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Abstract We undertake a detailed mathematical analysis of a recent nonlinear ordi-
nary differential equation (ODE) model describing the chemotactic signalling cascade
within an Escherichia coli cell. The model includes a detailed description of the cell
signalling cascade and an average approximation of the receptor activity. A steady-
state stability analysis reveals the system exhibits one positive real steady state which
is shown to be asymptotically stable. Given the occurrence of a negative feedback
between phosphorylated CheB (CheB-P) and the receptor state, we ask under what
conditions the system may exhibit oscillatory-type behaviour. A detailed analysis of
parameter space reveals that whilst variation in kinetic rate parameters within known
biological limits is unlikely to lead to such behaviour, changes in the total concentra-
tion of the signalling proteins do.We postulate that experimentally observed overshoot
behaviour can actually be described by damped oscillatory dynamics and consider the
relationship betweenovershoot amplitude, total cell protein concentration and themag-
nitude of the external ligand stimulus. Model reductions in the full ODE model allow
us to understand the link between phosphorylation events and the negative feedback
between CheB-P and receptor methylation, as well as elucidate why some mathe-
matical models exhibit overshoot and others do not. Our paper closes by discussing
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intercell variability of total protein concentration as a means of ensuring the overall
survival of a population as cells are subjected to different environments.

Keywords Bacterial chemotaxis · Signalling pathway · Adaptation · Equilibrium ·
Stability analysis · Overshoot

1 Introduction

Numerous bacterial species use chemotaxis in order tomove through their environment
in search of chemoattractants—substances beneficial to their survival.Escherichia coli
cells use four to six helical flagella in order to create a run and tumble swimming pattern
akin to a random walk (Berg and Brown 1972). These flagella are each controlled by
membrane-bound motors that cause them to rotate in either counterclockwise (CCW)
or clockwise (CW) directions (Porter et al. 2011). CCW rotation causes the flagella to
bundle together propelling the cell forward for a period of time (the run). In contrast,
CW rotation leads to the flagella flailing apart resulting in random reorientation of
the cell (the tumble). The ratio of time spent in runs compared to tumbles is known
as the rotational bias and is modulated by the cells’ response to chemicals in the
surrounding environment. This allows cells to bias their movement towards CCW
flagella rotation (increasing the run length) upon sensing an increased chemoattractant
concentration (Berg 2011).

The chemotactic response is the result of a well-characterised intracellular sig-
nalling pathway (Wadhams and Armitage 2004), as shown in Fig. 1. E. coli cells sense
their environment using transmembrane chemoreceptors that each have the ability to
sense different extracellular factors (Grebe and Stock 2008). The chemoreceptors are
linked to the flagella driving motors of the cell via an intracellular signalling path-
way. Chemoreceptors associate with a linker protein CheW and a histidine kinase
CheA. In the absence of an attractant gradient, CheA autophosphorylates at a steady
rate, forming CheA-P (Wadhams and Armitage 2004). Phosphoryl groups are then
transferred from CheA-P onto either a methylesterase CheB or the response regu-
lator CheY. Phosphorylated CheY (CheY-P) may then diffuse within the cytoplasm
of the cell to the flagellar motors (Bren et al. 1996; Lipkow et al. 2005). Once at
a flagellar motor CheY-P is able to bind the motor switching protein FliM causing
an increase in the tumble bias of the cell (Welch et al. 1993). In addition to sponta-
neous dephosphorylation of CheY-P, a phosphatase CheZ acts to increase the rate at
which this dephosphorylation occurs (Likpow 2006). It has been observed that using
this signalling pathway E. coli cells are able to remain sensitive to over five orders
of magnitude in external ligand concentration (Mesibov et al. 1973). This is due to
CheR and CheB, the adaptation components of the chemotaxis pathway, which act
to reset the chemoreceptors to their pre-stimulus state. CheR constantly methylates
the chemoreceptors, increasing their activity (Springer and Koshland 1977), whereas
CheB-P demethylates them, decreasing their activity (Stock and Koshland 1978).

Upon sensing a positive chemoattractant gradient, the rate of CheA autophospho-
rylation is reduced, leading to a reduction in levels of both CheB-P and CheY-P. The
reduction in CheY-P levels results in less binding to FliM causing the flagellar motors
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Fig. 1 Schematic representation of the intracellular signalling pathway in E. coli chemotactic cells (left).
Receptors at the cell pole sense an external attractant concentration, determining a receptor activity level (Φ).
At a rate dependent on this activity, CheA autophosphorylates, forming CheA-P. Phosphoryl groups are then
passed to either CheY or CheB (giving CheY-P and CheB-P). CheY-P and CheB-P both dephosphorylate.
CheZ acts to speed up dephosphorylation of CheY-P. CheY-P is used to control the swimming behaviour
of the cell. CheB and CheR are the adaptation components of the chemotaxis pathway. CheB-P alters the
receptor state by demethylating receptors, thereby negatively regulating autophosphorylation. Meanwhile,
CheR constantly methylates receptors, positively regulating autophosphorylation. The balance of these
processes is able to reset receptors to their pre-stimulus state. (Right) Examples of the chemotactic response.
The initial rapid response is followed by a period of smooth transient behaviour in which the cell returns to
pre-stimulus levels. The upper figure shows a cell response without oscillatory behaviour, whilst the lower
demonstrates an oscillatory response

to experience a greater CCW bias, thereby inducing an extended run. An associated
reduction in CheB-P allows chemoreceptors to become methylated due to the action
of CheR. This results in a return to the pre-stimulus CheA autophosphorylation rate
and in turn CheB-P, CheY-P and flagellar rotation bias all return to their pre-stimulus
values.

During responses of this type, E. coli chemotactic cells have been known to exhibit
a phenomenon known as overshoot. This occurs when, following the response to an
external stimulus, the cell exceeds its pre-stimulus value for a transient period of
time before returning to it (Fig. 1). Overshoot was first observed experimentally in
the cellular response of E. coli cells to impulse stimuli, i.e. when a stimulus persists
for a very short period of time (Berg and Tedesco 1975; Block et al. 1983; Segall
et al. 1986). More recently, it has been shown to exist in response to step changes in
external ligand concentrations (Min et al. 2012). Within the theoretical literature, a
number of different causes have been postulated. In response to an impulse stimulus,
overshoot was shown to increase with the catalytic rate of CheR (Goldman et al. 2009).
Methylation crosstalk between different receptor types was also proposed as a possible
mechanism producing overshoot (Hansen et al. 2010; Lan et al. 2011). Specifically,
non-ligand binding receptors may become methylated due to coupling with ligand
binding receptors. For example, in response to aspartate stimuli Tsr (serine-sensing
chemoreceptor) receptors may bemethylated due to their coupling with Tar (aspartate-
sensing chemoreceptor) receptors.
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Understanding the response of E. coli cells to external attractants has been the sub-
ject of experimental work and mathematical models for nearly 40 years. The use of
experimental work in informing mathematical model formulation and revision, and
likewise the use of models in elucidating cell behaviour, has led to a range of math-
ematical models being formulated. Many such models (Xin and Othmer 2012; Spiro
et al. 1997; Barkai and Leibler 1997) have been formulated and developed to provide
a comprehensive description of the cellular processes and include details of recep-
tor methylation, ligand-receptor binding and its subsequent effect on the biochemical
signalling cascade, along with a description of motor driving CheY/CheY-P levels.
However, including such detail has often led to very complex mathematical models
consisting of tens of governing differential equations, making mathematical analysis
of the underlying cellular response difficult, if not in many cases, impossible.

