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Abstract Quasi-Monte Carlomethods have proven to be effective extensions of tradi-
tionalMonteCarlomethods in, amongst others, problems of quadrature and the sample
path simulation of stochastic differential equations. By replacing the random number
input stream in a simulation procedure by a low-discrepancy number input stream,
variance reductions of several orders have been observed in financial applications.
Analysis of stochastic effects in well-mixed chemical reaction networks often relies
on sample path simulation using Monte Carlo methods, even though these methods
suffer from typical slow O(N−1/2) convergence rates as a function of the number of
sample paths N . This paper investigates the combination of (randomised) quasi-Monte
Carlo methods with an efficient sample path simulation procedure, namely τ -leaping.
We show that this combination is often more effective than traditional Monte Carlo
simulation in terms of the decay of statistical errors. The observed convergence rate
behaviour is, however, non-trivial due to the discrete nature of the models of chemical
reactions. We explain how this affects the performance of quasi-Monte Carlo methods
by looking at a test problem in standard quadrature.

Keywords Tau-leaping · Quasi-Monte Carlo · Monte Carlo methods · Stochastic
simulation · Variance reduction · Chemical reaction networks

1 Introduction

In the last few decades, research in molecular biology has generated vast amounts
of quantitative data. This growing amount of data has inspired the development of a
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variety of mathematical modelling and simulation techniques aiming to support the
experimental study of the intricate processes taking place in cells and other molecular
systems. As a result, we now often have the option to perform in silico experiments
alongside themore traditional in vivo and in vitro approaches to study complex cellular
pathways, allowing us to perform model fitting and inference, thus yielding a detailed
view of the different components in these often intricate networks (Wilkinson 2009).

One feature which nowadays appears prominently in many models of chemical
reaction networks is randomness. The aim of including randomness is to mimic the
effects of intrinsic and extrinsic noise sources present in molecular systems, as found
in experiments (McAdams and Arkin 1999; Elowitz et al. 2002; Blake et al. 2003; Cai
et al. 2006). Stochasticity can be responsible for awide variety of observed phenomena,
such as stochastic focusing (Paulsson et al. 2000) or resonance-inducing oscillations
(Hou and Xin 2003). The addition of noise, however, comes at a price in terms of
our in silico experiments. Single experiments have to be run many times using Monte
Carlo (MC) methods to yield results in the form of summary statistics to a satisfactory
degree of certainty. This requirement can result in large computation times or even
make a problem intractable with existing computational methods.

As such, a key component in the development of computational techniques for these
stochasticmodels is findingways to reduce the variance of the statistics returned by the
simulation algorithms used. In other fields that rely heavily onMC computations, such
as computational finance, a commonly applied variance reduction approach involves
the use of quasi-Monte Carlo (QMC) techniques. By changing the random number
input from pseudo-random numbers to low-discrepancy numbers, a gain in perfor-
mance of sometimes several orders can be achieved. In the context of the simulation
of chemical reaction networks, this idea has received very little attention. In Hellander
(2008), an exploration of the combination of QMCmethods with the exact simulation
of continuous time Markov chain (CTMC) models is presented which shows some of
the benefits of QMC over standard methods. In this work, we specifically look at an
approximate simulation method, τ -leaping, which allows for an easier incorporation
of QMC methods. We show that the benefits from using QMC methods in this case
are perhaps less striking than anticipated based on the success of QMC methods in
the numerical solution of stochastic differential equations (SDEs). We then give a
detailed explanation for why this is the case, which serves as an explanation for the
observations made in Hellander (2008) as well.

1.1 Outline

We start in Sect. 2 with an overview of mathematical modelling of chemical reactions
of well-mixed species. These models need different simulation methods to compute
summary statistics, which are discussed next, in Sect. 3. This section also includes a
discussion about MC methods and the resulting statistical error in summary statistics.
To reduce the statistical error, we explore the use of QMC methods, and we provide
a practitioners introduction to QMC in Sect. 4. In Sect. 5, we show results from the
application of QMC methods in the simulation of chemical reaction networks. We
compare the results with a simple toy model from classical quadrature to elucidate the
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difference in performances observed. Finally, we conclude in Sect. 6 with a discus-
sion of our observations on the combination of QMC methods and the simulation of
stochastic biological systems.

2 Mathematical Models of Chemical Reactions

For the main part of this work, we will look at models that describe the temporal
evolution of molecule copy numbers where we assume that the molecules are spatially
distributed in a homogeneous way, i.e. we assume the systems to be well mixed in a
volume V . Note that it is possible to include the spatial movement of molecules in this
framework and we refer to Erban et al. (2007) for more detail.

Suppose we have a collection of n types of chemical species S1, . . . , Sn that can
interact via K different types of reactions R1, . . . , RK , often denoted as reaction
channels. In generic form, we can describe such an interaction Rk as

α1,k S1 + · · · + αn,k Sn
ck−→ β1,k S1 + · · · + βn,k Sn, k = 1, . . . , K ,

where αi,k, βi,k ∈ N and ck is the reaction rate constant for reaction channel Rk . We
define X(t) to be the state vector, describing the evolution of all the species as time
evolves, i.e. Xi (t) is the number of molecules Si at time t . Upon the firing of reaction
Rk the number of molecules can change and we will use ζ k , the stoichiometric vector
for reaction Rk , to denote the change in the copy number when reaction Rk fires, i.e.
due to reaction Rk we see X → X + ζ k . Or, in terms of the αi,k and βi,k , we thus
have the i-th component of ζ k equal to βi,k − αi,k . We can now describe the temporal
evolution of the chemical species using

X(t) = X(0) +
K∑

k=1

Nk(t)ζ k, (1)

where Nk(t) denotes the number of times that reaction channel Rk fires in the time
interval [0, t). This is, of course, not insightful yet as we have not described a means
to calculate the Nk(t). In order to model these counting functions, Nk , we will assign
to every reaction channel, Rk , a propensity function, ak(X(t)), which describes the
probability that the reaction channel fires in the infinitesimal time interval [t, t + dt).
Note that the selection of this function is a modelling choice. A commonly employed
choice is the Law of Mass Action which, in essence, looks at the number of combina-
tions of reactants that can be made using the state vector X(t) to let reaction Rk fire,
see for example Higham (2008) (but note that the choice of ak is in no way essential
to what follows).

We will now present an inverse historical way to define Nk(t) based on these
propensity functions. An accurate way to model this counting function would be to
view the above description as a CTMC where, given the current state, X(t), we can
experience K different state transitions based on the various reaction channels. An
inhomogeneous Poisson process, Yk , will then describe the number of times reaction
Rk fires. This leads to theKurtz random time change representation (RTCR) (Anderson
and Kurtz 2011)
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X(t) = X(0) +
K∑

k=1

Yk

(∫ t

0
ak(X(s)) ds

)
ζ k, (2)

wherewe see K independent inhomogeneous Poisson counting processesYk . This rep-
resentation of the CTMC is a pathwise description of the dynamics. Alternatively, one
can describe the CTMC by the chemical master equation (CME), a (high) dimensional
system of ordinary differential equations (ODEs) that describes the time evolution of
the probability to occupy parts of the state space of X(t). Note that the CME can only
be solved in special cases (Jahnke and Huisinga 2007). Both the RTCR and the CME
form the basis for many simulation approaches, some of which we will touch upon
later.

