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Abstract Current protocols for delivering radiotherapy are based primarily on tumour
stage and nodal and metastases status, even though it is well known that tumours
and their microenvironments are highly heterogeneous. It is well established that the
local oxygen tension plays an important role in radiation-induced cell death, with
hypoxic tumour regions responding poorly to irradiation. Therefore, to improve radia-
tion response, it is important to understand more fully the spatiotemporal distribution
of oxygen within a growing tumour before and during fractionated radiation. To this
end, we have extended a spatially resolved mathematical model of tumour growth,
first proposed by Greenspan (Stud Appl Math 51:317–340, 1972), to investigate the
effects of oxygen heterogeneity on radiation-induced cell death. In more detail, cell
death due to radiation at each location in the tumour, as determined by the well-known
linear-quadratic model, is assumed also to depend on the local oxygen concentra-
tion. The oxygen concentration is governed by a reaction-diffusion equation that is
coupled to an integro-differential equation that determines the size of the assumed
spherically symmetric tumour. We combine numerical and analytical techniques to
investigate radiation response of tumours with different intratumoral oxygen distri-
bution profiles. Model simulations reveal a rapid transient increase in hypoxia upon
regrowth of the tumour spheroid post-irradiation. We investigate the response to dif-
ferent radiation fractionation schedules and identify a tumour-specific relationship
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between inter-fraction time and dose per fraction to achieve cure. The rich dynam-
ics exhibited by the model suggest that spatial heterogeneity may be important for
predicting tumour response to radiotherapy for clinical applications.

Keywords Fractionated radiotherapy · Avascular tumours · Moving boundaries ·
Hypoxia

1 Introduction

Cancer remains one of the main causes of mortality worldwide, with an estimated
8.2 million deaths in 2012 (Torre et al. 2015). Of the millions of people diagnosed
with some form of cancer each year, about half will receive radiotherapy as part of
their treatment (Fowler 2006). Typically, radiation is delivered to the tumour as a
series of small doses, or fractions, administered over a period of several days or weeks
in order to limit the toxic side effects to healthy cell populations. The conventional
fractionation schedule for most tumours, where a dose of approximately 2 Gy (Gray)
is delivered once a day Monday to Friday up to a total of 50–70 Gy, has remained
the standard of care for many years (Ahmed et al. 2014; Marcu 2010). While altered
schemes, such as hyperfractionation, accelerated fractionation and hypofractionation,
have been proposed for certain indications, the selection of an optimal fractionation
protocol for a particular tumour would clearly benefit from a more individualised
approach. In particular, beyond tumour location and stage, patient-specific factors
that may be important in determining response to a particular treatment are currently
not considered. It is in this regard that mathematical modelling has the potential to
play an important role, identifying key factors that determine treatment outcomes and
ultimately identifying patient-specific treatment protocols.

Tumours differ in their responses to irradiation, with radiosensitivity being under-
stood to be an intrinsic property of the cell population that could be estimated from
molecular analysis of biopsy samples (Eschrich et al. 2009). Other factors that affect
a tissue’s response to radiotherapy include repopulation between radiation doses, tis-
sue re-oxygenation and redistribution of cells within the cell cycle (Thrall 1997). For
rapidly proliferating tumours in particular, repopulation between fractions of radiation
is important. For tumours containing larger regions of hypoxia, re-oxygenation may
play a pivotal role. A more detailed description of the underlying radiobiology can be
found in Joiner and van der Kogel (2009).

Due to the difficulties of studying tumours in vivo, such effects are often investi-
gated experimentally using in vitro multicellular tumour spheroids. Tumour spheroids
represent a controlled environment of intermediate complexity between 2D culture
media and in vivo models in which important insight can be gained about the tumour
micro-environment and the effect of therapies on a growing tumour (Carlson et al.
2006; Hirschhaeuser et al. 2010; Mueller-Klieser 1987; Sutherland et al. 1981). How-
ever, tumour spheroid growth is avascular with a typical diameter of less than 5mm,
so while useful for calibrating mathematical models, parameters derived from tumour
spheroids may need adjustment before they can be used to simulate in vivo tumours.
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Themostwidely adoptedmathematicalmodel of radiotherapy response is the linear-
quadratic (LQ) model, which is observed to correspond well with survival curves
obtained experimentally from clonogenic assays (Joiner and van der Kogel 2009). We
note that although the LQmodel is empirical, mechanistic models have been proposed
to explain it (Sachs et al. 1997; Nilsson et al. 1990; Joiner and van der Kogel 2009). In
the LQ model, the survival fraction, sf, of tumour cells after a dose, d Gy, of radiation
is given by

sf(d) = e−αd−βd2 , (1)

where α (Gy−1) and β (Gy−2) are intrinsic radiosensitivity parameters (Fowler 2006;
Sachs et al. 1997; Withers 1999; O’Rourke et al. 2009). Values for α and β may
differ significantly between tumours and patients. The α/β (Gy) ratio is often used to
characterise the sensitivity of a particular tissue type to fractionation. Values of α/β

can fall as low as 1 Gy for late-responding tissues such as prostate cancer, and reach as
high as 20 Gy for early-responding, rapidly proliferating tissues such as head and neck
cancer (Withers 1999). The LQ model is frequently incorporated into more detailed
tumour models as an instantaneous effect (McAneney and O’Rourke 2007; Prokopiou
et al. 2015).

Many different mathematical models and methodologies have been used to study
tumour growth. Among the simplest of these are ordinary differential equation (ODE)
models that aim to qualitatively capture observed growth dynamics. Tumours of small
volume typically grow exponentially, and their growth rates decelerate as microenvi-
ronmental factors such as limited space and nutrient availability become important,
which leads ultimately to sigmoidal patterns of growth (Sachs et al. 2001; McAneney
and O’Rourke 2007). Popular ODE models include the logistic and Gompertz growth
models where the volume-saturation limit is represented by the carrying capacity, K .

In many existing models of (avascular) tumour growth, the tumour is assumed to
be spatially homogeneous. Such phenomenological models contain few parameters
and do not account for complex underlying biological interactions.While suchmodels
may provide limited biological insight, the ease with which model parameters may
be estimated from limited clinical data makes them attractive for making predictions
about radiotherapy response and identifying personalised fractionation protocols in
the clinic (Prokopiou et al. 2015).

A variety of more complex, spatially resolved, models have been proposed in order
to provide more mechanistic insight, often reflecting the heterogeneous nature of
growing tumours. In more detail, as a tumour grows, it will typically develop hypoxia
and necrosis in regions where oxygen or nutrient supply is inadequate. Multicellu-
lar, avascular tumour spheroids are used as in vitro models to study, in a controlled
environment, effects observed in vivo (Carlson et al. 2006; Hirschhaeuser et al. 2010;
Mueller-Klieser 1987; Sutherland et al. 1981; Folkman and Hochberg 1973). In a
similar manner, it is natural to develop mathematical models for avascular tumour
spheroids before considering the more complex case of vascular tumour growth.

One of the simplest spatially resolved models of avascular tumour growth was
proposed in Greenspan (1972). In the Greenspan model, under the assumption of
spherical symmetry, the outer tumour radius evolves in response to a single diffusible,
growth-rate-limiting nutrient, commonly taken to be oxygen. Internal free boundaries,
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decomposing the tumour spheroid into a central necrotic core, an outer proliferating
rim and an intermediate hypoxic annulus, are identified as contours of the oxygen
profile across the tumour.

