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Despite a huge amount of research effort, cancer continues to be a major killer. One
of the main reasons for this is the immense complexity of the disease. Cancer is a
multiscale process in which genetic mutations occurring at a subcellular level manifest
themselves as functional changes at the cellular and tissue scale. Conversely, tissue
level properties, such as blood flow, produce Darwinian selection forces that govern
the local distribution of cellular phenotypes and genotypes. Changes in tissue lead
to a disruption of organ form and function that can ultimately lead to failure and
death (Fig. 1). This multiscale aspect of cancer has largely been neglected in the
reductionist paradigm, which typically views cancer as “a disease of the genes”. The
reason for this is clear as the remarkable advances inmolecular technology have greatly
enhanced quantitativemeasurements at the genetic scale, while cellular- or tissue-scale
properties remain the province of pathology and radiology, which generally lack such
tools. The genomic revolution has led to the development of an extensive set of tools
to measure and analyze gene expression and mutation. However, the mapping of these
changes to in vivo structure and function of cancer cells and tissue remains limited.
Furthermore, while tumor evolution is often viewed as a mutation-driven process, it is
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Fig. 1 Cancer is multiscale. Genetic and epigenetic changes lead to modified signaling and changes in
cell behavior, giving rise to cancerous tissue impacting organ function and eventually the organism (figure
courtesy of Jill Gallaher)

important to recognize that the cell phenotype is the fundamental unit of selection and
its fitness is determined through complex interactions with local microenvironmental
properties and competing populations.

Tumors are not simply collections of mutated cells that grow in isolation, but rather
they are part of a larger organ ecosystem and are actively competing with, and dis-
rupting, a complex community of many interacting cellular and microenvironmental
elements that are attempting to maintain homeostasis (Basanta and Anderson 2017).
Interactions are really at the heart of an ecological view of cancer, and it is com-
monly assumed that in an ecosystem with limited resources, nutrients and space for
growth, the only interaction among individuals is competition (Maley et al. 2017).
However, other ecological interactions such as predation, parasitism, mutualism and
commensalism can also be observed. The importance of the microenvironment in
cancer progression is now widely recognized (Egeblad et al. 2010). The disruption
of organ homeostasis leads to significant microenvironmental heterogeneity. There-
fore, heterogeneity is both a cause and consequence of the dialog between the tumor
and its environment and has been observed across genotypic (Greaves and Maley
2012; Burrell et al. 2013), phenotypic (Swanton 2012; Meacham and Morrison 2013;
Robertson-Tessi et al. 2015) and environmental scales (Tredan et al. 2007; Gatenby
and Gillies 2008; Friedl and Alexander 2011) and has now been recognized as a key
driver in cancer drug resistance and treatment failure (Meads et al. 2009; Marusyk
et al. 2012; Turner and Reis-Filho 2012; Hirata et al. 2015). Ultimately, these complex
interactions of tumor cells, environment and therapy produce multiscale heterogeneity
in which local microenvironmental conditions select phenotypic tumor clones that are
best adapted to locally survive and proliferate and, conversely, the phenotypic prop-
erties of the cells affect the environment. This dynamic feedback can only truly be
understood through the integration of experiments and mathematical modeling and
has driven much of the current field of mathematical oncology. However, if we hope
to translate this understanding to the clinic and directly impact patient lives, then these
models also need to integrate patient data. We argue that for the next generation of
predictive mathematical models to be successful we need the right data.

The big data revolution is in full swing and has been a significant driver of advances
in the field of systems biology for the obvious reason that much of it is from one
scale: genomic. Genome scale data can direct the choice of specific cancer drugs and
potentially classify patients into different categories, and has had many successes, not
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only for cancer (see, for example, Price et al. 2015). However, it is mostly utilized
in a correlative manner and thus is only part of the story. In order to tackle major
issues, such as treatment resistance, we need causation, or mechanism. The huge
recent advances in computational power mean that we can now propose mechanistic
mathematical models, but these have to eventually be calibrated through data gathered
from patients. The big data issue in cancer, is that for patients, much of the data are not
appropriate for such models and, therefore, limit our ability to develop a mechanistic
understanding. Specifically, often the data are not longitudinal, not spatial, only from
one scale, averaged and homogeneous, not correlated or co-registered and notwithin an
appropriate context.Whatwe need are the “right” data thatwill allowus to better define
the cancer system and connect the scales of cancer, bridging genotype to phenotype,
cell to tissue, organ to patient and individual to population. Thiswill require a paradigm
shift in how we gather and view patient data, but the potential benefits are enormous.
Just by collecting the right data, we will immediately uncover relationships that were
not previously seen or understood (for free). Mining these data will provide an even
richer and more comprehensive understanding of the relationships across scales and
over time. But because of the complex and dynamic nature of cancer, to fully exploit
the information in these data and reveal deeper insights will require mathematical and
computational models. Moreover, the complexity is such that realistically we need to
focus on subsets of the myriad of processes involved, so as to systematically build up
a mechanistic understanding of cancer growth and development.

