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Abstract Infection age is often an important factor in epidemic dynamics. In order
to realistically analyze the spreading mechanism and dynamical behavior of epidemic
diseases, in this paper, a generalized disease transmission model of SIS type with age-
dependent infection and birth and death on a heterogeneous network is discussed. The
model allows the infection and recovery rates to vary and depend on the age of infec-
tion, the time since an individual becomes infected. We address uniform persistence
and find that the model has the sharp threshold property, that is, for the basic repro-
duction number less than one, the disease-free equilibrium is globally asymptotically
stable, while for the basic reproduction number is above one, a Lyapunov functional is
used to show that the endemic equilibrium is globally stable. Finally, some numerical
simulations are carried out to illustrate and complement the main results. The disease
dynamics rely not only on the network structure, but also on an age-dependent factor
(for some key functions concerned in the model).
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1 Introduction

Infectious diseases remain a major challenge for human society. Epidemic diseases
(cholera, tuberculosis, SARS, influenza, Ebola virus, etc.) continue to have both a
major impact on humans and an economic cost to society. Any gain in understanding
the dynamics and control of epidemic transmission therefore has potential for signif-
icant impact—and hence has been the focus of scientific research and attracted much
attention (Anderson and May 1991; Bailey 1975; Kermack and McKendrick 1927,
1932).

Epidemic dynamic models provide a theoretical method for quantitative studies of
infectious diseases. Since Kermack and McKendrick proposed SIR and SIS compart-
mental models to study disease transmission (Kermack andMcKendrick 1927, 1932),
epidemic models for the transmission of infectious diseases have been extensively
studied. These classical compartmental models are important tools in analyzing the
spread and control of infectious diseases, but usually neglect the population structure
or assume that all individuals have the same possibility to contact others—they are
most effective for well-mixed homogeneous populations with a substantial penetration
of infection. However, the spreading of infectious diseases is primarily via specific
contacts between individuals, emerging diseases start with a relative small number of
infectious, and the possibility to contact others is heterogeneous. Therefore, depicting
the spread of disease processes on a contact network can be more realistic (Levin and
Durrett 1996; Read and Keeling 2003; Keeling and Eames 2005; Durrett and Jung
2007). Currently, the most popular transmission models on networks are based on
mean-field approximations and follow the framework initially proposed by Pastor-
Satorras and Vespignani (2001a, b, 2002). These were the first to study SIS epidemic
model on a scale-free network and show that the epidemic threshold is infinitesimal
in the limit of a large number of links and nodes. Since then, a great deal of epidemio-
logical research work followed on scale-free (and other) networks (House et al. 2009;
Olinky and Stone 2004; Fu et al. 2008; Colizzaa et al. 2006; Wang and Dai 2008).

For some epidemic diseases, such as scarlet fever, poliomyelitis and HFMD (hand,
foot and mouth) and TB (tuberculosis), infectivity of infectious individuals is differ-
ent at the differential age of infection during transmission. However, the popularly
used epidemic models are described by ordinary differential equations, which assume
that all individuals within a compartment behave identically, for instance, all infec-
tious individuals are assumed to be equally infectious during their periodic infectivity.
Hence, in order to reflect the effect of this demographic behavior, researchers have
begun to examine age-structured epidemicmodels since the pioneeringwork (Hoppen-
steadt 1974, 1975; Elveback et al. 1971). Elveback et al. (1971) suggested that disease
transmission models with age-dependent contact rates are more realistic. Some recent
studies in Magal et al. (2010), Wang et al. (2016), Tarkhanov (2008), Liu et al. (2015),
Yang et al. (2014), Wang et al. (2015) and Browne and Pilyugin (2013) have also
shown the infection age may have an important influence on transmission dynamics
of infectious disease on public health and preventative policies.

Although infection-age-dependent epidemic models have been studied extensively,
all these models were established on homogeneous networks. As far as we know, there
are few results based on age-structured epidemic models on complex networks. Yang
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et al. (2016) built and analyzed an SIS epidemic model on complex networks by
incorporating both infection age and behavior epidemiology, and then obtained the
epidemic dynamics of their model. However, some strong assumptions were used,
such as closed populations, i.e., the total number of individuals stay invariant during
the whole epidemic duration. Since some diseases can last for an individual’s lifetime,
the influence of birth and death plays an important role in the disease spreading (Liu
et al. 2004; Zhu et al. 2013). In Liu et al. (2004), it was suggested that empty nodes
give birth to individuals with certain rate. Later (Zhu et al. 2013) proposed a birth
event that occurs at a vacant node next to a non-vacant node at constant rate, which
also depends on the number of neighboring individuals and connectivity degree. But
this demographic factor was not considered in Yang et al. (2016).

In this paper, an general SIS epidemic model with continuous infection age-
dependent infectious and recovery rates as well as birth and death of nodes and edges
is investigated on scale-free networks, which should bemore reasonable and precise to
analyze a long lasting epidemic spreading in open populations. Our model is appropri-
ate for studying diseases such asmalaria, influenza, gonorrhea and childhood diseases,
etc., whose spreading processes obviously shows heterogeneity of infectivity in infec-
tious individuals. In general, there are two main approaches to analyze age-structured
models by studying the nonlinear semigroup generated by the family of solutions. One
approach is to use the theory of integrated semigroups (Magal et al. 2010;Thieme1990;
Magal and McCluskey 2013). We employ an alternative approach, namely by inte-
grating solutions along the characteristics to obtain an equivalent integro-differential
equation, which was utilized by Webb for age-dependent population models (Webb
1985). Although epidemic models with age structure have been extensively studied,
there are still inadequate results on the full global stability. In this paper, our meth-
ods of theoretical analysis follow the techniques laid out in the monograph (Smith
and Thieme 2011). We establish uniform persistence of the system and the existence
of a compact global attractor in order to make use of the invariance principle. We
show the global stability of equilibria by constructing the proper Volterra-type Lya-
punov functions which rely on uniform persistence and invariance, and this is different
from the method used in Yang et al. (2016). Hence, our work based on age structure
will provide new insight into the study of epidemic spreading dynamics on scale-free
networks.

The organization of this paper is as follows. In Sect. 2, we present our infection
age model and provide some description and assumptions. Section 3 contributes to
derive the existence of equilibria and the basic reproduction number. In Sect. 4, we
use some fundamental principles to study the asymptotic smoothness of semi-flow
generated by system and the existence of a global attractor. The main results of this
paper are given in Sect. 5, which includes the uniform persistence of our system, the
local stability and global stability of equilibria. Some numerical analysis is performed
in Sect. 6, which shows the important influence of infection age and network structure
on disease transmission. Finally, conclusions and discussions are made in the last
section.
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2 Formulation of the Model

We consider a population with connectivity modeled as a scale-free network N with
a power-law degree distribution p(k) = ck−r (2 < r ≤ 3). The nodes are enumerated
with index i = 1, 2, . . . , N ; the degree ki of a node i is a number of links between
node i and other nodes. The distribution p(k) is the probability that a randomly chosen
node has degree k. In an SIS epidemic spreading process, every node has three optional
states: vacant, susceptible, and infected (Liu et al. 2004; Zhu et al. 2013). In order to
consider the heterogeneity of contacts, we divide the population into n groups. Let
Sk(t), Ik(t), (k = 1, 2, . . . , n) denote the densities of susceptible and infected nodes
with connectivity (degree) k at time t , respectively. The infectious class includes age
structure, that is, at time t , let Ik(t, τ ) be the density of infected individuals with degree
k with respect to infection age τ , where the infection age τ ≥ 0 implies the time since
the infection began. It is obvious that

Ik(t) =
∫ ∞

0
Ik(t, τ )dτ.

Note that Sk(t)+∫ ∞
0 Ik(t, τ )dτ = Nk(t) describes the total density of the individuals

with degree k at time t. Hence, the density of vacant nodes with degree k is 1 −
Nk(t), k = 1, 2, . . . , n.

In addition, as a disease spreads, a birth event occurs at a vacant node next to a
non-vacant node at rate b. That is, the vacant nodes will give birth to new individuals
once one of their neighbors is occupied. Thus, the birth process depends on the number
of neighboring individuals. All individuals die at rate μ, causing the occupied node
becomes vacant. Letβ(τ), γ (τ) represent infectious and removal functionwith respect
to age of infection τ respectively. Therefore, we develop a more general SIS epidemic
model on a heterogeneous network, where the age of infection is considered as a
continuous variable. The model presented here takes the following form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dSk(t)
dt = bk[1 − Nk(t)]�k − μSk(t) − kSk(t)

∫ ∞
0 β(τ)�k(t, τ )dτ

+ ∫ ∞
0 γ (τ)Ik(t, τ )dτ,

∂ Ik (t,τ )
∂t + ∂ Ik (t,τ )

∂τ
= −(μ + γ (τ))Ik(t, τ ), 0 < τ < ∞,

Ik(t, 0) = kSk(t)
∫ ∞
0 β(τ)�k(t, τ )dτ, 0 ≤ t < ∞,

(1)

where

�k(t, τ ) =
n∑

i=1

p(i |k)ϕ(i)

i
Ii (t, τ ), �k(t) =

n∑
i=1

p(i |k) A
i
Ni (t),

under the following initial conditions:
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{
Sk(0) = Sk0 ∈ R+ , Ik(0, τ ) = Ik0(τ ) ∈ L1+(0,∞), (k = 1, 2, . . . , n),

Sk0 + ∫ ∞
0 Ik0(τ )dτ = Nk0, (k = 1, 2, . . . , n).

(2)

where L1+(0,∞) is the space of functions on [0,∞) that are non-negative and
Lebesgue integrable.

The meaning of the parameters and variables of system (1) are as follows:

• Let b and μ be positive constants denoting the birth and natural death rates of all
individuals. Additional death induced by the infectious disease is not considered.

• Parameter n is the maximum degree. 〈k〉 is the average degree of the net-
work, i.e., 〈k〉 = ∑n

i=1 i p(i). For a general function δ(k), this is defined as
〈δ(k)〉 = ∑n

i=1 δ(i)p(i). Let p(i |k) be the probability that a node of degree k is
connected to a node of degree i . Here, we primarily study epidemic transmissions
on uncorrelated networks, the probability is considered independent of the con-
nectivity of the node from which the link is emanating. Therefore, p(i |k) = i p(i)

〈k〉 .
• The function �k(t, τ ) describes the probability of a link pointing to an infected
individual of age τ . We note that ϕ(k) is the infectivity of nodes with degree k,
i.e., it denotes the average number of edges from which a node with degree k can
transmit the disease. Thus, kSk(t)

∫ ∞
0 β(τ)�k(t, τ )dτ represents the number of

newly infected individuals per unit time. On uncorrelated networks, �k(t, τ ) =
1

〈k〉
∑n

i=1 ϕ(i)p(i)Ii (t, τ ) � �(t, τ ).

• The function �k(t) = ∑n
i=1 p(i |k) A

i Ni (t) is the probability of fertile contact
between a node with degree k and its neighbors with degree i . The factor 1

i is the
probability that one of neighbors of a vacant node with degree i will activate this
vacant node at the present time step. It is assumed that, at each time step, every
individual generates the same birth contacts A = 1 (Zhu et al. 2013). Thus, the
quantity bk[1 − Nk(t)]�k represents the density of new born individuals per unit
time. On uncorrelated networks, we get �k(t) = 1

〈k〉
∑n

i=1 p(i)Ni (t) � �(t).

In what follows, we shall discuss the asymptotic behavior of system (1)–(2) and we
will make use of the following assumptions on infection-age-dependent key functions
β(τ) and γ (τ), which are both biologically significant and also provide a convenient
form for mathematical treatment.

Assumption 2.1 Consider the system (1), we assume that,

1. The functions β(τ), γ (τ ) ∈ L∞+ are positive and bounded measurable, i.e., with
respective essential upper bounds β and γ . Furthermore, there exists a constant
α > 0 such that β(τ), γ (τ ) ≥ α for all τ ≥ 0;

2. β(τ) is Lipschitz continuous on R+ with the Lipschitz coefficient Mβ .