The recent model of Clausznitzer et al. (2010) has sought to provide a com-
prehensive description of the E. coli response, by coupling a simplified statistical
mechanical description of receptor methylation and ligand binding, with the signalling
cascade dynamics. By taking an average approach to the receptor cluster response and
exploiting the large separation in timescales of ligand-receptor binding and recep-
tor conformational change (order of milliseconds) versus that of the cell signalling
cascade response (seconds to tens of seconds), the authors are able to formulate a
model consisting of five nonlinear ordinary differential equations (ODEs). The model
is parameterised using data from the literature and is shown to be in good agree-
ment with experimental findings. The size and ability of the Clausznitzer et al. (2010)
model to capture the dynamical E. coli response, means it is ripe for investigating the
role of cellular signalling mechanisms in driving the cellular response. However, this
fifth-order nonlinear ODE model is still difficult to treat analytically.

In this work, we undertake a comprehensive mathematical analysis of a number
of simplified forms of the model due to Clausznitzer et al. (2010) to elucidate the
role of specific aspects of the signalling cascade on the cellular response. We test
the hypothesis that the respective system will exhibit oscillatory-type behaviour given
the occurrence of a negative feedback between CheB-P and receptors on the cell
surface and ask under what conditions this may be exhibited. Having demonstrated
oscillations may occur, and determined under what conditions they do, we seek to
place these findings in the context of the overall system dynamics and experimental
observations regarding overshoot.

We consider a fourth-order reduction of the Clausznitzer et al. (2010) model used
in previous theoretical literature. This model, its non-dimensionalisation and parame-
terisation are presented in Sect. 2. We begin our analysis by conducting a steady-state
stability analysis of the governing system of ODEs as detailed in Sect. 3. This is
followed in Sect. 4 by analysis of the negative feedback between CheB-P and recep-
tor methylation levels. Section 5 discusses how the theoretical results presented here
relate to those in the experimental literature. In Sect. 6, we undertake a series of model
reductions to understand the role of the feedback and the effect of timescale separation
on the bacterial response as well as outcomes from models previously published in
the literature. We conclude in Sect. 7 with a discussion of our results in the context of
experimental data regarding variation in the chemotactic response.
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762 M. P. Edgington, M. J. Tindall

2 A Mathematical Model of E. coli Chemotaxis

The mathematical model of E. coli signalling due to Clausznitzer et al. (2010) consists
of an ODE description of the key signalling chemotactic pathway coupled with that
of a statistical mechanical description of ligand-receptor binding. The chemotactic
pathway dynamics are described by

d[Ap]
dt

= Φk1([AT ] − [Ap])−k2[Ap]([YT ]− [Yp]) − k3[Ap]([BT ]−[Bp]), (1)
d[Yp]
dt

= k2[Ap]([YT ] − [Yp]) − kA([ZT ] − [YpZ ])[Yp] + kD[YpZ ], (2)

d[YpZ ]
dt

= kA([ZT ] − [YpZ ])[Yp] − (kD + kY )[YpZ ], (3)

d[BP ]
dt

= k3[Ap]([BT ] − [Bp]) − k5[Bp], (4)

within which ki (i = 1, 2, 3, 5, A, D,Y ) indicate the kinetic rates of each reaction
and [. . .] denote the concentration of the appropriate protein with subscripts T and p
indicating the total and phosphorylated concentrations, respectively.

In this study, we consider a reduced form of the model in which it is assumed that
association, dissociation and dephosphorylation reactions involvingCheY-P andCheZ
complexes occur rapidly enough such that the formation of the intermediary complex
is ignored, a common assumption in this system when considering the effect of CheZ
dephosphorphylation onCheY-P (e.g. Bray et al. 1993; Kollmann et al. 2005). As such,
CheZ is assumed to have a constant dephosphorylation effect on CheY-P leading to
the reduced fourth-order system

d[Ap]
dt

= Φk1([AT ] − [Ap]) − k2[Ap]([YT ] − [Yp]) − k3[Ap]([BT ] − [Bp]),(5)
d[Yp]
dt

= k2[Ap]([YT ] − [Yp]) − k4[Yp][ZT ] − k6[Yp], (6)

d[BP ]
dt

= k3[Ap]([BT ] − [Bp]) − k5[Bp], (7)

where as before ki (i = 1, 2, 3, 4, 5, 6) indicate the kinetic rates of each reaction
(Table 1 for details) and [. . .] the concentration of a given protein . Such a reduced
form of Clausznitzer et al. (2010) model has been used previously in the theoretical
literature (see for example Edgington and Tindall 2015).

The kinetics of receptor methylation are described by

dm

dt
= gR[RT ](1 − Φ) − gB[Bp]2Φ, (8)

wherem is the averagemethylation level of a receptorwithin the signalling team,whilst
gR and gB denote the kinetic rates of receptor methylation by CheR and demethylation
by CheB-P, respectively. The receptor signalling team activity (Φ) in Eqs. (5) and
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(8) is determined by a Monod–Wyman–Changeux (MWC) description of receptor
clustering (Monod et al. 1965)

Φ = 1

1 + eF
, (9)

in which F is the free energy of a receptor signalling team and is defined as

F = N

[
1 − m

2
+ ln

(
1 + [L]/K off

a

1 + [L]/K on
a

)]
. (10)

Here, N is the number of chemoreceptors in the signalling team, 1 − m/2 represents
the “offset energy” (i.e. the contribution to F from addition/removal of one methyl
group) and the remainder of the expression is the free energy of an individual Tar
receptor with ligand dissociation constants Kon/of f

a for active/inactive receptors, and
[L] represents the extracellular ligand concentration.

In contrast toClausznitzer et al. (2010),we ignore the low-affinity bindingofMeAsp
to Tsr receptors as per Mello and Tu (2007). For small and intermediate extracellular
MeAsp concentrations, this does not significantly alter the dynamical response of the
model.

2.1 Parameterisation

The model is informed with the parameter values originally stated in Clausznitzer
et al. (2010) as detailed in Table 1. This mathematical model has been shown to be a
good fit to experimental data in spite of the low copy numbers associated with CheR
and CheB (Clausznitzer et al. 2010). With this being the case, we do not anticipate
stochastic effects altering any conclusions drawn from this study.