1 Mathematical Oncology Past, Present and Future

During the past 15 years, mathematical models of cancer have seen a significant
increase in both their number and impact on cancer research (Gatenby and Maini
2003; Anderson and Quaranta 2008; Byrne 2010; Altrock et al. 2015). This is partly
due to increasing interest from the oncology community, who have begun to realize the
potential mathematical models hold for delivering a more mechanistic understanding
of such a complex system. Experimental biologists have also realized that, while
reductionist approaches have delivered a great deal, interactions between the individual
components are equally, if not more, important for understanding the system. This
more systemic view of cancer is naturally a place where mathematical models shine
as they readily integrate multiple processes across different biological and temporal
scales and capture the complex interactions between cells and their environment.

The above is true in nearly all areas of mathematical biology, and the field is
changing so much as to be almost unrecognizable from say 40 years ago. Now, we
see models that are rooted much more deeply in the experimental literature and the
focus is not only on making experimentally testable predictions, but also testing them
with data and, increasingly, actually working with experimentalists to design studies
to test model predictions. The process of doing this leads to many challenges and
therefore important advances in experimental techniques, mathematical modeling and
analysis. In this special issue on Mathematical Oncology, we focus on the latter. The
papers in this issue not only show how standard mathematical approaches can be used
to generate new biological insights, but also how problem-driven studies naturally
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lead to the development of new modeling techniques, and therefore models that are
novel mathematically. Moreover, it becomes clear that the problems presented by
biology require methods and techniques that not only come from traditional applied
mathematics, but also pure mathematics, statistics and computation.

As we move from models that are focused more on understanding basic biological
processes to those that will directly impact patient lives, model predictions need to be
more robust and therefore consistent across a suite of models before they can be imple-
mented clinically—we see direct examples of this in our special issue. In addition, we
need to embark onmore integrated studieswhere experiments are designed specifically
to facilitate the model validation process. This typically will require several rounds
of the predict-test-refine-predict cycle before it is safe to use model predictions in a
clinical setting.

The future of our field looks incredibly promising, as mechanistic models become
more important for not only driving hypothesis generation, but also hypothesis test-
ing. The following represent specific areas where we see the future of mathematical
oncology having the largest impact:

(1) Predicting and optimizing patient-specific treatment strategies
(2) Integration ofmolecular scale data, in a functionalmanner, intomultiscalemodels
(3) Defining and facilitating the role of the immune system in cancer
(4) Facilitating and augmenting clinical trial design
(5) Understanding and minimizing the emergence of treatment resistance
(6) Greater integration with systems biology.

2 Special Issue on Mathematical Oncology

The field of mathematical oncology has been steadily growing for the last decade
and now covers the gamut of disease stage, site and process, so the choice of authors
for a special issue is bewildering. To narrow down the choice in a rational way, we
decided to focus on the emphasis year on Cancer And its Environment, run at the
Mathematical Biosciences Institute (MBI), The Ohio State University in 2014–2015,
and encompassing many leaders in the field. This year-long program covered many
aspects of cancer initiation, progression and treatment. It consistedof sevenworkshops,
with each workshop focusing on different aspects of the disease: (I) Ecology and
Evolution of Cancer; (II) Metastasis and Angiogenesis; (III) Cancer and the Immune
System; (IV)TumorHeterogeneity and theMicroenvironment; (V)Treatment,Clinical
Trials,Resistance; (VI)TargetingCancerCell Proliferation andMetabolismNetworks;
(VII) StemCells, Development, and Cancer. This year exemplified the integrated view
of mathematical oncology, and we invited the organizers of the workshops in this
program to submit their research for this special issue.

The first two papers investigate different facets of angiogenesis. Gravenmier et al.
(2017) investigate the potential consequences arising from the fact that the immaturity
of tumor vasculature leads to disordered, complex, stochastic flow dynamics to which
cells must adapt. They hypothesize that theWarburg effect is actually an adaptation for
tumor cells as a bet-hedging strategy. They develop a discrete-time competition model
of Lotka–Volterra type and investigate how stochastically fluctuating blood flow could
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serve as an agent for a Darwinian selection pressure due to the resultant disordered
oxygen concentrations experienced by cells.

