
Bull Math Biol (2019) 81:598–617
https://doi.org/10.1007/s11538-018-0419-1

SPECIAL ISSUE: ALGEBRAIC METHODS IN PHYLOGENETICS

Phylogenetic Flexibility via Hall-Type Inequalities and
Submodularity

Katharina T. Huber1 · Vincent Moulton1 ·
Mike Steel2

Received: 23 October 2017 / Accepted: 19 March 2018 / Published online: 27 March 2018
© The Author(s) 2018

Abstract Given a collection τ of subsets of a finite set X , we say that τ is phyloge-
netically flexible if, for any collection R of rooted phylogenetic trees whose leaf sets
comprise the collection τ , R is compatible (i.e. there is a rooted phylogenetic X -tree
that displays each tree in R). We show that τ is phylogenetically flexible if and only if
it satisfies a Hall-type inequality condition of being ‘slim’. Using submodularity argu-
ments, we show that there is a polynomial-time algorithm for determining whether or
not τ is slim. This ‘slim’ condition reduces to a simpler inequality in the case where
all of the sets in τ have size 3, a property we call ‘thin’. Thin sets were recently shown
to be equivalent to the existence of an (unrooted) tree for which the median function
provides an injective mapping to its vertex set; we show here that the unrooted tree in
this representation can always be chosen to be a caterpillar tree. We also characterise
when a collection τ of subsets of size 2 is thin (in terms of the flexibility of total orders
rather than phylogenies) and show that this holds if and only if an associated bipartite
graph is a forest. The significance of our results for phylogenetics is in providing pre-
cise and efficiently verifiable conditions under which supertree methods that require
consistent inputs of trees can be applied to any input trees on given subsets of species.
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1 Introduction

In phylogenomics, biologists often encounter the following problem: Given a collec-
tion τ of different subsets of species, the corresponding phylogenetic trees—each one
reconstructed from the genomic data available for the corresponding subset—cannot
be consistently combined into a single phylogenetic tree for all the species. When this
occurs, various heuristic and somewhat ad hoc ‘supertree’ methods (such as ‘matrix
recoding with parsimony’) are often applied to provide some estimate of a parent tree
(Felsenstein 2004). However, when the collection of subsets of species has sufficiently
sparse overlap (in a sense we will make precise shortly), then any phylogenetic tree
assignment for τ will lead to a set of trees that can be consistently combined into a
parent tree. Figure 1i provides an example of this.

In this paper, we investigate the conditions under which the existence of a consistent
parent tree can be guaranteed regardless of the tree structure for each subset. Here
‘parent’ tree means that the leaf set of the tree is the union of the leaf sets of the input
trees. For example, given a set of input trees, if there is a parent tree that displays
each tree, then a simple, fast and well-known algorithm due to Aho et al. (1981)
constructs such a tree in a canonical way. However, this method will fail to return any
phylogenetic tree when presented with input trees that are incompatible (i.e. cannot
be displayed by any parent tree). In this paper, we characterise when such a method
will always be safe to use on any set of input trees, given the sets of taxa that form the
leaf sets of those trees. Thus, we consider as input just subsets of species and develop
mathematical characterisations and algorithms for this combinatorial question in the
special case where each subset has a fixed (small) size. Later in the paper, we consider
how the results extend to more general set systems. Our approach throughout is to
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Fig. 1 Acollection τ = {{a, b, c}, {a, b, d}, {b, c, e}, {d, e, f }} of four sets that is phylogenetically flexible
and (ii) a collection τ ′ = τ ∪ {{b, d, e}} that fails to be phylogenetically flexible. In (i) all of the 34 = 81
choices of rooted triples (one for each of the four leaf sets) give a set of rooted triples that is displayed by at
least one rooted phylogenetic tree on the six leaves a, b, . . . , f . However, in (ii) this fails, for example, the
set of rooted triples ab|c, bd|a, bc|e, d f |e together with be|d (for the fifth set) is not displayed by any tree
on the six leaves. The set τ is thin, but τ ′ is not, since it has a subset (namely τ ′ itself) which has strictly
negative excess (equal to −1)
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reduce certain combinatorial questions in phylogenetics to the study of systems of
inequalities involving linear expressions and related submodularity properties.

In discussion section, wemention a further biological context where the results may
be relevant. Note that there are many reasons why phylogenetic trees are constructed
on different subsets of species, and a particularly topical one is that genes used to
estimate a given phylogeny may only be present (or have been sequenced) in a given
subset of the species, and these subsets vary from gene to gene (Sanderson et al. 2011).

Our work is motivated in part by a remarkable combinatorial result by Grünewald
(2012) involving unrooted binary trees. In that paper, a set P of binary trees having
leaves labelled from some set X is said to be ‘slim’ if for every non-empty subset
P ′ of P , the number of leaves appearing in at least one tree in P ′ is at least the total
number of interior edges of T plus 3. Theorem 1.1 of Grünewald (2012) then states
that for any such thin collection P there is a tree with leaf set X that ‘displays’ each
of the trees in P . In particular, this leads to the rather striking consequence that ‘the
property of being slim only depends on the involved leaf sets of the trees and not on
which phylogenetic tree is chosen for a fixed leaf set’ (Grünewald 2012, p. 324). In
this paper, we explore this notion further, and by working with rooted trees (rather
than unrooted ones) we are able to establish precise characterisations of the analogous
‘slim’ property.

Our work is also partly motivated by results from Dress and Steel (2009) where
slim-type properties also arise in a tree-based setting, but for a quite different question
involving ‘median’ vertices. To explain this, given a tree T = (V, E) and a subset
S of V of size 3, say S = {x, y, z}, consider the path in T connecting x, y, the path
connecting x, z and the path connecting y, z. There is a unique vertex that is shared by
these three paths, the median vertex of S in T , denoted medT (S). In Dress and Steel
(2009), the authors show that ‘slim’-type properties characterise when a set of triples
from X can be realised as providing an encoding of the interior vertices of a (unrooted)
tree with leaf set X . (An extension of this to sets of subset of X of size greater than 3
is also described.) In this paper, we extend this result further by showing that the tree
that provides this encoding can be chosen to have a particular special type of structure
(a ‘caterpillar’).

The phylogenetic combinatorics of subsets of a species set is a topic that has also
been explored recently in the setting of ‘phylogenetic decisiveness’ (Steel and Sander-
son 2010). However, the questions that we consider here are quite different from that
setting; rather than requiring a dense overlap of the species subsets in the phylogenetic
decisiveness setting, here we investigate sparse overlap.

We begin with some definitions. Throughout this paper, X will denote a fixed finite
set.

1.1 Thin Set Systems

Suppose τ is a non-empty subset of
(X
r

)
, r ≥ 2. Let L(τ ) = ⋃

s∈τ s (i.e. the set of
elements of X that appear in at least one set in τ ) and define the excess of τ , denoted
exc(τ ), by:
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exc(τ ) = |L(τ )| − |τ | − (r − 1).

We say that τ is thin if, for all non-empty subsets τ ′ of τ , we have:

exc(τ ′) ≥ 0.