2.2 Non-dimensionalisation

We re-scale each of the key signalling protein concentrations with respect to their total
concentration in the cell, i.e. [Ap] = ap[AT ], [Bp] = bp[BT ], and [Yp] = yp[YT ] and
time with respect to the rate of spontaneous dephosphorylation of protein CheB-P, i.e.
t = τ/k5. Substitution of these re-scaled variables into Eqs. (5)–(8) yields the system
of non-dimensional ODEs

dm

dτ
= γR(1 − Φ) − γBb

2
pΦ = f1(m, bp), (11)

dap
dτ

= Φ k̄1(1 − ap) − k̄2(1 − yp)ap − k̄3(1 − bp)ap = f2(m, ap, yp, bp),(12)

dyp
dτ

= α1k̄2(1 − yp)ap − (k̄4 + k̄6)yp = f3(ap, yp), (13)

dbp
dτ

= α2k̄3(1 − bp)ap − k̄5bp = f4(ap, bp), (14)

with the non-dimensional parameters as defined in Table 2.
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Table 2 Non-dimensional
parameter definitions and their
values as calculated using
Table 1

Symbol Value

k̄1 = k1/k5 48.571

k̄2 = k2[YT ]/k5 1385.714

k̄3 = k3[BT ]/k5 6

k̄4 = k4[ZT ]/k5 8.686

k̄5 = k5/k5 1

k̄6 = k6/k5 0.121

α1 = [AT ]/[YT ] 0.814

α2 = [AT ]/[BT ] 28.214

γR = gR [RT ]/k5 8.57 × 10−3

γB = gB [BT ]2/k5 0.352

2.3 Numerical Solution Method

Numerical solutions to Eqs. (11)–(14) using the parameter values detailed in Table 2
were obtained using the inbuilt MATLAB (2017) ODE solver ode15s. This solver was
found to be appropriate given the stiffness coefficient of the system for the parameter
values detailed in Table 2 was found to be λS = 4233.31.

3 Steady-State Stability Analysis

3.1 Steady States

Many biological systems have been shown to exhibit multiple equilibrium states (Eiss-
ing et al. 2004; Kim et al. 2007). In order to assess whether this is possible in the E.
coli chemotaxis signalling pathway, we begin by determining the steady states of Eqs.
(11)–(14). This leads to

y∗
p = α1k̄2a∗

p

α1k̄2a∗
p + k̄4 + k̄6

, (15)

b∗
p = α2k̄2a∗

p

α2k̄3a∗
p + k̄5

(16)

Φ∗ = 1

1 + γB
γR
b∗2
p

, (17)

m∗ = 2

[
1 + ln

(
1 + [L]/K off

a

1 + [L]/K on
a

)
− 1

N
ln

(
γBb∗2

p

γR

)]
. (18)
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Each of these equations can be rearranged in terms of a∗
p and substituted into Eq. (12)

to yield a fifth-order polynomial of the form

p(a∗
p) = 0 = C1a

∗5
p + C2a

∗4
p + C3a

∗3
p + C4a

∗2
p + C5a

∗
p + C6, (19)

where C1−6 are given by

C1 = − gR[RT ][AT ]4k1k2k33,
C2 = − gB[BT ]3[AT ]3k2k33k5 − 3gR[RT ][AT ]3k1k2k23k5

− gR[RT ][AT ]3[ZT ]k1k33k4 − gB[BT ]2[AT ]3[YT ]k2k33k6
− gR[RT ][AT ]3[BT ]k2k33k5 − gB[BT ]2[AT ]3[YT ][ZT ]k2k33k4
− gR[RT ][AT ]3[YT ][ZT ]k2k33k4 + gR[RT ][AT ]4k1k2k33
− gR[RT ][AT ]3[YT ]k2k33k6 − gR[RT ][AT ]3k1k33k6,

C3 = − gB[BT ]3[AT ]2k33k5k6 + 3gR[RT ][AT ]3k1k2k33k5
− 3gR[RT ][AT ]2k1k23k5k6 − gR[RT ][AT ]2[BT ]k33k5k6
− gR[RT ][AT ]2[BT ][ZT ]k33k4k5 − 3gR[RT ][AT ]2k1k2k3k25
− 2gR[RT ][AT ]2[BT ]k2k23k25 + gR[RT ][AT ]3[ZT ]k1k33k4
− 3gR[RT ][AT ]2[YT ]k2k23k5k6 − 3gR[RT ][AT ]2[YT ][ZT ]k2k23k4k5
− gB[BT ]3[AT ]2[ZT ]k33k4k5 + gR[RT ][AT ]3k1k33k6
− 3gR[RT ][AT ]2[ZT ]k1k23k4k5 − gB[BT ]2[AT ]2[YT ]k2k23k5k6
− gB[BT ][AT ]2[YT ][ZT ]k2k23k4k5,

C4 = − 2gR[RT ][AT ][BT ]k23k25k6 − 3gR[RT ][AT ]k1k3k25k6
− 2gR[RT ][AT ][BT ][ZT ]k23k4k25 − gR[RT ][AT ]k1k2k35
+ 3gR[RT ][AT ]2[ZT ]k1k23k4k5 − gR[RT ][AT ][BT ]k2k3k35
+ 3gR[RT ][AT ]2k1k23k5k6 − 3gR[RT ][AT ][YT ]k2k3k25k6
− 3gR[RT ][AT ][ZT ]k1k3k4k25 + 3gR[RT ][AT ]2k1k2k3k25
− 3gR[RT ][AT ][YT ][ZT ]k2k3k4k25,

C5 = gR[RT ][AT ]k1k2k35 − gR[RT ][BT ][ZT ]k3k4k35 − gR[RT ][BT ]k3k35k6
+ 3gR[RT ][AT ]k1k3k25k6 − gR[RT ]k1k35k6 − gR[RT ][YT ][ZT ]k2k4k35
− gR[RT ][ZT ]k1k4k35 + 3gR[RT ][AT ][ZT ]k1k3k4k25 − gR[RT ][YT ]k2k35k6,

C6 = gR[RT ][ZT ]k1k4k35 + gR[RT ]k1k35k6,

where overbars have been dropped in what follows for notational convenience. Since
there is no generally applicable analytical solution form for quintic equations such as
this, we substitute the parameter values fromTable 1 into these polynomial coefficients
to determine their respective values. Then, by Descartes’ rule of signs, we find that
there may only be one positive root and the remaining four will either be negative
or in complex conjugate pairs (i.e. not biologically feasible). It is worth noting here
that the steady-state expressions for each key signalling protein are independent of the

123



Mathematical Analysis of the Escherichia coli Chemotaxis… 767

10-3 10-2 10-1 100

Ambient Extracellular Ligand Concentration (mM)