Going back to Eq. (2) note that we can rewrite the time evolution of the CTMC as

X(t + τ) = X(t) +
K∑

k=1

Yk

(∫ t+τ

t
ak(X(s)) ds

)
ζ k, (3)

which now describes the evolution of the system over a time interval [t, t + τ). If
we assume that τ is small enough such that ak(X(s)) ≈ ak(X(t)) over the interval
[t, t + τ), but still such that ak(X(t))τ � 1, we can use two approximations to derive
the chemical Langevin equation (CLE) (Gillespie 2000). First we note that because
ak(X(s)) ≈ ak(X(t)) we can write

X(t + τ) ≈ X(t) +
K∑

k=1

Yk (ak(X(t))τ ) ζ k, (4)

where we now have K homogeneous Poisson processes. Next we use the normal
approximation of a Poisson process with large rate parameter ak(X(t))τ � 1 to give

X(t + τ) ≈ X(t) +
K∑

k=1

Nk (ak(X(t))τ, ak(X(t))τ ) ζ k

= X(t) +
K∑

k=1

[
ak(X(t))τ + √

ak(X(t))τNk (0, 1)
]
ζ k, (5)

where Nk(μ, σ 2) is a normal random variable with mean μ and variance σ 2. Equa-
tion (5), in the limit τ → 0, gives an evolution equation for X(t) in the form of an
SDE, which can be written in the form

dXt =
[

K∑

k=1

ak(Xt )ζ k

]
dt +

K∑

k=1

√
ak(Xt )ζ k dWt,k, (6)

where now the Wt,k denote K independent Wiener processes. Comparing the RTCR,
Eq. (2), with Eq. (6), we see that both are pathwise descriptions of the dynamics of
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the species. In the case of the CLE, it is also possible to describe the dynamics in a
manner akin to the CME, i.e. in terms of occupation probability of the state space of
X(t). This approach yields the chemical Fokker–Planck equation (CFPE), a system of
partial differential equations (PDEs) that, in general, again is high dimensional, and
not many systems that yield exact results are known.

Using the SDE formulation, we can finally derive the deterministic reaction rate
equations (RREs) which have been in use for over a century. We take the thermody-
namic limit, letting the number of molecules and the volume V go to infinity, whilst
their ratio remains constant. In this limit, the random fluctuations become negligibly
small compared to the deterministic terms and we convert Eq. (5) into

X(t + τ) = X(t) +
K∑

k=1

ak(X(t))τζ k, (7)

which we can rewrite into a system of ODEs by taking the limit τ → 0:

dX(t)

dt
=

K∑

k=1

ak(X(t))ζ k . (8)

Because they constitute a relatively smaller system of ODEs, the RREs can be studied
using analytical tools, or numerical ODE solvers. On the flip side, however, this system
of ODEs is completely deterministic and therefore does not incorporate stochastic
effects.

We thus have three differentmathematicalmodels describing the temporal evolution
of well-mixed molecular species S1, . . . , SN , namely the RTCR (2), the CLE (5) and
the RREs (8), respectively. These models can be seen as a chain of approximations
going from a CTMCwith discrete state space to a CTMCwith a continuous state space
to a deterministic ODE system. Each of these models can be analysed and simulated
in different ways and at different cost.

3 Simulation of Well-Mixed Systems

Having presented three different models for the evolution of interacting chemical
species in the preceding section, we can now ask how to perform a mathematical
analysis on them. For the deterministic rate equations (8), we can use a wide array
of well-known analytical and numerical techniques: we will not go in detail here but
rather refer to Higham (2008) and references therein. If, however, noise and nonlinear
reactions (for example second order or higher with mass action) are important, the
RRE model will not yield correct results and one has to resort to one of the two
stochastic models mentioned previously to investigate system behaviour.

The formulations using CTMCs incorporate stochasticity and therefore are often
harder to interrogate using analytic methods; only for a handful of cases this has
proven to be possible (Jahnke and Huisinga 2007). Repeated simulation of sample
paths from these models is therefore crucial in order to gain insight into the dynamics
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of the species numbers. For the CLE, we can use standard simulation procedures that
are used for SDEs, such as the Euler-Maruyama (EM) or Milstein methods, and we
refer to Kloeden and Platen (1992) for an extensive exposition of that subject. These
computational techniques for SDEs are generally efficient compared to methods for
the RTCR that we will discuss next. However, they do suffer from both a numerical
error depending on the integration scheme used and a bias error, because the CLE (6)
is only an approximation to the RTCR (2).

The dynamics of the RTCR (2) can generally be studied in two different ways. The
first is by the use of the CME. However, one of the disadvantages of this approach is
the dimension of this system of ODEs; it is equal to the size of the state space. This will
generally be so high that the problem becomes intractable, and we refer to Schnoerr
et al. (2017) for a general overview of computational approximations related to the
CME.

This means that one is often forced to rely on a different approach to get a handle
on the model dynamics. Instead of looking at the evolution of the probability over the
whole state space at once, we generate single sample paths which evolve according to
the rules of Eq. (2). An exact algorithm to compute such sample paths in the context
of chemical reaction networks is called the Stochastic Simulation Algorithm (SSA) or
Gillespie’s Direct Method (Gillespie 1977). Given a current state X(t), the algorithm
provides a way to compute the time until the next reaction fires and determines which
reaction this is. In that way, we can progress the Markov chain one reaction at a time.
This approach can be made more computationally efficient by, for example, using the
Next Reaction Method by Gibson and Bruck (2000) or the Modified Next Reaction
Method by Anderson (2007).

Still these methods suffer from a drawback, namely their computational costs. As
they simulate each reaction individually their run time can be significant if we have
many molecules and reactions involved. This is the rationale behind the development
of approximatemethods to simulate sample paths fromEq. (2). One of themost widely
used methods is the τ -leap scheme, also developed by Gillespie (2001). We go back to
Eq. (4), but this time we do not approximate the Poisson process by Gaussian random
variates to yield the CLE. In essence, the τ -leap method follows from the rationale
that, given a small enough τ , the propensities of the reactions do not change much
in the time interval [t, t + τ) and therefore can be assumed constant. This approach
yields a discrete-time Markov chain (DTMC) with a discrete state space, where the
time between each state is given by the time step τ and the transitions are computed
by

X(t + τ) = X(t) +
K∑

k=1

Yk (ak(X(t))τ ) ζ k . (9)

The computational gainwith thismethod is that in order to calculateYk (ak(X(t))τ )we
can simply generate a single Poisson random variable pk with parameter ak(X(t))τ .
This means that we can fire multiple reactions at once and therefore progress quicker
than is the case for the SSA. An algorithmic representation of the τ -leap method is
depicted in Algorithm 3.1.
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Algorithm 3.1 τ -leap method

Input: Initial data X(0) = X̃
Input: Stoichiometric matrix ζ

Input: Propensity functions ak (x)
Input: Time step τ

Input: Final time T
1: X ← X̃
2: t ← 0
3: while t < T do
4: Ak ← ak (X) � Calculate the propensities.
5: Generate p1, . . . , pK Poisson random variables with intensity parameters A1, . . . , Ak .
6: X ← X + ∑K

k=1 ζ k pk . � Update state vector.
7: t ← t + τ � Update time.

8: return X

Being an approximate method, the τ -leap method does not come without caveats,
one being the possibility of achieving negative molecule numbers. Many possible
workarounds to avoid negative copy numbers have been proposed (Tian and Burrage
2004; Chatterjee et al. 2005; Cao et al. 2005, 2006). Furthermore, because τ -leaping
is an approximate method, it yields a bias depending on selection of the magnitude of
the step size, τ (Anderson et al. 2011). Therefore one has to balance the effect of this
bias with the computational costs, which are O(τ−1).