This notion appears in related but slightly different settings, namely for the leaf sets
of unrooted trees in Grünewald (2012), in the median representation of sets of triples
in Dress and Steel (2009), and as sparse triplet covers in Grünewald et al. (2017).

In the following lemma, recall that a collection of (not necessarily distinct) sets
{B1, B2, . . . , Bm} has a system of distinct representatives if one can select an element
xi ∈ Bi for each i ∈ {1, . . . ,m} so that the elements x1, x2, . . . , xm are all distinct.
For τ a non-empty subset of

(X
r

)
, r ≥ 2 with L(τ ) = X and for x ∈ X let nτ (x) be

the number of elements in τ that contain x .

Lemma 1 Let τ be a non-empty subset of
(X
r

)
, r ≥ 2 and L(τ ) = X. If τ is thin, then

the following properties hold:

(i) |τ | ≤ n − r + 1 where n = |X |.
(ii) For some x ∈ X, nτ (x) ≤ r − 1.
(iii) For any subset B of X of size r − 1, the collection of sets {S − B : S ∈ τ } has a

system of distinct representatives.

Proof Part (i) follows from the defining condition for thin upon taking τ ′ = τ .
Part (ii) can be established by the following double-counting argument. Suppose

that there is no element x ∈ X with nτ (x) ≤ r − 2, so that nτ (x) ≥ r − 1 for all
x ∈ X . Let Ω = {(x, S) : x ∈ S ∈ τ }. We then have:

|Ω| =
∑

x∈X
nτ (x) ≥ (r − 1)k + r(n − k) (1)

where k = |{x ∈ X : nτ (x) = r − 1}|. On the other hand:

|Ω| = r |τ | ≤ r(n − (r − 1)), (2)

where the inequality is from Part (i). Combining (1) and (2) gives k ≥ r(r − 1) and,
so, k ≥ 2. By the definition of k, (ii) follows.

For Part (iii), consider the union of any l sets A1, A2, . . . , Al where Ai = Si − B
and Si ∈ τ for i = 1, . . . , l. (Note that these sets may have different sizes and a
set may occur more than once.) Since τ is thin, |⋃l

i=1 Si | ≥ l + (r − 1), and so,
since B has size r − 1, |⋃l

i=1 Ai | = |⋃l
i=1 Si | − (r − 1) ≥ l. Since the inequality

| ⋃l
i=1 Ai | ≥ l holds for all 1 ≤ l ≤ |τ |, Hall’s marriage theorem (Hall 1935) ensures

that τ has a system of distinct representatives. �

For the first part of this paper, we will deal with the case where r = 3. However,
the main theorem in this setting (Theorem 1) will be used in Sect. 4 to derive a
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result for the more general case where the sets have different sizes. When r = 3,
notice that if |τ ′| = 1, then exc(τ ′) = 3 − 1 − 2 = 0; however, if |τ ′| = 2, then
exc(τ ′) ≥ 4 − 2 − 2 = 0, so it suffices, in the definition of thin, to consider subsets
of τ ′ of τ of size at least 3.

A simple way to generate a thin set is to take any ordered sequence of subsets
of X of size 3, for which the ordered sequence has the property that each member
contains at least one element of X that is not present in any earlier member of the
sequence. However, not all thin sets can be obtained in this way. For example, consider
the collection {{a, b, c}, {c, d, e}, {b, e, f }, {a, d, f }} of four subsets sets of X =
{a, b, . . . , f }. This collection of subsets is thin, yet these four sets cannot be ordered
so as to satisfy the property described.

1.2 Phylogenetic Trees and Flexible Sets

Following Semple and Steel (2003), a rooted phylogenetic tree T is a rooted tree having
a set L(T ) of labelled leaves (vertices of out-degree 0) and for which every non-leaf
vertex is unlabelled and has out-degree at least 2. We let ρT , or more briefly ρ denote
the root vertex of T , which has in-degree 0. In case each non-leaf vertex has out-degree
exactly 2, we say that T is binary. If L(T ) = X , we will also say that T is a rooted
phylogenetic X-tree. We let V̊ (T ) denote the set of interior (i.e. non-leaf) vertices of
T . Similarly, an unrooted phylogenetic tree T is an unrooted tree having a set L(T ) of
labelled leaves (vertices of degree 1) and for which every non-leaf vertex is unlabelled
and has degree at least 3. In case each non-leaf vertex has degree exactly 3, we say that
T is binary. If L(T ) = X , we will also say that T is a unrooted phylogenetic X-tree.

A rooted triple is a rooted binary phylogenetic tree on three leaves, and we denote
such a tree as ab|c if it has leaf set {a, b, c} with leaf c adjacent to the root. A rooted
phylogenetic X -tree T is said to display the rooted triple ab|c if some subdivision of
the tree ab|c is a subgraph of T .

A cherry in a (rooted or unrooted) phylogenetic tree is a pair of leaves that is
adjacent to the same vertex. A rooted (respectively, unrooted) caterpillar tree on X is
a rooted (resp. unrooted) binary phylogenetic X -tree for which the number of cherries
is at most 1 (respectively, 2).

These notions are illustrated in Fig. 2.
A set R of rooted triples chosen from X is said to be compatible if there is a rooted

phylogenetic X -tree T that displays each rooted triple in R (in which case, we say

Fig. 2 (i) A rooted phylogenetic
tree on leaf set {a, b, c, . . . , f }.
This tree is not binary, as it has a
vertex of out-degree 3 (adjacent
to a and d). (ii) The rooted triple
ab|c for which a, b forms a
cherry. This rooted triple is also
a rooted caterpillar and it is
displayed by the tree in (i)

e b d a c f

a b c

(i) (ii)
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that T displays R). Note that if R is compatible, then T can always be chosen to be a
binary tree and R can contain at most one tree for any triplet (i.e. at most one of ab|c,
ac|b, and bc|a can be present in R).

Suppose that we have a set R of rooted triples with leaves chosen from X . We will
let ||R|| denote the subset of (X

3

)
consisting of the leaf sets of the trees in R. We say

that a non-empty subset τ of
(X
3

)
is phylogenetically flexible if every set R of rooted

triples for which ||R|| = τ holds is compatible. An example to illustrate this notion is
provided in Fig. 1.

The following observation that phylogenetic flexibility is hereditary is straightfor-
ward to check.

Lemma 2 Suppose τ is a non-empty subset of
(X
3

)
that is phylogenetically flexible. If

τ ′ is a non-empty subset of τ , then τ ′ is phylogenetically flexible.

2 Characterisation Result

We can now state our first main result.

Theorem 1 Suppose that τ is a non-empty subset of
(X
3

)
. Then τ is phylogenetically

flexible if and only if τ is thin.

The ‘if’ direction of Theorem 1 can be established by applying Theorem 1.1 of
Grünewald (2012); however, we give a shorter and more direct proof of this direction
here (as well as establishing the converse). We begin with some preliminary results,
which are required for the argument.