Let us define a functional space for system (1),

X = X1 × X2 × · · · × Xn, Xi = R+ × L1+, i = 1, 2, . . . , n.

The space X is a closed subset of a Banach space, and the norm on Xk is taken to be

‖Xk‖ = |Sk(t)| +
∫ ∞

0
|Ik(t, τ )|dτ.
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The initial condition for system (1) can be rewritten as

X0 � {(S10, I10(·), S20, I20(·), . . . , Sn0, In0(·)} ∈ X.

By applying tools of Hale (1971), Webb (1985) and Assumption 2.1, it can be verified
that system (1) is well-posed, and the solution of system (1) exists for any initial
conditions X0 ∈ X . Thus, we can define a continuous flow �(t): X → X for t ≥ 0
of system (1) such that

�(t, X0) = �(t, X0) = (S1(t), I1(t, τ ), S2(t), I2(t, τ ), . . . , Sn(t), In(t, τ )) ,

where �(t, X0) is the solution of system model (1) with initial condition X0 ∈ X .
By Nk(t) = Sk(t) + Ik(t) and system (1), the evolution of Nk(t) are governed by

the following equation:

dNk(t)

dt
= bk[1 − Nk(t)]� − μNk(t). (3)

Let dNk(t)
dt = 0, we get Nk = 0, which corresponds to the equilibrium of extinction,

and another solution satisfies

Nk = bk�

μ + bk�
. (4)

Putting the above Eq. (4) to �, we obtain � = 1
〈k〉

∑
i
i p(i)b�
μ+bi� . Then, we note that

f (�) = 1 − 1

〈k〉
∑
i

bip(i)

μ + bi�
,

it is clear that f ′(�) > 0, f (1) > 0. Thus, f (�) = 0 has a unique positive solution
if and only if f (0) = 1 − b

μ
< 0. That is ,when b > μ, the Eq. (3) has a unique

positive solution Nk = N∗
k , which satisfies

N∗
k = bk�∗

μ + bk�∗ , �∗ = 1

〈k〉
n∑

i=1

p(i)N∗
i (t).

Therefore, from (3) and Zhu et al. (2012), We draw the following conclusions:

(1) When b ≤ μ, lim
t→∞ Nk(t) = 0. The population becomes extinct, and there is no

other dynamic behavior;
(2) When b > μ, lim

t→∞ Nk(t) = N∗
k . Based on the above results,wewill only consider

the case of b > μ.

Based on above results, we only consider the case of b > μ. Since the original
system and limiting system have the same asymptotic dynamical behaviors, to study
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the stability of model (1), we only need to consider its limiting system under which
Sk(t) + ∫ ∞

0 Ik(t, τ )dτ = N∗
k . The limiting systems of system (1) is as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dSk (t)
dt = bk[1 − N∗

k ]�∗ − μSk(t) − kSk(t)
∫ ∞
0 β(τ)�(t, τ )dτ

+ ∫ ∞
0 γ (τ)Ik(t, τ )dτ,

∂ Ik (t,τ )
∂t + ∂ Ik (t,τ )

∂τ
= −(μ + γ (τ))Ik(t, τ ),

Ik(t, 0) = kSk(t)
∫ ∞
0 β(τ)�(t, τ )dτ.

(5)

with the same initial conditions as (2) and X0 ∈ X .
Finally, we define the state space x = (S1(t), I1(t, ·), . . . , Sn(t), In(t, ·)) ∈ X for

system (5) as


 = {x ∈ X : 0 < Sk(t) +
∫ ∞

0
Ik(t, τ )dτ < 1, ‖�(t, X0)‖ < n, k = 1, 2, . . . , n.}

The following proposition shows that 
 is positively invariant with respect to sys-
tem (5) for �.

Proposition 2.1 
 is positively invariant of system (5) for � . Moreover, � is point
dissipative (there exists a bounded set 
 ⊂ X which attracts all points in X). That is
, ∀ t ≥ 0 , for any solution of system (5), noting as �(t, X0), with the initial condition
X0 ∈ 
. Then �(t, X0) ∈ 
.

Proof Define the arbitrary initial condition X0 ∈ 
 satisfied (2). Thus, ∀ t > 0, we
have Nk0 > 0 , �(0) > 0. From Eq. (3), we get

d�(t)

dt
= (b − μ)�(t) − b�(t)

〈k〉 �i i p(i)Ni (t).

It is obvious that �(t) = �(0)eb−μ− b
〈k〉 �i i p(i)Ni (t) > 0. It follows from equation (3)

that

dNk(t)

dt
= bk[1 − Nk(t)]� − μNk(t) ≥ −[bk� + μ]Nk(t).

We have Nk(t) ≥ Nk(0)e−(bk�+μ)t > 0. Then, from (3), we also have

d(1 − Nk(t))

dt
= −(bk� + μ)[1 − Nk(t)] + μ.

It is clear that Nk(t) < 1, and 0 < Sk(t) + ∫ ∞
0 Ik(t, τ )dτ = Nk(t) < 1.

Therefore, for any initial condition, 
 is positively invariant, and it is clear that �

is point dissipative and 
 attracts all points in X . This completes the proof. ��
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3 Equilibria and the Basic Reproduction Number

Now we consider the steady states of system (5) and obtain the basic reproduction
number R0, which is the average number of new infections generated by a single
infectious individual in a susceptible environment during the full infectious period.

For ease of notion, ∀ τ ≥ 0, we denote

K1(λ) =
∫ ∞

0
β(τ)e−λτ H(τ )dτ, K2(λ) =

∫ ∞

0
γ (τ)e−λτ H(τ )dτ,

H(τ ) = e−μτ−∫ τ
0 γ (ξ)dξ , H =

∫ τ

0
H(a)da, Zk(t) = Ik(t, 0), (k = 1, 2, . . . , n).

Firstly, with the above boundary conditions and initial conditions (2) , we obtain
I (t, τ ) by integrating the second differential equation in (5) along the characteristic
line t − τ = constant (Webb 1985),

Ik(t, τ ) =
{
Ik(t − τ, 0)H(τ ), t ≥ τ,

Ik(0, τ − t) H(τ )
H(τ−t) , 0 < t < τ.

(6)

Next, we claim that any solution of system (5)with initial condition X0 ∈ 
 remains
non-negative before discussing the dynamics of system (5). The following result also
tells us that if there is an initial infection then the infection persists, which is necessary
to investigate the stability of system (5).

Proposition 3.1 For X0 ∈ X and any k (k = 1, 2, . . . , n), Sk(t) is strictly positive on
R for any t ≥ 0. Meanwhile, if the initial infection is identically zero (Ik0(τ ) = 0, k =
1, 2, . . . , n), then

∫ ∞
0 β(τ)�(t, τ )dτ = 0 for t ≥ 0, otherwise,

∫ ∞
0 β(τ)�(t, τ )dτ

and Ik(t) are strictly positive for t ≥ 0 and any k (k = 1, 2, . . . , n).

Proof Firstly, for simplicity, we denote J (t) = ∫ ∞
0 β(τ)�(t, τ )dτ and derive that,

dJ (t)

dt
=

∫ ∞

0
β(τ)

1

〈k〉
n∑

k=1

ϕ(k)p(k)

(
∂ Ik(t, τ )

∂t

)
dτ

=
∫ ∞

0
β(τ)

1

〈k〉
n∑

k=1

ϕ(k)p(k)

(
−∂ Ik(t, τ )

∂τ
− (μ + γ (τ))Ik(t, τ )

)
dτ

= − 1

〈k〉
n∑

k=1

ϕ(k)p(k)
∫ ∞

0
β(τ)

∂ Ik(t, τ )

∂τ
dτ

− 1

〈k〉
n∑

k=1

ϕ(k)p(k)
∫ ∞

0
β(τ)(μ + γ (τ))Ik(t, τ )dτ
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≤ α

〈k〉
n∑

k=1

kϕ(k)p(k)J (t) − (μ + α)J (t)

=
(

α〈kϕ(k)〉
〈k〉 − (μ + α)

)
J (t).

It is clear that J (t) ≤ J (0)e

(
α〈kϕ(k)〉

〈k〉 −(μ+α)
)
.

We can also obtain the following inequality by the similar method

dJ (t)

dt
= − 1

〈k〉
n∑

k=1

ϕ(k)p(k)
∫ ∞

0
β(τ)

∂ Ik(t, τ )

∂τ
dτ

− 1

〈k〉
n∑

k=1

ϕ(k)p(k)
∫ ∞

0
β(τ)(μ + γ (τ))Ik(t, τ )dτ

≥ β

〈k〉
n∑

k=1

ϕ(k)p(k)kSk(t)J (t) − (μ + γ )J (t) ≥ −(μ + γ )J (t).

Then, we get J (t) ≥ J (0)e−(μ+γ ). Because of X0 ∈ X , we derive Ik0(τ ) ≥ 0 for any
k and J (0) ≥ 0, which in turn, we get J (t) ≥ 0.

Next, from the similar arguments in Wang et al. (2016) and the first equation of
system (5), we can show that the solution Sk(t) is strictly positive for ∀ t ≥ 0 and ∀
k. Furthermore, from above analysis, for t ≥ 0 and any initial condition X0 ∈ X , we
know that if Ik0(τ ) is identically zero for any k, then J (0) = 0 and J (t) = 0, thereby,
Ik(t, 0) = Ik(t, τ ) = Ik(t) = 0, k = 1, 2, . . . , n. On the other hand, if the disease
is initially present, that is, the support of at least one of Ik0(τ ) (k = 1, 2, . . . , n)
has positive measure, which can make sure that J (0) > 0, and therefore J (t) and
Ik(t − τ, 0) (k = 1, 2, . . . , n) take on positive values. Thus, due to Eq. (6), we get, for
any k,

Ik(t) =
∫ ∞

0
Ik(t, τ )dτ =

∫ t

0
Ik(t − τ, 0)H(τ )dτ

+
∫ ∞

t
Ik(0, τ − t)

H(τ )

H(τ − t)
dτ > 0.

This is to say that the infection stays if there is an initial infection. This completes the
proof. ��

According to Assumption 2.1, Propositions 2.1 and 3.1, we obtain the positiveness
of solutions of system (5) for any initial conditions X0 ∈ X . Then, we obtain the
following proposition.

Proposition 3.2 If X0 ∈ X, then there exists a constant � satisfied � > 1, the
following statements hold true for any t ≥ 0 and k(k = 1, 2, . . . , n):

(1) 0 < Sk(t),
∫ +∞
0 Ik(t, τ )dτ ≤ �;

123



2058 S. Chen et al.

(2)
∫ +∞
0 β(τ)Ik(t, τ )dτ ≤ β�,

∫ +∞
0 γ (τ)Ik(t, τ )dτ ≤ γ�, and Ik(t, 0) ≤

〈ϕ(k)〉
〈k〉 βn�2.

Then, we consider the steady states of system (5) for any initial condition X0 ∈ 
.

The system always has a disease-free equilibrium E0 : I 0k = 0, S0k = bk[1−N∗
k ]�∗

μ
(k =

1, 2, . . . , n). We investigate the positive equilibrium of system (5), we know that any
positive equilibrium E∗ (

(S∗
k , I

∗
k (τ )

)
k should satisfy the following equations,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

bk[1 − N∗
k ]�∗ − μS∗

k − kS∗
k

∫ ∞
0 β(τ)�∗(τ )dτ + ∫ ∞

0 γ (τ)I ∗
k (τ )dτ = 0,

dI ∗
k (τ )

dτ = − (μ + γ (τ))I ∗
k (τ ),

Z∗
k = kS∗

k

∫ ∞
0 β(τ)�∗(τ )dτ,

�∗(τ ) = 1
〈k〉

∑n
i=1 ϕ(i)p(i)I ∗

i (τ ).

(7)

From Eq. (7), we get the positive equilibrium E∗ satisfies:

I ∗
k (τ ) = I ∗

k (0)H(τ ) = Z∗
k H(τ ),

S∗
k = 〈k〉Z∗

k

kK1(0)
n∑

i=1
ϕ(i)p(i)Z∗

i

, Z∗
k = bk[1 − N∗

k ]�∗ − μS∗
k

1 − K2(0)
.