Under certain simplifying assumptions, Greenspan’s model can be reduced to a
coupled system of ODEs and algebraic equations. Most other spatially resolved con-
tinuum models are formulated as systems of partial differential equations (PDEs).
Such approaches include frameworks from multiphase modelling and morphoelastic-
ity. Multiphase models consider a mixture of two or more continuum constituents,
or phases, which collectively comprise the tumour environment. Systems of PDEs
are obtained by applying mass and momentum balances to each phase and making
suitable constitutive assumptions about their mechanical properties and interactions
(Breward et al. 2003; Byrne et al. 2003; Preziosi and Tosin 2009). Morphoelastic mod-
els of tumour growth provide a theoretical framework within which to study biological
tissues for which growth and elasticity are inter-related (Araujo and McElwain 2004).

While incorporating more biological detail, these more sophisticated approaches
typically involve more parameters that may be difficult to estimate in practice. In this
paper, we present a simple spatially resolved model for tumour spheroid growth and
response to radiotherapy in order to investigate the effects of spatial heterogeneity.
In Sect. 2, we develop the model, extending Greenspan’s original spatial model for
tumour spheroid growth (Greenspan 1972) to include radiation effects. In Sect. 3.1,
we numerically solve the model equations and discuss key features of the resulting
dynamics. We present further numerical simulations and model analysis in order to
understand the tumour dynamics exhibited by themodel. In Sect. 3.2, we study tumour
regrowth following a single dose of radiation, and in Sect. 3.3, we consider the long-
term behaviour of a tumour for different fractionation schedules.

2 Model Development

In this section, we introduce a spatial model of avascular tumour growth originally
presented in Greenspan (1972). Althoughmany spatially resolvedmodels that account
for tumour growth and hypoxia have been proposed, a significant portion of these are
based upon Greenspan’s original work, and it remains a simple, yet useful starting
point for investigating the effect of hypoxia on tumour responses to radiotherapy.
Accordingly, in this paper we extend Greenspan’s model to account for the effects of
radiation and arrive at a new model for tumour response to radiotherapy.

2.1 Summary of Greenspan’s Original Model

We consider the growth of a radially symmetric, avascular tumour spheroid in
response to a single, growth-rate-limiting, diffusible nutrient, here oxygen. Following
Greenspan 1972, we assume that growth inhibition is caused by nutrient deficiency
rather than a tumour-derived inhibitory factor. We denote the outer tumour radius by
R(t) and the oxygen concentration at a distance 0 ≤ r ≤ R(t) from the tumour centre
by c(r, t). We suppose that the oxygen concentration is maintained at a constant level,
c∞, on r = R(t). Oxygen diffuses on a much shorter timescale than tumour growth,
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Fig. 1 Diagrams highlighting the distinct regions within a tumour spheroid and how they are influenced by
the oxygen profile. A central necrotic core (0 < r < RN ) is surrounded by a hypoxic annulus (RN < r <

RH ) and an outer proliferating rim (RH < r < R). The moving boundaries r = RN (t), RH (t) and R(t)
delineate these regions. a Image of an in vitro tumour spheroid highlighting the distinct micro-environments
(adapted from Folkman and Hochberg 1973), b schematic of the corresponding model tumour spheroid
geometry

taking∼ 10 s to diffuse 100µmby comparison with a tumour growth periodmeasured
in days (Greenspan 1972). As such we assume that the oxygen concentration is in a
quasi-steady state. Internal free boundaries at r = RH (t) and r = RN (t) are defined
implicitly and denote contours on which the oxygen concentration attains the thresh-
old values cH and cN , respectively. These interfaces decompose a well-developed
tumour into a central necrotic core (0 < r < RN ) where c ≤ cN , and an outer,
oxygen-rich region (RH < r < R) in which cH < c, these regions being separated
by a hypoxic annulus (RN < r < RH ) in which cN < c < cH (see Fig. 1 for a
schematic).

Greenspan’s original model (Greenspan 1972) describes how the dependent vari-
ables c(r, t), R(t), RH (t) and RN (t) evolve over time and can be written in
dimensionless form as follows:

0 = 1

r2
∂

∂r

(
r2

∂c

∂r

)
︸ ︷︷ ︸

diffusion term

− Γ H(c − cN )︸ ︷︷ ︸
oxygen consumption

, (2)

1

4π

d

dt

(
4πR3

3

)
︸ ︷︷ ︸

rate of change of tumour volume

=
∫ R

0

⎡
⎢⎣ cH(c − cH )︸ ︷︷ ︸
cell proliferation term

− λA − λN H(cN − c)︸ ︷︷ ︸
cell death term

⎤
⎥⎦ r2dr, (3)

RH = 0 if c > cH ∀r and otherwise c(RH , t) = cH , (4)
RN = 0 if c > cN ∀r and otherwise c(RN , t) = cN , (5)
∂c

∂r
= 0 at r = 0, (6)

c = c∞ at r = R, (7)
R(0) = R0, (8)
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where H(.) is the Heaviside function [H(x) = 1 for x > 0, and H(x) = 0 otherwise],
andΓ ,λA,λN , c∞, cH and cN are positive constants,withΓ ,λA andλN corresponding
to rates of oxygen consumption, apoptosis andnecrosis, respectively. Equations (2)–(8)
may be reduced to a system involving a single ODE for R(t) and algebraic equations
for RH (t) and RN (t). Analysis of the resulting equations and details of the non-
dimensionalisation may be found in Greenspan (1972) and Byrne (2012), and for
further explanation of the underlying model assumptions, see Appendix A.1. Figure
2 shows how the size and composition of the tumour spheroid evolve for a typical
simulation of the Greenspan model using the dimensionless parameter values in Table
1. A table of dimensional parameter values is given in Appendix A.1. Where possible,
parameter estimates are taken from the literature; however, we note that some values
pertain to estimates used in other modelling scenarios. In this paper, specific parameter
combinations serve only to highlight the dynamics of the model and, in particular,
the resulting model analysis is independent of the choice of parameter values. The
influence of some of the parameters on the growth dynamics and steady state tumour
composition is explored in Appendix A.2.

2.2 Incorporating Radiotherapy into the Greenspan Model

We adapt Greenspan’s model to account for radiotherapy by assuming that when a
dose of radiotherapy is applied, it causes an instantaneous dose-dependent death of
viable cancer cells and, thus, a change in the size and composition of the tumour.
The efficacy of the radiation and subsequent cell death depends on the local oxygen
concentration. As such, we determine the radiation-induced cell death in each tumour
region separately. We denote by R±, R±

H and R±
N the radii immediately before (−) and

after (+) radiotherapy in the proliferating, hypoxic and necrotic tumour compartments.