Given a rooted phylogenetic tree T = (V, E) with leaf set X and every vertex in
V̊ (T ) − {ρT } having degree three. We say that a rooted triple xy|z supports a vertex
v in T if xy|z is displayed by T and v = lcaT (x, y).

For a set R of rooted triples on X , put L(R) = ⋃
t∈R L(t). Furthermore, for a

non-empty subset S of X , let [R, S] be the graph with vertex set S and with an edge
{a, b} if and only if there exists a rooted triple ab|c ∈ R for at least one element c ∈ S.
By Bryant and Steel (1995, Theorem 2), R is compatible if and only if the graph [R, S]
is disconnected for all subsets S of X of size at least 2.

Lemma 3 Suppose that T is a rooted binary phylogenetic X-tree, that R is a set of
rooted triples with L(R) = X, and that each rooted triple supports a unique (interior
non-root) vertex in T . Then, the graph [R, X ] has precisely two connected components.
Proof For v ∈ V̊ (T )−{ρT }, let Xv be the leaf set of the rooted subtree of T with root
v. We claim that for every such v, the graph induced by [R, X ] on Xv is connected.
The lemma then follows immediately by considering the graphs induced by [R, X ]
on Xu, Xw for u and w the children of the root of T .

To prove the claim, for u (a child of the root ρT of T ), we consider the following
set:

Xu = {Xv : v is an internal vertex of T below or equal to u},
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where v is said to be below u if u lies on the path from ρT to v. Note that since |X | ≥ 3,
there must exist a child u of ρT such that Xu �= ∅ and also there exists some vertex
v ∈ V (T ) below or equal to u such that |Xv| ≥ 2. We use induction on |Xv| for Xv

in Xu . If |Xv| = 2, then both children of v are leaves and the lemma holds because if
Xv = {p, q}, then, by assumption, there exists a rooted triple in R of the form r |pq
for some r ∈ X −{p, q} that supports v. Hence, there is an edge {p, q} in [R, X ], and
therefore, the graph induced by [R, X ] on Xv is connected.

Now suppose that v is an internal vertex of T below or equal to u such that |Xv| ≥ 3.
Then at least one of the two children v1 and v2 of v is not a leaf of T . Without loss
of generality, we may assume that v1 is that child. Therefore, 2 ≤ |Xv1 | < |Xv| and
so, by induction, the graph induced by [R, X ] on Xv1 is connected. If v2 is not a leaf
of T , then the same arguments as before imply that the graph induced by [R, X ] on
Xv2 is also connected. If v2 is a leaf of T , then the graph [R, X ] on v2 is a vertex and
therefore is (trivially) connected. Since, by assumption, there exists a rooted triple in
R that supports v, there is an edge {y, z} in [R, X ] with y ∈ Xv1 and z ∈ Xv2 . Hence,
the graph induced by [R, X ] on Xv is connected. �

Proof of Theorem 1 We first establish the ‘if’ direction. Suppose that τ is thin, and let
R be a set of rooted triples with leaves chosen from X with ||R|| = τ . We show that
any such choice of R is compatible.

We will establish the compatibility of R via the aforementioned characterisation
that R is compatible if and only if [R, S] is disconnected for all subsets S of X of size
at least 2. To that end, let S be a subset of X of size at least two.

Notice that [R, S] = [RS, S]where RS is the subset of those rooted triples in R that
have all three of their leaves in S. Let τ ′ = ||RS||. Since τ is thin, we have exc(τ ′) ≥ 0,
in other words:

|L(τ ′)| − |τ ′| ≥ 2. (3)

Now (i) the number of vertices of [R, S] is |S| and |S| ≥ |L(τ ′)|; (ii) the number of
edges of [R, S] is at most |RS| = |τ ′|. Thus, by Inequality (3), the number of vertices
of [R, S] minus the number of edges of this graph is at least 2. But any finite graph
with this property must be disconnected. Since this holds for all subsets S of X of size
at least two, it follows that R is compatible.

We turn now to the ‘only if’ direction.
We use induction on |τ |. If |τ | = 1, then τ is clearly thin. So, suppose the ‘only

if’ direction holds for all τ ′ ⊂ (X
3

)
with 1 ≤ |τ ′| < m, some m ≥ 2, and let τ ⊆ (X

3

)

such that |τ | = m. Without loss of generality, we may assume that X = L(τ ).
Suppose that τ ′ is a non-empty proper subset of τ . By Lemma 2, τ ′ is phylogenet-

ically flexible. Hence by induction, τ ′ is thin. Thus, |L(τ ′)| ≥ |τ ′| + 2. To show that
τ is thin, it therefore suffices to prove that |L(τ )| ≥ |τ | + 2.

Suppose for the purposes of obtaining a contradiction that |L(τ )| < |τ | + 2. Let
{x, y, z} ∈ τ and set τ ′ = τ − {{x, y, z}}. Then, as τ ′ is thin by induction,

|τ |+2 > |L(τ )| = |L(τ ′)|+(3−|L(τ ′)∩{x, y, z}|) ≥ |τ |+4−|L(τ ′)∩{x, y, z}|. (4)

Hence |L(τ ′) ∩ {x, y, z}| > 2 and, so, {x, y, z} ⊆ L(τ ′). Thus, L(τ ′) = X .
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Now, since τ ′ is thin, there exists a (unrooted) phylogenetic tree T = (V, E) with
leaf set X , and all vertices in V̊ (T ) of degree 3, for which the map medT : τ ′ → V̊ (T )

is one to one (Dress and Steel 2009) (see also Sect. 3). We claim that the map medT
must in fact be bijective. Suppose that this is not the case. Then, there exists some
v ∈ V̊ (T ) such that medT (s) �= v, for all s ∈ τ ′. Hence, |X |−2 = |V̊ (T )| > |τ ′| and,
so, |X | − 1 > |τ |. But then |X | + 1 > |τ | + 2 > |L(τ )| = |X |, which is impossible
as |τ | + 2 is an integer. Hence, medT is a bijection as claimed.

Now, root the tree T by inserting a root vertex ρ into an edge which separates x, y
from z, when the edge is removed from T . Let R′ be a set of rooted triples induced
by the map medT (for each element {a, b, c} in τ ′,medT maps to some v ∈ V̊ (T )

so that we get a rooted triple with leaf set {a, b, c} which supports v in the rooted
version of T ) with ||R′|| = τ ′ and L(R′) = X . Since medT is a bijection, R′ satisfies
the conditions of Lemma 3 for the rooted version of T . Hence, the graph [R′, X ] has
two connected components, one that contains x, y in its vertex set and the other that
contains z.

Now consider the set of rooted triples R = R′ ∪ {y|zx}. Then L(R) = X , [R, X ]
is connected and so R is not compatible, and ||R|| = τ . But this is impossible, since
τ is phylogenetically flexible. �

The following corollary of Theorem 1 is now immediate from Lemma 1(i).

