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Abstract
The development of drugs that target the brain is very challenging. A quantitative
understanding is needed of the complex processes that govern the concentration–time
profile of a drug (pharmacokinetics) within the brain. So far, there are no studies on
predicting the drug concentration within the brain that focus not only on the transport
of drugs to the brain through the blood–brain barrier (BBB), but also on drug transport
and binding within the brain. Here, we develop a new model for a 2D square brain
tissue unit, consisting of brain extracellular fluid (ECF) that is surrounded by the brain
capillaries. We describe the change in free drug concentration within the brain ECF,
by a partial differential equation (PDE). To include drug binding, we couple this PDE
to two ordinary differential equations that describe the concentration–time profile of
drug bound to specific as well as non-specific binding sites that we assume to be evenly
distributed over the brain ECF. The model boundary conditions reflect how free drug
enters and leaves the brain ECF by passing the BBB, located at the level of the brain
capillaries. We study the influence of parameter values for BBB permeability, brain
ECF bulk flow, drug diffusion through the brain ECF and drug binding kinetics, on
the concentration–time profiles of free and bound drug.
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1 Introduction

The development of drugs that target the brain and reach the target site in adequate
levels is very challenging. Therefore, a quantitative understanding is needed of the
highly complex processes that govern the concentration–time profile of a drug (phar-
macokinetics) within the brain, and particularly at the brain target site. These include
the transport of a drug between the blood and the brain and the distribution of a drug
within the brain.

The transport of a drug from the blood into the brain is tightly regulated by
the blood–brain barrier (BBB). As the main barrier of the brain, the BBB sepa-
rates the blood from the brain extracellular fluid (ECF), which may cause the drug
concentration–time profiles in blood and brain to be substantially different from each
other (Hladky and Barrand 2014).

Although the BBB is a major determinant of the drug concentration within the
brain, the fate of a drug within the brain cannot be explained solely by BBB transport.
Also the factors that govern the distribution of the drug within the brain need to be
considered. After crossing the BBB, the drug resides in the brain ECF. The brain ECF
is the fluid surrounding the neural cells and is important in the supply of nutrients,
waste removal and intercellular communication, see, e.g. Lei et al. (2017) for a recent
review on this topic. In the brain ECF, drug transport occurs by diffusion and brain
ECF bulk flow. Relatively to free diffusion through water, diffusion of a drug through
the brain ECF is less effective, because of the space occupied by brain cells as well
as the extracellular matrix. This is what is called tortuosity (Nicholson et al. 2011;
Hladky and Barrand 2014). Tortuosity differs between drugs, because of their different
size and deformability and the drug-specific interaction with the extracellular matrix
(Nicholson et al. 2011).

The brain ECF bulk flow is another means of drug transport within the brain
(de Lange and Danhof 2002; Cserr and Ostrach 1974). This movement of the brain
ECF and its constituents is the result of a pressure gradient across the brain ECF
(Abbott 2004; Han et al. 2012; Hladky and Barrand 2014). Changes in the brain ECF
bulk flow may play a role in brain diseases and may affect drug distribution (Marchi
et al. 2009, 2016).

While being transported by diffusion and by brain ECF bulk flow, drugs within
the brain may associate with binding sites. Here, free drug associates with a free
binding site with a certain on-rate, while the drug-binding site complex dissociates
with a certain off-rate. Understanding these drug binding kinetics is very relevant, as
the binding of a drug to its target determines its effect. The impact of this drug–target
binding could be affected by drug binding to non-specific binding sites, which reduces
the concentration of free drug that is available to bind to its target. Specific binding sites
are mostly located on the brain cell surface or within the brain cells, but may also be
located in the brain ECF, like enzymes. There are typically more non-specific binding
sites than specific binding sites present, while the binding of a drug to non-specific
binding sites is generally weaker than its binding to specific binding sites.

The brain is far from a homogeneous tissue, and many factors may result in local
differences in drug concentration. For example, the density of binding sites within the
brain can differ substantially between different regions. Recently, it has been shown
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that differences in target density in combination with target association and disso-
ciation kinetics may influence local drug distribution (de Witte et al. 2016). Such
changes in local pharmacokinetics are therefore important to consider. Altogether,
a deeper insight is needed on how both drug-specific parameters (e.g. BBB perme-
ability) and system-specific parameters (e.g. brain ECF bulk flow) influence the local
concentration–time profiles of drugs within the brain. There are several studies that
have focused on one or more of aspects of the distribution of a drug within the brain,
which we discuss in “Literature”. However, none of these models contains all pro-
cesses that govern spatial variability in drug concentration. Thus, there is a need for
an integrative approach of these processes in order to ultimately predict local drug
concentration–time profiles in the brain, as the drive of the effect of the drug.

As a next step towards such understanding, we formulate a 2D brain tissue unit
model, where drug transport across the BBB andwithin the brain ECF, and the interac-
tion of a drugwith both specific (target) and non-specific binding sites are incorporated.
This combination of properties of the model makes it the first in its kind.

Literature
A model that fully describes the distribution of a drug within the brain does not

yet exist. In this section, we highlight some earlier models on the distribution of
compounds within the brain. Here, a compound may be an exogeneous compound,
such as a drug, or an endogeneous compound, such as a metabolite. The existing
models generally focus on just one or two of the following properties (Table 1):

(1) The exchange of a compound between several compartments related to the brain.
(2) The transport of a compound within the brain ECF by diffusion and brain ECF

bulk flow.
(3) The binding kinetics of a compound. Binding kinetics describe the concentration–

time profiles of not only free, but also bound compound, as determined by the rates
of binding and unbinding of free compound to a binding site. Here, a distinction
is made between specific binding, in which a compound binds to a specific target
site, and non-specific binding, in which a compound binds to a non-specific, off-
target binding site.
In Table 1, we highlight several examples of models that include one or two of
these processes. The exchange of a compound between several compartments
can be described by compartmental models (Stevens et al. 2011; Westerhout et al.
2012, 2013, 2014; Ball et al. 2014; Gaohua et al. 2016; Yamamoto et al. 2017a, b).
The compartments described by these models can represent the blood, a tissue
(e.g. the brain) or the components of a tissue (e.g. the brain ECF). Moreover, they
can represent different states of a compound, such as a bound and an unbound
state. Within each compartment, the concentration–time profile of a compound is
described by ordinary differential equations (ODEs).