1

2

3

4

5

6

7

8

St
ea

dy
-S

ta
te

 A
ve

ra
ge

 C
he

m
or

ec
ep

to
r

M
et

hy
la

tio
n 

Le
ve

l

Fig. 2 (Color figure online) Plot showing how the steady-state value for the average chemoreceptor methy-
lation level rises in relation to the ambient extracellular ligand concentration. This result is similar to those
given by Hansen et al. (2008) and Endres and Wingreen (2006)

average chemoreceptor methylation level (m) and the extracellular chemoattractant
concentration ([L]). This differs from the expression for m∗ which depends upon the
extracellular chemoattracant concentration as well as the CheB-P steady state (b∗

p).
Using the steady-state expressions (15)–(19) and the parameter values listed in

Tables 1 and 2, we obtain the following non-dimensional steady-state values

a∗
p = 5.58×10−3, b∗

p = 4.86×10−1, y∗
p = 4.17×10−1,

given to three significant figures. The steady-state methylation level is dependent upon
the extracellular chemoattractant concentration and rises or falls in order to reset the
protein phosphorylation levels (ap, yp and bp) to their pre-stimulus values. This is
defined by Eq. (18) and demonstrated in Fig. 2.

3.2 Stability Analysis

We now determine the asymptotic stability of the steady state determined in Sect. 3.1.
The Jacobian matrix for the system of Eqs. (11)–(14) is given by

J =

⎛
⎜⎜⎜⎜⎝

∂ f1
∂m 0 0 ∂ f1

∂bp
∂ f2
∂m

∂ f2
∂ap

∂ f2
∂yp

∂ f2
∂bp

0 ∂ f3
∂ap

∂ f3
∂yp

0

0 ∂ f4
∂ap

0 ∂ f4
∂bp

⎞
⎟⎟⎟⎟⎠ , (20)
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where

∂ f1
∂m

= −NeFΦ2

2k5

(
gR[RT ] + gB[BT ]2b2p

)
,

∂ f1
∂bp

= −2gB[BT ]2bpΦ
k5

,

∂ f2
∂m

= Nk1(1 − ap)eFΦ

2k5
,

∂ f2
∂ap

= k1Φ

k5
− k2[YT ](1 − yp)

k5
− k3[BT ](1 − bp)

k5
,

∂ f2
∂yp

= k2[YT ]ap
k5

,

∂ f2
∂bp

= k3[BT ]ap
k5

,

∂ f3
∂ap

= k2[AT ](1 − yp)

k5
,

∂ f3
∂yp

= −k2[AT ]ap
k5

− k4[ZT ]
k5

− k6
k5

,

∂ f4
∂ap

= k3[AT ](1 − bp)

k5
,

∂ f4
∂bp

= −k3[AT ]ap
k5

− 1.

The eigenvalues of the system are determined by solving

det |J − λI | = 0, (21)

in which I is the identity matrix with equal dimensions to the Jacobian matrix and λ

denotes an eigenvalue. Solving this equation leads to a quartic polynomial in λ from
which it is difficult to identify the nature of the eigenvalues analytically given the large
and complex form of the respective coefficients (details not shown). As such, we again
utilise the parameter values given in Table 1 which leads to the four eigenvalues

λ1 = −822.1086, λ2 = −8.8146, λ3 = −1.7996, and λ4 = −0.1942.

These are each real and negative, and hence we conclude that this steady state is
asymptotically stable for the parameter values given in Table 1.

4 Oscillations and the CheB-P Negative Feedback

It is clear that the base parameter set given in Table 1 produces an asymptotically stable
equilibrium state. However, it is interesting to note the existence of a negative feedback
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loop inwhichCheB-P acts to reduce themethylation level of the cell’s chemoreceptors.
Such negative feedbacks have been shown to have potential for creating oscillatory
behaviourwithinmonotone systems (Pigolotti et al. 2007; Snoussi 1998;Gouze 1998).
Furthermore, variation of kinetic rate constants is known to be limited, whilst total cell
protein levels are known to vary significantly between cells (Elowitz et al. 2002; Li and
Hazelbauer 2004). We now consider whether variation in the respective parameters
and total cell concentrations could possibly induce such behaviour within the pathway.

In order to test this hypothesis, we examined pair-wise variations in both kinetic
rate parameters and total signalling protein concentrations. Specifically,we varied each
pair of kinetic rate parameters and total protein concentrations over a tenfold range in
respect of the parameter values given in Table 1. The stability analysis of Sect. 3.2 was
repeated for variations in the parameters, whereby for each case the occurrence of at
least two non zero imaginary parts was recorded as indicating oscillatory dynamics.
Here, we limited our consideration to pair-wise parameter variations in order to aid
both visualisation and interpretation of results.

Results obtained when varying pairs of kinetic rate parameters demonstrate that 9
of 28 possible pairs produced no oscillatory behaviour within a tenfold range. The
remaining 19 pairs, as shown in Figs. 3, 4 and 5, do yield some oscillatory behaviour,
but in regions of parameter space outside that observed experimentally. This is due to
the fact that each proteinmoleculewould be expected to carry out eachprocess inwhich
it is involved at an equal rate. Thus, kinetic rates are unlikely to vary far enough from the
base parameter set of Table 1 in order to yield oscillatory behaviour. It therefore seems
unlikely that variation in kinetic rate parameters produces experimentally observable
oscillatory behaviour in E. coli cells.

Repeating this same methodology for pair-wise variations in total protein concen-
trations reveals that 8 of 10 pairs are able to produce oscillatory behaviour within
the range tested, as shown in Fig. 6. Interestingly, it may be observed that pair-wise
variations in each chemotaxis signalling protein showed that CheB, CheR, CheY and
CheZ allow oscillatory behaviour to occur more readily than combinations involving
CheA. Of particular interest here is the case in which CheB and CheY are varied
together. In this case, total concentrations of CheB and CheY must be increased and
decreased from the experimentally measured population average values in Table 1.
This suggests that the ratio of CheB and CheY concentrations may be important for
producing oscillatory solutions. Since phosphoryl groups are passed from CheA-P to
both CheB and CheY, the ratio of these total protein concentrations will clearly affect
how many phosphoryl groups are passed to each protein. As such, we postulate here
that this will affect both the timescale and strength of CheB-P feedback on the receptor
state, thus leading to the emergence of oscillatory behaviour.

Experimentally, it is known that proteins of the E. coli chemotaxis signalling path-
way are encoded in two operons, namelymocha (CheA and CheW) andmeche (CheB,
CheR, CheY and CheZ) (Kalir 2001). This is a key mechanism by which cells are able
to maintain suitable protein levels and ratios. In these groupings, we would expect the
ratios of proteins encoded in the same operon to maintain approximately fixed ratios,
whilst more variation is expected to exist between proteins encoded in different oper-
ons. We therefore group proteins by operon and allow variations over a tenfold range.
This entails varying the total concentration of CheA against concentrations of CheB,
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Fig. 3 (Color figure online) Regions of parameter space in which oscillatory behaviour may be found by
varying kinetic rate parameters (blue). Regions indicated are those in which at least two eigenvalues of the
system have nonzero imaginary part. Red crosses indicate the location of the parameters detailed in Table 1
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Fig. 4 (Color figure online) Regions of parameter space in which oscillatory behaviour may be found by
varying kinetic rate parameters (blue). Regions indicated are those in which at least two eigenvalues of the
system have nonzero imaginary part. Red crosses indicate the location of the parameters detailed in Table 1

CheR, CheY and CheZ which were varied so as to maintain a constant ratio within
each group, the result of which is shown in Fig. 7. We found here that an increase of
∼threefold in all protein concentrations was sufficient to yield oscillatory behaviour,
falling well within the biologically realistic tenfold variation.