2.2.1 Radiation-Induced Cell Death and the Linear-Quadratic Model

We use the linear-quadratic model (Fowler 2006; Joiner and van der Kogel 2009;
Enderling et al. 2010) to account for cell kill due to radiotherapy in thewell-oxygenated
outer rim, RH < r < R, so that the volume survival fraction, sf(d), immediately after
a dose d of radiation is given by

sfnormoxic = [volume of normoxic region after radiotherapy]
[volume of normoxic region before radiotherapy]

= exp
(
−αd − βd2

)
, (9)

for radiosensitivity parameters α and β. Values of α/β vary markedly, with typical
values falling in the range of 3–10 Gy. However, extremal values of 1 and 20 Gy have
been reported for late-responding tissues such as prostate cancer, and early-responding,
rapidly proliferating tissues such as head and neck cancer, respectively (Withers 1999).
Typical radiosensitivity parameters for rapidly proliferating, early-responding tumours
are shown in Table 2.
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Fig. 2 Results from a typical simulation of Eqs. (2)–(8) showing how the size and composition of the
tumour spheroid change over time (parameter values in Table 1). Key: blue solid line—proliferating cells,
red dashed line—hypoxic region, yellow dot/dashed line—necrotic core. The schematics represent the
tumour compositions C1–C3 as the spheroid progresses through different stages of growth

Table 1 Dimensionless parameter values for tumour spheroid growth model

Parameter Symbol Value Source

Oxygen consumption rate Γ 1.1051 Grimes et al. (2014)

Oxygen concentration at tumour boundary c∞ 1 Grimes et al. (2014)

Hypoxic oxygen threshold cH 0.1 Grimes et al. (2014)

Anoxic oxygen threshold cN 0.008 Grimes et al. (2014)

Apoptosis constant λA 0.32 Frieboes et al. (2007)

Necrosis constant λN 0.0061 Schaller and Meyer-Hermann (2006)

When exposed to ionising radiation, the potent oxygen free radicals that form in
well-oxygenated regions increase the amount of DNA damage by up to a factor of
3 when compared with hypoxic tumour regions (Alper and Howard-Flanders 1956).
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Table 2 Typical radiosensitivity parameters

Parameter Value Source

α (Gy−1) 0.35 Fowler (2006), Muriel (2006), Sachs et al. (2001)

α/β (Gy) 10 Withers (1999)

OER (dimensionless) 3 Carlson et al. (2006)

FollowingCarlson et al. (2006),we incorporate the oxygen enhancement ratio,OER, to
account for this effect. Radiosensitivity parameters are typically quoted for normoxic
conditions. As such we take the common approach and use the OER as a constant
factor (taken to be equal to 3 in the presented simulations) that reduces the intrinsic
radiosensitivity parameters of tumour cells, α and β, in hypoxic regions. This creates a
discontinuity in the response to radiotherapy at r = RH . The volume survival fraction
immediately after a dose of radiation is delivered to a population of hypoxic cells is
given by

sfhypoxic = [volume of hypoxic region after radiotherapy]
[volume of hypoxic region before radiotherapy]

= exp

(
− α

OER
d − β

OER2 d
2
)

. (10)

There is no consensus in the literature about how to modify the ‘quadratic’ compo-
nent of cell death; however, the form used in Eq. (10) affords the interpretation of the
OER as the multiplying factor for the dose escalation required under hypoxia in order
to achieve the same cell kill as under normoxic conditions. We note that, in practice,
this effect is likely to depend continuously on the local oxygen concentration. A con-
tinuous functional form for the OER (OER = OER(c)) was proposed in Alper and
Howard-Flanders (1956). For realistic parameter regimes, simulations using the con-
tinuous OER presented in Alper and Howard-Flanders (1956) and the discrete OER
presented here did not significantly vary (results not shown). For these reasons, we
restrict attention to the discrete OER stated above.

We assume further that dead material within the necrotic core is unaffected by
radiation and so we impose that R+

N = R−
N .

Combining these assumptions, we deduce that, for a well-developed tumour
spheroid (Fig. 2, case C3) with 0 < R−

N < R−
H < R−, a dose d of radiation gives a

total volume change of

[V ]+− = 4π

3
(R+3 − R+3

N )︸ ︷︷ ︸
viable volume after radiotherapy

− 4π

3
(R−3 − R−3

N )︸ ︷︷ ︸
viable volume before radiotherapy

= − 4π

3
(R−3 − R−3

H )(1 − sfnormoxic)︸ ︷︷ ︸
loss from proliferating rim

− 4π

3
(R−3

H − R−3

N )(1 − sfhypoxic),︸ ︷︷ ︸
loss from hypoxic region
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Fig. 3 Schematic of the model tumour spheroid post-radiotherapy. Dashed black line represents new
position of the internal contour c = cN and shows the resulting mismatch between this contour and the
boundary of the necrotic core, RN . We note the absence of a hypoxic region in the bottom case

which, on rearrangement, yields the following expression for R+ in terms of R−, R−
H ,

and R−
N = R+

N = RN :

R+3 =
(
R−3 − R−3

H

)
sfnormoxic +

(
R−3

H − R3
N

)
sfhypoxic + R3

N . (11)

The oxygen concentration profile associated with the new tumour structure can
be determined [Eq. (2)] and RH defined implicitly as before [see Eq. (4)]. We note
that while not all hypoxic tumour cells will be killed from a single radiotherapy
fraction (sfhypoxic > 0), the instantaneous volume loss due to irradiation and the
subsequent re-oxygenation of the tumour spheroid may result in a post-radiotherapy
tumour composition without a hypoxic region.

Two cases can arisewhen awell-developed, 3-layer tumour is irradiated (see Fig. 3):

(i) cN < c(R+
N ) < cH - irradiated tumour is a fully developed tumour spheroid with

3 layers;
(ii) cN < cH < c(R+

N )- irradiated tumour has a necrotic core, but no hypoxic annulus.

Since the necrotic core is assumed to be unaffected by radiotherapy, these are the
only possible options. We have already described how a tumour spheroid of case (i)
responds to radiation [Eq. (11)]. If a tumour with a pre-radiotherapy composition as
in case (ii) is irradiated, then the corresponding volume change is given by

[V ]+− = −4π

3
(R−3 − R

3

N )(1 − sfnormoxic),

which, on rearrangement, yields the following expression for R+ in terms of R− and
RN

R+3 =
(
R−3 − R3

N

)
sfnormoxic + R3

N . (12)
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2.2.2 Reconciling Pre- and Post-radiation Tumour Growth

In the normal growth regime without radiotherapy, RN is defined implicitly by the
oxygen concentration [see Eq. (5)]. When the tumour volume is reduced due to radi-
ation, the oxygen concentration at the centre of the tumour increases and the location
of the interface on which c = cN will shift towards the tumour centre or disappear. As
the necrotic core is unaffected by radiation, c(R+

N ) > cN and the growth of the tumour
spheroid immediately post-radiotherapy does not follow the original dynamics in the
absence of treatment.

Between fractions of radiotherapy, repopulation of the tumour occurs. The tumour
cells proliferate and die as before, however, while c(RN ) > cN no new material is
added to the necrotic core, and so the existing necrotic material simply decays at the
rate λA + λN . In this case, RN evolves according to

RN = RN (tfraction)exp

(
−1

3
(λA + λN )(t − tfraction)

)
, (13)

where tfraction is the time of the last fraction delivered for which c(RN ) = cN , and
RN (tfraction) is the radius of the necrotic core upon irradiation. As such, prior to treat-
ment with radiotherapy at t = tfraction the tumour composition is consistent with
the Greenspan growth dynamics, while Eq. (13) governs the evolution of RN post-
irradiation.

Equations (2)–(4), (6)–(8) and (13) drive growth while c(RN ) > cN , until the
necrotic radius is such that c(RN ) = cN , at which time the standard Greenspan model
holds and growth is driven by Eqs. (2)–(8).