Recently, a compartmental model of the brain has been developed to provide under-
standing on the time-dependent drug distribution into and within the brain (Yamamoto
et al. 2017a). There, the concentration–time profiles of nine drugs with highly distinct
physico-chemical properties are described for multiple physiological compartments
of the central nervous system (CNS). These compartments include the blood, the brain
ECF, the brain intracellular fluid (ICF) and the cerebrospinal fluid (CSF). The CSF is
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connected to both the blood and the brain ECF and plays an important role in brain
homoeostasis. The CSF is widely distributed (it is located in the ventricles of the brain,
the subarachnoid space, which covers the brain and the spinal cord) and therefore is
described in the model by four different compartments. In addition, two peripheral
compartments are added to the model to include drug exchange with non-brain com-
partments. The model allows for an adequate prediction of the concentration–time
profile of the drugs in the several compartments. However, in this and in other typi-
cal compartmental models, the brain ECF is considered homogeneous, while spatial
concentration differences may exist. These concentration differences may arise due
to various factors, including local differences in drug–target concentration and local
disease. Therefore, to get more insight into the spatial distribution of a drug within the
brain, models with other properties are necessary.

The transport of compounds through the brain ECF has extensively been described
by the group of Nicholson (e.g. Syková and Nicholson 2008; Nicholson 2001). They
have proposed a diffusion equation to model the transport of drugs through the brain
ECF for drugs administered directly into the brain (see Nicholson 2001 for a thorough
review on this topic). The diffusion equation includes terms for drug transport by dif-
fusion and brain ECF bulk flow as well as terms that describe the drug entry into and
drug loss from the brain ECF by BBB transport, metabolism and drug binding. How-
ever, the model lacks a more detailed description of these processes, such as: a more
explicit description of BBB transport that includes the BBB permeability and the drug
concentrations in the blood plasma and the brain ECF and a more explicit description
of drug binding that includes drug binding kinetics and a distinction between binding
to specific and non-specific binding sites.

The diffusion equation is used in many studies on drug distribution within the brain
ECF (Nicholson 1995; de Lange et al. 1995; Chen et al. 2002; Saltzman andRadomsky
1991). It can be used to predict the local distribution of a drug after its application
(Saltzman and Radomsky 1991;Morrison et al. 1994; Patlak and Fenstermacher 1975;
Dykstra et al. 1992). For example, de Lange et al. (1995) use a radial diffusion equa-
tion to describe the spatial distribution of a drug after the local perfusion of drug via
a cylindrical microdialysis probe. They fit the model to radial distribution data that
have been determined for two drugs with different BBB transport properties but sim-
ilar effective diffusion coefficients. Successful fits indicate the importance of BBB
transport as well as diffusion through the brain ECF.

The mentioned models lack descriptions of drug binding kinetics. These are crucial
to understand, as the binding of a drug to its target is what makes the drug exert its
effect. Drug binding is commonly measured by the drug affinity, which is a measure of
the strength of the interaction between the drug and its target. Since the introduction
of the drug residence time that measures the time a drug interacts with its target and
the appreciation of the fact that a drug can only elicit its effect during the period that
it is bound to its target (Copeland et al. 2006; Swinney 2004), the kinetics of drug
binding have gained more interest. As reviewed in Pan et al. (2013), the association
and dissociation rates of drug binding as well as the concentrations of free drug and
its binding sites determine the concentration–time profiles of free and bound drug.
Earlier studies on drug binding kinetics have focused mostly on the drug dissociation
rate as a determinant of the time course and duration of drug–target interactions,
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but a recent study has shown that the rate of association of a drug to its target can be
equally important to determine the time course and duration of drug–target interactions
(de Witte et al. 2016). There, drug binding kinetics are integrated in a compartmental
model, existing of two compartments representing the bound and unbound state of
the drug. In addition, in a second model an additional compartment is introduced to
include drug distribution into and out of the tissue.

More studies exist that integrate more of the discussed properties into one model.
For example, the distribution of a compound within the brain can be described by both
compartmental exchange and transport through the brain ECF (Tan et al. 2003; Zhan
et al. 2008; Calvetti et al. 2015; Ehlers and Wagner 2015; Jin et al. 2016). In Calvetti
et al. (2015), a 3D model of brain cellular metabolism with spatial resolution of the
location of the synapse relative to the brain capillaries demonstrates the importance
of spatial distribution. There, it is found that the time course of metabolic fluxes
and concentrations of compounds related to metabolism in brain cells is affected
significantly by the distance between the cells and the brain capillaries. Another study
that emphasises the importance of spatial distribution, although not concerning the
brain, is themodel byBassingthwaighte et al. (1989). Thismodel includes the exchange
between the blood plasma, endothelial cells, parenchymal cells and the (non-brain)
ECF as well as the transport within these compartments. It is shown that changes in
parameters related to local blood flow, metabolism and binding influence the exchange
of solute between the compartments. Moreover, it is demonstrated that the distance to
the capillary influences the local concentration profile of solute in the tissue.

Models on drug distribution within the brain are particularly relevant when they
are coupled to drug binding to its target, because only then, more knowledge about
the effect of the drug can be acquired. To our knowledge, no studies exist where drug
distributionwithin the brainECFand drug binding kinetics are integrated in onemodel.
In a recent work by McGinty and Pontrelli (2016) that focuses on local drug delivery
to biological tissue such as the arterial wall, the diffusion equation that describes the
concentration changes in free drug in the (non-brain) ECF is coupled to twoODEs that
describe the concentration changes in drug bound to specific and non-specific binding
sites (Tzafriri et al. 2012; McGinty and Pontrelli 2015, 2016). This work is one of the
few studies that make a distinction between drug binding to specific binding sites and
drug binding to non-specific binding sites. However, as this work does not focus on
the brain, it lacks a description of transport across a tight barrier, such as the BBB. A
work that combines the transport of a drug within the (brain) ECF and drug binding
kinetics into one model (like inMcGinty and Pontrelli 2015, 2016), but also explicitly
describes how a drug enters the brain by crossing the BBB, is still lacking.

Our approach
None of the currently existing mathematical models on drug distribution within

the brain includes all of the discussed properties, including compartmental exchange,
drug transport through the brain ECF and drug binding.

Here, we introduce a 2D model in which the essentials of all of these processes are
integrated.With the aim of ultimately developing a comprehensive 3Dmodel based on
3D building blocks or units, we started to develop a single-unit 2Dmodel that provides
understanding of the distribution of a drug within the brain. This 2D model allows
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the investigation of the effect of several parameters, related to blood–brain exchange
(BBB transport), transport within the brain ECF and binding, on the distribution of a
drug within the brain.

We focus on the local drug concentration within the brain, based on a physiological
representation of the brain, in which a (2D) piece of brain tissue is surrounded by the
brain capillaries, where the BBB is located. Here, drug exchanges between the blood
plasma and the brain ECF.Within this piece of brain tissue, drug is distributed through
the brain ECF by diffusion in the presence of the brain ECF bulk flow. Moreover, drug
distributes by binding to both specific and non-specific binding sites. This piece of
brain tissue could be considered the smallest building block of the brain in terms of
drug distribution, and therefore, we call it the brain tissue unit.