Whilst individual total protein concentrations have been found to vary by as much
as tenfold, ratios between them have been shown to vary by approximately 30% (Li
and Hazelbauer 2004). We would expect the maximal variation to occur between
proteins encoded by separate operons since protein co-expression will limit stochastic
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Fig. 5 (Color figure online) Regions of parameter space in which oscillatory behaviour may be found by
varying kinetic rate parameters (blue). Regions indicated are those in which at least two eigenvalues of the
system have nonzero imaginary part. Red crosses indicate the location of the parameters detailed in Table 1

fluctuation in ratios of proteins encoded within the same operon. Thus, a biologically
feasible range within Fig. 7 would be 0.7α ≤ β ≤ 1.3α in which α represents the fold
change in the proteins of one operon and β the fold change in proteins of the remaining
operon. We note that beyond an increase of ∼fourfold in the concentration of CheA,
the vast majority of change in the magnitude of the imaginary parts of the eigenvalues
appears to be caused by variation in proteins encoded by the meche operon. This is
supported by the earlier finding that pairs of proteins involving CheB, CheR, CheY
and CheZ are more readily able to produce oscillatory behaviour than those including
CheA.
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Fig. 6 (Color figure online) Regions of parameter space in which oscillatory behaviour may be found by
varying the total concentration of each chemotaxis proteins. Regions shown are those in which at least two
eigenvalues of the system have a nonzero imaginary part. The colours of the contour lines represent the
magnitudes of the imaginary parts of the eigenvalues obtained from the fourth-order system. Note: where a
red cross appears this indicates the location of our base parameter set. All concentration axes are expressed
in µM
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Fig. 7 (Color figure online) Operon-wise variation in total protein concentrations within the signalling
cascade model can produce oscillatory behaviour. Plots showing the regions in which oscillatory behaviour
may be obtained when considering methylation/demethylation kinetics defined by (a) Eq. (8) and (b)
Eq. (22). The biologically feasible region is shaded in grey

Amajor assumption of the model considered here is that the rates of chemoreceptor
methylation/demethylation are linear functions of the receptor-kinase activity (Eq. 8).
This differs from a number of previous models in which these rates are described
by Michaelis–Menten kinetics (Barkai and Leibler 1997; Clausznitzer et al. 2010;
Emonet and Cluzel 2008; Tu et al. 2008). Such models have been shown to fit both
population (Shimizu et al. 2010) and single cell (Emonet and Cluzel 2008) measure-
ments. As such, we also investigated the occurrence of oscillations when receptor
methylation/demethylation is described by Michaelis–Menten kinetics such that

dm

dt
= gR

1 − Φ

1 − Φ + K1
− gB[Bp]2 Φ

Φ + K2
, (22)

with K1 = 0.0229 and K2 = 0.0318 as per the Supplementary Information of
Clausznitzer et al. (2010). In Fig. 7b, we found similar results to those shown in
Fig. 7a with the exception that a smaller fold increase (∼1.5-fold) was required to
produce oscillatory behaviour.

5 Oscillatory Dynamics and the Overshoot Phenomenon

The possible occurrence of oscillations in the temporal expression of signalling pro-
teins within the signalling network raises the question as to whether this phenomenon
may be observed experimentally.Overshoot, as demonstrated by the dotted line [CheY-
P] response in Fig. 1, has been observed both experimentally and theoretically within
certain E. coli studies. In the context of our work, an overshoot response is equivalent
to underdamped oscillations.

Within the literature, the phenomenon of overshoot has been linked to the likely
interaction between different chemoreceptor types. In particular, past theoretical
work has proposed overshoot to be caused by crosstalk in receptor methylation lev-
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(a) (b)

Fig. 8 Plot showing the relationship between adaptation time, the magnitude of the ligand stimulus and
intracellular protein concentration. (a) Here, the adaptation time is chosen to be the time necessary for a cell
to recover from half of the initial response, determined from numerical simulations of the full fourth-order
model. (b) Shown here are the overshoot amplitudes and associated adaptation times for different size of
step-up ligand stimuli, namely 0.1µM (represented by crosses), 1µM (circles), 10µM (diamonds) and
100µM (squares). The different data points for each stimulus refer to simulated cells with different (1–10)
fold increases in the total concentration of all proteins. Shorter adaptation times are associated with larger
fold increases in all total protein concentrations. Clearly, cells with shorter adaptation times display larger
overshoot amplitudes; however, there is also a dependence on the size of ligand stimulus applied, as noted
by Min et al. (2012)

els (Hansen et al. 2010; Lan et al. 2011). Our results suggest that whilst methylation
and demethylation play an important role, it is the coupling of this process with the
negativeCheB-P feedback that is the overall driver of the observed overshoot response.
This in turn is a result of protein concentrations within the signalling network. It could
also be possible that crosstalk in receptor methylation acts in tandem with the mecha-
nismproposed here in order to produce experimentally observed overshoot amplitudes.
We propose that methylation crosstalk could set a basal level of overshoot, whilst the
mechanism proposed here acts to amplify this in order to achieve the larger overshoot
amplitudes observed for intermediate ligand stimuli.

Coupled with the role of receptor methylation and the CheB-P negative feedback is
the overall ligand concentrations a cell may experience. Recent experimental work by
Min et al. (2012) has focused on the overshoot response in the context of varying ligand
concentrations. This investigation and the relationship here between the total concen-
tration of proteins within the network and the occurrence of oscillatory behaviour raise
the question as to how these may be linked. As such, we have considered the effect
of varying ligand concentrations whilst perturbing the overall concentration of the
signalling proteins as shown in Fig. 8. These results demonstrate that the overshoot
amplitude increases with total protein concentration and this relationship holds for a
range of ligand concentrations. However, whilst the overshoot amplitude increases, the
adaptation time subsequently decreases as an increase in phosphotransfer from CheA-
P onto CheB (forming CheB-P) allows the negative feedback to act more quickly.
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(a) (b)

(c) (d)