Corollary 1 If a non-empty subset τ of
(X
3

)
is phylogenetically flexible, then |τ | ≤

n − 2 where n = |X |.
We end this section by considering how many trees can display a set of rooted

triples R when ||R|| is phylogenetically flexible. It might be suspected that since the
overlap between the leaf sets of the trees in R is sparse, the number of trees displaying
R would need to be large. Indeed, this is sometimes the case; for example, suppose
that the leaf sets in R are all disjoint, so the total number of leaves is given by n = 3k,
where k = |R|. In this case, the number N of rooted binary trees on n leaves that
display R is given by:

N = (2n − 3)!!
3n/3 , (5)

which grows exponentially with n. The proof of Eq. (5) is to observe that each of the
3k ways to select a rooted triple from the k triples in ||R|| provides a set of rooted
triples that is displayed by at least one rooted phylogenetic tree [by the algorithm from
Aho et al. (1981)] and hence by at least one rooted binary tree, and these rooted binary
trees are pairwise distinct, since any two of them display a different rooted triple for
at least one triple in ||R||.

At the other extreme, if R has the maximum possible size for a phylogenetically
flexible set on n leaves (namely n − 2 by Corollary 1), then it is possible for there to
be just a single rooted phylogenetic tree that displays R; this is stated more precisely
in the next proposition.

Proposition 1 (i) For every rooted binary phylogenetic X-tree T on n ≥ 3 leaves,
there exists a set RT of n−2 rooted triples for which (a) T is the only phylogenetic
X-tree that displays RT and (b) ||RT || is thin.
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(ii) There exist phylogenetically flexible sets of triples of size n−2 on n leaves (n ≥ 6)
for which each assignment of a tree structure to these triples leads to a set of rooted
triples that can be displayed by more than one rooted phylogenetic tree.

Proof (i) We use induction on n. For n = 3, we can write T = ab|c, in which case
RT = {ab|c} satisfies Conditions (a) and (b). Suppose now that Proposition 1 holds
for k ≤ n where n ≥ 3 and that T is a rooted binary phylogenetic X -tree with n + 1
leaves. Select a pair of leaves a, b that are adjacent to the same vertex (say v) of T
(i.e. {a, b} is a cherry of T ), let vertex u be the parent of vertex v in T , and let c be
any leaf of T present in the component of T − u (the graph obtained by deleting u
from T ) that contains neither the root, nor the leaves a, b. Put X ′ = X − {a} and
let T ′ be the rooted binary phylogenetic X ′-tree obtained from T by deleting leaf a
and its incident edge and suppressing the resulting vertex of degree 2. Since T ′ has n
leaves, the induction hypothesis ensures that there is a set RT ′ of n − 2 rooted triples
for which T ′ is the only phylogenetic X ′-tree that displays RT ′ and that ||RT ′ || is thin.
If we now let RT = RT ′ ∪ {ab|c}, then RT is a set of (n + 1) − 2 rooted triples and
RT satisfies Conditions (a) and (b) for the tree T . This establishes the induction step
and thereby the proposition.

(ii) Let τ = {{1, 2, j} : 2 < j ≤ n}. In this case, τ is a thin (and therefore
phylogenetically flexible) set of size n− 2. Now, for n ≥ 6, it can be checked that any
assignment of a tree structure to these triples leads to a set of rooted triples that can
be displayed by more than one rooted phylogenetic tree. �

3 Median Characterisations

Given a phylogenetic tree T with leaf set X and a set s ∈ (X
3

)
, let medT (s) refer to the

vertex that is the unique median vertex of T for the three elements of s.
The following result was established in Dress and Steel (2009, Theorem 1.1). Sup-

pose that τ is a subset of
(X
3

)
with L(τ ) = X . The following are equivalent:

(i) τ is thin.
(ii) There exists a binary unrooted phylogenetic X -tree T = (V, E) for which the

function medT : τ → V̊ (T ): s → medT (s) from the elements s of τ to the set of
interior vertices of T is one to one.

When (ii) holds, we say that T provides a median representation of τ . Figure 3i
illustrates how this equivalence applies.

We now strengthen this result from Dress and Steel (2009) by showing that the
tree T can always be chosen to be an unrooted caterpillar tree. For example, for the
thin collection of sets considered in Fig. 3, we may select the caterpillar tree shown
in Fig. 3ii.

Theorem 2 Suppose τ is a non-empty subset of
(X
3

)
, where |X | ≥ 4. If τ is thin, then

there exists an unrooted caterpillar tree T = (V, E) with leaf set X for which the

function medT : τ → V̊ (T ) is one to one.

Proof We adapt the proof of (3) ⇒ (2) of Dress and Steel (2009, Theorem 1.1) and
use induction on the size of X . If |X | = 4, the theorem clearly holds in view of
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abc

cde
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aef
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adg
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dc
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aef f
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a
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(ii)(i)
Fig. 3 (i) Associating each member of the thin collection of sets {{a, b, c}, {c, d, e}, {a, e, f },
{b, e, g}, {a, d, g}}with its median vertex in the tree shown provides a one-to-onemapping. (ii) A caterpillar
tree that also provides a median representation of this thin collection of sets

Lemma 1(i). Let us suppose that it holds whenever 4 ≤ |X | ≤ n − 1, for some n ≥ 5.
Let X be such that |X | = n. By Lemma 1(ii), we may assume that one of the following
two cases hold:

(A) There is an element x of X with nτ (x) = 1.
(B) There is an element x of X with nτ (x) = 2.

In case (A), there is some triple {a, b, x} ∈ τ such that for τ ′ = τ − {{a, b, x}} we
have that τ ′ is thin. Put X ′ = L(τ ′). By induction, there is an unrooted caterpillar
tree T ′ with leaf set X ′ and the function medT ′ : τ ′ → V̊ (T ′) is one to one. Now we
can create a tree T by inserting an edge {x, u} where u is a new vertex subdividing
an interior edge of T ′ on the path between a and b. The resulting tree T is clearly a
unrooted caterpillar tree on X and medT : τ → V̊ (T ) is one to one. This establishes
the induction step in this case.

In Case (B), there is an element x in X with nτ (x) = 2. Then there exist two
distinct triples t, t ′ ∈ τ each of which contains x . We consider the following two
possible cases: (i) |t ∩ t ′| = 2 and (ii) |t ∩ t ′| = 1.

Case (i): |t ∩ t ′| = 2. In this case, there exist a, b, b′ ∈ X with b �= b′ such that
t = {a, b, x} and t ′ = {a, b′, x}. Since τ is thin, it follows that

τ ′ = τ − {{a, b, x}, {a, b′, x}} ∪ {{a, b, b′}}

is also thin. Put X ′ = L(τ ′). Then, by induction, there is a unrooted caterpillar tree
T ′ with leaf set X ′ and medT ′ : τ ′ → V̊ (T ′) is one to one.