2.3 Summary: Statement of Full Model (Dimensionless)

The tumour growthmodel combined with fractionated radiotherapy (dose di Gy deliv-
ered at times t = ti , i = 1, 2, . . .) can be summarised as follows:

0 = 1

r2
∂

∂r

(
r2

∂c

∂r

)
− Γ H(c − cN ), (14)

1

4π

d

dt

(
4πR3

3

)
=

∫ R

0
[cH(r − RH ) − λA − λN H(RN − r)]r2dr, (15)

RH = RN if c > cH ∀r and otherwise c(RH , t) = cH , (16)

RN = RN (ti )exp

(
−1

3
(λA + λN )(t − ti )

)
if c(RN ) > cN and ti < t < ti+1,

RN = 0 if c > cN ∀r and t < ti ∀i, c(RN , t) = cN otherwise (17)
∂c

∂r
= 0 at r = 0, (18)

c = c∞ at r = R, (19)

R(0) = R0. (20)
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Continuity conditions for c and ∂c
∂r across r = RH , RN are also imposed.

Radiotherapy, of dose di applied at times t = ti , effects an instantaneous volume
change. The survival fraction of the normoxic tumour cell population is given by

sfnormoxic = exp(−αdi − βd2i ), (21)

while the survival fraction in hypoxic regions is given by

sfhypoxic = exp

(
− α

OER
di − β

OER2 d
2
i

)
. (22)

The necrotic core of the tumour spheroid is unaffected by radiotherapy. Immediately
after a dose of radiation, the outer tumour radius is given by

R+3 =
(
R−3 − R−3

H

)
sfnormoxic +

(
R−3

H − R
3

N

)
sfhypoxic + R3

N . (23)

NB:We subtly alter the equation for RH from the original Greenspan model so that
RH = RN if the threshold for hypoxia, cH , is not reached. This does not change the
dynamics in the case of untreated tumour growth, but ensures that the ordering of the
tumour boundaries is conserved in the post-radiotherapy regime (0 ≤ RN ≤ RH ≤ R).

3 Investigation of Model Behaviour

We now consider the effects of various treatment protocols on a given tumour under
this model. In Sect. 3.1, we solve the model numerically and highlight key features
of the simulations for different parameter combinations. We explore these features in
more detail in the following sections. In Sect. 3.2, we study tumour regrowth following
a single dose of radiation, and in Sect. 3.3 we consider the long-term behaviour of a
tumour for different fractionation schedules.

3.1 Numerical Simulation Results

For each tumour growth regime, the oxygen profile c(r, t) may be solved analytically.
Equations (14)–(23)may then be reduced to anODE for R and two algebraic equations
for RH and RN , as described in Appendix A.1. We solve the resulting system of
equations numerically using a finite difference scheme implemented in MATLAB.

In Fig. 4a, we present results showing a typical tumour response to a conventional
fractionation schedule (2 Gy, 5 days / week) simulated for 6 weeks using the parameter
values in Tables 1 and 2. Cell death induced by the first fraction of radiation delivered
at t = 1 results in the loss of the hypoxic annulus. While c(RN ) > cN , the necrotic
core decays exponentially, as defined by Eq. (13). Figure 5a shows how the oxygen
concentration in the necrotic core evolves throughout the first week of the radiotherapy
protocol. We see the mismatch between c(RN ) and cN following delivery of the first
fraction (at t = 1). As the tumour grows between fractions, oxygen concentration in
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Fig. 4 Two solution of Eqs. (14)–(23) in response to a standard fractionation protocol (2 Gy fractions
delivered dailyMonday–Friday, shown as shaded regions) simulated for 6weeks.Overall tumour radius,R—
blue solid line; hypoxic radius, RH—red dashed line; radius of the necrotic core, RN—yellow dot/dashed
line. In a, we use the parameter values given in Tables 1 and 2 with an initial tumour radius of 3. In
b, we simulate irradiating a tumour spheroid with lower rates of apoptosis (λA = 0.1213) and oxygen
consumption (Γ = 0.3032)

Fig. 5 Two plots highlighting key behaviours in the simulations shown in Fig. 4 using the same parameter
values. a Blue line shows oxygen concentration (denoted c in our model) within the necrotic core during the
first week of treatment for the simulation in Fig. 4a. The oxygen thresholds for hypoxia, cH , and necrosis,
cN , are shown by dashed red and yellow lines, respectively. b Change in average tumour survival fraction
following successive doses of radiotherapy corresponding to the simulation presented in Fig. 4b. Red points
correspond to the survival fraction for each fraction of radiotherapy delivered, blue line added for ease of
visualisation (NB. y-axis not [0,1])

the necrotic core decreases, while each fraction of radiation and the corresponding
volume loss results in re-oxygenation.

For this parameter combination, radiotherapy results in a tumour volume at the
end of treatment that is sufficiently small such that the spheroid is almost entirely
composed of proliferative cells. In particular, the necrotic core has decayed so that
RN � R.

Figure 4b shows how the system dynamics change when a tumour with a much
lower apoptotic rate (λA) is exposed to the standard fractionation protocol. The slower
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rate of apoptosis results in a larger steady state tumour in the absence of radiotherapy.
Similarly, a larger tumour volume is supported throughout treatment and a more grad-
ual volume reduction is observed. In this case, the hypoxic annulus reappears during
treatment (as observed during the weekend breaks in the protocol) since the necrotic
core decays such that c(RN ) = cH before the end of the fractionation protocol. A
rapid transient increase in RH is observed when the hypoxic annulus reappears. We
characterise this behaviour in Appendix A.3 where we show that RH increases like√
t on this short timescale.
For the simulation in Fig. 4b, a tumour spheroid comprising a necrotic core and

transient hypoxia persists at the end of treatment. The tumour volume appears to be
evolving towards a periodic orbit and, as such, the model predicts that continuing
the same fractionation schedule indefinitely will not yield significant further volume
reduction.

Since the tumour composition changes dynamically throughout treatment, the effi-
cacy of each radiation fraction also varies. The survival fraction changes by about
10% from the start to the end of treatment due to the shrinkage of the necrotic core
(Fig. 4b). In this case, a characteristic shape within the curve in Fig. 5b is repeated
weekly due to theweekly oscillations in tumour composition, with the spike associated
with the rapid reappearance of hypoxia. Such dynamic behaviour clearly depends on
tumour-specific parameters and highlights the additional details that can be observed
when spatial effects are included in a mathematical model (c.f. difference in tumour
composition between Fig. 4a, b).

