‘separable mixing’.) Without loss of generality, we scale the λi , μ j values so
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that
∑

i λi fi = ∑
j μ j f j = 1. These Poisson processes and infectious periods are all

mutually independent. If a contacted individual is susceptible, then it becomes infected
(and infectious); if the contacted individual is already infected, then the contact has
no effect. We denote by I j (t) the number of infected individuals in group j at time
t ≥ 0, the corresponding number of susceptible individuals being S j (t) = N j − I j (t),
and write I(t) = (I1(t), I2(t), . . . , Ik(t)). We assume throughout that β > 0, and that
fi , αi , λi , μi > 0 for all i . The basic reproduction number R0 for our model is given
by

R0 = β

k∑

i=1

αiλiμi fi , (2)

and we will assume throughout that parameter values are such that R0 > 1.
In order to state our results, we require the following definitions. Define D(λ,μ)

to be the unique positive solution of

β

k∑

j=1

α jλ jμ j f j
1 + α jμ j D(λ,μ)

= 1. (3)

Denote by ϕi (θ) = E
[
eθTi

]
the moment-generating function of Ti , and define the

function ψ(θ) to be

ψ(θ) =
k∑

i=1

μi fiϕi (−βλi (1 − θ)) . (4)

Finally, define ω to be the unique solution in [0, 1) of

ω = ψ(ω). (5)

We are now in a position to state our main result as follows.

Theorem 1 Consider the heterogeneous population SIS infectionmodel defined above,
and recall that τ denotes the expected time from quasi-stationarity to disease extinc-
tion.

(i) Suppose that heterogeneity is in susceptibility but not infectiousness (so λ = 1),
and that R0 > 1. Then as N → ∞,

τ ∼ 1

β (1 − ω) D(1,μ)

√
√
√
√

2π

N
∑

i fi
(

αiμi
1+αiμi D(1,μ)

)2

× exp

(

N

(
∑

i

fi ln (1 + αiμi D(1,μ)) − D(1,μ)

β

))

. (6)
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(ii) Suppose that heterogeneity is in infectiousness but not susceptibility (soμ = 1)
and that R0 > 1. Provided that individuals’ infectious periods are exponentially
distributed (so the process I(t) is Markovian with transition rates given in
Table 1), then as N → ∞,

τ ∼ 1

D(λ, 1)D(1,λ)

√
√
√
√

2π

N
∑

i fi
(

αiλi
1+αiλi D(1,λ)

)2

× exp

(

N

(
∑

i

fi ln (1 + αiλi D(1,λ)) − D(1,λ)

β

))

. (7)

In the next section, we summarise some standard theory that we will require in
order to prove Theorem 1; the proof itself occupies Sect. 4.

3 General Theory

We will make use of two standard approximations to the process I(t), valid during
different phases of an outbreak. First, consider the early stages of an outbreak initiated
by a small number of infected individuals in a large susceptible population. So long
as the number of infected individuals remains small relative to the total population
size, the process I(t)may be approximated by a multitype branching process in which
each group i individual lives for a time distributed as Ti and during this time gives
birth to new group j individuals ( j = 1, 2, . . . , k) according to a Poisson process
of rate βλiμ j f j . Denoting by Gi j the number of type j offspring of a typical type i
individual, the basic reproduction number R0 is given by the dominant eigenvalue of
the mean offspring matrix M with entries mi j = E

[
Gi j

] = βαiλiμ j f j , leading to
formula (2). Denoting by ωi the probability that the branching process initiated by a
single group i individual produces only a finite number of offspring (corresponding
to a minor outbreak of infection), then for R0 ≤ 1 we have ω1 = ω2 = · · · = ωk = 1,
while for R0 > 1, ω = (ω1, ω2, . . . , ωk) is the unique solution in [0, 1)k of

ωi = ϕi

⎛

⎝−βλi

⎛

⎝1 −
k∑

j=1

μ j f jω j

⎞

⎠

⎞

⎠ for i = 1, 2, . . . , k,

see, for instance, Section 3 of Clancy and Pearce (2013).
We can alternatively treat the above multitype branching process as a single-type

branching process in which the number of offspring produced by a typical type i
individual is distributed as Gi where Gi follows a mixture distribution: Gi = Gi j

with probability μ j f j for j = 1, 2, . . . , k. For a process initiated by a single infected
individual which belongs to group i with probability μi fi , the minor outbreak prob-
ability ω is given by ω = ∑k

i=1 μi fiωi , and for R0 > 1, ω is the unique solution in
[0, 1) of ω = ψ(ω), where ψ(θ) is defined by Eq. (4).
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Given that a major outbreak occurs, then following the initial (branching process)
phase, the growth of the epidemic towards an endemic equilibrium and the long-
term quasi-equilibrium behaviour may be approximated by a deterministic process.
Denoting by F̄i (u) = Pr(Ti > u) the survival function of Ti , then the scaled process
I(t)/N is approximated by the deterministic process y(t) which evolves according
to, for i = 1, 2, . . . , k,

yi (t) =
∫ t

−∞
β

⎛

⎝
k∑

j=1

λ j y j (u)

⎞

⎠ μi ( fi − yi (u))F̄i (t − u) du. (8)

System (8) has a disease-free equilibrium point at y = 0, and for R0 > 1 a unique
nonzero equilibrium point y∗ with components (Nold 1980; Clancy 2015)

y∗
i = αiμi fi D(λ,μ)

1 + αiμi D(λ,μ)
for i = 1, 2, . . . , k, (9)

where D(λ,μ) is given by Eq. (3).
For the remainder of this section, we focus upon the case that infectious periods

Ti are exponentially distributed. The process {I(t) : t ≥ 0} is now a continuous-time
Markov chain on the finite state space S = ∏k

i=1 {0, 1, . . . , Ni } with transition rates
given in Table 1. The moment-generating function of Ti (i = 1, 2, . . . , k) is ϕi (θ) =
(1 − αiθ)−1, and it follows that the minor outbreak probability ω is

ω = 1 − (D(μ,λ)/β) , (10)

where D(μ,λ) is given by Eq. (3) with the roles of λ,μ interchanged.
The process I(t) is a density-dependent process in the sense of chapter 11 of Ethier

and Kurtz 2005; that is, the transition rates are of the form

P (I(t + δt) = x + l | I(t) = x) = NWl

( x
N

)
+ o(δt) for x ∈ S, l ∈ L, (11)

for some functions Wl : Rk → R
+, where L is the set of possible jumps from each

state x ∈ S. The scaled process I(t)/N converges almost surely over finite time
intervals (Ethier and Kurtz 2005, Theorem 11.2.1), as N → ∞, to the solution y(t)
of the ordinary differential equation system

Table 1 Transition rates for the heterogeneous population SIS model with exponentially distributed infec-
tious periods

Event State transition Transition rate

Infection in group j I j → I j + 1 β
N

(∑k
m=1 λm Im

)
μ j (N j − I j )

Recovery in group j I j → I j − 1 (1/α j )I j
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d y
dt

=
∑

l∈L
lWl ( y).