Consider the leaf b′ of T ′. Let b′′ ∈ V̊ (T ′) denote the vertex adjacent to b′. As T ′
is an unrooted caterpillar tree, it suffices to consider the following two subcases:
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Subcase (a): The leaves a and b are on the same side of T ′ relative to b′ (i.e. they
are in the same connected component of T ′ − b′′ as b′). Without loss of generality,
assume that the distance from a to b′ in T ′ is less than or equal to distance from b to
b in T ′. Note that in this case medT ′(a, b, b′) is the vertex in T ′ that is adjacent to
a. Now create a tree T with leaf set X by inserting a new vertex u and a new edge
{u, x} into T ′ such that {u, b′′} is an edge on the path connecting b′ and a. The tree
T is again an unrooted caterpillar tree on X . Furthermore, medT : τ → V̊ (T ) is one
to one since (i) medT ′ is one to one, and (ii) medT (x, a, b′) = u and the median of
{x, a, b} in T corresponds to the median vertex of {a, b, b′} in T ′ and therefore is a
vertex of T that is different from any other median vertex of an element in τ .

Subcase (b):The leaves a and b are on different sides of T ′ relative to b′. Note that in
this case, medT ′(a, b, b′) = b′′. Now create a tree T with leaf set X by inserting a new
vertexu and anewedge {x, u} intoT ′ such that {u, b′′} is an edgeon the path connecting
b′ and b. T is then clearly an unrooted caterpillar tree on X . Since medT (x, b′, b) = u
and the median of {x, a, b′} in T corresponds to the median vertex of {a, b, b′} in T ′,
the same arguments as in the previous case imply that medT : τ → V̊ (T ) is one to
one.

Case (ii): |t ∩ t ′| = 1. In this case, there exist pairwise distinct elements a, a′, b, b′
in X such that t = {a, b, x} and t ′ = {a′, b′, x}.Wemay assume that τ does not contain
both {a, a′, b} and {a, a′, b′} as, otherwise, the claim follows from Case (B)(i)(a). By
symmetry, we can assume without loss of generality that {a, b′, b} is not in τ . Let
τ ′ = τ − {{a, b, x}, {a′, b′, x}} ∪ {{a, a′, b}}. Then since τ is thin it follows that τ ′ is
thin. Put X ′ = L(τ ′). Then, by induction, there is an unrooted caterpillar tree T ′ with
leaf set X ′ and medT ′ : τ ′ → V̊ (T ′) is one to one.

Consider the leaf a′. As T ′ is a caterpillar tree on X ′, we can again consider two
subcases ((a) and (b)), the first of which involves two further subcases:

Case (a): The leaves a and b are on the same side of T ′ relative to b′. Without
loss of generality, assume that the distance from a to b′ in T ′ is less than or equal to
distance from b to b′ in T ′. We now have two subcases to consider for this subcase:

Case (a1): The leaf a′ is on the same side of the caterpillar T ′ as a and b relative
to b′. If a and b are on the same side of T ′ relative a′, then the same arguments as in
the Case (B)(i)(a) apply with a′ playing the role of b′. If a and b are on different sides
of T ′ relative a′, then the same arguments apply as in Case (B)(i)(b) with a′ playing
the role of b′.

Case (a2):The leaf a′ is on a different side of the caterpillar T ′ from a and b relative
to b′. Now create a tree T on X by inserting a new vertex u and a new edge {x, u} into
T ′ such that with b′′ ∈ V̊ (T ) the vertex adjacent with b′ we have that {b′′, u} is an edge
on the path connecting a′ and b′. Then, T is clearly a unrooted caterpillar tree with
leaf set X . Since medT (x, a′, b′) is u and the median of {x, a, b} in T corresponds
to the median of {a, a′, b} in T ′, the same arguments as in Case (B)(i)(a) imply that
medT : τ → V̊ (T ) is one to one.

Case (b): The leaves a and b are on different sides of T ′ relative to b′. If a′ lies on
the same side of T ′ as a relative b′ and a′ and b′ lie on different sides of T ′ relative a,
then the same arguments as in the Case (B)(i)(a) apply with a′ playing the role of b′.
In all other cases, the same arguments as in the Case (B)(i)(b) apply with a′ playing
the role of b′ �
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3.1 The Case r = 2

The concept of phylogenetic flexibility does not directly carry over to the case where
r = 2, since in this case, there is just a single rooted phylogenetic tree. Instead, we
use a stronger notion of tree structure (namely, total order) to obtain an analogue of
Theorem 1.

We say that a non-empty subset τ of
(X
2

)
is total-order flexible if every choice of a

total order on the set s, for each s ∈ τ , is compatible with a total order on X . More
formally, for every s = {x, y} ∈ τ , if we declare that either x ≺ y or y ≺ x , then
for any such selection of choices (one for each s ∈ τ ), there is a total order on X
that agrees with these inequalities. For example, τ = {{a, b}, {b, c}} is total-order
flexible but {{a, b}, {b, c}, {a, c}} is not, since the orderings a ≺ b, b ≺ c, c ≺ a are
not compatible with any total order on a, b, c. The following result is the analogue of
Theorem 1 for the case where r = 2.

Theorem 3 Suppose that τ is a non-empty subset of
(X
2

)
. Then τ is thin if and only if

τ is total-order flexible.

Proof We first show that if τ is not thin, then τ is not total-order flexible. Suppose that
τ is not thin. Then there exists a non-empty subset τ ′ of τ for which |L(τ ′)| ≤ |τ ′|. Let
Gτ ′ be the graph (L(τ ′), τ ′) that has vertex set L(τ ′) and edge set τ ′. Since Gτ ′ has at
least as many edges as vertices, this graph has a connected component that contains
a cycle. If the edges of this cycle are {x1, x2}, . . . , {xi , xi+1}, . . . , {xr , x1}, then the
total orders x1 ≺ x2, . . . , xi ≺ xi+1, . . . , xr ≺ x1 on these pairs are not compatible
with any total order on X (since transitivity would imply that x1 ≺ x1).

We now show that the thin property implies total-order flexibility by using induction
on k = |τ |. The result clearly holds for k = 1 so suppose that the result holds for
subsets of

(X
2

)
of size k ≥ 1 and that τ ⊆ (X

2

)
is a thin set of size k+1. By Lemma 1(ii),

there is an element x in X that is present in precisely one set, say {x, y}, in τ . Let τ ′
be the set obtained from τ by deleting {x, y}. Then τ ′ is thin and, since |τ ′| = k, the
induction hypothesis implies that τ ′ is total-order flexible. Then any choice of a total
order on the set s for each s ∈ τ ′ is compatible with a total order ≺ on X − {x} (recall
that x /∈ L(τ ′) by the choice of x). If we now introduce a total order on {x, y}, then
we can extend the total order ≺ to X by placing x after y if {x, y} is ordered as x, y,
and placing x after y otherwise. �

We now present some characterisations for when a non-empty set τ ⊆ (X
2

)
is thin.

We begin with an analogue of Dress and Steel (2009, Theorem 1.1), which was stated
in the last section.

Given a rooted tree T with leaf set X and a set s ∈ (X
2

)
, let lcaT (s) refer to the

vertex that is the unique vertex of T that is the least common ancestor of the elements
in the set s.