A different view on the τ -leap method is that it is a variant of the explicit Euler
method for ODEs applied to Eq. (2), where we have approximated the time integral by
a left Riemann sum. This method parallels the widely used EM scheme for SDEs. One
could therefore ask the questionwhether it is possible to adapt otherODE time stepping
approaches to the CTMC simulation case. Indeed, this is possible for a small class of
methods, such as implicit Euler, which yields implicit τ -leap approaches (Rathinam
et al. 2003). These methods can perform better for some systems, e.g. those exhibiting
stiff behaviour.

3.1 Monte Carlo Methods and Errors

As a final note on the simulation of well-mixed systems, we now reflect on the dif-
ferent methods mentioned above. Many commonly used methods provide means to
generate (approximate) sample paths of chemical reaction networks, but how can we
infer information from these? In many instances, we are interested in expressions like
g(X(t)), where g is a function of the state variable X(t) at time t . However, as X(t)
is a random variable, we will often have to look at the expectation E [g(X(t))] of this
function g. A common example would be g(x) = xk , where taking the expectation
yields the k-th moment of the process X(t).

If we can only generate sample paths from the distribution of possible outcomes
in the state space, we have to employ MC methods to estimate the required statistics.

We generate N independent, possibly approximate, sample paths X̂
(1)

(t), . . . , X̂
(N )

(t)
and construct from this the MC estimator
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EN (t) = 1

N

N∑

n=1

g
(
X̂

(n)
(t)

)
≈ E [g (X(t))] . (10)

The more samples N used, the more certain one can be of the closeness of EN to
the expected value E [g(X(t))]. We can make this precise by considering the mean
squared error (MSE) given by

MSE(EN ) = E

[
(EN − E [g(X(t))])2

]
=

(
E [EN ] − E [g(X(t))]︸ ︷︷ ︸

bias

)2 + V [EN ]︸ ︷︷ ︸
statistical error

,

(11)
which can be decomposed into two separate sources of error. First of all there can be
a bias. This could be the result of a modelling choice, for example, the CLE and its
related computational methods form a biased approximation of the RTCR from which
it was derived. Alternatively the bias could stem from algorithm parameters such as
the time step τ in the τ -leap method. This type of error will not be investigated in
this paper, and we will assume that, for a specific computational method, it is given
and fixed. On the other hand, there are statistical errors, in the form of the variance
V [EN ] of the estimator, which can be controlled. Statistical errors will therefore form
the main focus of interest in this manuscript and are discussed next.

It goes without saying that it is desirable to have this statistical error as small as
possible; we aim to control statistical uncertainty as tightly as possible given our
computational resources. For a standard MC method, given a sample variance σ 2,
which is determined by the model being studied, the variance of the estimator EN is
given by σ 2/N . Reducing the statistical error can now be done in two ways. Firstly, by
taking more samples the variance decays to zero as N → ∞. This approach requires
the development of more efficient algorithms in order to bring the cost per simulation
down.Alternatively, one could hope to reduce the sample path variance, σ , by applying
a variance reduction technique, see Lemieux (2009, Chapter 4) for more detail in the
context of MC methods. Note that employing standard variance reduction techniques
results in a smaller σ and therefore these techniques only improve the constant of
convergence forV [EN ], the convergence rate behaviour as N → ∞ does not change.
For the remainder of the manuscript, however, we look at a variance reduction method
different from MC that aims to reduce the variance decay as a function of increasing
N .

4 Quasi-Monte Carlo Methods

One of the drawbacks of general MC methods is the slow convergence rate, often
of the order O(N−1/2) for the root mean squared error (RMSE). A way to improve
on plain MC methods is the use of QMC methods. Originally QMC methods were
developed to approximate multidimensional integrals of the form

I =
∫

[0,1]s
f (x) dx, (12)
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Fig. 1 Illustration of the
discrepancy concept in [0, 1)2.
Shown are N = 300 points{
u(i)

}
scattered at random. If a

perfect uniform distribution was
attained by these points the
number of points in B would be
equal to Vol(B) · N and this
would hold true for every box
B ⊆ [0, 1)2 B

u2

u1

where s is the dimension of the problem. In standard MC, we would generate a
sequence u(i) with i = 1, . . . , N of s-dimensional uniform random variates and cal-
culate

IN = 1

N

N∑

i=1

f (u(i)) ≈
∫

[0,1]s
f (x) dx. (13)

The convergence IN → I as N → ∞ for MC methods is based on the Law of Large
Numbers (LLN), but this is not necessary for convergence. For example, deterministic
quadrature methods such as the midpoint-rule exist and have no relation to the LLN.
It turns out that, by virtue of the Koksma–Hlawka inequality, we can link the rate
of convergence of IN as N → ∞ to the uniformity of the points

{
u(i)

} ⊂ [0, 1)s
used. More precisely, the Koksma–Hlawka inequalities link the discrepancy D∗

N of
the point set

{
u(i)

}
and convergence of the approximate integral. This is given in the

most common form by
|IN − I | ≤ V [ f ]D∗

N , (14)

where V [ f ] is the total variation of the integrand f in the sense of Hardy and Krause.
This approximation error inequality can be thought of as the equivalent of Eq. (11)
for MC methods. Note that Eq. (11) is an equality and holds in probability, whereas
Eq. (14) is a deterministic worst-case inequality. Comparing the two error bounds
we see that V [ f ] takes the place of the variance σ , both quantities depending on the
integrand f . Furthermore we see that, rather than having an error decay like N−1/2,
we now have a factor D∗

N determining the behaviour as N increases. The discrepancy,
or the star-discrepancy D∗

N in particular, measures the greatest deviation of a point set
from a perfect uniform distribution on [0, 1)s , which is illustrated in Fig. 1. Taking the
supremumover all the boxes Bwith one corner at the origin, wemeasure the difference
between the expected number of boxes in the perfect uniform case and reality. The total
variation V [ f ] of the integrand is for all practical purposes impossible to calculate
and harder to estimate than the actual integral I . Furthermore in practical applications
one can encounter functions with infinite V [ f ], which voids the use of Eq. (14).

It turns out that it is possible to construct low-discrepancy sequences that will cover
the integration domain more uniformly than random numbers, i.e. their discrepancy

123



2940 C. H. L. Beentjes, R. E. Baker

u2

u1

v2

v1

Fig. 2 Comparison between a (pseudo) random point set (left) and a low-discrepancy Sobol’ point set
(right) in [0, 1)2, both of length N = 29

decays quicker than for equivalent random sequences, which have D∗
N = O(N−1/2).

An example comparison between a (pseudo) random sequence and a low-discrepancy
sequence is depicted in Fig. 2, which shows that the low-discrepancy sequence attains
a much better spread over the integration domain [0, 1)2.

For the QMC method, we replace the (pseudo) random sequence {u(i)} by a
deterministic sequence of low-discrepancy numbers {v(i)} (Lemieux 2009, Chap-
ter 5). By their deterministic construction, these sequences can attain convergence
orders like O((ln N )s N−1) for a wide range of integrands f by virtue of (14). This
O((ln N )s N−1) convergence rate in the limit of N → ∞ will always be better than
can be attained with standard MC. However, if the dimension, s, is large but N is
not very large it is not clear, based on theoretical results, whether QMC will provide
an improvement. There are, however, various reports in the literature, albeit without
a theoretical justification, of QMC methods seemingly outperforming MC methods.
Nowadays, QMCfinds its application inmanymore areas than just integration, such as
finance, see for example Lemieux (2009, Chapter 7), and Bayesian inference (Gerber
and Chopin 2015).