It is clear that S∗
k > 0 and I ∗

k (τ ) > 0 if and only if Z∗
k > 0. Obviously, bk[1−N∗

k ]�∗−
μS∗

k = μ(N∗
k − S∗

k ) > 0 is satisfied and the following inequality is established:

K2(0) =
∫ ∞

0
γ (τ)e−μτ−∫ τ

0 γ (ξ)dξdτ

≤
∫ ∞

0
γ (τ)e− ∫ τ

0 γ (ξ)dξdτ = 1 − e− ∫ ∞
0 γ (ξ)dξ < 1.

Hence, we obtain Z∗
k > 0, S∗

k > 0 and I ∗
k (τ ) > 0.

Since I ∗
k (τ ) = Z∗

k H(τ ) and Z∗
k = kS∗

k

∫ ∞
0 β(τ)�∗(τ )dτ , it is clear that

Z∗
k = k

(
bk[1 − N∗

k ]�∗

μ
−

∫ ∞

0
Z∗
k H(τ )dτ

) ∫ ∞

0
β(τ)

1

〈k〉
n∑

i=1

ϕ(i)p(i)Z∗
i H(τ )dτ.

For simplicity,wedenote θ = ∑n
i=1 ϕ(i)p(i)Z∗

i . Then,weget Z
∗
k = kK1(0)

bk[1−N∗
k ]�∗

μ
θ

〈k〉+kHK1(0)θ
,

and
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θ =
n∑

k=1

kϕ(k)p(k)K1(0)
bk[1−N∗

k ]�∗
μ

θ

〈k〉 + kHK1(0)θ
� f (θ).

It follows that f ′(θ) > 0, f ′′(θ) < 0, f ′(θ)|θ=0 = 1
〈k〉

n∑
k=1

kϕ(k)p(k)S0k K1(0) > 1.

Therefore, the above equation θ = f (θ) has a unique positive solution, that is, the

Eq. (7) has a unique positive solution when 1
〈k〉

n∑
k=1

kϕ(k)p(k)S0k K1(0) > 1.

From above analysis, we find that system (5) has a unique positive equilibrium

if 1
〈k〉

n∑
k=1

kϕ(k)p(k)S0k K1(0) > 1. Therefore, in the following result, we define the

basic reproduction number for system (5) depending on birth and natural death rates,
network structure and infection age, which will be proved to be a sharp threshold
parameter defined in Shuai and Driessche (2013) in the following sections, and com-
pletely determines the global dynamics of system (5).

Theorem 3.1 Define the basic reproduction number as follows,

R0 = K1(0)

< k >

n∑
i=1

iϕ(i)p(i)S0i .

The system (5) always has a disease-free equilibrium E0 : I 0k = 0, S0k =
bk[1−N∗

k ]�∗
μ

, k = 1, 2, . . . , n.

If R0 > 1, then there exists a unique endemic equilibrium E∗, which satisfies

S∗
k = 〈k〉Z∗

k

kK1(0)
∑

ϕ(i)p(i)Z∗
i
,

I ∗
k (τ ) = Z∗

k H(τ ), Z∗
k = bk[1 − N∗

k ]�∗ − μS∗
k

1 − K2(0)
, k = 1, 2, . . . , n.

4 Asymptotic Smoothness

In order to obtain global properties of the semi-flow {�(t)}t≥0, it is important to
prove that the semi-flow is asymptotically smooth. The existence of a compact global
attractor allow us to make use of the invariance principle, which is necessary to study
the global stability of equilibria via constructing the proper Volterra-type Lyapunov
functions in the following section.

Now, we give the definition of asymptotic smoothness. The semigroup �(t) is
asymptotically smooth, if, for any non-empty, closed and bounded set B ⊂ X for
which �(t,B)⊂ B, there is a compact set J ⊂ B such that J attracts B. In order to
prove that�(t) is asymptotically smooth, we use the following results, which is based
on Hale (1988) and Adams (2003).
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Lemma 4.1 (Hale 1988) For each t > 0, suppose �(t) = �(t) + ϒ(t) : 
 → 


has the property that�(t) is completely continuous and there is a continuous function
k:R+ × R+ → R+: such that k(t, r) → 0 as t → ∞ and ‖ϒ(t)X0‖ ≤ k(t, r) if
‖X0‖ < r . Then �(t), t ≥ 0, is asymptotically smooth.

Lemma 4.2 (Adams 2003) Let K ⊂ L p
+(0,+∞) be closed and bounded where

p ≥ 1. Then, K is compact if and only if the following conditions hold:

(i) limh→0
∫ ∞
0 |u(z + h) − u(z)|pdz = 0 uniformly for u ∈ K, where u(z + h) = 0

if z + h < 0.

(ii) limh→∞
∫ ∞
h |u(z)|pdz = 0 uniformly for u ∈ K.

In order to apply Lemmas 4.1 and 4.2 to prove the semigroup � is asymptotically
smooth, we firstly prove the following result, which is useful in the following proof
of Theorem 4.1.

Proposition 4.1 The function
∫ ∞
0 β(τ)Ik(t, τ )dτ is Lipschitz continuous with Lips-

chitz coefficient Mβk on R+.

Proof For t ≥ 0, let

Jk(t) �
∫ ∞

0
β(τ)Ik(t, τ )dτ, k = 1, 2, . . . , n.

By Proposition 2.1, we know that ‖�(t)X0‖ ≤ � for all t ≥ 0 and � > n. Let t ≥ 0
and h > 0, we confirm that

Jk(t + h) − Jk(t) =
∫ ∞

0
β(τ)Ik(t + h, τ )dτ −

∫ ∞

0
β(τ)Ik(t, τ )dτ

=
∫ h

0
β(τ)Zk(t + h − τ)H(τ )dτ

+
∫ ∞

h
β(τ)Ik(t + h, τ )dτ −

∫ ∞

0
β(τ)Ik(t, τ )dτ.

By applying the Assumption 2.1 and Proposition 3.2 for the first integral, we get
β(τ) ≤ β, Zk(t + h − τ) ≤ 〈ϕ(k)〉

〈k〉 βn�2 and H(τ ) ≤ 1. For the second integral, we
make the substitution τ − h = a and obtain

Jk(t + h) − Jk(t) ≤ 〈ϕ(k)〉
〈k〉 β

2
n�2h +

∫ ∞

0
β(a + h)Ik(t, a)

H(a + h)

H(a)
da

−
∫ ∞

0
β(τ)Ik(t, τ )dτ

≤ 〈ϕ(k)〉
〈k〉 β

2
n�2h

+
∫ ∞

0

(
β(a + h)e− ∫ a+h

a (μ+γ (ξ))dξ − β(a)
)
Ik(t, a)da
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≤ 〈ϕ(k)〉
〈k〉 β

2
n�2h

+
∫ ∞

0
β(a + h)

(
e− ∫ a+h

a (μ+γ (ξ))dξ − 1
)
Ik(t, a)da

+
∫ ∞

0
(β(a + h) − β(a)) Ik(t, a)da

≤ 〈ϕ(k)〉
〈k〉 β

2
n�2h

+ (μ + γ )β�h +
∫ ∞

0
(β(a + h) − β(a)) Ik(t, a)da.

Next, fromAssumption 2.1, we know that β(τ) is Lipschitz continuous on R+ with
Lipschitz coefficient Mβ . Then, we find that

Jk(t + h) − Jk(t) ≤ 〈ϕ(k)〉
〈k〉 β

2
n�2h + (μ + γ )β�h + Mβ�h.

It follows that Jk(t) is Lipschitz continuous with Lipschitz coefficient Mβk =
〈ϕ(k)〉

〈k〉 β
2
n�2 + (μ + γ )β� + Mβ�, k = 1, 2, . . . , n. The proof is completed. ��

The following Lemma will be also used in the proof of Theorem 4.1. We refer the
readers to McCluskey (2012) for more results and proof on this topic.

Lemma 4.3 (McCluskey 2012) Let J ⊂ R. For j = 1, 2, suppose that f j : J → R
is a bounded Lipschitz continuous function with bound K j and Lipschitz coefficient
M j . Then, the product function f1 · f2 is Lipschitz continuous with coefficient K1M2+
K2M1.

Applying for Lemmas 4.1 and 4.2, and combining Proposition 4.1 and Lemma 4.3,
we have the following Theorem 4.1 and prove it in “Appendix A”, which is the main
result of this section.

Theorem 4.1 The semigroup � is asymptotically smooth.

Now, we show that the solution semigroup � has a global compact attractor A in
X . We firstly give the following definition of global attractors.

Definition 1 (Hale 1988) A set A in X is defined to be an attractor if A is non-empty,
compact and invariant, and there exists some open neighborhood W of A in X such
that A attracts W . A global attractor is defined to be an attractor which attracts every
point in X .

From these results, we obtain the existence of a global attractor by applying the
following Lemma.

Lemma 4.4 (Hale 1988) If � is asymptotically smooth and point dissipative in X,
and orbits of bounded sets are bounded in X, then there is a global attractor A in X.
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Propositions 2.1 and Theorem 4.1 show that the semigroup�(t) of system (5) is point
dissipative and asymptotically smooth on X . The proof of Proposition 2.1 can verify
that every forward orbit of bounded sets is bounded in X . Therefore, by the result of
Lemma 4.4, we have the following theorem.

Theorem 4.2 The semigroup � generated by system (5) on X has a global attractor
A in X, which attracts the bounded sets of X.

5 Main Results

Based on above analysis, this section is devoted to proof of the uniform persistence of
system (5) and the global stability of the equilibria. The basic reproduction number R0
is proved to be a sharp threshold parameter (Shuai and Driessche 2013), completely
determining the global dynamics of system (5) in this section.

First, we introduce two important lemmas ,which are useful in the following study
of uniform persistence.

Lemma 5.1 (Fatou’s Lemma) Let fn be a non-negative measurable function
sequence, then it satisfies

∫
lim

t→+∞ inf fn ≤ lim
t→+∞ inf

∫
fn ≤ lim

t→+∞ sup
∫

fn ≤
∫

lim
t→+∞ sup fn . (8)

Lemma 5.2 (Fluctuation Lemma) Let

lim
t→+∞ sup�(t) = �∞, lim

t→+∞ inf �(t) = �∞,

and �(t) be a bounded and continuously differentiable function. Then there exist
sequences fn and gn such that fn → ∞, gn → ∞, �( fn) → �∞, �(gn) → �∞.
�′( fn) → 0,�′(gn) → 0, as n → ∞.

5.1 Uniform Persistence

In this section, we study the uniform persistence of system (5), which indicates that
there always exist infectious individuals given that infection initially occurs and R0 >

1. We prove this by the approach used in Smith and Thieme (2011).
First, we show that system (5) is uniformly weakly ρ-persistent. Let us define a

function ρ : X → R+ that ρ = (ρ1, ρ2, ..., ρn) as

ρk(X) = Zk(t), k = 1, 2, . . . , n.

Proposition 5.1 If R0 > 1and the infection initially occurs, then there exists a positive
constant ε > 0, such that for any k (k = 1, 2, . . . , n),

lim sup
t→∞

Zk(t) > ε. (9)
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Proof If R0 > 1, then there exists a sufficiently small ε > 0 such that

1

< k >

n∑
i=1

iϕ(i)p(i)
bi[1 − N∗

i ]�∗ − ε

μ

∫ ∞

0
β(τ)H(τ )dτ > 1. (10)

We show that this ε is exactly the ε in (9). We will do this by contradiction. Assume
that there exists a constant T > 0 which is sufficiently large such that

Zk(t) ≤ ε, for t ≥ T .

Together with system (5), we have

dSk(t)

dt
= bk[1 − N∗

k ]�∗ − μSk(t) − Zk(t) +
∫ ∞

0
γ (τ)Ik(t, τ )dτ

≥ bk[1 − N∗
k (t)]�∗ − μSk − ε.