Theorem 4 Suppose that τ is a subset of
(X
2

)
with L(τ ) = X. The following are

equivalent:

(i) τ is thin.
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(ii) There exists a rooted binary phylogenetic X-tree T = (V, E) forwhich the function
s → lcaT (s) from the elements of τ to the set of interior vertices of T is one to
one.

(iii) As for (ii) but with T a rooted caterpillar tree.

Proof (iii) ⇒ (ii) is trivial.
(i) ⇒ (iii) Suppose τ is thin. We use induction on the size of X . If |X | = 3, then

clearly (iii) holds. Therefore, suppose it holds whenever 3 ≤ |X | ≤ n − 1, for some
n ≥ 4. Let |X | = n.

By Lemma 1(ii), there is some x with nτ (x) = 1. Let X ′ = X − {x}. It is then
straightforward to see that there is some pair {a, x} ∈ τ with τ ′ = τ −{{a, x}}. Clearly
τ ′ is thin as τ is thin and either L(τ ′) = X − {x} or L(τ ′) = X − {x, a}.

Assume first that L(τ ′) = X ′, where X ′ = X −{x}. By induction, there is a rooted
caterpillar treeT ′ with leaf set X ′ and rootρ′ forwhich the function lcaT ′ : τ ′ → V̊ (T ′)
is one to one. Now, we can create a new rooted tree T with root ρ by adding two new
edges {ρ, ρ′} and {ρ, x} to T where ρ is a new vertex that is not in T ′. T is then
clearly a rooted caterpillar tree on X ; every vertex in V̊ (T ) has out-degree 2 and
lcaT : τ → V̊ (T ) is one to one. This establishes the induction step, and so (iii) holds.

Assume next that L(τ ′) = X ′, where X ′ = X −{x, a}. By induction, there exists a
rooted caterpillar tree T ′ on X ′. Let ρ′ denote the root of T ′. Let T be rooted caterpillar
tree obtained from T ′ via the following two-step process. First, add a new root ρ and
a new edge e = {ρ, ρ′} to T ′. In the resulting tree subdivide e by a vertex c and add
the edges {c, a} and {ρ, x}. Clearly, lcaT : τ → V̊ (T ) is one to one. This establishes
again the induction step, and so (iii) holds too in this case.

(ii) ⇒ (i) Suppose x is an element which is not in L(τ ) = X . Given a non-empty
subset ω of τ , let ω∗ = {t ∪ {x} : t ∈ ω}.

Suppose a rooted phylogenetic tree T on X satisfies the conditions in Part (ii) of
the theorem. Add a new leaf x that is not in L(τ ) to T by adding the edge {ρT , x} and
regard the resulting tree as an unrooted phylogenetic tree T ′ on X ∪ {x}. In T ′, the
map medT ′ from τ ∗ to the internal vertices of T ′ is then one to one. Hence, by Dress
and Steel (2009, Theorem 1.1), τ ∗ is thin, and thus, for any non-empty subset ω of τ ,
we have:

|L(ω)| + 1 = |L(ω∗)| ≥ |ω∗| + 2 = |ω| + 2.

It immediately follows that τ is thin. �

Interestingly, we can give an alternative characterisation of thin subsets τ of
(X
2

)
in

terms of bipartite graphs.
We first recall some results from matching theory. For a graph G and v a vertex in

G, we let degG(v) denote the degree of v inG. Given a bipartite graphG = (A∪B, E)

and a non-empty set Y ⊆ A, we let NG(Y ) denote the set of vertices in B that are
adjacent to some vertex in Y , and we define the surplus σG(Y ) of Y to be:

σG(Y ) = σ(Y ) = |NG(Y )| − |Y |.
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We also define the surplus σ(G) of G, to be the minimum surplus over all non-empty
sets of A. We say that a bipartite graph G = (A ∪ B, E) has positive surplus (as
viewed from A) if σ(G) > 0. The following result is from Lovász and Plummer
(1986, Theorem 1.3.8).

Theorem 5 A bipartite graph G = (A ∪ B, E) has positive surplus (as viewed from
A) if and only if G contains a forest F such that degF (u) = 2 for all u ∈ A.

We now apply this result to the setting of thin sets. Let τ be a non-empty collection
of non-empty subsets of X . We associate a bipartite graphG(τ ) to τ that has the vertex
set τ ∪ L(τ ) and the edge set given by containment (i.e. {t, x} is an edge in G(τ ) if
and only if x ∈ t with x ∈ L(τ ) and t ∈ τ ). Thus, we are representing our set τ by a
bipartite graph G = (A ∪ B, E) with A = τ , B = X and E given by containment.

Since τ is thin if and only ifG(τ ) has positive surplus, by Theorem 5, the following
corollary is straightforward.

Corollary 2 Suppose that τ is a subset of
(X
2

)
with L(τ ) = X. Then τ is thin if and

only if G(τ ) is a forest.

For r = 3, it might also be interesting to characterise those graphs G(τ ) for which
τ is thin.

4 The General Case (Slim Set Systems)

Suppose we have a non-empty collection τ of subsets of X , each of size at least 3.
Consider the modified notion of excess, denoted exc′ and defined as follows: Define

exc′(τ ) = |L(τ )| − 2 −
∑

s∈τ

(|s| − 2).

Notice that when τ ⊆ (X
3

)
this notion of excess agrees with the earlier one.

Given a non-empty collection τ of subsets of X , each of size at least 3, we say that
τ is slim if for every non-empty subset τ ′ of τ , we have exc′(τ ′) ≥ 0. The next result
relates slim to thin; the two notions coincide when τ ⊆ (X

3

)
; however, slim is a more

restrictive notion than thin when τ ⊆ (X
r

)
, for r > 3. Note, however, that (unlike the

thin property) the slim property does not require the sets in τ to all have the same size.

Lemma 4 Suppose that τ ⊆ (X
r

)
, r ≥ 3. If τ is slim, then τ is thin. Moreover, for

r = 3, τ is thin if and only if τ is slim.

Proof If |s| = r for each s ∈ τ , then
∑

s∈τ ′(|s| − 2) = |τ ′|(r − 2); therefore, τ is
thin if and only if |L(τ ′)| ≥ |τ ′|(r − 2) + 2 for every non-empty subset τ ′ of τ . We
now impose the assumption that r ≥ 3. First, if r > 3, then the required inequality:
|τ ′|(r −2)+2 ≥ |τ ′|+(r −1) is equivalent to the condition that |τ ′| ≥ 1, which holds
by the assumption that τ ′ is non-empty. Thus if τ is slim, it is also thin. Moreover,
when r = 3, the inequality |τ ′|(r − 2) + 2 ≥ |τ ′| + (r − 1) becomes an equality; in
this case, τ is slim if and only if it is thin. �

123



612 K. T. Huber et al.

We can extend the notion of phylogenetic flexibility introduced in Sect. 1 to arbitrary
collections of subsets of X as follows. We first need to extend the earlier definitions
of ‘display’ and ‘compatibility’ from sets of rooted triples to arbitrary collections of
rooted trees, as follows.