4.1 Randomised Quasi-Monte Carlo

A weakness of QMC methods compared to other quadrature methods is the lack of
a measure of error. For MC methods, we can use the LLN to estimate the variance
and obtain confidence intervals. However, for QMC methods, the points used are
deterministic and therefore do not allow the application of the LLN. The Koksma–
Hlawka inequality (14) does provide deterministic error bounds, but for all practical
purposes the quantities involved, V [ f ] and D∗

N , cannot be calculated or computed.
Furthermore we note that, because the low-discrepancy numbers are a deterministic
set, the QMC estimator is not unbiased.

Wecan, however, consider a hybrid ofMCandQMCmethods.This typeof approach
introduces randomness into QMC methods in such a way that we keep their good

123



Quasi-Monte Carlo Methods Applied to Tau-Leaping in… 2941

convergence properties whilst at the same time allowing for error estimation with
the LLN. The resulting methods are also known as randomised quasi-Monte Carlo
(RQMC) methods.

A common idea in such RQMC methods is to take a low-discrepancy point set
{v(i)} and apply a randomisation to get a new set {ṽ(i)}. Good randomisations (specific
for the low-discrepancy sequence used) exist such that this new set is still a low-
discrepancy point set but, at the same time, for all points in this set ṽ(i) ∼ U([0, 1)s)
holds. As a result of such a randomisation, IN with {ṽ(i)}will be an unbiased estimator
of I . We refer to Lemieux (2009) and references therein for more information on such
randomisations.

To construct a measure of the statistical error, we create M different randomised
low-discrepancy point sets {ṽ(i,1)}, . . . , {ṽ(i,M)} which each will yield an unbiased
estimator I (m)

N of the objective I if we use equation (13). Combining these M ran-
domisations gives rise to a new estimator

IM,RQMC = 1

M

M∑

m=1

I (m)
N = 1

M

M∑

m=1

(
1

N

N∑

i=1

f
(
ṽ(i,m)

))
, (15)

which we note again is an unbiased estimator of I . At the same time, we can now
estimate the variance like we did for MC methods, because we effectively have M
independent unbiased estimates of I . This allows for an unbiased estimator of the
sample path variance just as one can obtain for standard MC simulations

σ̂ 2
RQMC = 1

M − 1

M∑

m=1

(
I (m)
N − IM,RQMC

)2
. (16)

We can now incorporate this into the MC framework to find an unbiased empirical
estimator of V

[
IM,RQMC

]

σ 2
M,RQMC = σ̂ 2

RQMC

M
= 1

M(M − 1)

M∑

m=1

(
I (m)
N − IM,RQMC

)2
. (17)

As a result, there are two ways one can reduce the variance of an RQMC estimator,
either by takingmore samples, N , per randomisationor by takingmore randomisations,
M . It is not always clear what choice one should make in this regard, but we can
make some general observations. We note that increasing N means that within each
randomisation more points of the low-discrepancy set will be used. This will therefore
take advantage of the better spread of low-discrepancy point sets by lowering σ̂ 2

RQMC,

possibly at a rate faster thanO(N−1/2). On the other hand,M only controls the number
of randomisations, which ties in with the standard MC framework. Therefore M has
limited influence on the statistical error convergence (O(M−1/2) for the RMSE).
However, it should be large enough to make the variance estimation equation (17)
sufficiently accurate, which can often already happen for M ≥ 10 (Lemieux 2009).
Note that to get an RQMC estimator and sample variance we use MN sample points
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Fig. 3 Illustration of the
combination of two
one-dimensional point sets into a
two-dimensional set, both for
randomised Sobol’ sets (black
circle) and pseudo-random sets
(grey circle). This approach for
pseudo-random numbers results
in a new two-dimensional
pseudo-random number set, but
this is not true for
low-discrepancy numbers

v2

v1

and thus for a fair comparison an RQMCmethod should be compared to standard MC
with MN sample points.

In this section, RQMCwas introduced as a variation on standard QMCmethods by
addingMC style randomisations. An alternative perspective of RQMC is starting from
a MC method and then adding the low-discrepancy points to make it into a variance
reduction method for standard MC methods. In Appendix B, we give more detail on
this viewpoint of RQMC.

4.2 Application to Stochastic Simulations

(R)QMCmethodswere introduced in the previous sections in the context of quadrature,
but the framework applies equallywell tomany stochastic simulation approaches. This
is due to the fact that the object of interest often takes the form of an expectation, which
can also be written as an integral. Therefore it can be sufficient, just as for quadrature,
for stochastic simulations to substitute pseudo-random numbers in a MC simulation
method with low-discrepancy numbers to get an equivalent (R)QMC method.

Acrucial difference, however, is that formost standard low-discrepancynumberswe
need to know the dimensionality of the problem a priori. This is due to the fact that one
cannot make a low-discrepancy point set in two dimensions by simply combining two
one-dimensional point sets (note that this does work for pseudo-random numbers!),
which can be clearly seen in Fig. 3. This difference between the two types of points
is caused by the way low-discrepancy point sets are generated, in a well-defined
deterministic manner, which introduces correlation between the individual points.

It is therefore not straightforward to combine QMC methods with, e.g. Gillespie’s
SSA, as it is not clear, a priori, howmany randomnumberswill be used in the simulation
of a single path, i.e. the dimension is unknown and possibly infinite. There do exist
ways to deal with possibly infinite integration problems in the context of QMC using
(extensible) lattice rules and sequences, see for example Dick et al. (2013, Section 5)
for an overview and L’Ecuyer and Munger (2016) for a software implementation
of such constructions. For chemical reactions, a workaround for the simulation of
CTMCs, using uniformisation of the CTMC, was presented in Hellander (2008).
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In this paper, however, we focus instead on the (approximate) τ -leaping method,
which in its simplest form (fixed τ ) does allow for an a priori determination of the
dimension of the problem. Given K reaction channels and a simulation that runs with
time step τ until final time T we find the dimension to be K �T/τ�, representing the
total amount of random numbers used for a single path. The low-discrepancy numbers
are then used in step 5 of Algorithm 3.1 to generate the Poisson random variables pk
by applying an inverse transformation. Note that if this is done using a fast inverse
transform, such as in Giles (2016), the process is not slower than direct methods for
generating Poisson random variables in the current implementations of MATLAB and
Python (R2017b and Numpy 1.14.0, respectively).

5 Numerical Experiments

We now test the effect of the combination of RQMC and τ -leaping on a set of example
chemical reaction systems. We compare the results using τ -leaping to the results from
numerically solving the CLE (6) using the EM discretisation as QMC methods have
proven to be very effective for numerical simulation of SDEs in the past (Glasserman
2003). We note that the two computational methods are based on different models, the
RTCR (2) and the CLE (6), respectively. As a result, the bias of the methods will be
different and we therefore do not directly compare the summary statistics computed.
Instead, we ignore bias and only measure the convergence rate of statistical errors for
both methods. For work on the bias error incurred from using τ -leaping, we refer to
Anderson and Koyama (2012); Anderson et al. (2011) and Rathinam (2016).