Then, according to comparison principle, we derive

Sk(t) ≥ bk[1 − N∗
k (t)]�∗ − ε

μ
, f or t ≥ T . (11)

Furthermore, it follows from (6) together with (11) and Lemma 5.2, we obtain that if
gn is a sequence such that Zk(gn) → Zk∞, the following inequality is satisfied:

Zk(gn) ≥ k
bk[1 − N∗

k ]�∗ − ε

μ

∫ gn

0
β(τ)

1

〈k〉
n∑

i=1

ϕ(i)p(i)Zi (gn −τ)H(τ )dτ. (12)

From Proposition 3.1, if there is an initial infection then the infection persists. Hence∑n
i=1 ϕ(i)p(i)Zi∞ �= 0.

When gn → ∞, Eq. (12) becomes

1

< k >

n∑
i=1

iϕ(i)p(i)
bi[1 − N∗

i ]�∗ − ε

μ

∫ ∞

0
β(τ)H(τ )dτ ≤ 1,

which contradicts to Eq. (10). That is to say, if the disease is initially present and
R0 > 1, the system (5) is uniformly weakly ρ-persistent of semi-flow �. The proof is
therefore complete. ��

Next, in order to obtain the uniformpersistence and follow themethod used in Smith
and Thieme (2011), we consider a complete trajectory of system space X, which is
the solution of system (5) extended to R. Suppose a complete trajectory of � in space
X is a function f : R → X , such that f (s + t) = �(t, f (s)), for t ≥ 0, s ∈ R.

Ik(s, τ ) = Ik(s − τ, 0)H(τ ) = Zk(s − τ)H(τ ), s ∈ R, a ≥ 0.
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Hence, we get that system (5) for s ∈ R.

dSk(s)

dt
= bk[1 − N∗

k ]�∗
k − μSk(s) − Zk(s) +

∫ ∞

0
γ (τ)Zk(s − τ)H(τ )dτ,

Zk(s) = kSk(s)
∫ ∞

0
β(τ)�(s, τ )dτ. (13)

For a complete trajectory, we prove the following Lemma.

Lemma 5.3 For a complete trajectory f in X, Sk(s) is strictly positive and Zk(s) = 0
for all s ≥ 0 if Zk(s) = 0 for all s ≤ 0, k = 1, 2, . . . , n.

Proof Suppose that Ss∗ = 0 for s∗ ∈ R, we will show a contradiction. In this case, it
follows from the first equation of system (13) that

dSk(s)

dt
|s=s∗ = bk[1 − N∗

k ]�∗
k +

∫ ∞

0
γ (τ)Zi (s

∗ − τ)H(τ )dτ,

thus, dSk(s)
dt |s=s∗ > 0 since f is defined in X . This implies that Sk(s∗ − η) < 0 for

sufficiently small η, and this contradicts the fact that the complete �-trajectory f
remains in X. Consequently, S(r) is strictly positive on R.
By changing the variables, we can rewrite the second equation of system (13) as
follows:

Zk(s) = kSk(s)

〈k〉
n∑

i=1

ϕ(i)p(i)
∫ ∞

0
β(τ)Zi (s − τ)H(τ )dτ

= kSk(s)

〈k〉
n∑

i=1

ϕ(i)p(i)
∫ s

−∞
β(s − a)Zi (a)H(s − a)da.

Hence, if Zk(s) = 0 for all s ≤ 0, then we have

Zk(s) = kSk(s)

〈k〉
n∑

i=1

ϕ(i)p(i)
∫ s

0
β(s − a)Zi (a)H(s − a)da

≤ kS0kβ

〈k〉
n∑

i=1

ϕ(i)p(i)
∫ s

0
Zi (a)da s ≥ 0.

Let F(s) =
n∑

i=1
ϕ(i)p(i)

∫ s
0 Zi (a)da, we have

dF(s)

ds
=

n∑
i=1

ϕ(i)p(i)
i Si (s)

〈k〉
n∑
j=1

ϕ( j)p( j)
∫ s

0
β(a)Z j (a)H(a)da
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≤
n∑

i=1

ϕ(i)p(i)
βi S0i
〈k〉

n∑
j=1

ϕ( j)p( j)
∫ s

0
Z j (a)da

≤
n∑

i=1

ϕ(i)p(i)
βi S0i
〈k〉 F(s) = β

〈ϕ(i)p(i)i S0i 〉
〈k〉 F(s).

Then, F(s) ≤ F(0)e−β
〈ϕ(i)p(i)i S0i 〉

〈k〉 = 0. It follows that Zk(s) = 0 for all s ≥ 0. This
completes the proof. ��

The following Lemma concerning the boundary condition for a complete trajectory
will also be used in the proof of uniform persistence according to the approach used
in Smith and Thieme (2011). We refer the readers to McCluskey (2012) and Smith
and Thieme (2011) for more results and the proofs.

Lemma 5.4 For a complete trajectory f in X, Zk(s) is identically zero or Zk(s) is
strictly positive on R, and Zk(s) is Lipschitz continuous on [s,∞) for any s ∈ R, k =
1, 2, . . . , n.

Then, from Theorem 4.2, Proposition 5.1 and Lemma 5.3–5.4, we obtain that the
uniform weak ρ-persistence of system (5) implies the uniform strong ρ-persistence
of semi-flow � by applying methods of Smith and Thieme (2011).

Proposition 5.2 If R0 > 1, then �(t) is uniformly strongly ρ-persistent, i.e., there
exists a sufficiently small ε > 0 such that lim

t→+∞ inf Zk(t) > ε.

Finally, we introduce the result for uniform persistence of system (5).

Theorem 5.1 If R0 > 1 and �(t) is uniformly persistent, then there exists a constant
ε > 0 such that for any k,

lim inf
t→∞ ‖Ik(t, τ )‖ ≥ ε, lim inf

t→∞ Sk(t) ≥ ε.

Proof In fact, for any k and Ik0 ∈ L1+(0,∞), we have the following inequality by (2)
and (6),

‖Ik(t, τ )‖L1 =
∫ t

0
Ik(t, τ )dτ +

∫ ∞

t
Ik(t, τ )dτ ≥

∫ t

0
Zk(t − τ)H(τ )dτ.

According to Lemma 5.1 and Proposition 5.2, we obtain that there exists a sufficiently
small ε > 0 satisfying the following inequality:

lim inf
t→∞ ‖Ik(t, τ )‖L1 ≥

∫ ∞

0
lim inf
t→∞ Zk(t − τ)H(τ )dτ > ε

∫ ∞

0
H(τ )dτ

= ε

μ + γ
� ε1.
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Then, by a similar argument, we have

dSk(t)

dt
= bk[1 − N∗

k ]�∗
k − μSk(t) − kSk(t)

∫ ∞

0
β(τ)�(t, τ )dτ

+
∫ ∞

0
γ (τ)Ik(t, τ )dτ

≥ bk[1 − N∗
k ]�∗

k −
(

μ + k
∫ ∞

0
β(τ)�(t, τ )dτ

)
Sk(t) + α(N∗

k − Sk(t)).

Hence, by the comparisonprinciple,weobtain lim inf t→∞ Sk(t) ≥ bk[1−N∗
k ]�∗

k +αN∗
k

(μ+α)+k 〈ϕ(k)〉
〈k〉 β�

�
ε2. There, we take ε = max{ε1, ε2}. This completes the proof. ��

Remark 1 Anothermethodused to prove the uniformpersistence inWang et al. (2016),
Liu et al. (2015) andYang et al. (2016) is based onHale andWaltman (1989),Magal and
Zhao (2005). According to Propositions 4.1, 5.1, Lemma 5.3–5.4 and Theorem 5.7 in
Smith and Thieme (2011), we know that these two methods are equivalent. If R0 > 1,
let Y0 = {X0 ∈ X | ρ(�(t, X0)) = Zk(t) = 0, for all t ≥ 0}. Then Y0 is the
disease-free space and is non-empty. Let A0 = A

⋂
Y0, A0 = A

⋂
(X \ Y0). The

sets A0 and A1 are compact and invariant, which are called the extinction attractor
and the persistence attractor, respectively. Therefore, according to Proposition 3.1 and
Lemma 5.3–5.4, if the initial conditions satisfy X0 ∈ Y0 (Ik0 = 0, k = 1, 2, . . . , n),
then �(t, X0) tends to the disease-free equilibrium E0 for R0 > 1.

5.2 Global Stability of E0

In this section, we first evaluate the local stability of disease-free equilibrium E0 of
system (5). For convenience, we apply (6) to system (5) and get the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)
dt = bk[1 − N∗

k ]�∗ − μSk(t) − kSk(t)
∫ t
0 β(τ)�1(t, τ )dτ − B1

k (t)

+ ∫ t
0 γ (τ)Zk(t − τ)H(τ )dτ + B2

k (t),

Zk(t) = kSk(t)
∫ t
0 β(τ)�1(t, τ )dτ + B1

k (t),

�1(t, τ ) = 1
〈k〉

∑n
i=1 ϕ(i)p(i)Zi (t − τ)H(τ ), t ≥ τ,

�2(t, τ ) = 1
〈k〉

∑n
i=1 ϕ(i)p(i)Ii (0, τ − t) H(τ )

H(τ−t) , t < τ,

(14)

with Eq. (6), where

B1
k (t) = kSk(t)

∫ ∞

t
β(τ)�2(t, τ )dτ, B2

k (t) =
∫ ∞

t
γ (τ)Ik(0, τ − t)

H(τ )

H(τ − t)
dτ.

It is obvious that lim
t→∞ B2

k (t) = 0, lim
t→∞ B1

k (t) = 0.
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Then considering the limiting system associated with (6), we derive that

⎧⎨
⎩

dSk(t)
dt = bk[1 − N∗

k ]�∗ − μSk(t) − kSk(t)
∫ ∞
0 β(τ)�1(t, τ )dτ

+ ∫ ∞
0 γ (τ)Zk(t − τ)H(τ )dτ,

Zk(t) = kSk(t)
∫ ∞
0 β(τ)�1(t, τ )dτ,

(15)

with the same initial conditions as system (5), where

�1(t, τ ) = 1

〈k〉
n∑

i=1

ϕ(i)p(i)Zi (t − τ)H(τ ).

Based on the linear method described in Wang et al. (2016), Liu et al. (2015), Yang
et al. (2016), Webb (1985) and McCluskey (2012), the following theorem shows that
the disease-free equilibrium is locally asymptotically stable.

Theorem 5.2 If R0 < 1, then the disease-free equilibrium E0 is locally asymptotically
stable; conversely, it is unstable when R0 > 1.

Proof First, linearizing system (15) near E0 by denoting the perturbation variables
Sk(t) = S̃k(t) + S0k , Zk(t) = Z̃k(t),�1(t, τ ) = θ̃ (t, τ ), we obtain the following
system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dS̃k (t)
dt = −μS̃k(t) − kS0k

∫ ∞
0 β(τ)θ̃(t, τ )dτ + ∫ ∞

0 γ (τ)Z̃k(t − τ)H(τ )dτ,

Z̃k(t) = k S̃k(t)
∫ ∞
0 β(τ)θ̃(t, τ )dτ,

θ̃(t, τ ) = 1
〈k〉

∑n
i=1 ϕ(i)p(i)Z̃i (t − τ)H(τ ).

(16)

Let S̃k(t) = sk0eλt , Z̃k(t) = zk0eλt and substitute them into system (16), we get

⎧⎪⎪⎨
⎪⎪⎩

(λ + μ)sk0 + kS0k
<k>K1(λ)

n∑
i=1

ϕ(i)p(i)zi0 − K2(λ)zk0 = 0,

zk0 − kS0k
<k>K1(λ)

M∑
i=1

ϕ(i)p(i)zi0 = 0.
(17)

Then, we obtain the characteristic equation of system (15) as follows,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ+μ 0 ··· 0
S01 K1(λ)

<k> ϕ(1)p(1)−K2(λ)
S01 K1(λ)

<k> ϕ(2)p(2) ··· S01 K1(λ)

<k> ϕ(n)p(n)

0 λ+μ ··· 0
2S02 K1(λ)

<k> ϕ(1)p(1)
2S02 K1(λ)

<k> ϕ(2)p(2)−K2(λ) ··· 2S02 K1(λ)

<k> ϕ(n)p(n)

...
... ···

...
...