Fig. 9 Schematic representations of the four model reductions considered. (a) Reduction to a third-order
system by applying the quasi-steady-state approximation to CheY-P. (b) Reduction to a second-order system
via application of the quasi-steady-state approximation to both CheY-P and CheB-P. (c) Reduction to a
second-order system by assuming CheA-P may be represented by a multiple scaling of receptor signalling
team activity (i.e. Ap = αΦ) and representing CheY-P as a decouplable read-out variable. (d) A first-order
model due to Tu et al. (2008). Here, solid lines indicate interactions, whilst dashed lines indicate quasi-
steady-state/read-out variables. The dotted line in (d) represents the decoupled expression for CheY-P

6 Model Reduction Analysis

In light of the results of Sect. 4, wewish to further our understanding of how the CheB-
P feedback behaves in the context of variation in total protein concentration and how
different timescales within the signalling cascade affect the overshoot response. We
are also motivated to understand why some nonlinear ODE mathematical models
describing E. coli chemotaxis exhibit overshoot, whilst others do not and how their
formulations and dimensionality may affect this. As such, we consider here a variety
of further reductions to the fourth-order model system (11)–(14). These are illustrated
in Fig. 9. In what follows, we begin by considering the third-order reduction in Eqs.
(11)–(14) in Sect. 6.1, moving to a range of second-order cases in Sect. 6.2. Doing
so allows us to compare the various reductions with similar models in the literature,
identify key features of the system which drive the overall signalling output and may
or may not be responsible for overshoot like responses.
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Fig. 10 (Color figure online) Comparison of the full fourth-order (blue lines) and the reduced third-order
(red circles) systems

6.1 Third-Order System

Motivated by the non-dimensional parameter values in Table 2, we assume here that
CheY-P reaches a steady state rapidly, in comparison with all other proteins, such
that the quasi-steady-state approximation (QSSA) holds. This leads to the third-order
dynamical system

dm

dτ
= gR[RT ]

k5
(1 − Φ) − gB[BT ]2

k5
b2pΦ, (23)

dap
dτ

= Φ
k1
k5

(1 − ap) − k2[YT ]
k5

(1 − y∗
p)ap − k3[BT ]

k5
(1 − bp)ap, (24)

dbp
dτ

= k3[AT ]
k5

(1 − bp)ap − bp, (25)

within which y∗
p denotes the non-dimensional steady state for CheY-P, as given by

Eq. (15). The corresponding network is shown in Fig. 9a.
The application of this reduction only slightly changes the steady-state values of

the system (Fig. 10). As such, we now test the stability characteristics of this system
by analysing the eigenvalues of its Jacobian matrix

J =
⎛
⎝ fm 0 fbp
gm gap gbp
0 hap hbp

⎞
⎠ , (26)
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within which

fm = −gR[RT ]NeFΦ2 − gB[BT ]2b2pNeFΦ2

2k5
,

fbp = −2gB[BT ]2bpΦ
k5

,

gm = k1(1 − ap)NeFΦ2

2k5
,

gap = −1

k5

(
k1Φ + k2[YT ](1 − y∗

p) + k2[YT ]
(
y∗2
p − y∗

p

)
+ k3[BT ](1 − bp)

)
,

gbp = k3[BT ]ap
k5

,

hap = k3[AT ](1 − bp)

k5
,

hbp = −k3[AT ]ap
k5

− 1

are the partial derivatives of Eqs. (23)–(25) with respect to each of the three variables.
In order to obtain the eigenvalues of the system, it is necessary to find the characteristic
polynomial of this Jacobian matrix. In this case, the characteristic polynomial is given
by

p(λ) =
∣∣∣∣∣∣
fm − λ 0 fbp
gm gap − λ gbp
0 hap hbp − λ

∣∣∣∣∣∣ . (27)

We now form the characteristic polynomial p(λ) = λ3+Aλ2+Bλ+C in which A, B
andC are polynomial coefficients and λ is an eigenvalue of the system.Here, we define
A = 3a, B = 3b,α = a2−b andβ = 2a3−3ab+C (Murray 2002). The relative sizes
of A, B, α and β determine the solution form appropriate for the polynomial p(λ).
Since we are looking to explain the emergence of oscillatory behaviour, we restrict
our attention to combinations of A, B, α and β which yield a pair of eigenvalues with
negative real and nonzero imaginary parts. Using the parameter values in Table 1, we
find that β > 2α3/2 must hold in order for us to obtain oscillatory behaviour. We then
apply the condition β > 2α3/2 to our third-order model and use the parameter values
(Table 1) to examine themagnitudes of each term in the expression. Upon doing so, we
find that all terms lie in the range O(104) to O(107) and retaining all terms > O(104)
leads to the expression

Re

(
2

27
k32[YT ]3(1 − y∗

p)
3
[
1 − (1 − x)3/2

])
> 5 × 105, (28)

in which

x =
3N
2 eFΦ2

(
gR[RT ] + gB[BT ]b∗2

p

)
+ k3[AT ]a∗

p + k5

k2[YT ](1 − y∗
p)

. (29)
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Fig. 11 (Color figure online)Comparison of numerical and analytical approximations to the region inwhich
oscillatory behaviour is found. The area above each of these lines signifies the region in which the relevant
model exhibits oscillatory behaviour. The blue line indicates the region of oscillatory behaviour found from
the full fourth-order dynamical system. Red crosses show the region in which oscillatory behaviour is found
in the third-order case in which the quasi-steady-state approximation has been applied to the concentration
of CheY-P. Finally, the green line shows the region predicted by the analytical condition given by Eq. (28)

Here, 5 × 105 is an approximation of the magnitude of the largest term less than
O(107). Within this expression, N is the number of receptors in a signalling team
which has activityΦ, F represents the free energy of a Tar receptor, [. . .T ] denotes the
total concentration of the relevant protein, and a∗

p and b∗
p are the (non-dimensional)

steady-state concentrations of proteins CheA-P and CheB-P, respectively.
Equation (28) compares well to numerical simulations of the fourth- and third-order

systems as shown in Fig. 11, suggesting that the expression captures the key processes
involved in causing oscillatory behaviour. Indeed, it includes terms associated with
receptor dynamics, the feedback timescale of CheB-P and phosphotransfer to CheY,
suggesting that these each play a role in the emergence of oscillatory behaviour.