We use a partial differential equation (PDE) that accounts for diffusion through
the brain ECF combined with brain ECF bulk flow to describe the change in free
drug concentration in the brain ECF. To include drug binding to specific binding
sites, we couple this PDE for free drug concentration to an ODE that describes the
change in concentration of drug bound to specific binding sites. To incorporate non-
specific binding in the model, we also couple this PDE to an ODE that describes
the change in concentration of drug bound to non-specific binding sites. With our
boundary conditions, we explicitly model drug transport across the BBB. They reflect
how a drug enters and leaves the brain ECF across the BBB by describing the BBB
permeability, i.e. the rate of drug transport across the BBB.

The model not only integrates the main processes that govern drug distribution
into and within the brain, but also allows for the inclusion of parameters that are
based on physiological data. We perform a sensitivity analysis to study the effect of
a range of physiological drug-specific and system-specific parameters on the local
concentration–time profiles of free and bound drug. Here, because the model is in
2D, we can distinguish between multidirectional processes (such as diffusion) and
unidirectional processes (such as the brain ECF bulk flow). In addition, the square
geometry of the model, in which the brain capillaries surround the brain ECF, enables
the study of the local distribution of a drug. This combination of properties generates
a model that is new in its form compared to earlier studies.

In the remaining parts of this article, we first explain the physiology on which our
model is based in Sect. 2.1. In Sect. 2.2, we set up the model for drug transport through
the brain ECF and drug binding. Then, we formulate the boundary conditions for drug
transport across the BBB in Sect. 2.3. The values and units of the variables we use
in our model are given in Sect. 2.4. In Sect. 3.1, we first assess the effect of both
specific and non-specific binding in our model. Then, we study the effect of changing
parameters, such as drugbindingkinetics andBBBpermeability, on drug concentration
in Sects. 3.2 and 3.3. Finally, in Sect. 3.4, we use our model to show variations in drug
concentration over space. We discuss and conclude our work in Sect. 4.

2 The 2D Brain Tissue Unit

The purpose of our model is to describe the local concentrations of free and bound
drug within the brain after the BBB. To that end, we formulate a model using the basic

123



Improving the Prediction of Local Drug Distribution… 3485

characteristics of a typical (2D) piece of brain tissue that is surrounded by capillaries
(where the BBB is located). This is the brain tissue unit. We base our model on
physiological values and choose the size and parameters in the model to correspond to
the rat brain as for this,most data are available. As ourmodel uses known physiological
parameters, it can easily be translated to other species, including humans, by setting
the parameters to values that match those of the species of interest.

In the 2D brain tissue unit, the brain capillaries surround the brain ECF. Here, drug
exchanges between the blood plasma and the brain ECF by crossing the BBB and
distributes within the brain ECF. In the rat brain, the distance between the capillaries
is on average only 50µm (Jucker et al. 1990; Schlageter et al. 1999; Pardridge 2005;
Tata and Anderson 2002). As the capillaries are widely distributed within the brain,
many of these units eventually build up to the entire brain.

2.1 Formulating theModel Based on the Physiology of the Brain

We aim for a model that covers all essential aspects of drug distribution within the
brain: drug exchange between the blood plasma and the brain ECF (BBB transport),
drug transport through the brain ECF by diffusion and brain ECF bulk flow and the
kinetics of drug binding to specific and non-specific binding sites. Moreover, we aim
for a model that represents the actual physiological geometry of the brain tissue unit,
in which the brain capillaries surround the brain ECF.

We assume that the brain capillaries form square regions around the brain tissue
unit, which contains the brain ECF. The unit is a square, where (x, y) ∈ [0, xr]×[0, yr],
with (0,0) located in the lower left corner and (xr, yr) in the upper right corner and x
is the horizontal variable and y the vertical variable. Here, xr and yr both represent
the distance between the brain capillaries and are therefore chosen to be equal to
50µm. The advantage of modelling the brain tissue unit as a square is that it enables
the connection of units and thus the extension to a larger scale. In the 2D model
representation, the brain capillaries entirely surround the brain ECF and hence the
domain. A sketch of the model representation of the brain tissue unit is shown in
Fig. 1.

Here, drug is exchanged between the blood plasma in the brain capillaries and the
brain ECF in the unit.Within the brain ECF in the unit, drug is transported by diffusion
and brain ECF bulk flow. For simplicity, we do not consider cells and assume that the
entire volume space of the brain ECF is available for drug distribution. However, cells
are implicitly implemented as the hindrance the cells would impose on the transport
of a drug through the brain ECF is taken into account in a tortuosity term, see Fig. 1.
In a future model, the units can be connected to generate a larger-scale model in which
regional differences can be assessed.

The exchange of drug between the brain ECF and the blood plasma in the surround-
ing brain capillaries across the BBB is described by the permeability of the BBB. For
simplicity, we assume that the transport over the BBB is passive and therefore driven
by diffusion in both directions.

We model the transport of a drug through the brain ECF within a unit by diffusion
and brain ECF bulk flow. Drug diffusion through the brain ECF is restricted by hin-
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Fig. 1 Sketch of one 2D brain tissue unit. Free drug exchanges between the blood plasma in the brain
capillaries and the brain ECF by crossing the BBB, located at the level of the brain capillaries. Free drug
distributes within the brain ECF and binds to both specific (target) and non-specific (NS) binding sites

drances imposed by the cells or by substances in the brain ECF. As a result, the actual,
or effective, diffusion is different from the normal diffusion. This can be modelled by
the tortuosity (Nicholson and Phillips 1981; Nicholson 2001). The tortuosity is defined

as λ =
√

D
D∗ , where D is the diffusion coefficient in a medium without hindrances

(like in water) and D* the effective diffusion coefficient in the brain ECF. Hence, D*
is given by D

λ2
. Tortuosity differs between drugs, and drugs that are able to cross the

cell membranes and enter brain cells show a larger value of tortuosity (Nicholson et al.
2011).

The brain ECF bulk flow is directed from the left boundary of the unit towards the
right boundary and is the result of a pressure gradient along the brain ECF.

The brain ECF contains specific and non-specific binding sites. We assume that the
total concentration of specific and non-specific binding sites is constant and that the
binding sites do not move and are evenly distributed over the brain ECF. In addition to
this, we assume that non-specific binding sites aremore abundant than specific binding
sites. Only a limited concentration of specific binding sites is available to which drugs
can bind.Moreover, we assume that drug binding is reversible and drugs associate with
and dissociate from their binding sites. Finally,we assume that binding to specific bind-
ing sites is stronger than to non-specific binding sites, e.g. we assume that drugs asso-
ciate more easily with specific binding sites than with non-specific binding sites, but
dissociate less easily from specific binding sites than from non-specific binding sites.