... ···
...

0 0 ··· λ+μ
nS0n K1(λ)

<k> ϕ(1)p(1) nS0n K1(λ)

<k> ϕ(2)p(2) ··· nS0n K1(λ)

<k> ϕ(n)p(n)−K2(λ)

0 0 ··· 0 1− S01 K1(λ)

<k> ϕ(1)p(1) − S01 K1(λ)

<k> ϕ(2)p(2) ··· − S01 K1(λ)

<k> ϕ(n)p(n)

0 0 ··· 0 − 2S02 K1(λ)

<k> ϕ(1)p(1) 1− 2S02 K1(λ)

<k> ϕ(2)p(2) ··· − 2S02 K1(λ)

<k> ϕ(n)p(n)

...
... ···

...
...

... ···
...

0 0 ··· 0 − nS0n K1(λ)

<k> ϕ(1)p(1) − nS0n K1(λ)

<k> ϕ(2)p(2) ··· 1− nS0n K1(λ)

<k> ϕ(n)p(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= 0,

which is equivalent to the form, (λ + μ)EnB = 0, therefore, the eigenvalues are
λk = −μ(k = 1, 2, . . . , n), and satisfy B = 0, where

B =

∣∣∣∣∣∣∣∣∣∣∣

1 − S01K1(λ)

<k> ϕ(1)p(1) − S01K1(λ)

<k> ϕ(2)p(2) · · · − S01K1(λ)

<k> ϕ(n)p(n)

− 2S02K1(λ)

<k> ϕ(1)p(1) 1 − 2S02K1(λ)

<k> ϕ(2)p(2) · · · − 2S02K1(λ)

<k> ϕ(n)p(n)
...

... · · · ...

− nS0n K1(λ)

<k> ϕ(1)p(1) − nS0n K1(λ)

<k> ϕ(2)p(2) · · · 1 − nS0n K1(λ)

<k> ϕ(n)p(n)

∣∣∣∣∣∣∣∣∣∣∣
.

That is, the solution of B = 0 satisfies the following equation,

K1(λ)

< k >

n∑
i=1

iϕ(i)p(i)S0i = 1. (18)

We denote G(λ) = K1(λ)
<k>

n∑
i=1

iϕ(i)p(i)S0i , Eq. (18) is equivalent to G(λ)=1. Suppose

that λ = a + bi is the solution of Eq. (18) and a ≥ 0. When R0 < 1,

|G(λ)| =
∣∣∣∣∣

1

< k >

n∑
i=1

S0i iϕ(i)p(i)
∫ ∞

0
β(τ)H(τ )e−(a+bi)τdτ

∣∣∣∣∣

=
∣∣∣∣∣

1

< k >

n∑
i=1

S0i iϕ(i)p(i)
∫ ∞

0
β(τ)H(τ )e−aτ (cos(bτ) − i sin(bτ))dτ

∣∣∣∣∣

≤ 1

< k >

M∑
i=1

S0i iϕ(i)p(i)
∫ ∞

0
β(τ)H(τ )e−aτdτ

≤ 1

< k >

M∑
i=1

S0i iϕ(i)p(i)
∫ ∞

0
β(τ)H(τ )dτ = R0 < 1.

It is obvious that |G(λ)| < 1 contradicts to G(λ) = 1. Thus, equation G(λ) = 1
does not have positive solutions, all roots of equation (18) have negative real parts.
Therefore, if R0 < 1, then the disease-free equilibrium E0 is locally asymptotically
stable.

On the other hand, since K1(λ) = ∫ ∞
0 β(τ)H(τ )e−λτdτ , lim

λ→−∞ K1(λ) = ∞,

lim
λ→+∞ K1(λ) = 0, hence, if R0 > 1 the solution of G(λ) = 1 has positive real part,

that is to say, E0 is unstable. This completes the proof. ��
Next, we study the global stability of disease-free equilibrium E0 by using Lem-

mas 5.1 and 5.2. We have the following result.

Theorem 5.3 If R0 < 1 , the disease-free equilibrium E0 of system (5) is globally
asymptotically stable.
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Proof It is clear that Zk(t) ≥ 0 by Proposition 3.2, let Vk(t) = ∫ ∞
0 γ (τ)Zk(t −

τ)H(τ )dτ , we obtain that

dSk(t)

dt
= bk[1 − N∗

k ]�∗ − μSk(t) − Zk(t) + Vk(t)

≤ bk[1 − N∗
k ]�∗ − μSk(t) + Vk(t).

According to the comparison principle and Proposition 3.2, it is easy to derive the
following equation:

Sk(t) ≤ Sk0e
−μt + bk[1 − N∗

k ]�∗

μ
(1 − e−μt ) +

∫ t

0
Vk(ξ)e−μ(t−ξ)dξ.

That is, lim
t→+∞ sup Sk(t) = S∞

k ≤ bk[1−N∗
k ]�∗

μ
= S0k .

Next, we verify lim
t→+∞ Zk(t) = 0 (k = 1, 2, . . . , n). From system (15), we

know {Zk(t)} (k = 1, 2, . . . , n) is a measurable sequence of non-negative uniformly
bounded functions. Based on Lemma 5.1, we have

lim
t→+∞ sup Zk(t) = lim

t→+∞ sup
kSk(t)

〈k〉
∫ ∞

0
β(τ)

n∑
i=1

ϕ(i)p(i)Zi (t − τ)H(τ )dτ

≤ kS∞
k

〈k〉
∫ ∞

0
β(τ) lim

t→+∞ sup
n∑

i=1

ϕ(i)p(i)Zi (t − τ)H(τ )dτ.

Multiplying the above inequality by ϕ(k)p(k) and summing over k, we have

∑
k

ϕ(k)p(k) lim
t→+∞ sup Zk(t)

≤
∑

k kϕ(k)S0k p(k)

〈k〉
∫ ∞

0
β(τ)

∑
i

ϕ(i)p(i) lim
t→+∞ sup Zi (t)H(τ )dτ

≤ K1(0)

< k >

n∑
k=1

S0k kϕ(k)p(k)
∑
i

ϕ(i)p(i) lim
t→+∞ sup Zi (t)

≤ R0

∑
i

ϕ(i)p(i) lim
t→+∞ sup Zi (t).

Because R0 < 1 and Zk(t) ≥ 0, if the inequality holds only when
∑

i ϕ(i)p(i) lim
t→+∞

sup Zi (t) = 0, we have

lim
t→+∞ sup Zk(t) = 0.

On the other hand, Zk(t)∞ ≥ 0 because of the positive definiteness. Then, we get
lim

t→+∞ Zk(t) = 0.
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Moreover, Lemma 5.2 implies that there exists a sequence gn , such that gn → ∞,
then �(gn) → �∞ and �′(gn) → 0, as n → ∞. Thus,

dSk(gn)

dt
= bk[1 − N∗

k ]�∗ − μSk(gn) − Zk(gn) +
∫ ∞

0
γ (τ)Zk(gn − τ)H(τ )dτ.

Let n → ∞, we obtain

bk[1 − N∗
k ]�∗ − μSk∞ − Z∞

k +
∫ ∞

0
γ (τ)Zk∞H(τ )dτ ≤ 0.

Because Zk∞, Z∞
k → 0 are satisfied, we have

bk[1−N∗
k ]�∗

μ
≤ Sk∞. Thus

bk[1−N∗
k ]�∗

μ
≤ Sk∞ ≤ S∞

k ≤ bk[1−N∗
k ]�∗

μ
. That is, lim

t→+∞ Sk(t) = bk[1−N∗
k ]�∗

μ
=

S0k , (k = 1, 2, . . . , n).
In summary, (Sk(t), Zk(t)) → E0 in 
 for all k, as t → ∞. The proof is therefore

completed. ��

5.3 Global Stability of E∗

The existence and uniqueness of the positive equilibrium has been obtained in Sect. 3.
Now, we discuss the local stability of positive equilibrium by the samemethod applied
in the proof of the stability of disease-free equilibrium in Sect. 5.2.

Theorem 5.4 If R0 > 1, system (15) has a unique positive equilibrium point E∗ =
(S∗

k , Z
∗
k ), k = 1, 2, . . . , n, and it is locally asymptotically stable.

Proof Let Sk(t) = S∗
k + S̃k(t), Zk(t) = Z∗

k + Z̃k(t) to linearize system (15) near E∗,
we get

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS̃k(t)
dt = −μS̃k(t) − kS∗

k

∫ ∞
0 β(τ)θ(t, τ )dτ − k S̃k(t)

∫ ∞
0 β(τ)θ∗(t, τ )dτ

+ ∫ ∞
0 γ (τ)Z̃k(t − τ)H(τ )dτ,

Z̃k(t) = kS∗
k

∫ ∞
0 β(τ)θ(t, τ )dτ + k S̃k(t)

∫ ∞
0 β(τ)θ∗(t, τ )dτ,

θ∗(t, τ ) = 1
〈k〉

∑n
i=1 ϕ(i)p(i)Z∗

i (t − τ)H(τ ).

(19)

Let S̃k(t) = s0keλt , Z̃k(t) = z0keλt , where s0k, z0k can be determined later, and
substitute them into system (19), we obtain the following equation:

⎧⎪⎪⎨
⎪⎪⎩

(λ + μ + kbc)s0k + kS∗
k C(λ)

n∑
i=1

ϕ(i)p(i)z0i − K2(λ)z0k = 0,

kbcs0k + kS∗
k C(λ)

n∑
i=1

ϕ(i)p(i)z0i − z0k = 0.
(20)
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where b =
n∑

i=1
ϕ(i)p(i)Z∗

i , c = K1(0)〈k〉 , C(λ) = K1(λ)
〈k〉 , ϕ(i)p(i) = ϕi Pi .

From (20), we can get the characteristic equation as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ+μ+bc 0 ... 0 S∗
1C(λ)ϕ1P1−K2(λ) S∗

1C(λ)ϕ2P2 ... S∗
1C(λ)ϕn Pn

0 λ+μ+2bc ... 0 2S∗
2C(λ)ϕ1P1 2S∗

2C(λ)ϕ2P2−K2(λ) ... 2S∗
2C(λ)ϕn Pn

...
... ...

...
...

... ...
...

0 0 ... λ+μ+nbc nS∗
nC(λ)ϕ1P1 nS∗

nC(λ)ϕ2P2 ... nS∗
nC(λ)ϕn Pn−K2(λ)

bc 0 ... 0 S∗
1C(λ)ϕ1P1−1 S∗

1C(λ)ϕ2P2 ... S∗
1C(λ)ϕn Pn

0 2bc ... 0 2S∗
2C(λ)ϕ1P1 2S∗

2C(λ)ϕ2P2−1 ... 2S∗
2C(λ)ϕn Pn

...
... ...

...
...

... ...
...

0 0 ... nbc nS∗
nC(λ)ϕ1P1 nS∗

nC(λ)ϕ2P2 ... nS∗
nC(λ)ϕn Pn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Note that mi = ibc
λ+μ+ibc , i = 1, 2, . . . , n, we obtain the characteristic equation is

equivalent to

n∑
i=1

[
(1 − mi )S∗

i iϕi PiC(λ)

mi K2(λ) − 1
+ 1

]
·

n∏
i=1

(mi K2(λ) − 1) = 0. (21)

Case 1 If
n∏

i=1
(mi K2(λ)− 1) = 0, that is to say, K2(λ) = 1+ λ+μ

ibc , i = 1, 2, . . . , n.

We assume that λ ≥ 0, then it is obvious that

K2(λ) =
∫ ∞

0
γ (τ)e−λτ H(τ )dτ =

∫ ∞

0
γ (τ)e−(λ+μ)τ−∫ τ

0 γ (ξ)dτdτ

≤
∫ ∞

0
γ (τ)e− ∫ ∞

0 γ (ξ)dτdτ < 1.