In an attempt to narrow down the causes of oscillatory behaviour, we separately
examine the numerator of Eq. (28). We begin by neglecting (2/27)k32[YT ]3(1 − y∗

p)
3

since it is an approximately exponential multiplier, when subjected to simultaneous,
equal fold changes to the concentration of all total protein concentrations. To leading
order, an asymptotic expansion of the remaining terms (assuming x � 1) gives

1 − (1 − x)3/2 ≈ 3

2
x + · · ·,

where . . . indicates the addition of lower-order terms. This leaves 3x/2 [where x is
given byEq. (29)]. This can be further simplified uponneglecting (2/3)k2[YT ](1 − y∗

p)

as it is approximately linear for equal fold changes in all total protein concentrations.
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Fig. 12 (Color figure online) Receptor dynamics and CheB-P feedback timescale are critical in the emer-
gence of oscillatory behaviour within the mathematical model. The solid line shows values obtained from
Eq. (30), and dashed lines show amplitudes of the first oscillation calculated from numerical simulations.
These amplitudes are obtained under equal fold changes in the total concentrations of all chemotaxis sig-
nalling proteins and are expressed as a percentage of the steady-state CheY-P concentration. The location
of the minimum of the solid line corresponds to the fold change required in order to obtain a nonzero
oscillation amplitude

We therefore restrict our attention to

ψ = 3N

2
eFΦ2

(
gR[RT ] + gB[BT ]2b∗2

p

)
︸ ︷︷ ︸

Receptor dynamics

+ k3[AT ]a∗
p + k5︸ ︷︷ ︸

CheB-P feedback

. (30)

Figure 12 shows results obtained fromψ in addition to amplitudes of the first oscil-
lations calculated from numerical simulations of the third-order system and obtained
under the same equal fold changes in all total protein concentrations. Interestingly, we
observe that the minimum of the curve given by Eq. (30) corresponds to the initial fold
increase in total concentration of all chemotaxis signalling proteins at which a non zero
oscillation amplitude is observed. We note here that the first underbrace of Eq. (30)
shows that the receptor state, specifically that the methylation and demethylation rates
are important. Also highlighted, in the second underbrace of Eq. (30), was the impor-
tance of CheB-P feedback onto the receptor state, as shown by the presence of k3,
k5, [AT ] and a∗

p. Specifically, [AT ]a∗
p represents the number of phosphoryl groups

available for transfer from CheA-P onto CheB at steady state, whilst k3 shows how
quickly phosphoryl groups may be transferred around the system, causing demethyla-
tion of receptors. This leads us to conclude that the balance between receptor dynamics
and CheB-P feedback is key in determining whether or not an oscillatory response is
observed.

123



Mathematical Analysis of the Escherichia coli Chemotaxis… 781

6.2 Second-Order Systems

6.2.1 Rapid Equilibrium of CheB-P and CheY-P

Based on the validity of the third-order model reduction, we seek here to extend the
application of the QSSA. Taking the third-order system and examining the remaining
parameter values, we find that the rate of phosphotransfer from CheA-P to CheB is
quite large in comparison with most other values. As such, we consider the application
of theQSSA to the protein CheB-P (Fig. 9b), thereby producing a second-order system
of the form

dm

dτ
= gR[RT ]

k5
(1 − Φ) − gB[BT ]2

k5
b∗2
p Φ, (31)

dap
dτ

= Φ
k1
k5

(1 − ap) − k2[YT ]
k5

(1 − y∗
p)ap − k3[BT ]

k5
(1 − b∗

p)ap, (32)

where y∗
p and b∗

p are given by Eqs. (15) and (16), respectively.
Analysing the stability of this system, we found that the region of parameter space

(total protein concentrations only) in which oscillations are found was altered signif-
icantly. Specifically, much larger total protein concentrations were required for this
reduced model to exhibit oscillatory behaviour. This is likely due to the removal of
features related to the negative feedback of CheB-P on the chemoreceptors, suggesting
that it is important for oscillatory behaviour to be observed.

6.2.2 CheA-P as a Scaling of Receptor Signalling Team Activity

An alternate second-order reduction assumes that CheY-P is a decoupled output vari-
able as detailed in Tu et al. (2008). We also consider the concentration of CheA-P in
the system to be a simplemultiplicative scaling of the receptor signalling team activity,
i.e. σΦ ≈ [Ap] (Fig. 9c). Here, σ is calculated at steady state from a numerical sim-
ulation of the full system using parameters from Table 1. These assumptions produce
a second-order model of the form

dm

dτ
= gR[RT ]

k5
(1 − Φ) − gB[BT ]2

k5
b2pΦ, (33)

dbp
dτ

= k3
k5

σΦ(1 − bp) − bp. (34)

In terms of the network structure, this reduced model had two main implications.
Firstly, the decoupling of CheY-Pmeans there is no longer competition for phosphoryl
groups from CheA-P. This means CheY receives phosphoryl groups regardless of the
competitive ability of CheB. Furthermore, the timescale of CheA autophosphorylation
was eliminated by considering CheA-P to be a scaling of receptor signalling team
activity.

Analysis showed that a large fold change (∼9.5-fold increase) in all total protein
concentrations was required for this model to display any oscillatory behaviour. This
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was supportive of the notion that timescales and sharing of phosphoryl groups around
the systemmay both be important features of the mechanism regulating the emergence
of oscillatory behaviour.

6.2.3 Tu et al. Model

Finally, we consider the model defined by Tu et al. (2008) (Fig.9d). This is a second-
order system reduction with

dm

dt
= kRcat[RT ] 1 − Φ

1 − Φ + K R
M

− kBcat[BT ] Φ

Φ + K B
M

, (35)

in which kR/B
cat and K R/B

M are the catalytic rates and Michaelis–Menten constants of
CheR and CheB, respectively. Here, the concentration of CheY-P is described by

d[Yp]
dt

= kaΦ − [Yp]
τz

, (36)

in which ka is the rate of phosphotransfer from CheA-P onto CheY and τz is the
dephosphorylation time of the protein CheY-P. This model is based upon a number of
assumptions including CheB acting only on active receptors, CheR only acting upon
inactive receptors and that CheY-P decouples from Eq. (35).

Mathematically, we need only investigate Eq. (35) since Eq. (36) decouples. Anal-
ysis revealed that no oscillatory behaviour is possible within the range tested (tenfold
increase and decrease in protein concentrations varied in operon groupings). We note
that this model includes only the total concentration of proteins CheR and CheB,
the implication being that the phosphorylated fraction of CheB is unimportant in
determining the receptor state. However, as this model does not capture the stability
characteristics of the fourth-order systemwe are led to the conclusion that the feedback
of CheB-P onto the receptor state is critical in producing oscillations.

7 Discussion

In this paper, we have undertaken a detailed numerical and analytical investigation of
a nonlinear ODE model of the E. coli chemotactic signalling cascade (Clausznitzer
et al. 2010). This model includes a description of the signalling pathway biochemistry
and an average description of the receptor methylation/demethylation dynamics. Our
work has shown that the known network structure, receptor state, dynamic timescales
and sharing of phosphoryl groups within the E. coli chemotaxis signalling pathway
may act in unison to produce oscillatory behaviour. In particular, examining the effects
of operon-wise variation in total signalling protein concentrations, we found a balance
between receptor state and the timescale of CheB-P receptor demethylation to be a
key feature responsible for oscillations to be observed.