2.2 Modelling Drug Transport Through the Brain ECF

In this section, we present the equations that describe the change in the concentration
of drug in the brain ECF, where we base this model on the physiology in Sect. 2.1.
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Drug in the brain ECF moves by diffusion and brain ECF bulk flow and binds to
specific and non-specific binding sites in the brain ECF. We describe the change in
drug concentration in the brain ECF over time, in (s), and space by drug movement
and drug binding as follows:

∂CECF

∂t
= D

λ2
∇2CECF − v∇CECF − fbinding(CECF). (1)

Here, we denote the concentration of free drug in the brain ECF by CECF (mol L−1).
Furthermore, D (m2 s−1) is the diffusion coefficient of free drug, λ (no unit) is the
tortuosity, v (m s−1) is the brain ECF bulk flow in the x direction and fbinding is a
function that describes the binding of the drug to specific and non-specific binding
sites. We formulate fbinding in Sect. 2.2.1.

Equation (1) is similar to the models on drug transport through the brain ECF as
described by Nicholson (e.g. Nicholson 2001 and Syková and Nicholson 2008). Here,
we capture the entry and elimination of drug into and from the brain ECF by transport
across the BBB with our boundary conditions, as formulated in Sect. 2.3.

2.2.1 Drug Binding Kinetics

Next, we model the kinetics of drug binding to specific and non-specific binding sites.
We denote the concentration of drug bound to specific binding sites by B1 (µmol L−1)
and the concentration of drug bound to non-specific binding sites by B2 (µmol L−1).
We denote the total concentration of specific and non-specific binding sites by Bmax

1
and Bmax

2 (µmol L−1), respectively. As the total concentration of bound drug can never
exceed the concentration of binding sites, this is also the maximum concentration of
bound drug. The concentration of free specific and non-specific binding sites is thus
described by Bmax

1 −B1 and Bmax
2 −B2, respectively.We describe the drug association

rate as the product of the drug association rate constant kon, the concentration of
free drug CECF and the concentration of free binding sites (Bmax − B). The drug
dissociation rate is described as the product of the drug dissociation rate constant
and the concentration of bound drug-binding site complexes. The binding of drugs
to specific and non-specific binding sites is captured by two ODEs that describe the
change in concentration of bound drug over time. These equations replace the term
fbinding in Eq. (1).

In this way, we obtain the following system of equations:

∂CECF

∂t
= D

λ2
∇2CECF − v∇CECF − k1onCECF(B

max
1 − B1) + k1off B1

− k2onCECF(B
max
2 − B2) + k2off B2,

∂B1

∂t
= k1onCECF(B

max
1 − B1) − k1off B1,

∂B2

∂t
= k2onCECF(B

max
2 − B2) − k2off B2,

(2)
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where k1on ((µmol L−1 s)−1) is the association rate constant for specific binding, k1off
(s−1) is the dissociation rate constant for specific binding, k2on [((µmol L−1 s)−1] is
the association rate constant for non-specific binding and k2off (s−1) is the dissociation
rate constant for non-specific binding.

Initially, we assume that no drug is present in the brain ECF, hence

CECF(x, y, t = 0) = 0, (3)

and hence, we also have that

Bi(x, y, t = 0) = 0, i = 1, 2. (4)

2.3 Modelling Drug Transport Across the BBB

We explicitly model drug transport across the BBB with our boundary conditions. At
the boundaries of the brain tissue unit, drug enters and exits the brain ECF from and
to the blood plasma by crossing the BBB. There, a flux J (µmolm−2 s−1) describes
the amount of drug transported across the BBB per area per time. This flux results
from the concentration difference between the blood plasma and the brain ECF and
the permeability of the BBB and is described by

J = P(Cpl − CECF),

where the permeability is denoted by P (m s−1) and the concentration of drug in the
blood plasma by Cpl (µmol L−1). On the other hand, this flux is proportional to the
concentration gradient between the blood plasma and the brain ECF with the effective
diffusion coefficient D* (m2 s−1) as proportionality constant, leading to

J = −D∗ ∂CECF

∂x
. (5)

Based on the fact that these fluxes should match, we find the following boundary
conditions:

− D∗ ∂CECF

∂x
= P(Cpl − CECF), (6)

for x = 0 and y = 0, and

D∗ ∂CECF

∂ y
= P(Cpl − CECF), (7)

for x = xr and y = yr.
As mentioned before, we assume that P is a measure of passive transport across

the BBB only. Moreover, we assume that the transport across the BBB is limited by
the BBB permeability only, and not by the blood flow in the brain capillaries, which
may be important for drugs that easily cross the BBB. We have chosen to omit this
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in this proof-of-concept 2D model, but in a more refined 3D model, more detailed
descriptions of BBB transport can be taken into account.

For the concentration of drug in the blood plasma, Cpl, which is time dependent,
different descriptions exist, depending on the route of administration. A drug that is
administered intravenously is modelled with the function:

Cpl = C0e
−ket (8)

with

C0 = Dose

VD
, (9)

see Rowland and Tozer (2005). Here, C0 (µmol L−1) is the concentration of drug in
the blood plasma at t = 0, Dose (µmol) is the molar amount of administered drug,
Vd (L) is the distribution volume, which is the theoretical volume that is needed to
contain the total amount of drug at the same concentration as in blood plasma, and ke
(s−1) is the rate constant of elimination.

Similarly, the following function is used for a drug that is administered orally:

Cpl = F ·Dose·ka
V (ka − ke)

(e−ket − e−ka t ), (10)

see Rowland and Tozer (2005). Here, F (ratio from 0 to 1) is the bioavailability of the
drug and ka (s−1) is the rate constant of absorption. Typically, Cpl of orally absorbed
drug shows an initial increase that reflects drug absorption into the blood plasma
and a subsequent decrease that reflects drug elimination from the blood plasma. We
assume that Cpl is independent of CECF, whereas in reality drug flows back into the
blood plasma from the brain ECF. However, it has been reported that as the brain
compartment is only a small part of the entire body, the small concentration of drug
returning from the brain ECF back into the blood plasma does not affect the blood
plasma kinetics (Sheiner et al. 1979; Hammarlund-Udenaes et al. 1997). In this paper,
we investigate the local drug distribution within the 2D brain tissue unit for blood
plasma profiles that result from oral administration and thus describeCpl by expression
(10).