However, 1 + λ+μ
ibc ≥ 1, thus, the assumption is contradictory. Therefore, if

n∏
i=1

(mi K2(λ) − 1) = 0, the eigenvalue of characteristic equation is negative.

Case 2 If
n∑

i=1

[
(1−mi )S∗

i iϕi PiC(λ)

mi K2(λ)−1 + 1
]

= 0, this equation is equivalent to

n∑
i=1

(λ + μ)iϕ(i)p(i)S∗
i

i
∑

ϕ(i)p(i)Z∗
i [1 − K2(λ)] + (λ + μ)

〈K 〉
K1(0)

= K1(0)

K1(λ)
.

Due to S∗
k = 〈k〉Z∗

k
kK1(0)

∑
i ϕ(i)p(i)Z∗

i
, we derive

n∑
i=1

(λ + μ)〈k〉ϕ(i)p(i)Z∗
i

i[∑ϕ(i)p(i)Z∗
i ]2K1(0)[1 − K2(λ)] + (λ + μ)〈k〉∑

i ϕ(i)p(i)Z∗
i

= K1(0)

K1(λ)
.
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It is obvious that

K1(0)

K1(λ)
<

(λ + μ)〈k〉∑
i ϕ(i)p(i)Z∗

i

[∑i ϕ(i)p(i)Z∗
i ]2K1(0)[1 − K2(λ)] + (λ + μ)〈k〉∑

i ϕ(i)p(i)Z∗
i
.

Supposing Reλ ≥ 0, then we have | K1(0)
K1(λ)

| ≥ 1, whereas,

(λ + μ)〈k〉∑
i ϕ(i)p(i)Z∗

i

[∑i ϕ(i)p(i)Z∗
i ]2K1(0)[1 − K2(λ)] + (λ + μ)〈k〉∑

i ϕ(i)p(i)Z∗
i

< 1.

Therefore, the assumption is contradicted. Therefore, all eigenvalues of (20) are neg-
ative.

To sum up, all roots of Eq. (21) have negative real parts. Therefore, the unique
endemic equilibrium E∗ is locally asymptotically stable if R0 > 1. This completes
the proof. ��

In the following section, we verify the global stability of E∗ of system (5) by
Lyapunov-LaSalle asymptotic stability theorem for the semi-flow �(t). From above
analysis, we have stated that if the disease is initially present, the semi-flow � is
uniformly persistent, which can prove that the Lyapunov function is well-defined.
According to the disease is initially present, we have the following assumption for
initial condition.

Assumption 5.1 The initial conditions satisfy Ik0(τ ) > 0 for all τ ≥ 0 and k. Fur-
thermore,

lim
τ→+∞ Ik0(τ ) < +∞.

Now, to simplify system (5), we let γ (τ) = γ be a constant and denote bk[1 −
N∗
k ]�∗+γ N∗

k = �k . It is clear that
∫ ∞
0 Ik(t, τ )dτ = N∗

k −Sk(t), hence, the system (5)
can be represented as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dSk(t)
dt = �k − (μ + γ )Sk(t) − kSk(t)

∫ ∞
0 β(τ)�(t, τ )dτ,

∂ Ik (t,τ )
∂t + ∂ Ik (t,τ )

∂τ
= − (μ + γ )Ik(t, τ ),

Ik(t, 0) = kSk(t)
∫ ∞
0 β(τ)�(t, τ )dτ,

�(t, τ ) = 1
〈k〉

∑n
i=1 ϕ(i)p(i)Ii (t, τ ).

(22)

Theorem 5.5 If R0 > 1 , then the endemic equilibrium E∗ of system (22) is globally
asymptotically stable.

Proof Firstly, we introduce the following important function, which is obtained from
the linear combination of Volterra-type functions of the form,

g(x) = x − 1 − ln x .
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Obviously, g′(x) = 1 − 1/x and g(x) has a global minimum at x = 1 and g(1) = 0.
That is to say, g(x) is non-negative for x > 0.

Next, the Lyapunov function is constructed as follows: Vk(t) = VSk (t) + VIk (t),
k = 1, 2, . . . , n, where

VSk (t) = S∗
k

(
Sk(t)

S∗
k

− 1 − ln
Sk(t)

S∗
k

)
,

VIk (t) = kS∗
k

〈k〉
∑

i ϕ(i)p(i)I ∗
i (0)

I ∗
k (0)

∫ ∞

0
π(τ)I ∗

k (τ )

(
Ik(t, τ )

I ∗
k (τ )

− 1 − ln
Ik(t, τ )

I ∗
k (τ )

)
dτ.

We denote π(τ) = ∫ ∞
τ

β(ξ)e−(μ+γ )(ξ−τ)dξ , which satisfies

π(0) =
∫ ∞

0
β(ξ)H(ξ)dξ = K1(0),

dπ(τ)

dτ
= (μ + γ )π(τ) − β(τ).

Because the positive equilibrium E∗ satisfies (7),
we obtain

I ∗
k (τ ) = I ∗

k (0)H(τ ), �k = (μ + γ )S∗
k − kS∗

k

∫ ∞

0
β(τ)�∗(τ )dτ,

I ∗
k (0) = kS∗

k

〈k〉
n∑

i=1

ϕ(i)p(i)
∫ ∞

0
β(τ)I ∗

i (τ )dτ = kS∗
k

〈k〉 K1(0)
n∑

i=1

ϕ(i)p(i)I ∗
i (0).

In order to prove the Lyapunov functional Vk(t) is well-defined, it suffices to show
that �1 and �2 are finite for all t ≥ 0 and all k = 1, 2, . . . , n, where

�1 �
∫ ∞

0
I ∗
k (τ )ln

Ik(t, τ )

I ∗
k (τ )

dτ, �2 � S∗
k ln

Sk(t)

S∗
k

,

It is clearly true from Theorem 5.1, �2 is finite for all t ≥ 0 and all k = 1, 2, . . . , n.
Meanwhile, Assumption 2.1 and Theorem 5.1 ensure that �1 is finite for all t ≥ 0
and all k = 1, 2, . . . , n. Therefore, the Lyapunov functional Vk(t) constructed here is
well-defined.

Let
kS∗

k〈k〉
∑

i ϕ(i)p(i)I ∗
i (0)

I ∗
k (0) � χk for simplicity. The derivative of Vk(t) along the solu-

tions of system (22) is

dVk(t)

dt
= dVSk (t)

dt
+ dVIk (t)

dt
,

where,

dVSk (t)

dt
=

(
1 − S∗

k

Sk(t)

)
dSk(t)

dt
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= − (μ + γ )

Sk(t)
(Sk − S∗

k )
2 + kS∗

k

∫ ∞

0
β(τ)�∗(τ )dτ

− kSk

∫ ∞

0
β(τ)�(t, τ )dτ

− S∗
k

Sk(t)
kS∗

k

∫ ∞

0
β(τ)�∗(τ )dτ + kS∗

k

∫ ∞

0
β(τ)�(t, τ )dτ,

dVIk (t)

dt
= χk

∫ ∞

0
π(τ)I ∗

k (τ )

(
1

I ∗
k (τ )

− 1

Ik(t, τ )

)
∂ Ik(t, τ )

∂t
dτ

= −χk

∫ ∞

0
π(τ)I ∗

k (τ )

(
1

I ∗
k (τ )

− 1

Ik(t, τ )

)

[
∂ Ik(t, τ )

∂τ
+ (μ + γ )Ik(t, τ )

]
dτ

= −χk

∫ ∞

0
π(τ)I ∗

k (τ )
∂

∂τ
g

(
Ik(t, τ )

I ∗
k (τ )

)
dτ

= −π(∞)I ∗
k (∞)g

(
Ik(t,∞)

I ∗
k (∞)

)
χk + π(0)χkg

(
Ik(t, 0)

I ∗
k (0)

)

+χk

∫ ∞

0

[
dπ(τ)

dτ
I ∗
k (τ ) + dI ∗

k (τ )

dτ
π(τ)

]
g

(
Ik(t, τ )

I ∗
k (τ )

)
dτ

= −vπ(∞)I ∗
k (∞)g

(
Ik(t,∞)

I ∗
k (∞)

)
χk + π(0)g

(
Ik(t, 0)

I ∗
k (0)

)
χk

−χk

∫ ∞

0
β(τ)I ∗

k (0)H(τ )g

(
Ik(t, τ )

I ∗
k (τ )

)
dτ

= − B + Ik(t, 0) − I ∗
k (0) + I ∗

k (0)ln
Ik(t, 0)

I ∗
k (0)

− 1

〈k〉
∑
i

ϕ(i)p(i)kS∗
k

∫ ∞

0
β(τ)I ∗

i (τ )g

(
Ik(t, τ )

I ∗
k (τ )

)
dτ,

where B = −π(∞)I ∗
k (∞)g

(
Ik (t,∞)
I ∗
k (∞)

)
kS∗

k〈k〉
∑

i ϕ(i)p(i)I ∗
i (0)

I ∗
k (0) . Then, from the above two

parts, we get

dVk(t)

dt
= − (μ + γ )

Sk(t)
(Sk − S∗

k )
2

− B +
∫ ∞

0
β(τ)

1

〈k〉
∑
i

ϕ(i)p(i)kS∗
k I

∗
i (τ )

[
1 − S∗

k

Sk(t)
+ Ii (t, τ )

I ∗
i (τ )

− Sk(t)Ii (t, τ )I ∗
k (0)

S∗
k I

∗
i (τ )Ik(t, 0)

− ln
Ik(t, 0)

I ∗
k (0)

− Ik(t, τ )

I ∗
k (τ )

+ 1 + ln
Ik(t, τ )

I ∗
k (τ )

]
dτ

= − (μ + γ )

Sk(t)
(Sk − S∗

k )
2
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− B +
∫ ∞

0
β(τ)

1

〈k〉
∑
i

ϕ(i)p(i)kS∗
k I

∗
i (τ )

[
1 − S∗

k

Sk(t)
+ ln

S∗
k

Sk(t)

+ 1 − Sk(t)Ii (t, τ )I ∗
k (0)

S∗
k I

∗
i (τ )Ik(t, 0)

+ ln
Sk(t)Ii (t, τ )I ∗

k (0)

S∗
k I

∗
i (τ )Ik(t, 0)

+ Ii (t, τ )

I ∗
i (τ )

− ln
Ii (t, τ )

I ∗
i (τ )

− Ik(t, τ )

I ∗
k (τ )

+ ln
Ik(t, τ )

I ∗
k (τ )

]
dτ

= − (μ + γ )

Sk(t)
(Sk − S∗

k )
2

− B + 1

〈k〉
∑
i

ϕ(i)p(i)kS∗
k I

∗
i (0)

∫ ∞

0
β(τ)H(τ )

[
−g

(
S∗
k

Sk(t)

)

− g

(
Sk(t)Ii (t, τ )I ∗

k (0)

S∗
k I

∗
i (τ )Ik(t, 0)

)
+ Ii (t, τ )

I ∗
i (τ )

− ln
Ii (t, τ )

I ∗
i (τ )

− Ik(t, τ )

I ∗
k (τ )

+ ln
Ik(t, τ )

I ∗
k (τ )

]
dτ.

Let

aki (τ ) = 1

〈k〉
∑
i

ϕ(i)p(i)kS∗
k I

∗
i (0),

Gk(Ik) =
∫ ∞

0
β(τ)H(τ )

[
− Ik(t, τ )

I ∗
k (τ )

+ ln
Ik(t, τ )

I ∗
k (τ )

]
dτ,

ϒki (t, Sk, Ik(t, ·))
=

∫ ∞

0
β(τ)H(τ )

[
1 − S∗

k

Sk(t)
+ ln

S∗
k

Sk(t)
+ 1 − Sk(t)Ii (t, τ )I ∗

k (0)

S∗
k I

∗
i (τ )Ik(t, 0)

+ ln
Sk(t)Ii (t, τ )I ∗

k (0)

S∗
k I

∗
i (τ )Ik(t, 0)

− Ik(t, τ )

I ∗
k (τ )

+ln
Ik(t, τ )

I ∗
k (τ )

−
(

− Ii (t, τ )

I ∗
i (τ )

+ln
Ii (t, τ )

I ∗
i (τ )

)]
dτ.