That is, Eq. (8) may, in the case of exponentially distributed infectious periods, be
written in the form

dyi
dt

= β

⎛

⎝
k∑

j=1

λ j y j

⎞

⎠ μi ( fi − yi ) − (1/αi )yi for i = 1, 2, . . . , k. (12)

For R0 > 1, the disease-free equilibrium point y = 0 is unstable and the endemic
equilibrium point y∗ given by (9) is globally asymptotically stable (Lajmanovich and
Yorke 1976).

Denote by Q the transition rate matrix of the process, with entries given in Table 1.
The state space S is made up of an absorbing state at 0 and a single transient commu-
nicating class C , and we denote by QC the restriction of Q to C . The infection will
almost surely die out within finite time, and (Darroch and Seneta 1967) there exists a
unique quasi-stationary distribution q with elements

qx = lim
t→∞Pr (I(t) = x |I(t) ∈ C ) for x ∈ C .

The distribution q may be found as the unique solution of

qQC = −(1/τ)q with
∑

x∈C
qx = 1, (13)

where−(1/τ) is the eigenvalue of QC with largest real part, and the time to extinction
from quasi-stationarity is exponentially distributed with mean τ .

For a process with transition rates of the form (11), Eq. (13) may be written as

∑

l∈L

(

qx−lWl

(
x − l
N

)

− qxWl

( x
N

))

= −(τN )−1qx for x ∈ C, (14)

with

τ =
(

N
∑

l∈L
q−lWl

(

− l
N

))−1

. (15)

Writing y = x/N , then, following the methodology described in Assaf and Meerson
(2017) and references therein,we adopt theWKB(Wentzel,Kramers,Brillouin)ansatz
that

qx = KN exp (−NV ( y) − V0( y) + o(1)) (16)
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for some functions V ( y), V0( y) that do not depend upon N , and some KN that does
not depend upon y. Without loss of generality, we set V ( y∗) = V0( y∗) = 0. Then

qx−l = qx exp

(

lT
∂V

∂ y
− 1

2N
lT

∂2V

∂ y2
l + 1

N
lT

∂V0
∂ y

+ o(1/N )

)

,

and similarly

Wl

(

y − l
N

)

= Wl ( y) − lT

N

∂Wl

∂ y
+ o(1/N ).

Substituting into Eq. (14), and assuming that τ is sufficiently large for the right-hand
side to be neglected, we obtain

∑

l∈L
Wl ( y)

(

exp

(

lT
∂V

∂ y

)

− 1

)

+ 1

N

∑

l∈L
exp

(

lT
∂V

∂ y

) (

−lT
∂Wl

∂ y
+ lT

∂V0
∂ y

Wl ( y) − 1

2
lT

∂2V

∂ y2
lWl ( y)

)

+ o(1/N ) = 0. (17)

Collecting together leading-order terms from Eq. (17), we have

∑

l∈L
Wl ( y)

(

exp

(

lT
∂V

∂ y

)

− 1

)

= 0. (18)

That is, V ( y) satisfies the Hamilton–Jacobi equation H
(
y, ∂V

∂ y

)
= 0, where the

Hamiltonian is defined to be H( y, θ) = ∑
l∈L Wl ( y)

(
el

T θ − 1
)
.

Collecting together second-order terms in Eq. (17) gives

∑

l∈L
exp

(

lT
∂V

∂ y

)

lT
((

∂V0
∂ y

− 1

2

∂2V

∂ y2
l
)

Wl ( y) − ∂Wl

∂ y

)

= 0, (19)

a first-order linear partial differential equation to be solved for V0( y), once V ( y)
has been found from Eq. (18). Equation (18) has been previously studied in numerous
specific applications (e.g. Assaf andMeerson 2010; Clancy 2018; Dykman et al. 1994;
Elgart and Kamenev 2004; Hindes and Schwartz 2016; Kamenev and Meerson 2008;
Lindley et al. 2014). Equation (19) has been analysed in some detail in the k = 1-
dimensional case (Assaf and Meerson 2017), but does not seem to have been much
studied in the context of multidimensional problems.

With the above standard results and general theory in hand, we now proceed to the
proof of Theorem 1.
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4 Proof of Asymptotic Persistence Time Formulae

4.1 Heterogeneous Susceptibilities and Exponentially Distributed Infectious
Periods: TheMain Body of the Quasi-Stationary Distribution

We will start by proving Theorem 1(i), corresponding to the case of heterogeneity
in susceptibility but not infectiousness, so λ = 1, and focus initially on the case
of exponentially distributed infectious periods. For the Markov chain model with
transition rates given in Table 1, we aim to express the asymptotic form of the main
body of the quasi-stationary distribution in the form (16). We thus need to find the
constant KN and the functions V ( y), V0( y). In this section and Sect. 4.2, we follow the
approach described in Assaf and Meerson (2010) for k = 1-dimensional processes,
adapted to our multidimensional situation.