3.2 Single Hit Regrowth

We now consider the effect of irradiating a small tumour spheroid composed entirely
of proliferating cells and its subsequent regrowth. This situation is relevant for tumours
of radius R such that 0 < R2 < 6

Γ
(c∞ − cH ) and RH = RN = 0, since

when R =
√

6
Γ

(c∞ − cH ), c(0) = cH and therefore larger tumours will contain
a hypoxic region and/or necrotic core. Solving Eq. (14) subject to boundary condi-
tions (18)–(19), we deduce that the oxygen profile for this tumour composition is given
by

c(r, t) = c∞ − Γ

6
(R2 − r2). (24)

Substituting from Eq. (24) into Eq. (15), with RH = RN = 0, we arrive at the
following ODE for R(t):

dR

dt
= R

3

(
c∞ − Γ R2

15
− λA

)
, (25)

with solution
R

R0
=

√√√√ c∞ − λA

Γ R2
0

15 + A0e− 2
3 (c∞−λA)t

(26)
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where A0 = c∞ − λA − Γ R2
0

15 .
We can use Eq. (26) to calculate the time taken for a tumour spheroid of radius

0 < R̃2 < 6
Γ

(c∞ − cH ) following a single fraction of radiation of dose d to regrow to
its initial (i.e. pre-radiotherapy) size. The tumour radius immediately after irradiation
is given by γ (d)R̃, where γ (d) = exp(− 1

3 (αd + βd2)) is the survival fraction given
by the linear-quadratic formula. It is straightforward to show that the time, 	t , until
the tumour regrows to its original size is given by

	t = 3

2(c∞ − λA)
ln

⎡
⎣ c∞ − λA − γ 2Γ R̃2

15

γ 2(c∞ − λA − Γ R̃2

15 )

⎤
⎦ , (27)

where γ = γ (d). We assume that the parameters are such that the tumour spheroid
was growing pre-irradiation and therefore R2 < 15

Γ
(c∞ − λA) [from (25)]. In this

parameter regime, the logarithm in Eq. (27) is defined and 	t > 0. By extension, we
require that c∞ > λA since otherwise the tumour spheroid shrinks for all values of R̃
and a viable tumour of any size cannot be supported. We note for future reference that

	t → αd + βd2

c∞ − λA
as R̃ → 0. (28)

Differentiating Eq. (27) with respect to R̃, we obtain

d

d R̃
(	t) = Γ R̃

5

(1 − γ 2)(
c∞ − λA − Γ R̃2

15

) (
c∞ − λA − γ 2 Γ R̃2

15

) . (29)

Therefore, at least for small R̃, d	t
d R̃

∣∣∣
γ (d)

> 0, and so the regrowth time, 	t , is an

increasing function of R̃ for fixed dose d. This holds for all 0 < R̃2 < 6
Γ

(c∞ − cH ) if
the inequality 3c∞−5λA+2cH > 0 is satisfied.Then,Eq. (27) represents an increasing
family of curves where the minimum bounding curve is given by Eq. (28). That is, for

0 < R̃1 < R̃2 <

√
6
Γ

(c∞ − cH ) and fixed dose d, 	t (d; R1) < 	t (d; R2).

Returning to Eq. (27), we see that for an initial radius R̃, a strategy that combines
a dose d with an inter-fraction time less than 	t will result initially in a net shrinkage
of the tumour throughout treatment (i.e. the tumour volume is smaller at the delivery
of each radiation fraction). Conversely, if we wait longer than 	t to re-irradiate, then
the tumour will have grown larger than its original size. Thus, Eq. (27) defines a curve
in the (d,	t)-plane for treatment protocols which give rise to periodic behaviour for
a given initial tumour radius R̃, since the cell kill induced by radiotherapy is exactly
balanced by the regrowth between fractions. This curve is indicated in Fig. 6. We note
that the curve describing protocols that yield periodic behaviour becomes concave for
large R, and in particular, as R tends to its steady state value, R∗ say, then for a given
dose, d > 0, 	t (d) → ∞.
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Fig. 6 Radiation dose and fractionation-dependent behaviour for a tumour spheroid composed of prolif-
erating cells. Line for periodic behaviour given by Eq. (27). Plots on the right show response to 5 fractions
of radiotherapy given by the protocols corresponding to points P1, P2 and P3.

3.3 Periodic Surface in ‘Treatment Space’

In the previous section, we investigated the response of tumours of fixed initial radius
R̃ to different fractionation protocols as specified by a dose, d, and inter-fraction time,
	t . The (d,	t)-plane can be partitioned into regions in which the tumour volume
increases or decreases during treatment. However, we note that the location of these
regions depends on the tumour radius at the time of irradiation, R̃. As such, when
considering the behaviour of a tumour throughout an entire course of radiotherapy, it
is not a line in the (d,	t)-plane that we are interested in, but a surface in ‘treatment
space’, T ⊂ R

3, with components (R, d,	t).
For a protocol delivering n fractions of radiation, we can identify the response

of a given tumour with a discrete trajectory, (R(ti ), di ,	ti ) ∈ T, through treatment
space.Note,we consider the trajectory as discrete points pre-irradiation so that R(ti ) =
R(ti )− in our previous notation.Here, ti , di and	ti are the time, dose and inter-fraction
time, respectively, of the i th fraction, for i = 1, . . . , n. The union of the curves in the
(d,	t)-plane determining periodicity defines a surface, S, in T (see Fig. 7a). Now, as
a tumour progresses through the course of radiotherapy, points on its trajectory that
lie above this surface indicate net growth of the tumour by the time of delivery of the
next radiation dose, while points below the surface result in a more desirable decrease
in tumour volume. Therefore, for a given tumour spheroid, S defines a surface that
partitions T into treatment protocols that cannot halt tumour progression and those
that lead to tumour decay.

With this understanding, more general statements about the outcome of different
fractionation protocols can be made. We first consider dosing schedules in which the
same dose d is administered at constant intervals 	t . In this case, if a point in T lies
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Fig. 7 a Surface, S, corresponding to protocols giving rise to periodic treatment responses. b Simulated
trajectories (black lines) in ‘treatment space’, T ⊂ R

3 with components (R, d, 	t), for two different
constant dosing schedules (fractions plotted as red points) applied to the same tumour spheroid (i.e. same
model parameters). A dose of 3 Gy every 3 days (top trajectory) results in a tumour that grows until it
reaches a periodic state, while a dose of 2 Gy delivered daily (bottom trajectory) is sufficient to drive
the tumour volume arbitrarily close to zero. The surface describes treatment protocols which give rise to
periodic behaviour

above S, then the tumour spheroid will grow until it converges to a point on S, at which
time it becomes periodic (Fig. 7b).

BelowS, the outcome of radiotherapy depends on the boundary curve of S as R → 0
[see Eq. (28)]. If the fractionation schedule lies above this curve in the (d,	t)-plane,
then the system will eventually converge to the corresponding point on S. However,
for d and 	t values below this curve the tumour decays to arbitrarily small volumes
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(Fig. 7b). We note that Eq. (28) still holds for this analysis even though its derivation
requires an initial tumour composed entirely of viable cells. This is the case since, in
the model, necrotic material is only created via nutrient starvation and not as a result
of irradiation. As such, for ongoing treatment protocols that result in a decreasing
tumour volume, R � RN as t → ∞.

We can extend this concept to more general treatment schedules. If there exists
m ∈ N such that for all i > m the point (di ,	ti ) of the i th fraction lies below the curve
given by Eq. (28), then treatment is sufficient to drive the tumour volume arbitrarily
close to 0. However, using Fig. 4b as an illustrative example, we observe a simulation
in which the weekend break of the standard fractionation protocol corresponding to
	t = 3 days gives rise to the periodic orbit.

When predicting how a tumour may respond to radiotherapy, two quantities of
interest are the potential volume doubling time, Tpot, and the survival fraction after 2
Gy of radiation, S2Gy, of the tumour. We translate these definitions into the model and
identify tumour characteristics for which the model would eventually predict regrowth
over the weekend.