Therefore, we have

dVk
dt

≤
∑
i

akiϒki (t, Sk, Ik(t, ·)) .

Furthermore, it is obvious that

ϒki (t, Sk, Ik(t, ·)) =
∫ ∞

0
β(τ)H(τ )

[
−g

(
S∗
k

Sk(t)

)

− g

(
Sk(t)Ii (t, τ )I ∗

k (0)

S∗
k I

∗
i (τ )Ik(t, 0)

)]
dτ + Gk(Ik) − Gi (Ii )

≤ Gk(Ik) − Gi (Ii ).
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Finally, according to Corollary 3.3 and Theorem 3.1 in Li and Shuai (2010),
Vk, ϒki ,Gki , aki satisfy the assumptions. Therefore, the functionV = ∑

k ckVk which
is defined in Corollary 3.3 of Li and Shuai (2010) is a Lyapunov function for system
(22). It is obvious that V ′(t) ≤ 0 for system (22) and (S1, I1(t, τ ), . . . , Sn, In(t, τ )) ∈
X . In addition, the largest invariant set for V ′(t) = 0 is E∗. Thus, the alpha limit
set of � consists of just the endemic equilibrium E∗. Therefore, the positive solu-
tion of system (22) is globally asymptotically stable according to Theorem 5.3.1 and
Corollary 5.3.1 in Hale and Verduyn (1993). The proof is completed. ��

6 Simulations and Applications

We have formulated a general age-structured epidemic model on a scale-free network
and obtained global stability results. A scale-free network is characterized by a power-
law degree distribution p(k) ∼ k−r (Barabási and Albert 1999) (r is a characteristic
exponent whose value is often in the range 2 < r ≤ 3). Our scale-free uncorrelated
networks with degree distribution p(k) = ck−r , where r = 2.4, and the constant
c satisfies �n

k=1k
−r = 1. We set the maximum degree n = 40. The initial values

Sk(0) = 0.6, Ik(0, τ ) = 1√
2π

e
−(τ+1.15)2

2 for any degree k.
From the preceding theoretical analysis, we know that the stability of disease-free

and endemic equilibria depend on the basic reproduction number,

R0 =
∫ ∞
0 β(τ)e−μτ−∫ τ

0 γ (ξ)dξdτ

< k >

n∑
i=1

iϕ(i)p(i)S0i ,

a critical value to determine whether the disease prevails or not. If R0 < 1, then the
disease will die out; but if R0 > 1, then the disease persists.

It is clear that R0 is influenced by birth and death rate, infection rate β(τ), recovery
rate γ (τ), infectivity function ϕ(k) and the network structure. Meanwhile, R0 is a
decreasing function of γ (τ) and an increasing function of β(τ), which all rely on
infection age τ . The expression of β(τ) and γ (τ) can be determined by the character-
istic of a specific disease transmission with respect to infection age τ . If β(τ) and γ (τ)

are constant, that is, β(τ) = β, γ (τ) = γ , then the basic reproduction number is sim-

plified to R0 = β
μ+γ

1
〈k〉

n∑
i=1

iϕ(i)p(i)S0i , which is the threshold previously obtained

for the model constructed on a scale-free network without age structure. Hence, from
a biological point of view, the infection age shows intrinsic characteristic of some
particular disease.

For infectivity functionϕ(k), this function hasmany potential forms, such asϕ(k) =
k (Pastor-Satorras and Vespignani 2001a, b), which means that the number of the
contacts per unit time is equal to the node’s degree k; ϕ(k) = h (Zhou et al. 2006),
equal to a constant h and hence independent of the node’s degree; or (for example),
ϕ(k) = aka

1+bka (Zhang and Fu 2009).When we ignore the birth and death in our model,
and set the general function ϕ(k) = k, our basic reproduction number R0 agrees with
the R0 in Yang et al. (2016). Here, the ϕ(k) is in a general form in R0, which we
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Fig. 1 (Color figure online) The influence of ϕ(k) on R0, here ϕ(k) = akα

1+bkα

base on the activity of the population and the condition of environment to dictate the
specific form to analyze the transmission dynamics.

Now, we present numerical simulations to explore the effects of various parameters
on the basic reproduction number R0 and epidemic spreading, and to support the
analytic results obtained in the previous sections.

Firstly, we introduce the basic idea of our simulation. To simulate the process of
system (1), we adopt a first-order upwind scheme with forward Euler time step to
process the second PDEs of (1); consequently, we use a Runge–Kutta scheme to deal
with the first ODEs of system (1). The partition mesh is �t = 0.1 and �τ = 0.2,
which satisfies the Courant–Friedrichs–Lewy stability restriction condition for PDEs.

Next, we study the influence of ϕ(k) on R0, and then verify our main theoretical
results.

Figure 1 depicts the influence of ϕ(k) on R0. Here, we discuss our results assuming
ϕ(k) = aka

1+bka . It shows that R0 is monotonically increasing as α increases. The bigger
a is and the smaller b is, the bigger R0 is. This implies that the contact method can
influence disease transmission—as expected.

Then, in order to verify the main results of global stability, we present the evolution
of Ik(t) = ∫ ∞

0 Ik(t, τ )dτ over time under different parameters from Figs. 2 and 3 with
the infectivity function ϕ(k) = k.

Figure 2 shows that the evolution of the density of infection with regard to time
and degree under the parameters β(τ) = τ(200−τ)

15,000 and γ (τ) = 1
1+τ

, ensuring that
R0 < 1. Figure 2a shows that the time series of I10, I20, I30 and I40. Figure 2b
depicts the overall trend of infection with all degrees. They clearly demonstrate that
when R0 < 1, the disease will gradually die out, and the disease-free equilibrium is
globally asymptotically stable. That is, lim

t→+∞ Ik(t) = 0. In addition, we conclude that

the larger the degree, the higher the peak of infection.
In Fig. 3, we show the evolution of Ik(t) over time with the parameters β(τ) =

τ(200−τ)
15,000 , γ (τ ) = 1

1+10τ , and the basic reproduction number satisfying R0 > 1. In
this case, simulation indicates that the disease eventually become endemic and tends
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Fig. 2 (Color figure online) Here, ϕ(k) = k, β(τ ) = τ(200−τ)
15,000 , γ (τ ) = 1

1+τ
, μ = 0.06, b = 0.07, R0 =

0.6066 < 1. a Dynamics of Ik (t) subject to time t, k = 10, 20, 30, 40. b Dynamics of Ik (t) subject to time
t, k = 1, 2, . . . , 40
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Fig. 3 (Color figure online)Hereϕ(k) = k, β(τ ) = τ(200−τ)
15000 , γ (τ ) = 1

1+10τ , μ = 0.06, b = 0.07, R0 =
3.4798 > 1. a Dynamics of Ik (t) subject to time t, k = 10, 20, 30, 40. b Dynamics of Ik (t) subject to time
t, k = 1, 2, . . . , 40

to the endemic equilibrium which is globally asymptotically stable. Moreover, the
larger the degree, the higher the endemic level.

Therefore, Figs. 2 and 3 support the results of global stability obtained in previous
sections and also demonstrate that the endemic equilibrium is global stability as long
as R0 > 1 is satisfied even if γ (τ) is not an constant from Fig. 3.

Finally, we study the meaning of our age-of-infection model (1). Many diseases,
such as childhood diseases (e.g., HFMD, childhood influenza, scarlet fever), influenza,
ebola, etc., show differential infectivity with respect to infection age as the disease
progresses. Differential infectivity is important for studying different pathologies of
infection and of treatment during the spread of diseases.

In particular, we consider Hand, Foot, and Mouth disease (HFMD), a human syn-
drome caused by intestinal viruses of the Picornaviridae family. The most common
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strains causing HFMD are Cox Asckievirus A16 (Cox A16) and Enterovirus 71
(EV71). HFMD is an acute viral illness that usually affects children younger than
5 years old, which can sometimes occur in adults. As the viruses are present in the
throat and stools of an infected individual, infection generally occurs via the facial-oral
route or via contact with skin lesions and oral secretions.

An individual who is exposed to HFMD viruses will exhibit symptoms after 3–
7days. After the incubation period, the infected will show some clinical symptoms,
such as having a fever, poor appetite, malaise, and sore throat, etc. Most infected
individuals will recover after 7–10days and will attain a short immunity. Once the
immunity is lost, the individuals return to susceptible class and are capable of being
infected again since a person who recovered from the HFMD caused by Coxsackie A
is susceptible to HFMD caused by enteroviruses 71 or any other enteroviruses.

There is no specific treatment for HFMD, delayed diagnoses and treatment may
cause heart, brain and kidney complications that can result in the death of infected
children. Therefore, it is important to study methods for controlling the spread of
HFMD based on appropriate preventive measures (Samanta 2014; Zhu et al. 2014;
Liu 2011; Takahashi et al. 2016; Wang et al. 2011). Although statistical regression
is often used to analyze the spread of infectious diseases and is a valuable tool for
understanding and predicting transmission of infectious diseases (Takahashi et al.
2016; Wang et al. 2011), mathematical modeling offers a complementary technique
by defining the rules of interactions between individuals and translating those rules
into equations.

Here, we apply ourmodel (1) to analyze the spreading ofHFMDon contact network
by mathematic modeling analysis. We investigate the role of quarantine in controlling
this epidemic and consider quarantining and curing a part of infected individuals based
on infection age. Let Hk(t, τ ) denote the density of infected individuals with degree
k who are quarantined with respect to age of infection τ at time t . Then, according
to (1), our age-of-infection model becomes the following,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)
dt = bk[1 − Nk(t)]�k − μSk(t) − kSk(t)

∫ ∞
0 β(τ)�(t, τ )dτ

+ ∫ ∞
0 γ (τ)Ik(t, τ )dτ + ∫ ∞

0 ξ(τ )Hk(t, τ )dτ,

∂ Ik (t,τ )
∂t + ∂ Ik (t,τ )

∂τ
= −(μ + γ (τ) + δ(τ ))Ik(t, τ ), 0 < τ < ∞,

∂Hk (t,τ )
∂t + ∂Hk (t,τ )

∂τ
= −(μ + ξ(τ ))Hk(t, τ ), 0 < τ < ∞,

Ik(t, 0) = kSk(t)
∫ ∞
0 β(τ)�k(t, τ )dτ, 0 ≤ t < ∞,

Hk(t, 0) = ∫ ∞
0 δ(τ )Ik(t, τ )dτ, 0 ≤ t < ∞.

(23)

where δ(τ ) is the infection-age-dependent diagnosis rate (quarantine rate) for the infec-
tious people. ξ(τ ) is the recovery rate for quarantined class with respect to infectious
age τ . We obtain the basic reproduction number of system (23) as

R0 = K̃1(0)

〈k〉
n∑

i=1

iϕ(i)p(i)S0i ,
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Fig. 4 (Color figure online) a Transmission rate β(τ); b diagnosis rate δ(τ ). The symptoms appear at day
4, which coincides with the beginning of infectious period. Infected individuals are quarantined at a rate of
30% per day after day 4

where K̃1(0) = ∫ ∞
0 β(τ)H̃(τ )dτ, H̃(τ ) = e−μτ−∫ τ

0 γ (η)+δ(η)dη. This suggests that
the diagnosis rate δ(τ ) has an important influence on R0 and it plays a crucial role
for the persistence (or the invasion) of disease. Therefore, we can give infection-age-
dependent intervention strategies to control the disease by δ(τ ).

Now, we assume that the transmission rate β(τ) and diagnosis rate δ(τ ) take the
following forms (see Fig. 4),

β(τ) =
{
0, if 0 < τ ≤ 4,
0.45 · (τ − 4)2 · e−0.9(τ−4), if τ > 4.

δ(τ ) =
{
0, if 0 < τ ≤ 4,
− ln(0.74), if τ > 4.