All numerical results for RQMCmethodswere obtained using the Sobol’ sequences
(Sobol’ 1967). A random linear scramble was combined with a random digital
shift (Matoušek 1998) to create randomised low-discrepancy points from the Sobol’
sequences.

5.1 Monomolecular Reaction Networks

First we look at some elementary test systems to be able to closely compare the CLE-
based method and the τ -leap method. The benefit of these systems is that the bias due
to the finite step size τ is exactly known. In addition to this, the first two moments
of the sample paths can be calculated analytically for both the τ -leap method and the
EM discretisation scheme.

5.1.1 Linear Birth–Death Process

The first example is a single species linear birth–death system

S1
c−→ ∅, (18a)

S1
c−→ 2S1, (18b)

which models autocatalytic production and degradation of the species S1. For simplic-
ity, we take the two reaction rates equal to each other so that we have E [X(t)] = X(0)
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Fig. 4 RMSE convergence for the mean number of S1 molecules in (18) with c = 1 and X(0) = 103 at
T = 1.6. The time step was τ = 0.2 in all simulations. To establish the RMSE, equation (17) was used with
M = 32 randomisations, both for the RQMC and MC methods. Dotted lines show the typical reference
convergence rates, O(N−1/2) for MC andO(N−1) for RQMC (Color figure online)

and V [X(t)] = 2ctX(0), i.e. the system will exhibit fluctuations around the steady
state given by the initial stateX(0). Note that these identities also hold for the EM dis-
cretisation of the CLE and the τ -leap scheme applied to the RTCR, both computational
methods are thus unbiased with respect to the CTMC model.

In Fig. 4, we show the convergence results of the RMSE at time T = 1.6 for a
system with c = 1 and X(0) = 103. Both the Euler–Maruyama discretisation of the
CLE and the τ -leap method use a time step τ = 0.2, i.e. we take eight steps in both
methods. The dimension of the problem is therefore 16 (two reaction channels and
eight time steps), which is generally thought to be within the realm of possibilities
with (R)QMC methods.

We can clearly see that RQMC applied to both τ -leap and the CLE gives a strong
improvement over the same method with standard pseudo random numbers. However,
it is also clear that, contrary to the MC method, where both the CLE-based discreti-
sation and τ -leap show equal convergence in terms of the RMSE, the RQMC method
shows a difference in performance benefit. The SDE-based method has a convergence
rate of roughly O(N−1) for all N . The same behaviour is not observed, however, for
the τ -leap method which starts at anO(N−1) rate, but for N � 102 seems to switch to
the standard MC rateO(N−1/2). This might come as a surprise, because in the regime
of high molecule numbers and reaction propensities the CLE and derived methods are
expected to form an excellent approximation to the RTCR and τ -leap method.

Wenote that the decrease in convergence rate is not due to sample paths reaching low
molecule numbers, which could result in a discrepancy between CLE-based methods
and discrete molecule number methods such as the τ -leap method. With the initial
conditions given above, such sample paths are very unlikely to happen and are not
observed in the simulations used to produce Fig. 4. This also means that a strategy to
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Fig. 5 Comparison between the normalised RMSE convergence rate between τ -leap (left) and an EM
discretisation of the CLE (right) for the mean number of S1 molecules in (18) with c = 1 at T = 1.6 and
varying initial conditionX(0) = ε−1. Dotted lines show the typical reference convergence rates,O(N−1/2)

for MC andO(N−1) for RQMC (Color figure online)

prevent negative molecule numbers, e.g. Anderson (2008), Cao et al. (2005), Tian and
Burrage (2004) and Chatterjee et al. (2005)), was not needed for this example.

A clear difference between the τ -leap method and CLE-based method stems from
their respective update formulas, (9) and (5), which are related but not equal. There-
fore the results from the two methods can differ subtly. By increasing the reaction rate
parameters of the system, the Poisson updates used for τ -leaping are better approx-
imated by normal random variables, which is what is used in CLE-based methods.
Furthermore, as a result of the difference in updates, the state space of the variable
X(t) is continuous for the CLE-based methods and discontinuous, only taking inte-
ger values, for the RTCR-based τ -leap method. We now investigate what differences
between the τ -leap method and CLE-based method exactly lead to the two contrasting
convergence rate behaviours observed in Fig. 4.

Firstly we test whether the closeness of the τ -leap method and the equivalent
discretisation of the CLE changes this observed behaviour of switching between con-
vergence regimes. This is done by running a similar set of simulations with varying
initial conditions, and therefore molecule number regimes. We set X(0) = ε−1, so
that as ε → 0 we expect better agreement between the τ -leap method and the CLE
method. Note that as we vary ε the sample path variance for both methods has the form
V [X(t)] = 2ctε−1 and therefore grows as ε → 0. In Fig. 5, we show the resulting
comparison between the two methods, with the RMSE rescaled by ε−1/2. This is done
to normalise the RMSE by the sample path variance as ε is changed. Note that this
rescaling does not influence the convergence rate behaviour as a function of N .

It is clear from Fig. 5 that for the EM discretisation of the continuous CLE the value
of ε does not influence the convergence rate of theRMSE, i.e. it remainsO(N−1) under
changes in ε. The same cannot be said for the τ -leap method as now ε influences
the transition between two different convergence regimes, fast O(N−1) and slow
O(N−1/2) convergence, respectively. We observe that a smaller ε means that the
transition takes place later, i.e. for higher N . Note that varying ε in the context of this
system means changing the average copy number of S1 encountered, and with that
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Fig. 6 Comparison between the normalised RMSE convergence rate between τ -leap (left) and an EM
discretisation of the CLE (right) for the mean number of S1 molecules in (18) with c = 10ε at T = 1.6 and
varying initial conditionX(0) = ε−1. Dotted lines show the typical reference convergence rates,O(N−1/2)

for MC andO(N−1) for RQMC (Color figure online)

also the average reaction propensities. As a result, ε toggles how good the Poisson
random variables in the τ -leap method can be approximated by normal variables,
and therefore how good the CLE is as an approximation to the discrete dynamics.
One might therefore think that RQMC performance depends on the ‘closeness’ of a
discrete RTCR system is to its continuous CLE approximation. We now show that this
is not necessarily the case.

We consider an additional rescaling of the reaction rate constant of the form c = c0ε
in combination with the previous rescaling of the initial condition. Note that now as
ε → 0 this keeps the reaction propensities on average constant and of the order
O(c0τ) during a time step. As a result the value of ε does not change whether the
EM discretisation of the CLE forms a good approximation to the τ -leap method. We
perform a test to see what happens to the convergence rate if we change ε → 0 in
this case. The results are shown in Fig. 6 and show similar behaviour compared to the
previous example, where c was fixed. It is therefore not a ‘closeness’ of the RTCR to
the CLE which governs the convergence rate, as this is determined by the propensities
of the reaction channels. Rather it seems to be the copy number of S1 molecules that
is crucial for this system.