For the case λ = 1, the solution to Eq. (18) with boundary condition V ( y∗) = 0 is
known, by a slight generalisation of formula (20) of Clancy (2018), to be

V ( y) =
k∑

i=1

yi (1 + ln yi − ln (βαiμi )) −
(

k∑

i=1

yi

)

ln

(
k∑

i=1

yi

)

+
k∑

i=1

( fi − yi ) ln( fi − yi ) − D(1,μ)

β
−

k∑

i=1

fi ln fi

+
k∑

i=1

fi ln (1 + αiμi D(1,μ)) . (20)

Next, to evaluate KN , we consider the Taylor series expansion of formula (16) for
y in the vicinity of y∗. Differentiating Eq. (20), we obtain

∂V

∂ yi
= ln

⎛

⎝ yi

βαiμi ( fi − yi )
(∑k

m=1 ym
)

⎞

⎠ , (21)

so that in particular, ∂V
∂ y

∣
∣
∣
y= y∗ = 0. This is as one would expect, since for large N

the quasi-stationary distribution has its mode at x = N y∗. Recalling the boundary
conditions V ( y∗) = V0( y∗) = 0, then for |x − N y∗| = O(

√
N ), Taylor series

expansion of (16) yields

qx = KN exp

(

− 1

2N
(x − N y∗)T ∂2V

∂ yi∂ y j

∣
∣
∣
∣
y= y∗

(x − N y∗) + o(1)

)

. (22)

Denoting by S the matrix with entries

si j = ∂2V

∂ yi∂ y j

∣
∣
∣
∣
y= y∗

,
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then (22) represents a multivariate Gaussian distribution with variance matrix NS−1,
normalisation of which requires that

KN =
√

det(S)

(2πN )k
. (23)

To evaluate the determinant of S, we differentiate Eq. (21) to obtain

∂2V

∂ yi∂ y j
=

(
fi

yi ( fi − yi )

)

δi j − 1
∑

m ym
, (24)

where δi j is the Kronecker delta. In particular, recalling that the components of y∗ are
given by formula (9) with λ = 1, then S has elements

si j = ∂2V

∂ yi∂ y j

∣
∣
∣
∣
y= y∗

=
(

(1 + αiμi D(1,μ))2

αiμi fi D(1,μ)

)

δi j − β

D(1,μ)
.

It follows that

det(S) = 1

D(1,μ)k

⎛

⎝1 − β

k∑

i=1

αiμi fi
(1 + αiμi D(1,μ))2

⎞

⎠
k∏

i=1

(1 + αiμi D(1,μ))2

αiμi fi

= β

D(1,μ)k−1

⎛

⎝
k∏

i=1

(1 + αiμi D(1,μ))2

αiμi fi

⎞

⎠
k∑

i=1

fi

(
αiμi

1 + αiμi D(1,μ)

)2
, (25)

the last line above following from Eq. (3) with λ = 1. Substituting from (25) into (23),
we obtain

KN =
√
√
√
√ β

(2πN )k D(1,μ)k−1

(
k∏

i=1

(1 + αiμi D(1,μ))2

αiμi fi

)
k∑

i=1

fi

(
αiμi

1 + αiμi D(1,μ)

)2

. (26)

To find V0( y), substitute the derivatives (21, 24) into Eq. (19) to obtain, after some
simplification, the partial differential equation

k∑

i=1

⎛

⎝βμi ( fi − yi )

⎛

⎝
k∑

j=1

y j

⎞

⎠ − yi
αi

⎞

⎠

(
fi − 2yi

2yi ( fi − yi )
+ 1

2
∑

j y j
− ∂V0

∂ yi

)

= 0. (27)

Equation (27) will be satisfied if we can find V0( y) such that

∂V0
∂ yi

= fi − 2yi
2yi ( fi − yi )

+ 1

2
∑

j y j
for i = 1, 2, . . . , k,
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and hence we find that the solution of (27) subject to the boundary condition V0( y∗) =
0 is

V0( y) = (1/2) ln

(
β

D(1,μ)k+1

(
k∑

i=1

yi

)
k∏

i=1

yi ( fi − yi ) (1 + αiμi D(1,μ))2

αiμi f 2i

)

. (28)

Our analysis of theWKBapproximation (16) is nowcomplete, in thatwe have found
explicit formulae for V ( y), KN and V0( y) in Eqs. (20, 26, 28), respectively, giving
an approximation to the main body of the quasi-stationary distribution. The WKB
ansatz is thus justified, in that we have been able to exhibit a solution of the assumed
form (16). However, V0( y) → −∞ as y → 0, and the asymptotic form (16) is not
valid in the tail of the distribution, where |x| = O(1). We address this in Sect. 4.2.

4.2 Heterogeneous Susceptibilities and Exponentially Distributed Infectious
Periods: The Asymptotic Persistence Time Formula

For the SIS model with heterogeneous susceptibilities and exponentially distributed
infectious periods, the mean extinction time τ from quasi-stationarity is given, from

formula (15), by τ =
(∑k

i=1(1/αi )qei

)−1
, where ei denotes the unit vector with

i th element equal to 1. We are not yet in a position to evaluate the quasi-stationary
probabilities qei , since expression (16) is not valid in the range |x| = O(1). We will
therefore derive an alternative asymptotic formula for qx that is valid in the range
|x| = O(1), but is un-normalised. Normalisation may be achieved by matching our
two approximations in the region where their domains of validity overlap. In order
that we can carry out this matching, we first consider the Taylor series expansion of
our existing approximation (16) about y = 0. Since V0( y) diverges at y = 0, this is
quite technical, as we shall see. To deal with this, we define

φ( y) = V0( y) − 1

2
ln

(
k∑

i=1

yi

)

− 1

2

k∑

i=1

ln yi

= (1/2) ln

(
β

D(1,μ)k+1

k∏

i=1

( fi − yi ) (1 + αiμi D(1,μ))2

αiμi f 2i

)

,

so that φ( y) is well behaved at y = 0, and (16) may be rewritten as

qx = KN
√(∑

i yi
) (∏

i yi
) exp (−NV ( y) − φ( y) + o(1)) .

Taylor series expansion in the range |x| = o(
√
N ), together with substitution for KN

from (26), gives
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qx = KN
√(∑

i yi
) ∏

i yi
exp

(

−NV (0) − N yT
∂V

∂ y

∣
∣
∣
∣
y=0

− φ(0) + o(1)

)

= KN

√
√
√
√ D(1,μ)k+1

β
(∑

i yi
) ∏

i yi

k∏

i=1

αiμi fi
(1 + αiμi D(1,μ))2

× exp

(

−NV (0) − N yT
∂V

∂ y

∣
∣
∣
∣
y=0

+ o(1)

)

= D(1,μ)

√
√
√
√ N

(2π)k
(∑

i xi
) ∏

i xi

k∑

i=1

fi

(
αiμi

1 + αiμi D(1,μ)

)2

× exp

(

−NV (0) − N yT
∂V

∂ y

∣
∣
∣
∣
y=0

+ o(1)

)

.

A further difficulty arises here, since the derivatives ∂V /∂ yi given by (21) are not
well defined at y = 0. We therefore consider approach to y = 0 along a specific
trajectory yi = ŷξi as ŷ → 0, where ξ1, ξ2, . . . , ξk > 0 are fixed with

∑k
i=1 ξi = 1.