(24)

It is clear that Fig. 4a can show the common characteristic of HFMD in the process
of epidemic transmission. For the spread of HFMD, there is an initial non-infectious
period (3–7days), we consider the incubation period of 4 time units (days). After the
incubation period, the infectiousness of infected individuals increases, passes through
a maximum, and then decreases and is eventually equal to zero for large values of
infection age τ . Therefore, considering the infectious age-related transmission rate
β(τ) is more realistic. Figure 4b depicts the diagnosis rate δ(τ ) for infectious people
with respect to infection age τ , we assume that only infectious individuals are symp-
tomatic and consider curing those individuals at a rate of about 30% per day according
to clinical characteristic.

Now, we compare the evolution of infected group of (1) with that of (23) under
the same initial conditions and parameters. The initial values Sk(0) = 0.6, Ik(0, τ ) =
1√
2π

e
−(τ+1.15)2

2 , Hk(0, τ ) = 1√
2π

e
−(τ+2.5)2

2 for any degree k. Other parameters are set
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as b = 0.07, μ = 0.06, ξ(τ ) = 0.2 and

γ (τ) =
⎧⎨
⎩
0.03, if 0 < τ ≤ 4,

0.05 · (τ − 4) · e−0.09(τ−4)2 + 0.03, if 4 < τ < 21,
0.0301, if τ ≥ 21.

Figure 5a shows the evolution of Ik(t) of system (1) and it is clear that the disease
will break out. While, by mainly treating infectious individuals, the disease is con-
trolled, as depicted in Fig. 5b. Compared to Fig. 5a, the peak of each curve in Fig. 5b
significantly fall. From the comparison between Fig. 5a, b, we see that the disease
can be controlled based on the characteristic of the specific disease through curing the
infected group under different infectious period (age). However, the different diag-
nosis rate and infectivity in different period cannot be represented in those models
without age-infection.

In order to further understand these observations,wenote I (t, τ ) =
n∑

k=1
p(k)Ik(t, τ )

which represents the average density of infection with infection age τ . Fig. 5c, d show
the evolution of I (t, τ ) of system (1) and system (23) at infection age of 5, 10, 20, and
50, respectively. It is clear that the system (1) has an endemic equilibrium, which is
globally stable shown in Fig. 5c. That is to say, the disease will break out. In Fig. 5d,
the disease is controlled by the treatment for different age groups of infectious peo-
ple, the disease dies out as a consequence of control measures according to the age
spectrum.

Remark 2 In this application,we consider that individuals only attain a short immunity
from HFMD after recovery. Once the immunity is lost, the individuals return to the
susceptible class and is again capable of being infected. Therefore, it is reasonable to
make use of our SIS model with age-infection which ignores the short immunity.

Remark 3 Although a simple epidemic model is (of course) a simplification, it is rea-
sonable to deal with simpler problems first. Furthermore, the knowledge gained from
building the simple model will prove to be useful in extending to a more complicated
and realisticmodel. According to ourmodel on complex networks and the specific clin-
ical characteristic of some diseases which show intrinsic characters of age-infection,
it is natural to extend the model to SIR, SIRS and SEIRS models with birth and death,
age-infection on contact networks and analyze their long term epidemic spreading
in an open population. Meanwhile, we merely need to give suitable key functions
which rely on infection age, and then obtain the reasonable control strategies based
on different age of infection.

7 Conclusions and Discussions

In this paper, we propose and analyze a general SIS epidemic model with infection
age on scale-free networks. By using various analytic methods, we demonstrate the
asymptotic smoothness of solutions and uniform persistence of the system (1) via ana-
lyzing its limiting system (5) with Volterra integral equations. We found that the basic
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Fig. 5 (Color figure online) Here is the comparison of dynamics of Ik (t) and I (t, τ ) of system (1) and
system (23). a and c represent the dynamics in system (1), b and d show dynamics of system (23). a and
b are the evolution of Ik (t), while c and d are the evolution of I (t, τ ). Each line with the same initial
conditions and parameters. a Dynamics of Ik (t) subject to time t of system (1), k = 10, 20, 30, 40. b
Dynamics of Ik (t) subject to time t of system (23). c Dynamics of I (t, τ ) subject to time t of system (1),
τ = 5, 10, 20, 50. d Dynamics of I (t, τ ) subject to time t of system (23)

reproduction number is not only related to the network structure, but also depends on
parameters which relate to infection age. In addition, we showed that the disease-free
equilibrium in model (5) is globally asymptotically stable if R0 < 1 by analyzing the
corresponding characteristic equations and applying Fatou’s Lemma. Meanwhile, if
R0 > 1, the system has a unique endemic equilibrium, which is globally asymptoti-
cally stable by constructing proper Volterra-type Lyapunov functions.

We performed some simulations under different parameters and ϕ(k) to illus-
trate our theoretical results. In addition, we continue to construct an age-infection
model (23) according to system (1). We consider different infection rates, recovery
rates and diagnosis rates with respect to age of infection based on the background
and presumed characteristics of various childhood diseases (in particular HFMD), we
found that it is important to treat specific infectious groups according to infection age
to most effectively control the overall spread of disease.

Our age-infection SIS model on heterogeneous networks is also beneficial to the
study of waterborne diseases, such as cholera. Cholera, for example, has multiple
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transmission pathways: it can be transmitted directly to humans by person-to-person
contact or indirectly to humans via contaminated water. We know that different infec-
tivity is important for indirect and direct transmissions.Many researchers have studied
various age-of-infection cholera models, while none of them are constructed on com-
plex networks. Hence, our future work is to study the influence of network structures
on an age-of-infection cholera model.

Infection age plays an important role in studying epidemic transmission and the
control strategies of diseases. Therefore, it is realistic to consider age structure when
analyzing the spreading mechanism and dynamical behavior of epidemic diseases.
Our findings in this paper are valuable for the further study of infection age-structured
models on complex networks.
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Appendix A

Now we give the proof of Theorem 4.1 in Sect. 4.

Proof of Theorem 4.1 ToapplyLemma4.1,we define the projection of�(t, X0) about
any bounded set of X by decomposing �(t) into the following two operators,

�(t, X0) = U (t, X0) + C(t, X0),

where,

U (t, X0) = (0,U1(t, ·), 0,U2(t, ·), . . . , 0,Un(t, ·)),C(t, X0)

= (S1(t),C1(t, ·), S2(t),C2(t, ·), . . . , Sn(t),Cn(t, ·)),
Ui (t, τ ) =

{
Ii (0, τ − t) H(τ )

H(τ−t) , τ ≥ t,
0, τ < t.

, and

Ci (t, τ ) =
{
Zi (t − τ)H(τ ), τ < t,
0, τ ≥ t.

(25)

From Eq. (6), it is easy to get �(t) = U (t) + C(t). Then,

‖Ui (t, τ )‖ =
∫ ∞

0
|Ui (t, τ )|dτ =

∫ ∞

t
Ii (0, τ − t)

H(τ )

H(τ − t)
dτ

=
∫ ∞

t
Ii (0, τ − t)e−μt−∫ τ

τ−t γ (ξ)dτdτ

≤ e−(μ+α)t
∫ ∞

t
Ii (0, τ − t)dτ

≤ e−(μ+α)t‖Ii (0, τ )‖.
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Hence ‖U (t, τ )‖ = 0 + ∑n
i=1 ‖Ui (t, τ )‖ ≤ e−(μ+α)t‖X0‖. If ‖X0‖ < r , we note

k(t, r) = re−(μ+α)t , then, k(t, r) → 0 as t → ∞ and ‖U (t)‖ ≤ k(t, r) for any i .
Next, we verify that C(t) is completely continuous. We need to pay more attention

to the state space, since L1+(0,+∞) is a component of our state space X . Hence, a
notion of compactness in L1+(0,+∞) is necessary. In an infinite dimensional Banach
space, boundedness does not necessarily imply precompactness.Hence,wemust apply
Lemma 4.2.

Suppose that B ⊂ X is bounded for any initial condition X0 ⊂ B. From Propo-
sitions 2.1 and 3.2, it is easy to see that Sk(t), (k = 1, 2, . . . , n) remains in the
compact set [0,�]. Thus, we only need to verify that the following conditions valid
for Ci (t, τ )(i = 1, 2, . . . , n) remaining in a precompact subset of L+(0,+∞) .

To check condition (i i) , according to (25) ,

Ci (t, τ ) = i Si (t − τ)

∫ ∞

0
β(τ)

1

〈k〉
n∑

k=1

ϕ(k)p(k)Ik(t − τ, τ )dτH(τ )

= i Si (t − τ)
1

〈k〉
n∑

i=1

ϕ(k)p(k)
∫ ∞

0
β(τ)Ik(t − τ, τ )dτH(τ )

≤ i
〈ϕ(k)〉

〈k〉 β�2e−(μ+α)τ .

Note that for all X0 ⊂ B, limh→∞
∫ ∞
h |Ci (t, τ )|pX0

dτ = 0. Therefore, (i i) is satisfied

for the set Ci (t, B) ⊂ L1+(0,+∞).
To check condition (i), for sufficiently small h ∈ (0, t), we observe

∫ ∞

0
|Ci (t, τ ) − Ci (t, τ + h)|X0dτ

=
∫ t−h

0
|Zi (t − τ − h)H(τ + h) − Zi (t − τ)H(τ )|dτ

+
∫ t

t−h
|Zi (t − τ)H(τ )|dτ

≤
∫ t−h

0
Zi (t − τ − h)|H(τ + h) − H(τ )|dτ +

∫ t−h

0
|Zi (t − τ − h)

− Zi (t − τ)|H(τ )dτ

+
∫ t

t−h
H(τ )i Si (t − τ)

∫ ∞

0
β(τ)

1

〈k〉
∑
k

ϕ(k)p(k)Ik(t − τ, τ )|dτ.

It is clear that H(τ ) = e−μτ−∫ τ
0 γ (ξ)dξ ≤ e−(μ+α)τ < 1, and H(τ ) is a decreasing

function.

∫ t−h

0
|H(τ + h) − H(τ )|dτ =

∫ t−h

0
H(τ )dτ −

∫ t−h

0
H(τ + h)dτ
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=
∫ t−h

0
H(τ )dτ −

∫ t

h
H(τ )dτ

=
∫ h

0
H(τ )dτ −

∫ t

t−h
H(τ )dτ ≤ h.

Then, we note

� =
∫ t−h

0
H(τ )|Zi (t − τ − h) − Zi (t − τ)|dτ.

From Proposition 4.1, we know that
∫ ∞
0 β(τ)Ik(t, τ )dτ is Lipschitz continuous with

coefficient Mβ . It is easy to see that
dSk(t)
dt is bounded, and therefore, Sk(t) is Lipschitz

on [0,�] with Lipschitz coefficient Ms . Therefore, from Lemma 4.3, the following
inequality holds,

� =
∫ t−h

0
H(τ )|Zi (t − τ − h) − Zi (t − τ)|dτ

= i
∑
k

ϕ(k)p(k)

〈k〉
∫ t−h

0
H(τ )|Si (t − τ − h)

∫ ∞

0
β(τ)Ik(t − τ − h, τ )dτ

− Si (t − τ)

∫ ∞

0
β(τ)Ik(t − τ, τ )dτ |dτ

≤ i
〈ϕ(k)〉

〈k〉
[Mβ� + β�Ms]h

μ + α
.

∫ ∞

0
|Ci (t, τ ) − Ci (t, τ + h)|X0dτ

≤ �h + i
〈ϕ(k)〉

〈k〉
[Mβ� + β�Ms]h

μ + α
+ i

〈ϕ(k)〉
〈k〉 β�2h.

This converges uniformly to 0 as h → 0. Therefore, the condition (i) is verified for
Ci (t, X0) (i = 1, 2, . . . , n). That is to say, for any X0 ∈ X , Ci (t, X0) remains in
a precompact subset Bi of L1+(0,+∞). From Lemma 4.2, we have that C(t, X0) ∈
�n

i=1[0,�] × Bi is completely continuous. Finally, according to Lemma 4.1, we
conclude that �(t, X0) is asymptotically smooth. This completes the proof. ��
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