2.4 Model Values and Units

In Table 2, we give the range of values between which the quantities and parameters in
ourmodel can vary. These ranges are based on physiological values that are taken from
studies in literature, where measurements and experiments are performed. References
for these studies are also given in the table. Using a physiological range of values
allows us to perform a sensitivity analysis and examine the effect of parameter values
at both extremes of the physiological range on the behaviour of the model. As no
experimental data are available on the kinetics of drug binding to non-specific binding
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Table 2 The parameters and units of the 2D brain tissue unit model

Parameter Unit Range of values References

Effective diffusion
coefficient (D*)a

m2 s−1 10−11–10−10 Nicholson et al.
(2000)

Nicholson et al.
(2011)

Brain ECF bulk flow
velocity (v)

m s−1 5 × 10−8–5 × 10−6 Saltzman (2000)

Hladky and
Barrand (2014)

BBB permeability (P)b m s−1 10−10–10−5 Wong et al. (2013)

Total concentration
targets (Bmax

1 )
µmol L−1 1 × 10−3–5 × 10−1 de Witte et al.

(2016)

Target association
constant (k1on)

(µmol L−1 s)−1 10−4–103 de Witte et al.
(2016)

Target dissociation
constant (k1off )

s−1 10−6–101 de Witte et al.
(2016)

Bioavailability (F) – 0–1 Rowland and
Tozer (2005)

Dose µmol 10−1–5 × 103 Rowland and
Tozer (2005)

Absorption rate constant
(ka)

s−1 0–2 × 10−3 Rowland and
Tozer (2005)

Elimination rate constant
(ke)

s−1 10−1–5 × 10−3 Rowland and
Tozer (2005)

Distribution volume (V ) L 0.01–50 × 103 Rowland and
Tozer (2005)

The physiological range of values of the parameters is given. These are based on references from the
literature
aThis equals D

λ2
, see Nicholson et al. (2000, 2011)

bThis is the range of values of P measured in both 2D and 3D assays. Typical values of P measured in 2D
assays are within the range of 10−9–10−7 m s−1 (Summerfield et al. 2007; Wong et al. 2013)

sites, no data are given for Bmax
2 , k2on and k2off . We will come back to this in the next

section (Sect. 3).

3 Model Results

Before simulating the system of equations numerically, we have non-dimensionalised
it and give the details in Appendix I. There, the spatial variables are scaled by the
dimensions of a 2D brain tissue unit (50 by 50µm) and the other variables and param-
eters with a characteristic scale. Next, the non-dimensionalised PDEs are spatially
discretised where we use a well-established numerical procedure based on finite ele-
ment approximations (Schiesser and Griffiths 2009). During the simulations, we use,
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Table 3 Model parameter values Parameter Unit Value

D* m2 s−1 5 × 10−11

v ms−1 5 × 10−7

P ms−1 10−9

Bmax
1 µmol L−1 5 × 10−2

k1on (µmol L−1 s)−1 1

k1off s−1 10−2

Bmax
2 µmol L−1 50

k2on (µmol L−1 s)−1 10−2

k2off s−1 1

F – 1

Dose µmol 30

ka s−1 2 × 10−4

ke s−1 5 × 10−5

V L 20

The value of the default choice of the parameters is given together
with their unit. The magnitude of these values is chosen to be within
the physiological ranges given in Table 1

unless otherwise indicated, a fixed set of parameter values, which is given in Table 3.
We have chosen values that are within the physiological ranges given in Table 2.

We assume that there is oral administration and take Cpl the same in all the simula-
tions, calculated as a time-dependent function (expression 10) andwith the coefficients
chosen as in Table 2.

The literature lacks values of the parameters related to non-specific binding kinetics,
e.g. the association and dissociation rates of drug binding to non-specific binding sites.
Therefore, for now, we need to base the choices of these values on assumptions. First,
we assume that drugs associate with non-specific binding sites less strongly, while
they dissociate more easily. More specifically, we base the choice of k2on and k2off on
modelling studies by McGinty and Pontrelli (2016) and Tzafriri et al. (2012) and take
k2on a factor 100 lower than k1on and k2off a factor 100 higher than k1off . In addition,
as the concentration of drug is expected to be lower in the brain than in the arterial
wall (as modelled in McGinty and Pontrelli 2016) because of the BBB, we expect
relatively more non-specific binding sites in the brain ECF than in the arterial wall.
Therefore, we choose Bmax

2 to be a factor 1000 higher than Bmax
1 , which is higher than

the factor 100 used by Tzafriri et al. (2012) and McGinty and Pontrelli (2016).
In the next Sects. (3.1–3.4), we give the concentration–time profiles as well as the

local drug distributions of free and bound drug within the brain ECF in the single
brain tissue unit. In the concentration–time profiles, the concentration is given on a
log scale versus time.Moreover, we have chosen to plot the concentrations in one point
in the (x, y)-domain, which is located in the middle of the unit. On longer time scales
and with the set of parameter values we choose (Table 2), we find that after an initial
difference the concentration–time profiles would look approximately the same in any
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other point of the (x, y)-domain. This can be seen in the local drug distribution plots
(Figs. 8, 9, 10) given in the entire (x, y)-domain of the brain tissue unit for various
times in Sect. 3.4. In all of the plots, we use the colour codes red, blue, green and brown
for Cpl, CECF, B1 and B2, respectively. In the next sections, we show the influence of
several physiological parameters, related to binding kinetics and permeability, on the
concentration–time profiles of CECF, B1 and B2.

3.1 The Effect of Drug Binding on the Concentration–Time Profiles of Drug in the
Brain ECF

To investigate the effect of drug binding on the concentration of free drug within the
brain ECF, we plot the concentration–time profile of free drug within the brain ECF,
CECF, with and without the presence of binding sites. The concentration–time profile
of CECF without binding is shown in Fig. 2a (left), together with the concentration–
time profile of Cpl. Here, we find that the concentration–time profile of CECF follows
that of Cpl with a delay. Moreover, we find that CECF is lower than Cpl before and at
its peak concentration, but after that, CECF is higher than Cpl. This reflects that here,
free drug not only slowly enters the brain ECF, but also slowly leaves the brain ECF,
due to a low permeability of the BBB.

The concentration–time profile of CECF in the presence of specific binding sites is
shown in Fig. 2b (left). In Fig. 2b (right), we show the concentration of drug bound
to specific binding sites, B1. When we compare the concentration–time profiles of
CECF in Fig. 2a (left) and Fig. 2b (left), we observe that the decrease in CECF towards
the end of the simulation is slowed down in the presence of specific binding sites.
Figure 2b (right) shows that B1 quickly reaches a maximum. The reason for this is
that free drug strongly associates with the limited concentration of specific binding
sites. Meanwhile, drug dissociates slowly, which is reflected by a slow decrease in B1.
This decrease in B1 follows the decrease in CECF and is caused by the release of drug
from the specific binding sites.

The decrease in CECF after its peak is even stronger in the presence of non-specific
binding sites in addition to specific binding sites (Fig. 2c (left)). The concentration–
time profile of B2 greatly resembles that of CECF (Fig. 2c (right)). This is thought to
be caused by the combination of a high concentration of non-specific binding sites and
a fast dissociation of the drug. Due to these factors, Bmax

2 exceeds the concentration
of free drug. Thus, the concentration of the free non-specific binding sites is always
sufficiently high for free drugs to bind to. Therefore, the concentration–time profile
of B2 is proportional to that of CECF. Note that all concentrations will eventually
decay to zero when we run the simulation for a longer time since Cpl decays to
zero.