Along this trajectory, ∂V
∂ yi

→ ln(ξi/βαiμi fi ) as ŷ → 0, and so with x̂ = N ŷ,

qx = β x̂ D(1,μ)

k∏

i=1

(
αiμi fi

ξi

)x̂ξi

√
√
√
√ N

(2π)k x̂k+1
∏

i ξi

k∑

i=1

fi

(
αiμi

1 + αiμi D(1,μ)

)2

× exp (−NV (0) + o(1)) . (29)

We now seek an approximation for qx valid for |x| = O(1). For the SIS model
with heterogeneous susceptibilities, with the convention that qx = 0 for x /∈ C , the
exact balance equation (13) may be written as

β

N

k∑

i=1

μi (Ni − xi + 1)

⎛

⎝
k∑

j=1

x j − 1

⎞

⎠ qx−ei +
k∑

i=1

(1/αi )(xi + 1)qx+ei

−
⎛

⎝ β

N

k∑

i=1

k∑

j=1

μi (Ni − xi )x j +
k∑

i=1

(1/αi )xi

⎞

⎠ qx

= −(1/τ)qx for x ∈ C . (30)

Assuming, as before, that τ is sufficiently large for the right-hand side of Eq. (30)
to be neglected, and taking the linear approximation to the left-hand side, which is
valid in the required range |x| = o(

√
N ), we obtain the asymptotic balance equation
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β

k∑

i=1

μi fi

⎛

⎝
k∑

j=1

x j − 1

⎞

⎠ qx−ei +
k∑

i=1

(1/αi )(xi + 1)qx+ei

−
⎛

⎝
k∑

j=1

(
β + (1/α j )

)
x j

⎞

⎠ qx = 0 (31)

for x ∈ C . Equation (31) corresponds to the (linear) branching process approximation
discussed in Sect. 2, andwe seek an un-normalised stationary solution.One component
of the solution may be found by solving the detailed balance equations (Kelly 2011,
chapter 1) corresponding to (31), and the other component by analogywith the solution
for the case k = 1 given in Assaf and Meerson (2010). The solution thus obtained
may be written in the form

qx = 1
∑

i xi

(∑
i xi

)!
∏

i xi !
k∏

i=1

(βμi fi )
xi

(
k∏

i=1

α
xi
i −

k∏

i=1

(
αi

1 + αi D(μ, 1)

)xi
)

1

D(μ, 1)τ

where the normalising factor τ remains to be found. For |x| large, noting that
D(μ, 1) > 0 and applying Stirling’s formula to the factorial terms, we obtain

qx ∼ 1
∑

i xi

(∑
i xi

)!
∏

i xi !
k∏

i=1

(βαiμi fi )
xi 1

D(μ, 1)τ

∼
(

∑

i

xi

)∑
i xi k∏

i=1

(
βαiμi fi

xi

)xi
√

1

(2π)k−1
(∑

m xm
) ∏

m xm

(
1

D(μ, 1)τ

)

. (32)

Along the previously considered trajectory with xi = x̂ξi , expression (32) reduces
to

qx ∼ β x̂
k∏

i=1

(
αiμi fi

ξi

)x̂ξi
√

1

(2π)k−1 x̂ k+1
∏

i ξi

(
1

D(μ, 1)τ

)

, (33)

and we can now match expressions (29) and (33) to obtain

τ ∼ 1

D(1,μ)D(μ, 1)

√
√
√
√

2π

N
∑

i fi
(

αiμi
1+αiμi D(1,μ)

)2 exp (NV (0)) . (34)

Noting from formula (20) that V (0) = ∑
i fi ln (1 + αiμi D(1,μ)) − (D(1,μ)/β),

and recalling that the minor outbreak probability in the case of exponentially dis-
tributed infectious periods is given by Eq. (10), we have now established Theorem 1(i)
for the case of exponentially distributed infectious periods. Note that our assumption
that τ is sufficiently large for the right-hand side of Eq. (14) to be neglected is thus
justified in retrospect. Next, in Sect. 4.3, we extend the result to cover the case of
heterogeneous susceptibilities with more general infectious period distributions.
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4.3 Heterogeneous Susceptibilities and General Infectious Period Distributions

To allow for infectious period distributions more general than exponential, we will
follow the approach developed in Ball et al. (2016) for the classic SIS model (the case
k = 1). That is, we consider a restarted version of our model and apply an insensitivity
result for stochastic networks from Zachary (2007).

Consider our model of Sect. 2 in the case λ = 1. Following Hernández-Suárez
and Castillo-Chavez (1999), we introduce a regeneration step as follows. Whenever
the process reaches the state I = 0, it remains there for an exponentially distributed
period of mean 1, after which a randomly chosen individual becomes infected, and the
process then continues as before. The newly infected individual at the regeneration
step is chosen to belong to group i with probability ρi for some distribution ρ =
(ρ1, ρ2, . . . , ρk).

In the terminology of Zachary (2007), each occasion when an individual in group i
becomes infected corresponds to a class i arrival with associated workload distributed
as Ti/αi . When the process is in state x ∈ S, individuals arrive in class i (i =
1, 2, . . . , k) at rate

φ0i (x) =
{

ρi for x = 0,
β
N μi (Ni − xi )

∑k
j=1 x j for x ∈ C .

While xi > 0, the workload of each class i individual reduces at rate φi (x)/xi , where

φi (x) = xi/αi .

The framework ofZachary (2007) allows formovement of individuals between classes,
which we do not require here, so that in the notation of Zachary (2007) we take, for
i = 1, 2, . . . , k,

φi j (x) =
{

φi (x) for j = 0,
0 for j = 1, 2, . . . , k.

That is, on completion of its workload, an individual of class i leaves the system with
probability φi0(x)/φi (x) = 1 and moves to class j = 1, 2, . . . , k with probability
φi j (x)/φi (x) = 0.