The survival fraction at 2 Gy, S2Gy, for normoxic tumour cells is given by the
linear-quadratic formulation. In order to find an expression for Tpot, we consider the
tumour dynamics for small tumour volumes that are in an ‘exponential growth’ phase.
Linearising the model equations for small R, we obtain

dR

dt
∼ (c∞ − λA)

R

3
,

which yields a volume doubling time of

Tpot = ln 2

c∞ − λA
,

where the factor of 1
3 disappears when we convert from tumour radius to tumour

volume. Substituting these expressions into Eq. (28) for a standard 2 Gy dose, we
obtain

	t = − ln(S2Gy)
Tpot
ln 2

. (30)

We note that this expression holds for tumour growth models in which the growth
of small tumours is exponential and radiation-induced cell death is modelled as an
instantaneous volume loss.

If we now consider Eq. (30) in the context of the weekend break (	t = 3) within
the standard fractionation protocol, then we see that −Tpot ln(S2Gy) < 3 ln 2 defines
a class of tumour characteristics for which regrowth of the tumour over the weekends
impedes tumour decay (Fig. 8).

4 Discussion

In vivo tumours are highly heterogeneous cellular entities characterised by high
inter-patient variability. Allied to this, the local efficacy of radiotherapy delivered
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Fig. 8 Region for which tumours will eventually exhibit net growth over the weekend (shown in red), with
the bounding curve given by Eq. (30) for 	t = 3

to the tumour site is affected by a number of variables associated with the tumour’s
heterogeneous composition and micro-environment. In particular, the local oxygen
concentration can significantly influence radiation-induced cell death, with well-
oxygenated regions being shown to exhibit up to threefold greater radiosensitivity
than hypoxic tumour populations. With this in mind, in this paper we have presented a
simple, spatially resolved model in order to investigate the effects of tumour compo-
sition on radiotherapy response. Our model builds on the tumour growth model first
proposed by Greenspan (1972). We extend this to incorporate the effects of radiother-
apy taking into account spatially varying radiosensitivities.

Numerical simulations and mathematical analysis of the model reveal how the
tumour’s growth dynamics and spatial composition change throughout treatment. Het-
erogeneity within the tumour not only affects the initial response to radiotherapy, but
also how this response changes throughout the duration of the treatment protocol (see
Fig. 5b). For parameter regimes in which hypoxia re-emerges during treatment, a rapid
transient increase in thewidth of the hypoxic annulus is observed. This behaviour arises
naturally from themodel and the underlying process driving this phenomenon remains
to be elucidated. The model more generally also classifies protocols that may result in
tumour progression, a nonzero periodic tumour volume, or tumour decay. We identify
a surface in ‘treatment space’ dependent on tumour-specific growth and radiosensitiv-
ity parameters and determine that successful protocols correspond to those that remain
below this surface throughout treatment. The wide variety of dynamics observed sug-
gests that spatial heterogeneity may be important for simulating tumour response to
radiotherapy and, in particular, for making clinical predictions.

Themodel presented in this papermakes numerous assumptions and simplifications
about the underlying biology. For radiation-induced cell death, we take the common
approach of modelling this process as an instantaneous effect. However, the linear-
quadratic model was established to determine long-term clonogenic survival after
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radiotherapy. Biologically, cell death after radiation may occur via a number of dif-
ferent mechanisms, with many irradiated cells dying only after attempting mitosis
one or more times (Joiner and van der Kogel 2009). Consequently, radiation-induced
cell death may not elicit the instantaneous volume reduction modelled here. In future
work, we will model this process in more detail in order to describe the short term
response to radiotherapy and the corresponding spatial changes in tumour composi-
tion more accurately. Additionally, a more detailed model will allow us to relax the
restrictions of the spherically symmetric geometry associated with the current model,
making it more applicable to modelling vascular tumour growth and in vivo responses
to radiotherapy.

Radiation biology has a rich history of integrating theoretical and quantitative
approaches to advance biological studies and clinical concepts. From the simple
and widely used LQ model emerged the concepts of biologically equivalent dose
(BED) and tumour control probability (TCP) to guide the development of clinical frac-
tionation protocols. Different TCP models with increasing complexity, from simple
Poissonian TCP to stochastic birth-death processes, have recently been scrutinised,
and mathematical analysis suggests that simple models may be best positioned for
clinical utility (Gong et al. 2013). Clinical data are often insufficient to inform mathe-
matical models (Chvetsov et al. 2015). Both simple and more complex mathematical
models are facing numerous hurdles in the attempt to integrate them into radiation
oncology, and more work is needed to fully harness the potential of mathematical
modelling for precision radiation oncology (Rockne and Frankel 2017).

However, for a model to be useful in making patient-specific predictions in the
clinic, parametersmust be identifiable with respect to the limited clinical data typically
available. As such, current research in this area often focusses on phenomenological
ODE models with few parameters to be estimated. Typically, these models contain no
information about the spatial heterogeneity in tumour composition and radiotherapy
response. With this in mind, we also propose a comparison of the developed spatially
resolved model with these phenomenological approaches as future work. We aim to
identify situations in which the spatially resolved and spatially averaged models agree
well, and those in which there is a significant difference. The tumour composition
changes observed in model simulations suggests that averaged parameter values in
simple, phenomenological models may not sufficiently capture the tumour dynamics
during treatment for some tumour compositions and parameter combinations.

While more sophisticated models may be difficult to parametrise in practice, they
have the potential to increase biological insight and inform further modelling studies.
Spatially resolved models, such as the one presented in this paper and the future
work proposed to generalise some of the simplifying assumptions made here, may
aid in the development of alternative clinically focussed models which capture more
of the key features than existing phenomenological models. More complex models
incorporating more biological detail may also be used to generate data for in silico
testing of ODE models and model selection paradigms; comparing the quality of fit
and future predictions of a range of simple models against a known ‘ground-truth’.
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Appendix

A.1 Explanation of Greenspan’s Original Growth Model

Here, we provide further explanation of Greenspan’s original model for the nutrient-
limited growth of tumour spheroids (Greenspan 1972). We restate the equations for
the evolution of the nutrient concentration profile, c, and the tumour radii, R, RH and
RN .

0 = 1

r2
∂

∂r

(
r2

∂c

∂r

)
︸ ︷︷ ︸

diffusion term

− Γ H(c − cN )︸ ︷︷ ︸
oxygen consumption

, (31)

1

4π

d

dt

(
4πR3

3

)
︸ ︷︷ ︸

rate of change of tumour volume

=
∫ R

0

⎡
⎢⎣ cH(c − cH )︸ ︷︷ ︸
cell proliferation term

− λA − λN H(cN − c)︸ ︷︷ ︸
cell death term

⎤
⎥⎦ r2dr,

(32)

RH = 0 if c > cH ∀r and otherwise c(RH , t) = cH , (33)

RN = 0 if c > cN ∀r and otherwise c(RN , t) = cN , (34)
∂c

∂r
= 0 at r = 0, (35)

c = c∞ at r = R, (36)

R(0) = R0. (37)

In (31), we assume that the oxygen concentration within the tumour is regulated by
its diffusion across the tumour (with diffusion constant D) and consumption by the
tumour cells. We make the further assumption that both normoxic and hypoxic cells
consume oxygen at the same constant rate, Γ , and that cells in the necrotic core do
not consume oxygen. Since oxygen diffuses on a much shorter timescale than tumour
growth we assume that the oxygen concentration is in a quasi-steady state. Hence,
c(r, t) satisfies (31), where H(.) is the Heaviside function, with associated boundary
conditions (35) and (36) imposing symmetry at r = 0 and a Dirichlet boundary
condition at r = R(t).