Given a rooted phylogenetic X -tree T and a binary phylogenetic tree T ′ with leaf
set Y ⊆ X, T is said to display T ′ if T contains a subdivision of T ′ as a (directed)
subtree. [This is equivalent to the condition that each rooted triple displayed by T ′ is
also displayed by T (Bryant and Steel 1995).] A set R of rooted binary phylogenetic
trees is said to be compatible if there is rooted phylogenetic tree T that displays each
of the trees in R.

For a set R of rooted binary phylogenetic tree, let ||R|| denote the collection of
their leaf sets. Thus, ||R|| is a set of sets. Given a non-empty collection τ of subsets
of X , each of size at least 3, we say that τ is phylogenetically flexible if every set R of
rooted binary phylogenetic trees for which ||R|| = τ holds is compatible.

This notion agrees with the earlier notion of phylogenetic flexibility in the case
where each set in τ has size exactly 3. Moreover, as before, we can assume without
loss of generality that the tree T (in the definition) is binary.

The following result is a strengthening of our earlier Theorem 1; one direction fol-
lows from that theorem, the other direction is a consequence of a result fromGrünewald
(2012) (which dealt with unrooted trees).

Theorem 6 Suppose that τ is a collection of sets, each of size at least 3. Then τ is
phylogenetically flexible if and only if τ is slim.

Proof We first establish the ‘only if’ direction. Suppose that τ is phylogenetically
flexible. For each set s ∈ τ , select two elements x, y ∈ s and let:

A(s) = {{x, y, z} : z ∈ s, z �= x, y}},

and for any non-empty subset τ ′ of τ let

α(τ ′) =
⋃

s∈τ ′
A(s).

Thus, A(s) is a set of |s| − 2 triples, and α(τ) is also a set of triples. ��
Claim 1 A(s) ∩ A(s′) = ∅ for each s, s′ ∈ τ, s �= s′.

To see this, suppose that a triple, say {a, b, c}, lies in A(s) and A(s′) for two distinct
elements s and s′ of τ . Then,we can select a rooted binary phylogenetic tree Ts with leaf
set s that displays the rooted triple ab|c and select a rooted binary phylogenetic tree Ts′
with leaf set s′ that displays the rooted triple ac|b. But no rooted binary phylogenetic
tree can display both Ts and Ts′ (since such a tree would also simultaneously display
two different rooted triples with leaf set {a, b, c}). This contradicts the assumption that
τ is phylogenetically flexible, so such a shared triple {a, b, c} in A(s) ∩ A(s′) cannot
exist. This establishes Claim 1.

Claim 2 α(τ) is phylogenetically flexible.

123



Phylogenetic Flexibility via Hall-Type Inequalities and… 613

To see this, suppose that for each triple t ∈ α(τ), we have an associated rooted
triple Tt with leaf set t . We need to show that there is a rooted binary phylogenetic
tree that displays {Tt : t ∈ α(τ)}. Observe that A(s) is thin for each s ∈ τ , since
if A is a non-empty subset of A(s) of size k (say), then |⋃ A| = k + 2, and so
| ⋃ A| = |A|+2. Theorem 1 (the ‘if’ direction) then ensures that for each s in τ , there
is a rooted phylogenetic tree Ts with leaf set s that displays {Tt : t ∈ α(τ) ∩ A(s)}.
Moreover, since τ is phylogenetically flexible, there is a rooted binary phylogenetic
tree T that displays Ts for each s ∈ τ . It follows that the tree T displays {Tt : t ∈ α(τ)},
and so α(τ) is phylogenetically flexible, as claimed.

Claim 2 implies that α(τ) is thin, by Theorem 1 (the ‘only if’ direction). We now
show that this implies that τ is slim. Let τ ′ be a non-empty subset of τ and consider
α(τ ′). Since L(τ ′) = L(α(τ ′)), we have:

|L(τ ′)| = |L(α(τ ′))| ≥ |α(τ ′)| + 2, (6)

where the inequality holds because α(τ) (and thereby its subset α(τ ′)) is thin.
Now:

|α(τ ′)| =
∑

s∈τ ′
|A(s)| =

∑

s∈τ ′
(|s| − 2),

where the first equality holds by Claim 1. Combining this last equation with Inequal-
ity (6) gives:

|L(τ ′)| − 2 ≥
∑

s∈τ ′
(|s| − 2),

which shows that τ is slim as claimed.
This establishes the ‘only if’ direction. Notice in doing so that we have used both

directions of Theorem 1 in different places in this proof.
We turn now to the ‘if’ direction. Given τ , select a new element, say x , that is not

present in any of the sets in τ , and add this to each of the sets in τ to produce a set
τ+x . Notice that if τ is slim, then τ+x satisfies the property that for each non-empty
set τ ′ of τ+x , we have:

|L(τ ′)| − 3 ≥
∑

s∈τ ′
(|s| − 3).

It follows from Theorem 1.1 of Grünewald (2012) that for any assignment of unrooted
binary phylogenetic trees with leaf sets that correspond to the sets in τ+x , there is a
binary phylogenetic tree Tx that displays each of these unrooted trees. Suppose now
that we have an assignment of rooted binary phylogenetic trees having leaf sets that
correspond to the sets in τ . By attaching x as a leaf adjacent to the root of each of
these trees, we obtain an assignment of unrooted binary phylogenetic trees with leaf
sets that correspond to the sets in τ+x . Hence, by the result just stated, there is an
unrooted binary phylogenetic tree Tx that displays each of these unrooted trees. If
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we now let T be the rooted binary phylogenetic tree obtained from Tx by deleting
the leaf x and rooting the resulting tree on the vertex adjacent to x , then T displays
the original assignment of rooted binary phylogenetic trees. Since this holds for all
possible assignments of rooted phylogenetic trees to the sets in τ , it follows that τ is
phylogenetically flexible. �

5 Polynomial-Time Algorithms for Thin and Slim

Given finite set S, a function f : 2S → R is called submodular if for all A, B ⊆ S:

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B).

Submodular functions play an important role in optimisation and matroid theory (see,
e.g. Lovász and Plummer 1986; Bixby and Cunningham 1995; Welsh 1995). In this
section, we exploit these connections to show that there are polynomial-time algo-
rithms to decide whether sets are thin or slim.

Suppose that τ is a subset of 2X . For τ ′ ⊆ τ , we define

σ(τ ′) = |L(τ ′)| − |τ ′|,

and

γ (τ ′) = |L(τ ′)| −
∑

s∈τ ′
(|s| − 2)

Note that σ(∅) = γ (∅) = 0 (since the summation term is then empty). Although the
following result is straightforward to show by using results concerning submodular
functions in the literature, for completeness we give a direct proof.

Theorem 7 For τ a non-empty subset of 2X , the functions σ : 2τ → R; τ ′ → σ(τ ′)
and γ : 2τ → R; τ ′ → γ (τ ′) are submodular.