For clarity, we plot the same data on the concentration of free drug in the brain
ECF in Fig. 3a as the ratio of CECF with binding and CECF without binding. Here,
we see that CECF in the presence of binding is initially lower but later in time higher
compared to when no binding is present. This effect is mainly due to specific binding;
the inclusion of non-specific binding enhances the effect only slightly. In Fig. 3b, we
plot the ratio of B1 with and without non-specific binding. There, we see that in the
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a

b

c

Fig. 2 The concentration–time profiles in log scale of the drug in the blood plasma (Cpl) and in the brain
ECF (CECF) on the left and of drug bound to its target sites (B1) and non-specific binding sites (B2) on the
right. In a, we plot the concentration of free drug without binding, in b with specific binding and in c with
both specific and non-specific binding. Parameters are as in Table 3

presence of non-specific binding, B1 slightly increases at the end of the simulation
compared to when non-specific binding is not included.

3.2 The Effect of the Kinetics of Drug Binding to Specific Binding Sites on Drug
ConcentrationsWithin the Brain ECF

Next, we study the influence of the various parameters related to the kinetics of specific
binding onCECF.We investigate combinations of several values of k1on, k1off and Bmax

1 .
In Fig. 4, the log concentration–time profiles of CECF are shown in nine sub-figures
for several combinations of the values of k1on and k1off . In the figure, k1on increases
from left to right and k1off increases from top to bottom. Additionally, Bmax

1 is varied,
and therefore, three different graphs for CECF are shown in each sub-figure, together
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a b

Fig. 3 Concentration ratios over time of free and bound drug in the brain ECF in log scale. In a, the
concentration ratios of CECF with binding (the ratio of CECF in the presence of only specific binding with
respect toCECF without binding and the ratio ofCECF in the presence of both specific and non-specific with
respect to CECF without binding) are shown. In b, the concentration ratio over time of B1 in the presence
of specific and non-specific binding with respect to B1 with only specific binding is shown

a b c

d e f

g h i

Fig. 4 Concentration–time profiles on a log scale ofCECF for various parameters in comparison withCECF
for the default parameter set and of Cpl. Here, k1on is varied from 0.01 (left) to 1 (middle) and 10 (right)
times the default value and k1off is varied from 0.1 (top) to 1 (middle) and 10 (bottom) times the default
value. In all of the graphs, Bmax

1 is varied from 0.01 (low) to 1 (medium) and 100 (high) times the default
value

with CECF for the default parameters and Cpl. The values of these parameters are
changed as follows: Bmax

1 and k1on are varied from 0.01, 1 and 10 times the default
value (Table 2) and k1off is varied from 0.1, 1 and 10 times the default value (Table 2).

We observe that changing the association and dissociation rate constants k1on and
k1off affects the decrease inCECF after its peak, see Fig. 4. In addition, for a larger k1on,
drugs associate faster with their target sites, which can be seen by a decrease in CECF.
Moreover, with increasing k1off , drugs dissociate faster, which is visible as an increase
in CECF. This effect is most prominent for a higher value of Bmax

1 . In addition, when
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a b c

d e f

g h i

Fig. 5 Concentration–time profiles on a log scale of B1 for various parameters in comparison with the log
concentration–time profiles of B1 with the default parameter set. Again, k1on is varied from 0.01 (left) to
1 (middle) and 10 times the default value (right) and k1off is varied from 0.1 (top) to 1 (middle) and 10
(bottom) times the default value. In all of the graphs, Bmax

1 is varied from 0.01 (low) to 1 (medium) and
100 (high) times the default value

k1on is lower and k1off is higher (0.01 and 10 times the default value, respectively),
CECF decreases more quickly after the peak than when k1on is higher or when k1off is
smaller (Fig. 4g). Again, these effects are mainly visible for a larger Bmax

1 . This shows
the relevance of looking at a combination of parameter values instead of varying just
one parameter. Finally, we observe that increasing Bmax

1 strongly lowers the peak
concentration ofCECF as well as the downward slope after the peak (Fig. 4a, b, e, h, i).

We are also interested in the effects of k1on, k1off and Bmax
1 on the concentration–

time profiles of bound drug, in particular those of drug bound to specific binding sites.
Therefore, in Fig. 5 we use the same set of combinations of values for k1on, k1off and
Bmax
1 to plot the log concentration–time profile of B1. Figure 5 shows that for the low

and default values of Bmax
1 , when k1on is increased, B1 increases faster to higher levels

for the default B1. Moreover, the decrease in B1 is less strong. When we increase
k1off , the peak concentrations of B1 decrease, while B1 decreases more quickly after
the peak for a low and medium k1on. As Bmax

1 represents the total concentration of
specific binding sites, it is not surprising that an increased Bmax

1 corresponds to an
increased concentration of bound drug B1. Increasing Bmax

1 obviously increases B1,
but also mitigates the effects of a changed k1on or k1off . Figure 5 shows that when
Bmax
1 is high, for most values of k1on and k1off , B1 stays close to its maximal value

during most of the simulation.
The above observations are more clear when looking at the ratio of concentrations,

as shown in Fig. 6. There, we vary one parameter different from the default set and then

123



3496 E. Vendel et al.

a

b

c

Fig. 6 Concentration ratios over time of free and bound drug in the brain ECF on a log scale. The ratios of
CECF (a), B1 (b) and B2 (c) with altered specific binding parameters (high Bmax

1 of 100 times the default,
high k1on of 100 times the default and decreased k1off of 0.1 times the default) to drug concentration with
default parameters are shown
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plot the ratio of drug concentration for the default parameter set and the new parameter
set. In the different curves, we take Bmax

1 and k1on 100 times their default values and
k1off 0.1 its default value. Again, we observe that for a larger value of Bmax

1 , CECF
strongly decreases during most of the simulation, although it does increase towards
the end of the simulation when drug starts to dissociate from its target site, see Fig. 6a.
Moreover, we observe oncemore that different values of k1on and k1off onlymoderately
cause CECF to decrease towards the end of the simulation. In line with this, we see in
Fig. 6b that for a high Bmax

1 , B1 strongly increases, whereas for a higher k1on and for
a smaller k1off , B1 increases only slightly towards the end of the simulation. Finally,
we observe in Fig. 6c that the profile of B2 follows that of CECF. This is explained
by the high concentration of non-specific binding sites and weak binding, leading to
non-saturable binding kinetics (see also Sect. 3.2).