We assume that rates of cell proliferation and death within the tumour are deter-
mined by the local oxygen concentration. Proliferation occurs at a rate proportional

123

http://creativecommons.org/licenses/by/4.0/


The Evolution of Tumour Composition During Fractionated… 1227

to c where there is sufficient oxygen supply (c > cH ). Both apoptosis and necrosis
contribute to cell death within the tumour, with apoptosis occurring at a constant rate
throughout the tumour and necrosis localised to the necrotic core (where c < cN ).
Degradation of the necrotic core is assumed to result in material that is freely perme-
able throughout the tumour spheroid. We assume that adhesion and surface tension
forces acting on the tumour cells maintain the shape of the tumour spheroid and
that these same forces push cells inwards to compensate for the outward flux of
necrotic material from the necrotic core. The evolution of R(t) is then given by the
mass balance in Eq. (32), with λA, λN > 0, accompanied by the initial condition
(37).

The radii at which the tumour becomes hypoxic and necrotic, RH and RN , respec-
tively, are determined as contours of the oxygen concentration profile [Eqs. (33) and
(34)]. For situations in which the tumour spheroid is small enough that one or both of
these contours do not exist, we define the corresponding radius to be 0.

An analytic solution can be found for c(r, t) that depends on R, RH and RN , and
so this system can be reduced to an ODE for R and algebraic equations for RH and
RN . The resulting equations in the case of a fully developed, 3-layer tumour spheroid
are given in Eq. (38)–(42). The system of equations for the earlier growth phases is
similar and can be obtained in the same manner.

c =
{
cN 0 < r < RN

cN + Γ
6r (r − RN )2(r + 2RN ) RN < r < R,

(38)

dR

dt
= R

3

[
cN

(
1 − R3

H

R3

)
−

(
λA + λN

R3
N

R3

)]

+ Γ R3

6

[
1

5

(
1 − R5

H

R5

)
− R2

N

R2

(
1 − R3

H

R3

)

+ R3
N

R3

(
1 − R2

H

R2

)]
, (39)

(
1 − RN

R

)2 (
1 + 2RN

R

)
= 6

Γ R2 (c∞ − cN ), (40)

(
1 − RN

RH

)2 (
1 + 2RN

RH

)
= 6

Γ R2
H

(cH − cN ), (41)

R(0) = R0. (42)

Figure 2 (main text) demonstrates the growth and various stages (labelled C1,
C2 and C3) of tumour spheroid composition under the Greenspan model using the
parameter values in Table 3. In using partial pressures of oxygen rather than concen-
tration, we follow Grimes et al. (2014) and use Henry’s law to convert between the
two, so that p = Ωc, with Ω = 3.0318 × 107 mmHgkgm−3. The oxygen concen-
tration profile at each time point is a monotonic function increasing outwards from
the tumour centre. Initially, for very small, avascular tumour spheroids, the entire
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Table 3 Parameter values for Greenspan’s model of tumour spheroid growth

Parameter Symbol Value Source

Oxygen consumption rate (m3 kg−1 s−1) Γ 7.29 × 10−7 Grimes et al. (2014)

Partial pressure at tumour boundary (mmHg) p∞ 100 Grimes et al. (2014)

Hypoxic partial pressure (mmHg) pH 10 Grimes et al. (2014)

Anoxic partial pressure (mmHg) pN 0.8 Grimes et al. (2014)

Oxygen diffusion constant (m2 s−1) D 2 × 10−9 Grimes et al. (2014)

Apoptosis constant (m3 kg−1) λA 1.0555 × 10−6 Frieboes et al. (2007)

Necrosis constant (m3 kg−1) λN 2 × 10−8 Schaller and Meyer-Hermann
(2006)

Cell birth/death constant (kgm−3 s−1) s 3.509 Frieboes et al. (2007)

Dimensional apoptosis and necrosis rates, s−1, are given by sλA and sλN , respectively. p∞, pH and
pN are partial pressures which, for consistency, are then converted into concentrations c∞, cH and cN ,
respectively. For further details, see Appendix A.1

tumour is made up of viable, proliferating cells (case C1). We notice that as the
tumour grows and so the oxygen concentration at the centre of the tumour decreases,
a hypoxic region within the tumour begins to develop (case C2) followed by a central
necrotic core when the oxygen concentration falls so low as to be unable to support
viable cells (case C3). These different regions, and their varying responses to radia-
tion, require careful consideration when extending Greenspan’s model to account for
radiotherapy. Further discussion of the different phases of growth is given in Byrne
(2012).

A.2 Parameter Sweep of Greenspan Growth Dynamics

We initially investigate the sensitivity of the standard Greenspan growth dynamics
to some of its key parameters. In particular, as we sweep over a region of parame-
ter space, we observe the resulting long-time, steady state properties of the tumour
spheroids. Specifically, we investigate how the availability of oxygen, c∞, the oxy-
gen consumption rate of the cells, Γ , and the rates of apoptosis and necrosis, λA

and λN , respectively, affect the growth of the tumour under this model. We choose
appropriate intervals for each parameter, in each case encompassing the corresponding
value shown in Table 3, and systematically explore the resulting region of parameter
space, solving the model numerically. We plot heatmaps in parameter space in order
to observe the behaviour of a variety of quantities of interest of the tumours at steady
state (Figs. 9, 10). We have omitted here the results of varying both c∞ and λN since,
in the case of c∞, increasing the parameter value simply has the effect of an increase
in overall tumour size and the width of the corresponding proliferating rim, as might
be expected, while, for the range of values swept over, λN had little effect on the
observed tumour characteristics.

Broadly speaking, we see in Fig. 9 that relatively increasing the amount of oxygen
available to the tumour cells (by decreasing the consumption rate Γ ), or decreasing
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(A) (B)

(C) (D)

Fig. 9 Results of a parameter sweep for the steady state tumour radius and width of proliferating rim with
corresponding tumour growth profiles at points of interest in parameter space, A, B, C and D, as given by
the numerical solutions to Eqs. (2)–(8)

Fig. 10 Heatmaps for the steady state volumes of proliferating, hypoxic and necrotic cells, and the corre-
sponding volume fractions

the death rate, λA, results in larger steady state tumours, as we might expect. Point A
marks the location of the parameter values from Table 3. Extreme points in the region
of concern in parameter space are labelled B, C and D, and the corresponding tumour
evolution profiles shown.We see that the greater relative availability of oxygen and the
low death rate at point B results in a large, fully developed tumour spheroid, whereas
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Fig. 11 Schematic contextualising the scenario in which the rapid transient increase in hypoxia is observed,
corresponding to the different growth phases observed in Fig. 12

the high rate of apoptosis at D is such that a viable, tumour cell population cannot be
sustained.

For a given Γ , we can determine the onset of necrosis as the radius R̄ =√
6
Γ

(c∞ − cN ). At the point C, and any other point on a vertical line through C,

the rate of apoptosis is such that the tumour reaches a steady state of radius R̄, and is
given by λA = 1

5 (3c∞ + 2cN ). Beyond C, at lower death rates (eg B), we enter a new
phase of growth that includes hypoxia and necrosis. The rapid, transient increase in
RH /RN at onset of hypoxia/necrosis (c.f. asymptotics in Appendix A.3) means that
for each tumour the width of the proliferating rim decreases until it reaches a steady
state and as such C represents a ‘local maximum’. Figure 10 shows the corresponding
heatmaps for both the steady state volumes and volume fractions for each constituent
of the tumour spheroid.