5.1.2 Reversible Isomerisation System

The previous example showed that in the case of molecule numbers in the system
being not too small RQMC in combination with τ -leaping performed well. In the
following example, we show that having large molecule numbers for some species in
the system, does not guarantee good convergence behaviour of RQMC in combination
with τ -leaping. We consider the two species system

S1
c−→ S2, (19a)

S2
αc−→ S1, (19b)

123



Quasi-Monte Carlo Methods Applied to Tau-Leaping in… 2947

10 0 10 2 10 4 10 6
10 -8

10 -6

10 -4

10 -2

10 0

10 2

Fig. 7 RMSE convergence for the mean number of S2 molecules in (19) with c = 1 and α = 10−4 at
T = 1.6. The time step was τ = 0.2 in all simulations. To establish the RMSE, equation (17) was used with
M = 32 randomisations, both for the RQMC and MC methods. Dotted lines show the typical reference
convergence rates, O(N−1/2) for MC andO(N−1) for RQMC (Color figure online)

and start with X(0) = (X1, X2)
ᵀ initial molecules. Define N0 = X1 + X2 and

note that this simple system is closed, which means that the sum of the number of
S1 and S2 molecules at all times will be equal to N0. This information can be used
to decouple the dynamics of S1 and S2. Note that this system, under the CTMC
model, converges to an equilibrium state of (α/(1 + α), 1/(1 + α))ᵀN0. In order to
ignore a transient regime in which the system goes to this equilibrium, we start the
simulations with N0 = α−1(1+α)ε−1 andX(0) proportional to this equilibrium state,
i.e. X(0) = ε−1(1, α−1)ᵀ.

We note that under this X(0) initial condition for both the τ -leap method and the
EM discretisation of the CLE we have E [X(t)] = X(0) and V [X(t)] ∝ X(0), like
we saw in the previous system. This also means that both computational methods are
unbiased for this system.

In Fig. 7, we show the results for a simulation until T = 1.6 with time step τ = 0.2
and parameters c = 1, α = 10−4 and ε = 10−2. This means that S2 has copy numbers
of the order 106, which one might reasonably say is large. We note again that there is a
gain in performance in terms of RMSE if we compare RQMC and the equivalent MC
method. However, we observe that, despite S2 having large copy numbers, the RMSE
for S2 from τ -leaping quickly goes to O(N−1/2) convergence.

We can understand this quick slow down of convergence by again noting that
N0 = X1 + X2 remains constant. Therefore, the dynamics of X2, and thus also the
RMSE, is slaved to the dynamics of S1 molecules (and vice versa), i.e. RMSE(X1) =
RMSE(X2). The RMSE of X1 will attain a O(N−1/2) convergence rate relatively
quick, because the number of S1 molecules is moderate (on the order of 102), rather
than large. The RMSE of S2 molecules mimics this behaviour, because of the coupling
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via reactions between S1 and S2 molecules, andwill therefore also change toO(N−1/2)

convergence after the same number of samples N .
This example therefore shows that, by virtue of species being linked through reac-

tion channels, it can be that high copy numbers for part of the reacting species do not
guarantee faster convergence rates for RQMC methods than the standard O(N−1/2)

rate. This is even the case when we use summary statistics that involve just those high
copy number species (in our example the number of S2 molecules).

5.2 Discrete Toy Model

To explain the observations from the previous examples, we consider a problem in
traditional quadrature. We consider the integration of the following s-dimensional test
functions over the domain [0, 1)s :

f (x) = √
12/s

s∑

i=1

(
xi − 1

2

)
; (20a)

f (x) = √
12s

s∏

i=1

(
xi − 1

2

)
. (20b)

Both functions integrate to zero over the s-dimensional hypercube and have variance

∫

[0,1)s
f 2(x) dx −

(∫

[0,1)s
f (x) dx

)2

= 1, (21)

regardless of s. We note that (20a) is an easy test function for (R)QMC methods as
it represents a linear combination of one-dimensional functions (for which (R)QMC
methods perform well). The effective dimension in the superposition sense of these
additive functions is equal to one (Caflisch et al. 1997) and the convergence rate
for RQMC1 is O(N−3/2) regardless of dimension s. The second function (20b) was
considered previously in Owen (1998) and is a much harder integrand for RQMC and
MC methods. It has the property that RQMC methods for a low number of points
have O(N−1/2) RMSE convergence which turns into O(N−3/2) if sufficiently many
points are used [the definition of sufficient, which depends on s, is found in Owen
(1998)]. RMSE convergence for these test functions for some dimensions s is depicted
in Fig. 8. This shows that RQMC does indeed do a very good job at integrating (20a)
and for N large enough the same holds for (20b). For (20a), we see that in terms of
RMSE convergence there is no dependency on s.

Note that for the chemical test systems previously discussed there was a clear differ-
ence in performance for RQMCmethods between the continuous CLE and the discrete
RTCR. In terms of quadrature, the integrand f in the first case is continuous, whereas
in the second case it is discontinuous. Most convergence results for RQMC are based

1 Provable results on the convergence rate for randomised Sobol’ sequences are only available if Owen
nested uniform scrambling is used (Owen 1995), rather than the randomised matrix scrambling as used in
this paper.
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Fig. 8 Comparison between the RMSE convergence rate of MC and RQMC for (20). M = 128 randomi-
sations were used and dotted lines show the typical reference convergence rates, O(N−1/2) for MC and
O(N−3/2) for RQMC (Color figure online)

on the assumption that the integrand is continuous and it has been observed before
that discontinuities can have an adverse effect on the convergence rate (Morokoff
and Caflisch 1995; Moskowitz and Caflisch 1996; Berblinger et al. 1997; He and
Wang 2015). We now show that a certain type of discontinuity, closely resembling the
chemical reaction system case, can replicate the convergence behaviour that we have
observed in the previous section.

We introduce the following transformation of the test functions f , which acts upon
the input of the function f ,

fε(x) = f
(
ε
⌊ x

ε

⌋)
, (22)

where ε is a parameter which tunes the level of discontinuity. Note that as ε → 0 the
function becomes smoother. In Fig. 9, we show the effect of varying ε on the one-
dimensional function (20a) and the filled contour plot for (20b) for ε = 0.07. Note that
by applying transformation (22)we create a functionwhich has discontinuities parallel
to the axes of the integration domain [0, 1)s . In He and Wang (2015), it was proven
that such axes-parallel discontinuities have a relatively mild effect on the convergence
of RQMC methods.

In Fig. 10, we see the effect that the introduction of discontinuity by (22) has on the
RMSE convergence. Where the continuous functions showedO(N−3/2) convergence
(recall Fig. 8), the discontinuous counterparts have, for large enough N , a slower
O(N−1) convergence rate. The results in Fig. 10 hold for a wide range of dimensions
s. As expected, results for (20a) are not affected by s due the fact that the function
after transformation still is one-dimensional in superposition sense. On the other hand,
for (20b), the effect of transformation (22) only shows once enough points have been
used to leave theO(N−1/2) initial convergence, and after that convergence rates seem
to drop from O(N−3/2) to O(N−1) as well.

Next we introduce a different transformation that converts continuous functions
into discontinuous ones,

fε(x) = ε

⌊
f (x)

ε

⌋
. (23)
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Fig. 9 Result of the discontinuity transformation (22). For the one-dimensional function (20a), we plot the
graph of fε(x) (left). For the two-dimensional function (20b), we plot the filled contour plot for ε = 0.07,
clearly showing the discontinuity lines of fε(x)
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Fig. 10 Effect of discontinuity transformation (22) on the RMSE convergence for (20a) (s = 10) and (20b)
(s = 3). M = 128 randomisations were used and dotted lines show typical reference convergence rates,
O(N−1) andO(N−3/2) for RQMC (Color figure online)

Note that, in contrast to (22), this transformation acts upon the function output values.
As a result, discontinuities introduced by (23) do not necessarily align with the axes
of [0, 1)s , as can be seen in Fig. 11 in two dimensions.