In Theorem 2 of Zachary (2007), it is shown that if a distribution π(x) satisfies a
certain partial balance condition (Equations (10) of Zachary 2007), together with an
integrability condition (Equation (11) of Zachary 2007), then π(x) is the stationary
distribution of the numbers of individuals present in each class, regardless of the
distributions of T1, T2, . . . , Tk . In order to find the stationary distribution π(x), we
return to the case of exponentially distributed infectious periods. If the restarted process
is reversible, then it is straightforward to find π(x) from the detailed balance equations
(Kelly 2011, chapter 1). In order that the restarted process be reversible, consider
Kolmogorov’s criterion (Kelly 2011, chapter 1) applied to the sequence of states 0 →
ei → ei+e j → e j → 0 for i 
= j . That is,we require the product of the transition rates
in one direction around the loop to equal the corresponding product of transition rates in
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the opposite direction. This may be achieved by taking ρi = μi fi for i = 1, 2, . . . , k.
We can then solve the detailed balance equations, thereby verifying that the restarted
process with this choice of ρi values is indeed reversible, with stationary distribution
π(x) satisfying

π(x) = 1

β

(∑k
j=1 x j

)
!

∑k
j=1 x j

k∏

j=1

(
βα jμ j

N

)x j (
N j

x j

)

π(0) for x ∈ C, (35)

so that

π(0) =
⎛

⎝1 + 1

β

∑

x∈C

(∑k
j=1 x j

)
!

∑k
j=1 x j

k∏

j=1

(
βα jμ j

N

)x j (
N j

x j

)
⎞

⎠

−1

.

It is now straightforward to check that the balance equations (10) of Zachary (2007)
are satisfied by π(x) given by (35). The integrability condition (11) of Zachary (2007)
is trivially satisfied since our state space is finite. It therefore follows from Theorem 2
of Zachary (2007) that π(x) given by (35) is stationary for the numbers of infected
individuals in our restarted process, whatever the distributions of the infectious peri-
ods Ti .

Now π(0) is the expected proportion of time spent in state I = 0 in the long term,
which is equal to the expected proportion of time spent in state I = 0 during one
regenerative cycle. Denoting by τ0 the expected regeneration time, being the time
from one entry into state I = 0 until the following entry into state I = 0, then
τ0 = 1/π(0). For i = 1, 2, . . . , k, denote by τi the expected time for the process to
hit state I = 0 after having been initiated with a single newly infected individual in
group i . Notice that the values of τ1, τ2, . . . , τk are the same for the restarted process
as for the original process and that

τ0 = 1 +
k∑

i=1

μi fiτi ,

so that

k∑

i=1

μi fiτi = 1

π(0)
− 1. (36)

Recall from Sect. 3 that in the large population limit, the initial stage of an outbreak
initiated by a single newly infected individual may be approximated by a multitype
branching process. Recall that ωi (i = 1, 2, . . . , k) denotes the probability that this
branching process, initiated by a single group i individual, produces only a finite num-
ber of progeny. Denote by ζi the expected time to extinction of the process conditional
upon a finite number of progeny being produced, and by σi the expected time taken to
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attain quasi-stationarity, starting from a single group i individual, given that a major
outbreak occurs. Then, in the large population limit, we have

τi ∼ ωiζi + (1 − ωi ) (σi + τ) .

Now ζi , σi are negligible in comparison with τ , and so

τi ∼ (1 − ωi )τ. (37)

The above somewhat heuristic argument is made rigorous for the case k = 1 in
Appendix B of Ball et al. (2014).

Recalling from Sect. 3 that ω = ∑
i μi fiωi , it follows from (37) that

k∑

i=1

μi fiτi ∼ (1 − ω)τ.

Now from Eqs. (35) and (36),

∑

i

μi fiτi = 1

β

∑

x∈C

(∑k
j=1 x j

)
!

∑k
j=1 x j

k∏

j=1

(
βα jμ j

N

)x j (
N j

x j

)

, (38)

and hence

τ ∼ 1

β (1 − ω)

∑

x∈C

(∑k
j=1 x j

)
!

∑k
j=1 x j

k∏

j=1

(
βα jμ j

N

)x j (
N j

x j

)

.

In the case of exponentially distributed infectious periods, we know from Eq. (10)
that β (1 − ω) = D(μ, 1), and so comparing with expression (34), we obtain our
general result (6), and Theorem 1(i) is now proved.

For the homogeneous population case (k = 1), Ball et al. (2016) approximated
the sum (38) directly, and from this derived an asymptotic approximation to the mean
persistence time τ . For k > 1, it does not seem straightforward to approximate (38)
directly, so that we have proceeded more indirectly via the methods of Sects. 4.1–4.2.

4.4 Heterogeneous Infectiousness and Exponentially Distributed Infectious
Periods

As Clancy (2018) points out, see also Wilkinson and Sharkey (2013), it follows from
the network duality results of Harris (1976) and Holley and Liggett (1975) that pro-
vided infectious periods are exponentially distributed, the value of τ is unchanged
if we interchange the roles of λ,μ. Theorem 1(ii) then follows immediately from
Theorem 1(i).

123



Precise Estimates of Persistence Time for SIS Infections… 2887

5 Applications

5.1 Performance of theMean Persistence Time Approximation

Figure 1 shows values of ln τ computed from the exact formula (13) compared with
values computed from our asymptotic formulae (6, 7), for the case of exponentially
distributed infectious periods with heterogeneous susceptibility or infectiousness. We
see that the approximation is quite accurate for the range of parameter values consid-
ered, and (although the effect is a little hard to make out from Fig. 1) the accuracy
of the approximation improves as population size N increases, as expected. It is also
apparent that the approximation performs better as R0 increases. Since our methods
are valid under the condition that R0 > 1, it is perhaps not surprising that the accuracy
of the approximation decreases as R0 approaches 1. We note that the approximation
appears to consistently err on the side of slightly underestimating the mean persistence
time.