Jain and Jackson (2017) present an ordinary differential equation (ODE) model to
investigate the interaction of VEGF, its receptors and intracellular signaling pathways
with the aim to understand the effects of VEGF-targeted therapies. Their detailed
investigation of the model reveals the danger of using in vitro results to generate
in vivo treatments as model predictions show that the results of treatments in one
setting are not necessarily reflected in other settings. They show that the model has the
potential to help us understand why such therapies may be successful in some cases
but not in others. This paper highlights a very important point—the vast majority of
experimental systems are also models and, as such, results from such studies should be
treated with the same caution as those from a mathematical model. The paper shows
how mathematical modeling can help to bridge the gap between in vitro experimental
models and in vivo reality.

The next two papers investigatemetastasis.Giverso et al. (2017) addressmechanical
issues in tumor growth dynamics. The majority of experimental (and theoretical)
research on cell motion is carried out in two spatial dimensions, but it is becoming
increasingly clear that movement in vivo, which of course is in three dimensions, is
different in important ways. This paper develops a theoretical framework that allows,
through amechanical energy study, to determine conditions on the extracellular matrix
(ECM) and cell properties, for single cells (or aggregates) to be able to invade ECMvia
squeezing through pores. They consider the implications of their results for metastasis.

Araujo et al. (2018) investigate metastasis in the context of prostrate cancer. Using
a hybrid cellular automaton model in which signaling molecules are modeled via par-
tial differential equations (PDEs), while cells are modeled as discrete entities, they
explore possible scenarios in which prostrate cancer cell (PCa) clusters can success-
fully establish themselves. They show that such clusters must fall into a certain size
range: While small clusters can recruit mesenchymal stem cells (MScs) to establish
metastases, clusters that are too large can fail due to lack of resources. This work
highlights the complex multiscale interplay involved between different cell types and
key signaling molecules during bone metastatic prostrate cancer and suggests that
targeting MScs could be a viable therapeutic strategy.

Adoptive immunotherapy is the subject of the paper by Talkington et al. (2017).
It considers four ODE models from the literature that have been proposed to model
adoptive immunotherapy in the context of acute lymphocytic leukemias. Analysis of
the models, in some cases suitably modified, show that they can all predict that such
therapy can clear, or reduce, tumors. However, the details of how treatment should be
administered are shown to be different across these models, suggesting that care has
to be taken in how the immune system is modeled. The study in this paper highlights
a challenge for the field in general. Typically, groups work on developing their own
mathematical models for a specific application. The reward system within academia
encourages the development of new models and actually discourages comparative
studies of different models, despite the fact that the latter is scientifically invaluable.

Continuing the immune system theme, Besse et al. (2017) present a 3-compartment
ODE model for the immune response to chronic myelogenous leukemia (CML). This
model, a simplification of their previously published model, is amenable to a very
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detailed mathematical analysis, and it is shown to fit patient data well. One of the
conclusions of the model analysis is that relapse is possible after treatment cessation
if certain conditions are met. The model thus has the potential to be used to determine
which patients need to be closely monitored after treatment.

Different aspects of the tumor microenvironment are the theme of the next two
papers. The paper by Friedman and Hao (2017) presents the first mathematical model
that focuses on exosomes in the cancermicroenvironment. Themodel comprises a large
system of coupled PDEs with a free boundary and explores the interaction of tumor
cells with the immune system. A detailed numerical simulation study is carried out,
and it is shown that the model exhibits results consistent with experiments. Crucially,
it also shows how the size of a tumor could be determined bymeasuring the expression
of specific micro-RNAs, and a novel use of these as biomarkers for cancer is proposed.

Hoehme et al. (2018) extend a previously validated agent-based spatiotemporal
model for hepatocyte-sinusoid alignment to investigate if this phenomenon is still
active in early hepatocellular tumors. The model is simulated in realistic liver micro-
architectures, and how the shape of the tumor depends on a number of key parameters,
including tumor cell number, is explored. Model predictions on tumor architectures
are validated experimentally. This work points out the potential importance of organ
micro-architecture in understanding tumor phenotypes.

We then have five papers focusing on different forms of treatment: Burazin et al.
(2017) develop amacroscopicmodel basedonporoelasticity theory todescribe the time
evolution of a solid tumor and use it to investigate possible mechanisms responsible
for the increased interstitial fluid pressure (IFP) observed in tumors when compared
to healthy tissue. A conclusion is that the rise in tumor IFP is the same for different
tumors, but occurs on different timescales. The model is numerically simulated to
explore the effect of anti-angiogenic therapy, and it is found under which conditions
this will be effective in lowering IFP.