3.3 The Influence of Permeability on the Concentration Profiles of Drug in the
Brain ECF

Next, we study how the BBB permeability, P , influences the drug concentrations
within the brain ECF. Here, we have chosen the default value of P to be P = 10−9

(m · s−1). We increased P to 10 times its default value and decreased P to 0.1 times its
default value, which is the lowest physiological value of P (Table 1) and describes the
permeability of drugs that have difficulties of passing the BBB. In contrast, a higher
value of P corresponds to drugs that can more easily pass the BBB.

In Fig. 7a, we plot CECF for the various choices of P , combined with Cpl. We see
that when P is larger, the concentration–time profile of CECF strongly follows that of
Cpl. Note that after this maximum, CECF lies slightly above Cpl. For the smaller P of
0.1 times the default value,CECF increases and decreases more slowly than the default,
as drug both enters and leaves the brain ECF more slowly. The peak concentration of
CECF is also lower.

The BBB permeability P also influences the concentration–time profile of bound
drug. In Fig. 7b, we plot B1 and observe that, for a higher value of P , B1 rapidly
increases to a maximum. However, B1 starts to decrease quite fast again. The decrease
in B1 starts when so much free drug has flown back through the more permeable
BBB, that the concentration of free drug is not sufficiently high to bind to all of the
free binding sites. In contrast, when P is lower, B1 increases more slowly and limits to
a certain value. Only after a long time (longer than the simulation time), B1 decreases.
In Fig. 7c, where B2 is given, it is shown that, when P is larger, B2 closely follows the
concentration ofCECF, as given in Sect. 3.2. Again, this is due to the high concentration
of the non-specific binding sites, Bmax

2 and weak binding of drug to the non-specific
binding sites. For a smaller P , B2, behaves likeCECF and slowly increases to a smaller
maximum value and then slowly decreases.

3.4 The Local Drug DistributionWithin the Brain Tissue Unit

In the previous section, we have shown the effects of drug binding and BBB perme-
ability on the concentration–time profiles of a drug at one point of the brain tissue
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a

b

c

Fig. 7 The effect of changing the permeability P on the log concentration–time profiles of CECF, B1 and
B2 is shown in a–c, respectively, for a low (0.1 times the default value) and high (10 times the default value)
value of P . The concentration–time profiles of Cpl and CECF with the default value of P are shown as a
reference in each sub-figure

unit. A great advantage of our model is that it allows to study the local distribution of
a drug within the entire brain tissue unit. In this section, we show that our model is
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Table 4 Model parameters Quantity Unit Magnitude

D* m2 s−1 5 × 10−12

Dose µmol 100

P ms−1 10−7

k1on (µmol L−1 s)−1 10

Bmax
1 µmol L−1 1 × 10−1

Bmax
2 µmol L−1 100

able to detect local concentration differences in CECF, B1 and B2 that arise within the
domain. In these simulations, we choose several parameters to have different values
from those in Table 2 for having a more extreme view on their impact on local drug
distribution, as shown in Table 4. We show the concentrations at different times until
the drug has distributed evenly over the unit. A time course of the local drug distribu-
tion within the unit shows that local concentration differences can be detected (Fig. 8).
It can be seen that the concentrations rise most prominently on the boundaries of the
brain tissue unit, where the BBB is located and drug flows in from the blood plasma
in the brain capillaries. Moreover, the drug concentration is slightly higher at the left
side of the unit than at the right side. This asymmetric distribution is a result of the
unidirectional transport mediated by the brain ECF bulk flow. With time, the concen-
tration differences become smaller due to diffusion, until the drug concentrations are
evenly distributed over the brain tissue unit. Here, the time scale is very small, as also
the area of distribution (one unit of 50 by 50µm) is small.

In Fig. 9, we show the time course of changes in the local distribution of B1. We
observe that drug first binds to the specific binding sites at the boundaries of the
unit nearby the BBB. At later times, the drug reaches the specific binding sites that
are located in the middle of the unit and hence the concentration of B1 increases
there. Specific binding sites are quickly saturated as k1on is large. This is shown by
the concentration of drug bound to its target that quickly reaches its maximal value
all over the unit. Finally, we give the local distribution of B2 as a function of time
in Fig. 10. There, we observe that the time course of the local distribution of B2 is
similar to that of CECF. First, drug binds to the non-specific binding sites closer to the
BBB at the boundaries of the unit and then reaches the non-specific binding sites in
the middle of the unit.

4 Discussion

In this article,we have developed amathematicalmodel that describes a single 2Dbrain
tissue unit. This unit represents the smallest building block of the brain and consists
of surrounding blood capillaries, the BBB, the brain ECF and drug binding sites. The
model enables us to integrate the processes that determine the local concentration–
time profiles of a drug within the brain ECF, i.e. BBB permeability, drug transport and
drug binding, and study their interdependence. With this 2D brain tissue unit model,
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Fig. 8 The local distribution of CECF within the 2D brain tissue unit is shown at several time steps. The
concentration of the free drug is indicated by the shades of the colour bar, where darker colours correspond
to higher concentrations (Color figure online)

Fig. 9 The local distribution of B1 within the 2D brain tissue unit is shown at several time steps. Darker
colours correspond to higher concentrations (Color figure online)
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Fig. 10 The local distribution of B2 within the 2D brain tissue unit is shown for the same time steps as
CECF in Fig. 8. A darker corresponds to a higher concentration (Color figure online)

we have aimed to improve current understanding of local drug distribution within the
brain ECF.

The distribution of a drug within the brain ECF was previously described in math-
ematical models by Nicholson and Phillips (1981), Nicholson and Syková (1998),
Nicholson (2001) and Syková and Nicholson (2008). However, they model drug trans-
port through the brain ECF following drug administration directly into the brain. In
our model, we describe the more common situation, where drug may enter the brain
via cerebral blood, upon oral or venous administration of the drug. This means that
the drug enters the brain via the capillary blood and distributes to the brain ECF via
the BBB.

We have studied the influence of the BBB permeability on local drug concentration
profiles within the brain. In disease conditions, BBB permeability parameter values
may change and the understanding of their effect on local drug distribution within
the brain has therefore a high clinical relevance, see, e.g. Hawkins and Davis (2005)
and Zlokovic (2008) for excellent reviews on this topic. We have shown that with a
higher permeability, or an increase in P , the concentration of free drug in the brain
ECF,CECF, is not only higher than under normal conditions, but also shows a different
concentration–time profile, which more closely follows Cpl (Fig. 7).
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After crossing the BBB, the drug distributes within the brain by diffusion and
brain ECF bulk flow. Some research groups have argued that the brain ECF bulk flow
velocity v has little influence on the distribution of a drug within the brain, especially
on a short distance (Nicholson 2005; Syková and Nicholson 2008; Wolak and Thorne
2013). We have included brain ECF bulk flow in our model as there is evidence of the
existence of bulk flow in the brain ECF (Cserr and Ostrach 1974; Abbott 2004) and
that it may be a relevant means by which drugs distribute in the brain ECF (de Lange
and Danhof 2002; Cserr and Ostrach 1974). Correspondingly we find in our model an
effect of the brain ECF bulk flow velocity v, of which the value is within the reported
physiological range (Table 2), on the distribution of drug within one brain tissue unit,
see Figs. 8, 9 and 10.