The effects of different infectious period distributions are illustrated in Fig. 2,
where we consider both exponentially distributed infectious periods and infectious
periods which are constant (non-random). For the case of exponentially distributed
infectious periods, exact values of ln τ are again computed from formula (13). For
the case of constant infectious periods, we compare our asymptotic formula (6) with
the results of Monte Carlo simulation. Specifically, for each N value we simulated
1000 realizations of the process started close to the deterministic endemic equilibrium,
at the point

(�Ny∗
1�, �Ny∗

2�, . . . , �Ny∗
k �

)
, where �x� denotes the integer part of x . To

100 150 200 250 300 350 400 450 500 550 600

5

10

15

20

25

30

R0 = 1.5

R0 = 1.3

R0 = 1.2

Fig. 1 Values of ln τ plotted against population size N for the case of exponentially distributed infectious
periods, with three different values for the basic reproduction number R0. Fixed parameter values k = 2,
f = (0.5, 0.5), α = (1, 1), λ = (1, 1), μ = 1

3 (5, 1) (or equivalently λ = 1
3 (5, 1), μ = (1, 1)). Lines are

computed from the asymptotic formula (6); dots are the true values of ln τ computed from Eq. (13)
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100 150 200 250 300 350 400 450 500 550 600
3

4

5

6

7

8

9

10
Exponential infectious periods (eigenvalue)
Heterogeneous susceptibility (simulation)
Heterogeneous infectiousness (simulation)
Asymptotic formula (exponential)
Asymptotic formula (constant)

Fig. 2 Values of ln τ plotted against population size N , showing the effect of the infectious period distribu-
tionupon themeanpersistence timeof infection τ . Fixedparameter values k = 2, f = (0.5, 0.5),α = (1, 1),
R0 = 1.3. Dots computed from the eigenvalue equation (13) with λ = (1, 1),μ = 2

51 (50, 1); crosses (‘Het-

erogeneous susceptibility’) computed via Monte Carlo simulation with λ = (1, 1), μ = 2
51 (50, 1) and

constant infectious periods; circles (‘Heterogeneous infectiousness’) computed via Monte Carlo simulation
with λ = 2

51 (50, 1), μ = (1, 1) and constant infectious periods; dashed line computed from formula (6)

with λ = (1, 1), μ = 2
51 (50, 1) and exponentially distributed infectious periods; solid line computed from

formula (6) with λ = (1, 1), μ = 2
51 (50, 1) and constant infectious periods

indicate the dependence of the expected persistence time upon parameters, we write
τ = τα(λ,μ) and denote by τ̃α(1,μ) the approximation to τα(1,μ) given by the right-
hand side of formula (6). For the case of heterogeneous susceptibility, we allowed a
burn-in period of t0 = 0.3τ̃α(1,μ) for the process to attain quasi-stationarity, after
which the process was allowed to continue until either infection became extinct or
time tmax = 1.8τ̃α(1,μ) was reached. For the case of heterogeneous infectiousness,
we took t0 = 0.3τ̃α(1,λ) and tmax = 1.8τ̃α(1,λ). We then computed the maximum
likelihood estimate of ln τ as described in Section 6 of Clancy (2018). Histograms
of the observed extinction times were compared visually with the probability density
function of the exponential distribution with rate parameter estimated by maximum
likelihood and seen to fit reasonably well, providing reassurance that the burn-in
period t0 was sufficient. Although the network duality results of Harris (1976) and
Holley and Liggett (1975) apply only to exponentially distributed infectious periods,
we observe that, as noted in Clancy (2018), Monte Carlo estimates of τ are essentially
identical for the cases of heterogeneous infectiousness and (corresponding) heteroge-
neous susceptibility, even with constant infectious periods. We observe that the error
in our approximating formula is much the same when infectious periods are constant
as when infectious periods are exponentially distributed, with mean persistence time
again being consistently somewhat underestimated by our asymptotic formula (6).
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5.2 Superspreaders and the Effects of Different Forms of Heterogeneity

For many outbreaks of infection, it is thought that a small number of infected indi-
viduals, often referred to as ‘superspreaders’, are responsible for a disproportionate
amount of pathogen transmission (e.g. Lau et al. 2017; Plowright et al. 2017; Yates
et al. 2006). This may arise through a variety of mechanisms. Two possibilities are that
some individuals infect at a much higher rate than others (represented in our model by
heterogeneity in λ); or that some individuals remain infectious for much longer than
others (represented by heterogeneity in α). Our results allow us to study the effect of
either of these forms of superspreading, comparing alternative forms of heterogeneity
to one another, and also comparing with a matched (having the same value for R0)
homogeneous population, as follows.

To make explicit the dependence upon parameters, we now write D(λ,μ) =
Dα(λ,μ), and similarly τ = τα(λ,μ). We consider only the case of exponentially
distributed infectious periods, in order that we can apply formula (7), and we impose
the constraint

∑
i αi fi = 1 (that is, we re-scale time so that the unit of time is the

mean infectious period across the whole population). Let η = (η1, η2, . . . , ηk) be any
vector with positive components satisfying

∑
i ηi fi = 1, representing the heterogene-

ity. Denoting by τ̃α(λ, 1) the approximation to τα(λ, 1) given by the right-hand side
of (7), then from Eq. (3), we have that D1(η, 1) = β − 1 and D1(1, η) = Dη(1, 1),
and hence formula (7) implies that

τ̃1(η, 1)
τ̃η(1, 1)

= Dη(1, 1)
β − 1

.

Now it follows from Jensen’s inequality applied to Eq. (3) that Dη(1, 1) ≤ β − 1, and
so

τ̃1(η, 1) ≤ τ̃η(1, 1).

That is, for sufficiently large N , heterogeneity in levels of infectiousness leads to a
shorter expected persistence time than corresponding heterogeneity in the lengths of
infectious periods.

It was shown in Theorem 2(i) of Clancy (2018) that when α = μ = 1, the leading-
order constant A in formula (1) is maximised, for a given value of R0, when λ = 1.
This implies that for sufficiently large N , τ1(1, 1) ≥ τ1(η, 1), and since D1(1, η) =
Dη(1, 1) it also follows that for sufficiently large N , τ1(1, 1) ≥ τη(1, 1). That is,
for a sufficiently large population, heterogeneity in either levels of infectiousness or
infectious period durations reduces the expected persistence time of infection in the
population, compared to a corresponding homogeneous population.

These effects are illustrated in Fig. 3, in which we take 10% of the population to
generate up to 50 times more potentially infectious contacts per infectious period than
the remaining 90% of the population. The leftmost point of each curve, at η = (1, 1),
corresponds to a homogeneous population. We see that as the degree of heterogeneity
increases, themeanpersistence timedecreases,while the difference between the effects
of the two types of heterogeneity increases. With maximal heterogeneity represented
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Fig. 3 Effect of different types of heterogeneity upon the mean persistence time τ . Plotted lines show values
of ln τ̃ , where τ̃ denotes the approximation to mean persistence time given by formula (7). Fixed parameter
values k = 2, f = (0.1, 0.9), μ = (1, 1), R0 = 1.5, N = 500. Solid line computed from formula (7) with
α = (1, 1), λ = η; dashed line computed from formula (7) with α = η, λ = (1, 1)

by η̂ = (1/ f1, 0), the limiting ratio is givenby τ̃η̂(1, 1)/τ̃1(η̂, 1) = (β−1)/Dη̂(1, 1) =
1/ f1.