Poleszczuk et al. (2017) address the problem of predicting tumor response to radio-
therapy. The authors apply the linear-quadratic law to a number of ODE models for
tumor growth and show that several models can fit data but give very different pre-
dictions on the outcome of therapy. They conclude that clinical recommendations
should only follow when several different model predictions concur. This, once again,
highlights the important fact that being consistent with the available data is just the
first step in model “validation” and is, in fact, the starting point, not the end point, of
any modeling study. One then needs to either show that model predictions are con-
sistent across a suite of models before using the results clinically, or one needs to
embark on a fully integrated study in which experiments/studies are designed specif-
ically to continue the model validation process. Ideally, of course, one should do
both.

Meanwhile, Lewin et al. (2018) present a new, spatially resolved model for the
effects of radiation by extending the classical Greenspan (1972) model for tumor
growth and including oxygen dependence. This leads to an integro-differential equa-
tion coupled to a reaction–diffusion equation.A combination of analysis and numerical
simulation reveals a very rich behavior of this system, suggesting that the spatial het-
erogeneity arising through oxygen concentration may be important for predicting
clinical response to radiation treatment.
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Williams et al. (2017) investigate additive damage models for combination of radi-
ation and chemotherapy. The models are rational functions that predict the effects of
damage to treatments, where the form of the functions encodes the hypotheses pro-
posed for how damage leads to cell death. Detailed statistical analysis is carried out
to compare and contrast models, and it is shown that the additive damage models out-
perform models assuming independent cell kill. Potential applications to optimization
of treatment and analysis of new drug–radiation combinations are discussed.

Comparison of models is the theme of the paper by Swan et al. (2017), in the
context of the spread of brain tumors. They consider their previously proposed PDE
model that accounts for material anisotropy in the brain, thought to affect the ability
of glioblastoma multiforme (GBM) cells to invade. Their model is first compared with
othermodels, and then they use themodelwith patient-specific data to determine under
which conditions the model captures the observed tumor growth sufficiently well to
allow surgeons to make better informed decisions on what and where to excise.

Massey et al. (2017) consider a PDE model for glioma cell response to platelet-
derived growth factor (PDGF), where the cells are divided into PDGF-expressing
retrovirally transduced cells and recruited (oligodendroglial progenitor) cells, extend-
ing their previous spatially one-dimensional model to two-dimensional anatomically
accurate slices of brain, with spatially heterogeneous diffusion (determined by gray
and white matter). They show that their mathematical model produces patterns of cell
invasion that are consistent with those observed experimentally and that the tumor
morphology depends critically on the different rates of migration of the cells. Their
results also suggest that recruited cells lead to faster-growing tumors and this has
therapeutic implications. For example, disrupting the paracrine signaling that leads to
recruitment may potentially slow growth, leading to longer patient survival times.

We then have three papers on various aspects of network dynamics: Wynn et al.
(2017) develop an approach to infer intercellular network circuitry from experimen-
tally measured Western blot data using Boolean and genetic algorithm methods. The
authors carry out a detailed evaluation of the approach and use the model to prioritize
the next best experiment to perform to help determine the network. While their partic-
ular application is to epidermal growth factor signaling of a breast epithelial cell line,
their approach is much more widely applicable.

Komarova and van den Driessche (2017) investigate control networks that exist
between groups of cells in multicellular organisms, focusing in particular on home-
ostatic regulation of stem cell lineages. The authors formulate a general ODE model
and look at the signs of the Jacobian matrix at steady state to determine stability, and
this allows them to obtain general rules on how to build up stable minimal control
networks and generate models that are irreducible.

Szymanska et al. (2017) use spatial stochastic models that are continuous-time,
discrete-space Markov processes governed by a reaction–diffusion master equation.
This paper considers two models—a stochastic spatiotemporal model for gene regula-
tory networks (NF-kappaB) and a force-based individual-basedmodel for tumor cords.
It presents a vision for how thesemodels could be coupled (withmore detailed pathway
modeling) into a multiscale vascular tumor model that imports actual tumor images
as initial conditions (e.g., the vasculature) and through the use of high-performance
computing can simulate up to 109 cells.
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Finally, the role of stem cells is explored in the paper byYan et al. (2017). It presents
a three-dimensional multiscale model of colon cancer organoids that incorporates
different cell types and a number of key signaling molecules. It is shown that the
model can capture many known experimental phenomena and confirm a number of
hypotheses made on the role of stem cells in growth and morphology. In particular,
the crucial role of feedback on the dynamics of the organoid morphology is shown
and explored in detail.
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