The observed phenomenon of overshoot in the E. coli response is equivalent to
underdamped oscillations within the context of our studies. As such, we have sought
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to elucidate the relationship between extracellular ligand concentrations, total protein
concentration levels within the cell and the overshoot (damped oscillation) amplitude.
Our results indicate that the overshoot response is a combination of the CheB-P neg-
ative feedback onto the receptor state and the total concentration of proteins within
the signalling network. As the total concentration of proteins within the signalling
network increases, so does the sharing of phosphoryl groups. As a result, for increas-
ing total protein concentration the overshoot amplitude increases independently of
the external ligand concentration. However, as the amplitude increases, the adaptation
time decreases, thus decreasing the cell response time.

Numerous theoretical studies ofE. coli chemotaxis signalling have failed to observe
overshoot (for example Clausznitzer et al. 2010; Tu et al. 2008; Likpow 2006;Morton-
Firth 1999). There are likely to be numerous different reasons for this. Firstly, it is
common in establishing a parameter set for use within a mathematical model, to utilise
experimentally determined average protein concentrations. In terms of the average
behaviour of a cell population, this would appear to be a reasonable approach; how-
ever, it fails to account for the effects of the significant stochastic variation in protein
concentrations observed between individual cells (Korobkova et al. 2004), effects that
are shown here to be an important determinant of the transient cell response. Secondly,
simplified mathematical models give a number of benefits, particularly in terms of the
ease with which analytical results may be obtained. However, such simplifications not
only alter the network structure, but also the ability of the system to exhibit previ-
ously observed transient behaviours, such as those demonstrated here. In particular,
the ability of the model to fit with biological observations may be greatly altered or
lost altogether. One such example is the model due to Tu et al. (2008) which has been
used with some success in a number of studies such as that by Kalinin et al. (2009).
However, it has been shown here that within a tenfold variation in the total concen-
trations of all chemotaxis proteins this particular model does not exhibit oscillatory
behaviour.

In the context of previous work regarding Tar/Tsr crosstalk, we believe our work
demonstrates CheB-P negative feedback regulation in the context of the signalling cas-
cade is itself enough for the system to exhibit oscillatory overshoot dynamics.Whether
this, as well as Tar/Tsr crosstalk, is mutually beneficial or exclusive requires further
experimental work. The work presented here contains a number of theoretical results
that may be investigated in an experimental setting. In particular, the results presented
in Figs. 6, 7, 8 and 12 are testable by appealing to certain under/overexpression mutant
cells. In the case of Fig. 6, it is possible to create cells under/overexpressing certain pro-
teins. To investigate Fig. 7, themeche andmocha operonsmay be under/overexpressed.
Finally, Figs. 8 and 12 would require cells under/overexpressing all of the chemotaxis
signalling proteins simultaneously. In each case, once under/overexpression mutant
cells are available, analysis of flagella rotation time courses during which cells are
challenged with a step change in ligand concentration should reveal the amplitude of
oscillation exhibited by cells (if any).

Also, demonstrated here is that total protein concentration is an important factor in
affecting the temporal response of an intracellular signalling cascade. We believe that
the three key ingredients for determining variation within a network response are its
structure, its kinetic rates and the total concentrations of its constitutive elements. We
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would expect these principles to be relevant in explaining similar phenomena within
other biological systems. The first two of these aspects are well-founded results within
the analysis of signalling cascades (Kollmann et al. 2005). The third allows us to deter-
mine how the transient cell response will vary given different starting conditions of
the signalling cascade, namely total protein concentration in this example. Results
obtained here indicate that the simplification of using population average values may
mask the inherent effects of cell-to-cell variability. It would therefore seem sensible, in
addition to studying population behaviour using average values, to consider the poten-
tial effects of cell-to-cell variation when considering transient behaviour in cellular
systems.

Many biological systems exhibit a large degree of individual variability across their
populations. This is usually put down to genetic differences, environment and history.
However, even cells identical under these criteria display behavioural variability (Raser
and O’Shea 2005). This is likely to be caused by the low copy numbers of components
including DNA and key regulatory molecules, leading to stochastic effects (Elowitz
et al. 2002). A significant stochastic cell-to-cell variation in concentrations of the
E. coli chemotaxis signalling proteins has regularly been referred to within the lit-
erature (Emonet and Cluzel 2008; Korobkova et al. 2004; Levin et al. 1998; Li and
Hazelbauer 2004; Park et al. 2010; Spudich and Koshland 1976). It has also been sug-
gested that, when faced with cell-to-cell variation, reliable signal processing systems
will be able to maintain key features (Steuer et al. 2011). A number of features, such as
precise adaptation, have been shown to be robust inE. coli chemotaxis signalling (Alon
et al. 1999; Barkai and Leibler 1997). There are, however, numerous consequences
associated with this stochastic variation discussed within the literature (Barkai and
Leibler 1997). Most commonly studied are the effects of variation in the concentra-
tions of proteins CheB and CheR, those directly involved in adaptation. In studying
these effects, it was noted that they have a significant impact on the adaptation times
of cells (Emonet and Cluzel 2008), a feature noticeable within results obtained here
(Fig. 8). It has also been shown that varying the total signalling protein concentra-
tions can result in different steady-state phosphorylation levels (Levin et al. 1998).
This was observed within our work, which suggests that the sharing of phosphoryl
groups between CheB and CheY may be important in the occurrence of numerous
phenomena, including oscillatory behaviour.

In terms of a wider picture, cell-to-cell variability coupled with the signalling
network structure could be vital for population survival, from both an evolutionary
perspective as well as in terms of pure survival, especially for those cells subjected to
a wide range of environmental conditions (Bitbol and Wingreen 2015; Dufour et al.
2016; Edgington and Tindall 2015; Frankel et al. 2014; Spudich and Koshland 1976;
Waite et al. 2016). We believe our work demonstrates that total protein concentration
is an important factor in affecting the temporal response of an intracellular signalling
cascade. It suggests that three key ingredients are required for determining the individ-
ual cellular response: (i) the protein–protein network structure; (ii) the stoichiometry
and kinetic rate values; and (iii) the total concentration of the constitutive elements,
in this case proteins. We would expect these principles to be relevant in explaining
similar phenomena within other biological systems. The first two of these aspects are
well-founded results within the analysis of signalling cascades (Kollmann et al. 2005).
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The third allows us to determine how the transient cellular response will vary given
different starting conditions of the signalling cascade, namely protein concentration
in this example. Thus, whilst network signalling structure and stoichiometry may be
universal to a species, it is the variation in the total protein concentration that infers
individuality and response to their environment by defining their own equilibrium
protein concentrations and how they will return to them (e.g. oscillatory, damped or
monotonic). This may have evolutionary advantages in that cells can respond differ-
ently to external factors, thus ensuring certain members of a population may survive
for a given set of conditions, whereas others may not, thereby ensuring the overall
survival of the species. Results obtained here indicate that the simplification of using
population average values may mask the inherent effects of cell-to-cell variability. It
would therefore seem sensible, in addition to studying population behaviour using
average values, to consider the potential effects of cell-to-cell variation when con-
sidering transient behaviour in cellular systems. However, further work is required to
identify the specific benefits (if any) of this phenomenon.
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