Proof Suppose that τ is a non-empty subset of 2X and that τ1, τ2 ⊆ τ are non-empty.
Clearly, |L(τ1 ∪ τ2)| = |L(τ1) ∪ L(τ2)| and |L(τ1 ∩ τ2)| ≤ |L(τ1) ∩ L(τ2)|. Hence:

|L(τ1 ∪ τ2)| + |L(τ1 ∩ τ2)| ≤ |L(τ1) ∪ L(τ2)| + |L(τ1) ∩ L(τ2)|
= (|L(τ1)| + |L(τ2)| − |L(τ1) ∩ L(τ2)|)

+|L(τ1) ∩ L(τ2)|
= |L(τ1)| + |L(τ2)|.

The fact that σ is submodular now follows, since |τ1| + |τ2| = |τ1 ∪ τ2| + |τ1 ∩ τ2|
and thus, by the above inequality, we have:

σ(τ1) + σ(τ2) = |L(τ1)| + |L(τ2)| − (|τ1| + |τ2|)
≥ |L(τ1 ∪ τ2)| + |L(τ1 ∩ τ2)| − |τ1 ∪ τ2| − |τ1 ∩ τ2|
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= σ(τ1 ∪ τ2) + σ(τ1 ∩ τ2).

Similarly, γ is submodular, since

∑

s∈τ1

(|s| − 2) +
∑

s∈τ2

(|s| − 2) =
∑

s∈τ1∪τ2

(|s| − 2) +
∑

s∈τ1∩τ2

(|s| − 2)

and therefore:

γ (τ1) + γ (τ2) = |L(τ1)| + |L(τ2)| −
(

∑

s∈τ1

(|s| − 2) +
∑

s∈τ2

(|s| − 2)

)

≥ |L(τ1 ∪ τ2)| + |L(τ1 ∩ τ2)| −
∑

s∈τ1∪τ2

(|s| − 2) −
∑

s∈τ1∩τ2

(|s| − 2)

= γ (τ1 ∪ τ2) + γ (τ1 ∩ τ2).

�

For τ ⊆ 2X , we define:

σ ∗(τ ) = min{σ(τ ′) : τ ′ ⊆ τ, τ ′ �= ∅}, and γ ∗(τ ) = min{γ (τ ′) : τ ′ ⊆ τ, τ ′ �= ∅}.

Lemma 5 (i) Suppose that τ ⊆ (X
r

)
wherer ≥ 3. Then τ is thin if andonlyσ ∗(τ ) ≥ 2.

(ii) Suppose τ ⊆ 2X such that each element in τ has size at least three. Then τ is slim
if and only γ ∗(τ ) ≥ 2.

Proof (i) τ is thin if and only if σ(τ ′) ≥ 2 for all non-empty τ ′ ⊆ τ if and only if
σ ∗(τ ) ≥ 2.

(ii) τ is slim if and only if γ (τ ′) ≥ 2 for all non-empty τ ′ ⊆ τ if and only if γ ∗(τ ) ≥ 2.
�

The following result (Lovász 1983, Theorem 4.4) is originally due to Grötschel
et al. (1981) (see also Lovász and Plummer 1986, pp. 417–418).

Theorem 8 Let f be a submodular function defined on the subsets of some finite set
S. A set minimising f over all non-empty subsets of S can then be found in polynomial
time.

In light of this theorem and Theorem 7, it follows that we can determine σ ∗(τ ) and
γ ∗(τ ) for a given set τ ⊆ 2X in polynomial time. Therefore, by Lemma 5, we can
determine whether or not a given set τ for which each element has size at least three
is thin or slim in polynomial time.

Note that although this shows that polynomial-time algorithms exist for determining
whether or not a set is thin or slim, these are likely to be impracticable (Lovász and
Plummer 1986, pp. 417–418). However, for the case of determining whether or not
a set τ is thin a more explicit algorithm can be given. More specifically, in Fritzilas
et al. (2013, Theorem 2) a polynomial-time algorithm is presented for computing the
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surplus σ(G) of a bipartite graph G. Since for a set τ ⊆ (X
r

)
, r ≥ 3, the surplus of

the bipartite graph G(τ ) as defined in Sect. 3.1 is equal to σ ∗(τ ), we can therefore
apply this algorithm to determine if τ is thin. It would be interesting to find an explicit
algorithm for determining whether a set is slim.

Theorem 7 has another consequence that relates to phylogenetics. Recall that a
patchwork is a non-empty collection P of sets that satisfies the property: if A, B ∈ P
and A ∩ B �= ∅, then A ∩ B, A ∪ B ∈ P . A combinatorial theory of patchworks,
relevant to phylogenetics, was developed in Böcker and Dress (2001). Patchworks
were also referred to as ‘intersecting families’ in earlier work by Lovász (1983, p.
240). The following is a generalisation of Dress and Steel (2009, Lemma 1.2), and the
proof follows a similar argument to that result.

Corollary 3 If τ is slim, then the collection P of non-empty subsets τ ′ of τ such that
|s| ≥ 3 for all s ∈ τ ′ and exc′(τ ′) = 0 forms a patchwork.

Proof Suppose τ1, τ2 ∈ P satisfy τ1 ∩ τ2 �= ∅. For i = 1, 2, notice that exc′(τi ) =
γ (τi ) − 2 and so, by the submodularity property of γ from Theorem 7, we have:

exc′(τ1) + exc′(τ2) ≥ exc′(τ1 ∪ τ2) + exc′(τ1 ∩ τ2), (7)

noting that exc′(τ1 ∩ τ2) is well defined by the condition that τ1 ∩ τ2 �= ∅. Since
exc′(τ1) = exc′(τ2) = 0, Inequality (7) gives:

0 ≥ exc′(τ1 ∪ τ2) + exc′(τ1 ∩ τ2).

It follows that the terms exc′(τ1 ∪ τ2) and exc′(τ1 ∩ τ2) on the right of this inequality
must both be zero since τ1 ∪ τ2 and τ1 ∩ τ2 are non-empty subsets of the slim set τ

and so each has non-negative excess. Thus, τ1 ∪ τ2, τ1 ∩ τ2 ∈ P , as required. �

6 Discussion

When an evolutionary biologist compares a number of trees on different, but over-
lapping, leaf sets, it is typically very rare that these trees are found to be compatible,
due mainly to errors in the estimation of phylogenetic trees. Thus, in cases where the
trees are compatible this fact alone may provide the biologist with some heightened
confidence in the accuracy of the input trees. However, such confidence should clearly
depend, in part, on the pattern of taxon coverage. In the extreme case where the sub-
sets of species on which the input trees were built from a phylogenetically flexible
collection, it is clear that compatibility provides absolutely no hint of accuracy of
the input trees, since any trees that had been considered for those subsets would be
compatible. For applications, it might therefore be useful to quantify how close to
‘phylogenetically flexible’ a given pattern of taxon coverage is.

Our results also suggest a second possible future research direction. Since sub-
modular functions are connected to matroid theory, are there relevant connections
between thin/slim sets and matroids? Other matroid structures in phylogenetics have
been recently been described, in different contexts, byDress et al. (2014) andHellmuth
and Seemann (2017).
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