Results for the RMSE convergence for varying ε is shown in Fig. 12. We observe
again that for small values of N the convergence rate is O(N−3/2), similar to the
continuous case. However, we see that with transformation (23), for N large enough,
the convergence rate becomesO(N−1/2), rather thanO(N−1)which was observed for
transformation (22). This comes back to the fact that the discontinuities introduced by
(23) do not align with the axes of the integration domain [0, 1)s . One can understand
this from the way many RQMC point sets are constructed (in particular digital nets, of
which Sobol’ point sets are a special case). For such sets, the points are equidistributed
with respect to axes-aligned hyperrectangles. If the discontinuities of the integrand do
not align with the domain axes, such as for transformation (23), then the RQMC
points will not be able to sample of the integrand’s different contributions uniformly.

123



Quasi-Monte Carlo Methods Applied to Tau-Leaping in… 2951

Fig. 11 Result of the discontinuity transformation (23). Plots show the filled contour plot for (20a) with
ε = 0.5 (left) and the filled contour plot for (20b) with ε = 4 (right). The discontinuity lines of fε(x) do
not align with the axes of [0, 1)2
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Fig. 12 Effect of discontinuity transformation (23) on the RMSE convergence for (20a) (s = 10) and (20b)
(s = 3). M = 128 randomisations were used and dotted lines show typical reference convergence rates,
O(N−1) andO(N−3/2) for RQMC (Color figure online)

Discontinuities that do not align with the domain axes were also shown to be of a more
detrimental type of discontinuity if one wants to use RQMCmethods in He andWang
(2015).

The limiting convergence rate is given by the MC rateO(N−1/2). This agrees with
the fact that RQMC methods will, in the worst-case scenario, behave very much like
a standard MC method and have a convergence rate which is not more than a constant
times the MC rate (Owen 1998).

To further explain the convergence behaviour, we consider the decomposition of
the discontinuous function into a continuous part, F(x), and discontinuous part,G(x),
of the form

fε(x) = f (x)︸︷︷︸
continuous F(x)

+ ( fε(x) − f (x))︸ ︷︷ ︸
discontinuous G(x)

. (24)

Note that |G(x)| ≤ ε and as a result the variance of G(x) is generally O(ε2). We
can then decompose the MSE of the estimator of the integral of fε(x) by an unbiased
RQMC rule as the sum of the MSE of the integration of F(x) and G(x). We note that
the MSE for the continuous part, F(x), behaves like O(N−3), as observed in Fig. 8.
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In the case of transformation (23) the RQMCmethod achieves MC like error rates for
the discontinuous part, G(x). We therefore have the following decomposition of the
MSE

MSE

(
ε

⌊
f (x)

ε

⌋)
= C1N

−3 + C2ε
2N−1. (25)

This yields a switch from fast O(N−3) convergence to slow O(N−1) when N =
O(ε−1), i.e. at this point the error made for the discontinuous component of the
function dominates the MSE. The same holds true for the RMSE and this scaling of
the switch point as a function of ε is also observed in Fig. 12.

In the case of transformation (22) the RQMC method does not perform like a MC
method and instead achievesO(N−2) convergence for the MSE. Note that the scaling
of the variance now does not come into play, because the convergence is not MC like.
Instead we observe a rescaling of the switching point N = O(ε−1) as well in Fig. 10.
This leads to the following decomposition of the MSE

MSE
(
f
(
ε
⌊ x

ε

⌋))
= C1N

−3 + C2εN
−2. (26)

This shows that, even in the case of a discontinuous integrand, RQMC methods
can achieve lower MSE if the function can be decomposed in a continuous part and a
discontinuous part that is relatively smaller in magnitude. RQMC performs superiorly
on the continuous component of the integrand, giving fast error decay for a moderate
number of points N . In the worst-case scenario, a MC convergence rate is achieved
by RQMC on the discontinuous part, which will dominate the convergence order for
large N .

This observation can be linked to observations made in Caflisch (1998). Caflisch
notes that low-discrepancy point sets differ subtly from pseudo-random point sets in
the sense that for a pseudo-random point set every point is an independent estimate of
the integral. This is not true for a low-discrepancy point set, which has a deterministic
structure. For these point sets, the initial points sample the integration domain on a
coarse scale, whereas the later points are used for progressively finer scales. Therefore
initially RQMC will perform well on a function like fε, because on a coarse scale it is
dominated by its continuous part, F(x). If more points are used the fine, discontinuous,
structure due to G(x) starts to dominate and this is where the convergence stalls.

Note that for a general chemical reaction network it is not clear a priori how the sum-
mary statistic of interest can be decomposed into a continuous part and discontinuous
part, or what the value of ε is. Or, in other words, it is not clear how important coarse
scale continuous contributions are in relation to finer scale discrete ones. Therefore
the performance benefit from using RQMCmethods over MC methods can be hard to
estimate a priori. We do, however, note that the implementation of low-discrepancy
point sets is often relatively simple and does not need to increase the runtime of the
simulation procedures (Appendix A). As a result, RQMC methods have a potential
to provide computational savings over MC methods in the simulation approaches of
chemical reaction networks by attaining lower statistical errors for similar computa-
tional time.
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Fig. 13 RMSE convergence for the mean number of S1 molecules in (27). The time step was τ = 0.4
in all simulations. To establish the RMSE, equation (17) was used with M = 32 randomisations, both for
the RQMC and MC methods. Dotted lines show the typical reference convergence rates, O(N−1/2) for
MC and O(N−1) for RQMC. Estimated convergence rate for RQMC methods is O(N−ν) with ν ≈ 0.55
(Color figure online)

5.3 Schlögl System

As a final example, we look at the bistable Schlögl system, as encountered in Cao
et al. (2004), which incorporates nonlinear interactions

2S1 + S2
c1−→ 3S1, (27a)

3S1
c2−→ 2S1 + S2, (27b)

S3
c3−→ S1, (27c)

S1
c4−→ S3, (27d)

where we assume that the copy numbers for S2 and S3 are constant and large. The
initial condition for S1 is 250 molecules. Non-dimensional parameters are given by
c1 = 3 · 10−7, c2 = 10−4, c3 = 10−3, c4 = 3.5 and the copy numbers for S2 and S3
are taken as 105 and 2 · 105, respectively. The system is bistable for these parameters,
with stable states around 100 copy numbers and 550 copy numbers for S1.

We simulate the system up until final time T = 4 with time step τ = 0.4. We take
the approach in Anderson and Higham (2012) to deal with sample paths with zero or
fewer molecule numbers at a given time.We look at the mean number of S1 molecules,
though more meaningful summary statistics can be constructed for bistable systems.

In Fig. 13, we show results comparing the τ -leap method and EM discretisation of
the CLE using both pseudo-random points and low-discrepancy points. We see that,
although the RQMC method does not attain a much higher convergence rate than the
standard MC rate of O(N−1/2), the RQMC method is superior to the standard MC
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method. Numerical experiments suggest that a similar situation as in Fig. 13 holds for
at least the first few moments of S1 copy numbers.