It is worth noting that when heterogeneity is in infectiousness, the fact that we have
held R0 constant across Fig. 3 implies that the endemic equilibrium point y∗ also
remains fixed. In fact, from Eqs. (3, 9), it is immediate that when α = μ = 1, we have
y∗
i = (1 − (1/R0)) fi for i = 1, 2, . . . , k, for any λ. Now Theorem 11 of Clancy and
Pearce (2013) demonstrates, via a multivariate normal approximation, that greater het-
erogeneity in infectiousness corresponds to greater variability in the quasi-stationary
distribution. Thus, in this case, the decrease in mean persistence time observed across
Fig. 3 (solid curve) corresponds to an increase in variability of the quasi-stationary
distribution leading to larger fluctuations (around the same equilibrium point) and
hence faster extinction of infection. However, the solid line in Fig. 3 could equally be
interpreted as corresponding to heterogeneous susceptibilities, with exponentially dis-
tributed infectious periods and α = λ = 1, μ = η in formula (6). When heterogeneity
is in susceptibilities, it has been shown (Clancy and Pearce 2013, Theorem 10) that
the overall endemic prevalence level y∗ = ∑k

i=1 y
∗
i decreases with increasing hetero-

geneity. That is, when heterogeneity is in susceptibilities, the decrease in persistence
time observed across Fig. 3 (solid curve) accompanies a corresponding decrease in
overall endemic prevalence level. Furthermore, from formulae (3, 9), it is apparent that
the endemic equilibrium point y∗ for the case α = η,λ = μ = 1 is the same as for
the case μ = η, α = λ = 1. Consequently, when heterogeneity is in infectious period
durations, the decrease in persistence time observed across Fig. 3 (dashed curve) again
accompanies a corresponding decrease in overall endemic prevalence level.
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Fig. 4 Contour plots of the quasi-stationary distribution q and approximations. Contour levels correspond to

probabilities 5×
(
10−3, 10−5, 10−7, 10−9, 10−11

)
. Parameter values k = 2, f = (0.5, 0.5), α = (1, 1),

μ = 1
2 (3, 1), λ = (1, 1), R0 = 2.5, N = 200. Solid contours represent both the exact quasi-stationary

distribution computed fromEq. (13) and theWKB approximation (16), which are indistinguishable. Dashed
contours represent the Gaussian approximation (22)

5.3 Approximating the Quasi-Stationary Distribution

En route to our analysis of mean time to extinction, obtained via approximation of
the tail of the quasi-stationary distribution, we also obtained an approximation for the
main body of the quasi-stationary distribution, at least in the case of heterogeneous
susceptibilities (λ = 1) and exponentially distributed infectious periods, from the
WKB formula (16) with KN , V ( y), V0( y) given by Eqs. (26, 20, 28), respectively.
This new approximation may be regarded as a refinement of the multivariate Gaussian
approximation (22), previously derived via an approximating diffusion (Ornstein–
Uhlenbeck) process in Section 6 of Clancy and Pearce (2013). Figure 4 shows contour
plots of the exact quasi-stationary distribution q, obtained from Eq. (13), and the two
approximations (16, 22) for a population of size N = 200 consisting of two equal-
sized groups, with group 1 individuals being three times as susceptible to infection
as group 2 individuals. Our new approximation is clearly a great improvement upon
the Gaussian approximation, particularly away from the endemic equilibrium point
N y∗, the contours of the WKB approximation being indistinguishable from those of
the exact solution.

Note that unlike the mean persistence time τ , the quasi-stationary distribution q for
the case of heterogeneous infectiousness cannot be obtained from the heterogeneous
susceptibilities solution simply by interchanging the roles of λ,μ. In fact, even the
location of the endemic equilibrium point N y∗, corresponding to the mode of the
quasi-stationary distribution, is not maintained under this transformation (Clancy and
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Pearce 2013). On the other hand, for the case of heterogeneous susceptibilities, the
WKB approximation (16) approximates the stationary distribution of the restarted
process studied in Sect. 4.3 and hencemay be used to approximate the quasi-stationary
distribution of numbers of infected individuals even when infectious periods are not
exponentially distributed.

5.4 Network Interpretation

The model of Sect. 2 may be interpreted as describing an infection spreading through
a directed network under the so-called annealed network approximation, as outlined
in Clancy (2018). Briefly, we suppose that individuals are assigned an in-degree din
and out-degree dout according to some joint probability mass function p (din, dout)
satisfying E [din] = E [dout]. We suppose that there are a finite number k of (din, dout)
pairs having nonzero probability. We further assume that the network is uncorrelated,
that is, with no correlations between degrees of neighbouring individuals. We define
a bijective function j (din, dout) : Z2+ → {1, 2, . . . , k}, so that any individual having
degrees (din, dout) belongs to group j (din, dout). Denote by din( j), dout( j) the in and
out degrees, respectively, of a group j individual, and by κ the rate at which infection
transmits along each link from an infectious individual to a susceptible individual.
This network model may be approximated by our multigroup model of Sect. 2 by
setting, for j = 1, 2, . . . , k,

β = κE [dout] ,

f j = p (din( j), dout( j)) ,

μ j = din( j)/E [din] ,

λ j = dout( j)/E [dout] .

The undirected version of the above annealed network approximation (with λ =
μ) has been studied in Hindes and Schwartz (2016, 2017) in terms of the leading-
order constant A in expression (1), evaluated via numerical solution of the Hamilton–
Jacobi equation (18). Our results (6, 7), as well as being much quicker and more
straightforward to evaluate, are thus considerably more precise, although applicable
only to rather restricted classes of directed networks. Specifically, the assumption
that λ = 1 corresponds to every individual having the same out-degree, whereas
μ = 1 corresponds to every individual having the same in-degree. Nevertheless, it is
remarkable to be able to obtain such simple and precise results as formulae (6, 7) even
for such a restricted class of networks.