Drug binding is of major importance for the effect of a drug. Therefore, as an
extension of themodel ofNicholson,wehave added twoordinary differential equations
to describe the change in concentration of drug bound to specific and non-specific
binding sites. Herewith, we describe the interdependence of the concentrations of free
and bound drug. We have shown that drug binding within the brain ECF makes the
free drug concentrations in the 2D brain tissue unit rise and fall slower, see Fig. 2.
Moreover, we have found that increasing k1on lengthens the time period in which
specific binding sites are saturated, i.e. when the concentration of drug bound to these
specific binding sites, B1, is at its maximal value (see Fig. 5). This corresponds to a
recent study by de Witte et al. (2016), where it is stated that a high association rate
constant can substantially reduce the rate of decline of target-occupancy.

In addition to specific binding, we have included non-specific binding in our model,
because the concentration of drug bound to non-specific binding sites has implications
for the concentration of free drug that is available to specific binding sites. A recent
paper by McGinty and Pontrelli (2016) demonstrates the importance of modelling
specific binding and non-specific binding as two different processes since they have
other types of kinetics: specific binding sites are quickly saturated because of their low
concentration and strong association with the drug, while non-specific binding sites
are unlikely to become saturated due to their high capacity and weak binding.With the
assumption that binding of drug to non-specific binding sites follows non-saturable
binding kinetics, we have shown in Fig. 2c that non-specific binding indeed influences
the concentration–time profile of free drug and that the concentration of non-specific
binding sites is proportional to that of free drug.

In our model, we assume that all parameters are constant in time and space, whereas
time-dependent and space-dependent changes in parameters are of course possible.
We should, however, add that within a brain tissue unit as small as the one we model,
local differences in properties, such as local differences in BBB permeability or con-
centrations of binding sites, are unlikely to be seen. For this reason, we have assumed
that all parameter values are constant over space.

With our model, we have shown the local distribution of a drug within the 2D brain
tissue unit. As the brain tissue unit is entirely surrounded by the brain capillaries,
drugs within the brain tissue unit quickly distribute over the small area enclosed by
the brain capillaries. We have shown that local concentration differences within the
unit may exist, or, more specifically, that in the early time steps, differences in local
drug concentrations could be seen.
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On the basis of this 2D model, we are now able to extend the model to three
dimensions. In 3D, the differences in local drug concentrations are expected to be
more pronounced, since the brain capillaries are located only at the ribs of the cube, so
that the point in the middle of the cube is further away from the capillaries compared
to in 2D. This leads to a more realistic prediction of the concentration of drug that is
present within the brain. Moreover, it allows for a comparison with experimental data
from specific drugs, and therefore, it may provide insight into processes that are not
known by experimental data, such as the kinetics of non-specific binding.

A 3D model allows for further refinement of the model. For example, as indicated,
we have focused on passive transport across the cells of theBBB.However, drug can be
actively transported into or out of the brain, mediated by, depending on the size of the
drug, specific carriers or efflux transporters (Strazielle andGhersi-Egea2013). This can
strongly influence the concentration of free drug in the brain (Hammarlund-Udenaes
et al. 1997; De Boer et al. 2003). Moreover, drug may also be transported through
the space between the cells (paracellular transport). This is particularly important for
small, hydrophilic drugs or in certain disease conditions, when a disruption in the tight
junctions leads to an increased paracellular permeability (Mikitsh and Chacko 2014;
Stamatovic et al. 2008). Another refinement of our model would consist of including
cerebral blood flow, as this may be important for drugs that easily cross the BBB
(Hammarlund-Udenaes et al. 2008; Banks 2009).

Extending the model to 3D is not only an important step in improving the realism of
ourmodel, but also a great possibility to study the drug distributionwithin the brain on a
larger scale, by connectingmultiple brain tissue units. Thiswill increase the importance
of the local concentration profiles of a drug within a brain tissue unit, as this brain
tissue unit will be part of a larger framework in which the drug is spatially distributed.
This will allow us to implement regional differences by assigning different parameter
values to different brain tissue units, e.g. drug exchange with the blood capillaries
could be different per capillary or binding sites could be unevenly distributed over
space. This gives interesting possibilities, such as mimicking the effects of a local
disease on the spatial concentration profiles of a drug. The 2D model we have now
developed is an essential step in setting up a 3D mathematical model on the spatial
distribution of drugs within the brain.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix I: Non-dimensionalisation of theModel

We have made the system of Eqs. (3–4) dimensionless by introducing a change in
variables. Here, the original variables are scaled to dimensionless variables by scaling
with a characteristic, dimensional scale. We set:

t = tcτ D* = Dcd k1on = k1oncK1on
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x = xcξ, v = vcV k1off = k1offcK1off

y = ycη Bmax
1 = Bmax

1c bmax
1 k2on = k2oncK2on

CECF = Ccu Bmax
2 = Bmax

2c bmax
2 k2off = k2offcK2off

B1 = B1cb1 Cpl = Cplcw P = Pc p

B2 = B2cb2

where

tc = 1s Dc = 10−10 m2s−1 k1onc = (µmol L−1 s)−1

xc = 10−6 m vc = 10−6 m s−1 k1offc = 10−2 s−1

yc = 10−6 m Bmax
1c = µmol L−1 k2onc = 10−2 (µmol L−1 s)−1

Cc = µmol L−1 Bmax
2c = µmol L−1 k2offc = s−1

B1c = µmol L−1 Cplc = µmol L−1 Pc = 10−9 m s−1

B2c = µmol L−1

This leads to the following system of dimensionless equations

∂u

∂τ
= 102d

(
∂2u

∂ξ2
+ ∂2u

∂η2

)
− V

∂u

∂ξ

− K1onu(bmax
1 − b1) + 10−2K1offb1

− 10−2K2onu(bmax
2 − b2) + K2offb2,

∂b1
∂τ

= K1onu(bmax
1 − b1) − 10−2K1offb1,

∂b2
∂τ

= 10−2K2onu(bmax
2 − b2) − K2offb2.

The corresponding boundary conditions are given by

d
∂u

∂ξ
= 10−5 p(w − u)(ξ, η, τ )

for ξ = 1 and ξ = 0 and

d
∂u

∂η
= 10−5 p(w − u)(ξ, η, τ )

for η = 1 and η = 0.
The initial conditions become

u(ξ, η, τ = 0) = 0.
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