We also observe that, even though the CLE is continuous, the convergence rate for
the EM discretisation is equal to that of τ -leap. This indicates that for this specific
problem it might not be the discrete nature of the S1 dynamics that causes the observed
O(N−1/2) convergence rate. The behaviour is likely due to the fact that the system
has four reaction channels and 10 time steps, leading to a dimensionality of 40 for this
specific problem. Such a number of dimensions can be challenging for naïve QMC
methods as applied here. Onemight benefit from applying a change of variables which
transforms the effective dimension of the problem, and therefore improves the RQMC
convergence. Techniques such as the Brownian bridge and principal components con-
struction are available for SDEs and can help in making RQMC methods effective
even for high-dimensional problems (Glasserman 2003, Chapter 5). For dynamics
following the RTCR (2) such transformations are, however, not known and we leave
this direction for future research.

6 Discussion and Outlook

It is known that the use of low-discrepancy numbers instead of pseudo-random num-
bers can greatly improve the convergence speed for problems involving traditional
quadrature and SDEs. In this paper, we explored the application of RQMC methods
in the framework of simulation of stochastic biological systems. In particular, we
looked at the combination of low-discrepancy numbers with the τ -leap method. For
simplicity, the fixed step τ -leap method was considered so as to allow for a simple
implementation of low-discrepancy points without negative effects on the runtime.We
note that the question of whether this is a good procedure has been addressed in the
literature before (Cao et al. 2004, 2005, 2006; Anderson 2008). This paper, however,
does not focus on the question of whether τ -leaping forms a good approximation to the
CTMC dynamics, which is the motivation therein for the discussion about time step
selection. Rather, we focus on the question of how quick statistical errors in desired
summary statistics decay as a function of the number of sample paths simulated. We
answer this question in the simplest possible case, namely using fixed time step τ -leap,
though we expect our conclusions below to be general enough to hold for a large class
of simulation procedures for stochastic biological systems.

Theory suggests that the convergence rate for an RQMC method is not worse than
for the equivalent MC method [up to a constant (Owen 1998)]. Reality seems to show
that in case of chemical reaction networks RQMC is superior to MC, as evidenced by
numerical experiments in Sect. 5. As a result, if one chooses the fixed time step τ -leap
approach to simulate a chemical reaction network, the use of RQMC methods gives
a better convergence behaviour as compared to the traditional MC implementation at
no extra cost.

However, the benefits from using low-discrepancy numbers are smaller than antic-
ipated based on results seen in the simulation of SDEs. In particular, if one chooses to
model chemical reaction systems by SDEs in the form of the CLE, one sees a greater
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advantage in the use of low-discrepancy numbers. This effect can be caused by at least
two factors.

Firstly, the inherently discrete nature of stochastic simulations of chemical reac-
tion networks hinders RQMC convergence. It has been reported in the literature that
discontinuous integrands experience less benefit from RQMC methods over standard
MCmethods (Morokoff and Caflisch 1995; Moskowitz and Caflisch 1996; Berblinger
et al. 1997; He and Wang 2015). In Sect. 5, we showed through the use of a simplified
test system that the behaviour observed in simulating chemical reactions can be repli-
cated by introducing certain types of discontinuity in classical quadrature. The simple
test systems in Sect. 5 allow for a detailed understanding of the RMSE convergence
rate observed when applying RQMC. It is, however, not always possible to choose the
biological model or its parameters such that the effect of discontinuities will be small.
It would therefore be advantageous to have techniques that leave the desired summary
statistic intact, but diminish the effect of discontinuities on the RMSE convergence.
Smoothing techniques have previously been considered to mitigate the effects of dis-
continuity in other contexts (Caflisch 1998;Moskowitz and Caflisch 1996) andwe aim
to address similar techniques in the context of chemical reaction networks in future
work.

Secondly, it is known that the performance of (R)QMCmethods can strongly depend
on the dimension of the problem. As illustrated in the last example in Sect. 5, a
higher dimension can lead to a much smaller performance benefit, regardless of the
smoothness of the underlying problem. Methods to reduce the effective dimension of
the problem by a change of variables have proven to be effective in other fields and it is
an open question as to whether such transformations can be found for the simulation of
biological systems. Another method which has proven to be fruitful in the simulation
of DTMCs of potentially large dimension is array-RQMC (L’Ecuyer et al. 2008). This
method is the cornerstone of the only other known QMCwork in the area of stochastic
biological systems (Hellander 2008). Observations in this paper about the effect of the
discrete nature of chemical reaction systems support and explain the observation of a
smaller than expected performance gain in Hellander (2008). In future work, we will
explore the effect of discontinuities on the array-RQMC method and its combination
with τ -leaping, with both fixed and adaptive time stepping.

We also point out that the original article introducing QMC methods in 1951 by
Richtmyer (1951) considered a discrete linear birth process. He observed a smaller
performance gain than expected and thismight have impeded the further exploration of
QMCmethods in stochastic simulation for a few decades. Richtmyer’s results can now
be understood to be caused by the unfortunate choice of his chosen model problem,
which is discontinuous in nature.

A further topic of future research is the effective dimension in the simulation of the
RTCR. The concept of effective dimension and techniques to reduce said dimension
are widely studied in the context of financial applications and in the future we aim to
explore its implications for the models of interest in biology.
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Appendix A: Computational Effort to Generate Quasi-random Numbers

One should question whether the time taken to generate scrambled low-discrepancy
sequences for an RQMC method is much longer than the time needed for pseudo-
random numbers to be generated as this could void any observed performance gains.
We therefore performa small test to time the generationof the various randomnumbers.
We time how long it takes to generate a point set of length N in s dimensions (averaged
over 50 trials). Timing experiments were performed using MATLAB R2017b on an
Ubuntu desktop PC with a 3.40 GHz Intel Core i7-2600K CPU and 16 GB of random
access memory. We test the standard pseudo-random number generator (which uses
the Mersenne Twister algorithm) versus Sobol’ points with linear matrix scrambling
and a random digital shift. The results are depicted in Fig. 14 and show that only
for relatively small point sets the generation of pseudo-random numbers is distinctly
faster than the Sobol’ points (on the order ofmilliseconds). For point sets of lengths not
uncommon in simulations (105 or more points), the difference is negligible. Therefore
the completion time for an algorithmwhich has replaced pseudo-randomnumberswith
low-discrepancynumberswill not differ noticeably. Thesefindings agreewith practical
timing results for simulations of various financial applications in Lemieux (2009).
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Fig. 14 Comparison between the time taken to generate N pseudo-random points and an equal number of
scrambled Sobol’ points. On the left and right results for s = 10 and s = 50 dimensional points, respectively
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Appendix B: RQMC as a MC Variance Reduction Technique

An alternative look on RQMC is as a variance reduction technique within the
standard MC framework as noted in L’Ecuyer (2016). After randomisation of the
low-discrepancy point set, the estimator I (m)

N becomes an unbiased estimator of the
integral I in Eq. (12). The variance of the estimator can, by linearity, be written as

V

[
I (m)
N

]
= σ 2

N
+ 2

N 2

∑

1≤i≤ j≤N

Cov
[
f
(
v̂(i,m)

)
, f

(
v̂( j,m)

)]
. (28)

In standard MC methods, the points
{
v̂(i,m)

}
used are independent and therefore the

covariances are zero. For an RQMC method, however, this is not the case because of
the deterministic construction of the points used. Note that this remains true despite
the randomisation, because the point set as a whole still is a low-discrepancy set. In
order to reduce the variance, one wants the contribution of the sum of covariances to be
as negative as possible. This is attempted by RQMCmethods through the construction
of the points used in the quadrature and it places RQMC methods on equal footing
with, for example, the standard variance reduction techniques of antithetic sampling
and common random numbers (Lemieux 2009, Chapter 4).
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