6 Discussion and Further Work

The main contribution of this paper has been to provide simple explicit formulae (6, 7)
for the mean persistence time, in the large population limit, of the heterogeneous pop-
ulation SIS infection model described in Sect. 2. The only infection model for which
such a result has previously been available is the homogeneous population version of
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this same model, corresponding to the case k = 1. Explicit formulae are particularly
valuable here since numerical solution of the Hamilton–Jacobi equation (18) generally
requires the solution of a high-dimensional system of ordinary differential equations
subject to boundary conditions at times t = −∞ and t = +∞, so that even to obtain
the leading-order constant A in formula (1) can be very challenging, in the absence of
an explicit formula. We have shown, in Sect. 5.2, how such explicit formulae may be
used to study qualitative features such as the effects of different types of heterogeneity
upon the persistence time of infection. Additionally, in the course of our analysis, we
have obtained a new and accurate approximation to the quasi-stationary distribution
of the process, which determines long-term behaviour prior to eventual extinction of
infection; see Sect. 5.3. Our model may also be interpreted as an approximate model
for infection spreading on a directed network, as described in Sect. 5.4. While our
results thus represent substantial progress, many open questions remain.

Firstly, while Theorem 1(i) for the case of heterogeneous susceptibilities allows
for any infectious period distribution, Theorem 1(ii) for heterogeneous infectiousness
applies only with exponentially distributed infectious periods. From numerical work,
including that presented in Fig. 2, it seems likely that a result corresponding to for-
mula (6), generalising formula (7) to allow for any infectious period distribution, does
indeed apply when heterogeneity is in infectiousness, but we have not been able to
prove this because the network duality results of Harris (1976) and Holley and Liggett
(1975) apply only provided that infectious periods are exponentially distributed.

Secondly, although our model of Sect. 2 allows for heterogeneity in susceptibilities
and infectiousness simultaneously, Theorem 1 requires that only one of these forms
of heterogeneity be present. It would be of great interest to find a corresponding
formula allowing for both forms of heterogeneity simultaneously. In particular, this
would allow our result to be applied to infections spreading on a much more general
class of networks, including undirected networks, as studied via the annealed network
approximation in Hindes and Schwartz (2016), requiring λ = μ. More generally, one
could allow some quite general matrix of contact rates

{
βi j

}
, rather than restricting as

we have to contact rates that factorise as βi j = βλiμ j , in order to study phenomena
such as assortative/disassortative mixing (Clancy and Pearce 2013). Unfortunately,
there is no reason to expect that explicit formulae such as (6, 7) exist at all in such cases,
evenunder the assumptionof exponentially distributed infectious periods. In particular,
we have only been able to find an explicit solution V ( y) to the Hamilton–Jacobi
equation (18) in the case λ = 1 (formula (20); see also Clancy 2018). Consequently,
to evaluate the leading-order constant A in formula (1) generally requires numerical
solution of Eq. (18), as implemented for the case λ = μ in Hindes and Schwartz
(2016). Further, without an explicit formula for V ( y), Eqs. (19, 23) cannot be used
to find explicit expressions for V0( y), KN . One could, in principle, evaluate KN and
V0( y) numerically, as was done in Black and McKane (2011) for a particular SIR
infection model, and thereby obtain the WKB approximation for the main body of the
quasi-stationary distribution, corresponding to our result illustrated in Fig. 4. However,
our asymptotic formulae for mean persistence time depend upon approximating the
tail of the quasi-stationary distribution, and it is not clear how the matching procedure
of Sect. 4.2 could be carried through numerically, without explicit formulae to match.
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Finally, it would be of great interest to obtain explicit formulae such as (6, 7) for
infection models incorporating features such as disease-induced immunity (SIR mod-
els), latent periods and demographic processes of birth, death and migration. For such
more sophisticated models, a common strategy has been to resort to approximating the
quasi-stationary distribution by a multivariate Gaussian distribution (obtained as the
stationary distribution of an approximating Ornstein–Uhlenbeck diffusion process)
and then substitute this Gaussian approximation into the right-hand side of Eq. (15) to
obtain an approximation to the mean persistence time τ . For instance, Nåsell (1999)
made use of this approach in studying an infection model incorporating demographic
processes and disease-induced immunity (with exponentially distributed infectious
periods), followingon fromwhichAndersson andBritton (2000) extended themodel to
include latency, with latent periods and infectious periods each being allowed to follow
Erlang distributions. Unfortunately, while this approach can give some rough qualita-
tive indication of the effect of model parameters upon persistence times, the numerical
approximation to τ thus obtained is known to be extremely inaccurate (Clancy and
Tjia 2018). Indeed, as pointed out in Nåsell (1999), this approximation does not yield
correct N -dependence in the large population limit; specifically, the approximation
which appears as equation (2.15) of Nåsell (1999) takes the form τ ≈ c

√
N exp(aN )

for some constants a, c, in contrast to the asymptotic form (1) obtained in van Her-
waarden and Grasman (1995). In fact, even the value of limN→∞(ln τ)/N , given
by the leading-order constant A in formula (1), is not correctly reproduced via this
approach (Clancy and Tjia 2018; Doering et al. 2005). For these reasons, Andersson
and Britton (2000) noted that their approximation ‘should only serve as a qualitative
guidance and not be relied on in detail’. In view of this failure of the Ornstein–
Uhlenbeck approximating diffusion approach, the approach that we have employed,
via WKB approximation, can be seen to be of great potential value, yielding as it
does the correct asymptotic behaviour. However, it is much more difficult to obtain
explicit formulae via this approach, and indeed there seems no reason to expect that
explicit formulae such as (6, 7) will exist in general. Consequently, much of the work
to date employing this approach for models in dimensions k > 1, by many authors,
has consisted essentially of numerical evaluation of the leading-order constant A in
formula (1). One exception is the SEIS model in a homogeneous population—that
is, the classic SIS model of Weiss and Dishon (1971), extended to allow for a latent
(‘exposed’) period. It was shown in Clancy and Tjia (2018) that for this SEIS model,
with latent periods and infectious periods each allowed to follow Erlang distributions,
the value of limN→∞(ln τ)/N is given by A = (1/R0) − 1 + ln R0, exactly as for
the classic SIS model (Andersson and Djehiche 1998). Thus, while the presence of
a latent period may impact substantially upon the mean persistence time, this impact
is restricted to the prefactor constant C in formula (1), at least for this particular
model. In general, while explicit formulae for the constants A,C in (1) may be too
much to hope for, in cases where the leading-order constant A can only be evaluated
numerically a natural next step may be to seek general methods for evaluating the
prefactor constant C numerically. Even here, as mentioned in the previous paragraph,
the difficulties to be overcome remain substantial.
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