A.3 Asymptotic Analysis of Model Behaviour Post-radiotherapy

When a fully developed tumour spheroid including a hypoxic annulus and necrotic
core is exposed to fractionated radiation, the composition of the spheroid immediately
after irradiation depends on the dose d, as described in Sect. 2.2.1. If the dose is suf-
ficiently large, then the post-radiotherapy composition comprises a proliferating rim
and a necrotic core, but with the absence of a region of hypoxia. In this scenario, the
oxygen concentration in the necrotic core is greater than the threshold for hypoxia
(i.e. c(RN ) > cH ). Upon regrowth, the outer tumour radius, R, will increase, while
RN will decrease as the necrotic core undergoes decay. Since this parameter regime
yields tumour spheroids with proliferating, hypoxic and necrotic compartments prior
to radiotherapy, left untreated the tumour will eventually evolve so that the hypoxic
annulus will start to redevelop (when c(RN ) = cH ). This sequence of events is sum-
marised in Fig. 11. Simulation results reveal the re-emergence of hypoxia following
radiotherapy via a fast, transient increase in RH (see Fig. 4b). Since hypoxic cells are
less radio-sensitive, such a rapid increase in the hypoxic volume could have implica-
tions for the response to further doses of radiation.We now characterise this behaviour.
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Fig. 12 Asymptotic solution given by Eq. (57) (dotted line) plotted alongside the numerical solution to
Eqs. (14)–(23) showing the regrowth of the tumour spheroid after radiotherapy and the fast initial increase
in RH . We note that during regrowth the mismatch in the oxygen tension on the necrotic core boundary is
eventually resolved and the tumour resumes standard Greenspan growth dynamics

The fast initial increase in RH upon regrowth of the tumour spheroid in the
Greenspan model after a radiation fraction (see Fig. 12) occurs when the necrotic
core is undergoing exponential decay and a region of hypoxia is about to develop
outside the necrotic core. We analyse this situation by supposing that (without loss of
generality at t = 0) c(RN ) = cH . Then, solution of Eqs. (14), (18) and (19) yields

c =
{
c∞ + Γ

6 (R2
N − R2) + Γ

3 R
3
N

(
1
RN

− 1
R

)
, for 0 < r < RN ,

c∞ + Γ
6 (r2 − R2) + Γ

3 R
3
N

( 1
r − 1

R

)
, for RN < r < R,

(43)

while Eq. (15) reduces to give

dR

dt
= R

3

[
c∞

(
1 − R3

H

R3

)
−

(
λA + λN

R3
N

R3

)]

+ Γ

6
R3

[
1

5

(
1 − R5

H

R5

)
− 1

3

(
1 − R3

H

R3

)
+ 2

R3
N

R3

(
1

6
− 1

2

R2
H

R2 + 1

3

R3
H

R3

)]
,

(44)

and the internal free boundaries RH (t) and RN (t) satisfy

(
1 − RH

R

) (
R2

R2
H

+ R

RH
− 2

R3
N

R3
H

)
= 6

Γ R2
H

(c∞ − cH ), (45)
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RN = RN (0)e− 1
3 (λA+λN )t , (46)

with RH (0) = RN (0), and R(0) defined by Eq. (45).
With RN (t) defined by Eq. (46), we seek approximate solutions for R and RH .

Differentiating Eq. (45) with respect to t , we obtain an ODE for RH (t), which is
singular in the limit as RH → RN :

2

R2
H

(R3
H − R3

N )
dRH

dt
=

(
R2
H

R2 − 2
R3
N

R3 + 2

)
R
dR

dt
+ 2(λA + λN )(R − RH )

R3
N

RRH
.

(47)
We investigate the behaviour in this limit bymaking the change of variables S = RH

RN
with S = 1 at t = 0. Then, Eqs. (44) and (47) become

dR

dt
= R

3

[
c∞

(
1 − S3

R3
N

R3

)
−

(
λA + λN

R3
N

R3

)]
+ Γ R3

6

[
1

5

(
1 − S5

R5
N

R5

)
− 1

3

(
1 − S3

R3
N

R3

)

+ 2
R3
N

R3

(
1

6
− 1

2
S2

R2
N

R2 + 1

3
S3

R3
N

R3

)]
, (48)

(
S2

R2
N

R2 − 2
R3
N

R3 + 2

)
R
dR

dt
− 2

R2
N

S2
(S3 − 1)

[
dS

dt
− 1

3
(λA + λN )S

]

+ 2(λA + λN )

(
1 − S

RN

R

)
R2
N
S

= 0. (49)

We construct approximate solutions to Eqs. (48) and (49) in the limit when S is
close to 1. Introducing the small parameter ε (0 < ε � 1), we consider the short
timescale t = ε2τ and propose expansions for S and R in this boundary layer of the
form

S(τ ) ∼ 1 + εS1(τ ) + ε2S2(τ ) + o(ε3), (50)

and
R(τ ) ∼ R0(τ ) + εR1(τ ) + ε2R2(τ ) + o(ε3). (51)

The choice of timescale can be justified by a dominant balance argument, allowing us
to regularise the ODE for S at leading order. Note that dR

dτ = o(ε2), so we deduce that

dR0
dτ

= 0 = dR1
dτ

, (52)

dR2
dτ

= R0
3

[
c∞

(
1 − R3

N0

R3
0

)
−

(
λA + λN

R3
N0

R3
0

)]
+ Γ R3

0
6

[
1

5

(
1 − R5

N0

R5
0

)
− 1

3

(
1 − R3

N0

R3
0

)

+ 2
R3
N0

R3
0

(
1

6
− 1

2

R2
N0

R2
0

+ 1

3

R3
N0

R3
0

)]
(53)

= f (R0, RN0), say. (54)
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Hence, R ∼ R0 + ε2R2(τ )+o(ε3), where R0 = const = R(0). We also find that RN

has no o(ε) term, since expanding Eq. (46) gives RN ∼ RN0(1 − 1
3 (λA + λN )ε2τ +

o(ε4)), where RN0 = RN (0).
Turning our attention back to Eq. (49), we find at leading order

3R2
N0S1

dS1
dτ

=
(
1 − R3

N0

R3
0

+ 1

2

R2
N0

R2
0

)
R0 f (R0, RN0)+(λA+λN )

(
1 − RN0

R0

)
R2
N0

(55)
where f (R0, RN0) is defined via Eq. (54). Integrating Eq. (55) gives

S1 =
[
1

3

((
1

R0
− 2

RN0

R2
0

+ 2
R0

R2
N0

)
f (R0, RN0) + 2(λA + λN )

(
1 − RN0

R0

))] 1
2

τ
1
2 .

(56)
So for t � 1,

RH (t) ∼ RN0 + RN0

[
1

3

((
1

R0
− 2

RN0

R2
0

+ 2
R0

R2
N0

)
f (R0, RN0)

+ 2(λA + λN )

(
1 − RN0

R0

))] 1
2

t
1
2 . (57)

This approximate solution for RH (t) and the numerical solution obtained by solving
the full problem are in good agreement (Fig. 12).

As a result of this analysis, we conclude that whenever a hypoxic region re-emerges
within a tumour post-radiotherapy, it does so rapidly over a short timescale on which
both the outer tumour radius and the radius of the necrotic core do not change dramati-
cally. This phenomenon arises naturally from the model. We note that similar analysis
was performed on the original, untreated growth equations by Byrne and Chaplain
(1998).
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