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Abstract We extend two-species models of individual aggregation or clustering to
two-dimensional spatial domains, allowing formore realistic movement of the popula-
tions comparedwith one spatial dimension.We assume that the domain is bounded and
that there is no flux into or out of the domain. The motion of the species is along fitness
gradients which allow the species to seek out a resource. In the case of competition,
species which exploit the resource alone will disperse while avoiding one another. In
the case where one of the species is a predator or generalist predator which exploits
the other species, that species will tend to move toward the prey species, while the
prey will tend to avoid the predator. We focus on three primary types of interspecies
interactions: competition, generalist predator–prey, and predator–prey. We discuss the
existence and stability of uniform steady states. While transient behaviors including
clustering and colony formation occur, our stability results and numerical evidence
lead us to believe that the long-time behavior of these models is dominated by spatially
homogeneous steady states when the spatial domain is convex. Motivated by this, we
investigate heterogeneous resources and hazards and demonstrate how the advective
dispersal of species in these environments leads to asymptotic steady states that retain
spatial aggregation or clustering in regions of resource abundance and away from
hazards or regions or resource scarcity.
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1 Introduction

We are concerned with the dispersal and clustering of populations of two-species
interacting in two-dimensional spatial domains. Previously, Grindrod proposed a
model controlling the dispersal of individuals in single and multispecies commu-
nities (Grindrod 1988, 1991). He took the flux of individuals to depend directly upon
local population densities without requiring intermediate attractants or repellents. In
such models, each individual reacts directly to other individuals in its own locality and
moves so as to increase its likelihood of survival. The dynamics of such models in one
spatial domain were considered in Grindrod (1988). Clustering and other interesting
dynamics were observed on the finite one-dimensional spatial domain for short time
scales. The evolution of conditional dispersal strategies in the context of competition
between two species that are ecologically identical except in their dispersal mecha-
nisms was considered in Chen et al. (2008). The spatial dependence of such dynamics
was then considered in Hambrock and Lou (2009), when a spatially heterogeneous
domain was considered.

The concept of fitness-dependent dispersal was discussed further in Armsworth
and Roughgarden (2008), where models of clines with fitness-dependent dispersal
were considered. This built on theoretical work of Grindrod (1988), as well as more
recent work in the area of fitness-dependent dispersal (Abrams 2007; Abrams et al.
2007; Amarasekare 2007; Armsworth and Roughgarden 2005a, b; Hadany et al. 2004;
Ruxton andRohani 1998). It has been suggested that time spentmoving along resource
gradients (more generally, searching out resources) can limit mobility of species,
relative to if the species were to simply disperse randomly (Rowell 2009). Rowell
(2009) also suggests that this dispersion along resource gradients can also result in an
increased likelihood of colony formation. For more on resource tracking, see Flaxman
and Lou (2009).

Shigesada et al. (1979) introduced cross-diffusion models in order to model dis-
persal with movement up resource gradients or to avoid crowding. This involved
the inclusion of logistic type terms under the diffusion operator, such as �ui (α +
βui + γ u j ) and so on. A discussion on the roles that diffusion, self-diffusion, and
cross-diffusion play in such models was provided in Lou and Ni (1996), and pattern
formation for such models on homogeneous spatial domains was also considered.
Similarly, Gambino et al. (2013) show that cross-diffusion in 2D spatial domains can
lead to pattern formation. Lou and Winkler (2015) give existence and boundedness
results for the Shigesada–Kawasaki–Teramoto cross-diffusion model for two compet-
ing species in the case where both species have the same diffusion coefficients and the
space dimension is less than or equal to three.

Cantrell et al. (2013) discuss random dispersal versus fitness-dependent dispersal.
In this and related studies, explicit fitness dependence is included in the dispersal terms
(often, it is also prescribed as a modeling assumption). This is in contrast to the models
of Grindrod (1988, 1991) for which the optimal direction in which the populations
advect is solved for using additional equationswhich depend on the fecundity gradient.
In this way, one can view the Grindrod model as spatially non-local in the reaction
equations (one must solve for the advection direction in terms of the fecundity, which
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depends on the unknown population densities), while in standard fitness-dependent
dispersal this additional spatial requirement is not present.

As the random dispersal rate approaches zero in these kinds of models, the equilib-
rium distribution of the population matches the resource density wherever the species
is present. The population in occupied sections of the habitat will have equal fitness,
and there will be no net movement of individuals. Such a spatial distribution is referred
to as the ‘ideal free distribution’ for the population. In contrast, fitness-dependent dis-
persal can lead to a partitioning based on the fitness of the various individuals. Cosner
(2005) proposed a dynamic model for the ideal free distribution as a partial differential
equation. Thewell-posedness of thismodel was later discussed byCosner andWinkler
(2014). Cantrell et al. (2008) discuss the approximation of the ideal free distribution via
reaction–diffusion–advection equations. Lou et al. (2014) consider two-species com-
petingmodelswithfitness-dependent dispersal in the ideal free distribution framework.
Li (2015) consider two-species competition models with fitness-dependent dispersal
on non-convex bounded domains under the ideal free distribution.

Nasreddine (2012) investigated the local existence anduniqueness of the one species
version of the Grindrod (1988) model. Their results were extended to global existence
results for two-dimensional spatial domains in Nasreddine (2014). We are aware of no
corresponding results for multiple species models of the form discussed in Grindrod
(1988, 1991).

In the present paper, we extend models of individual aggregation or clustering in
one-dimensional domains (Grindrod 1988, 1991) to two-dimensional convex spatial
domains, in order to study the possible dynamics. This allows for the two popu-
lations to move in more realistic ways than would be possible if only one spatial
dimension were considered. For instance, the prey in predator–prey dynamics in a
one-dimensional domain cannot escape from a predator in a finite interval, while in
two spatial dimensions, the prey can attempt to evade the predator.

The remainder of the paper is organized as follows. In Sect 2, we formulate the
two-species model in two spatial dimensions. We assume that the domain is finite and
that there is no population flux into or out of the domain. The motion of the species
is along fitness gradients which allow the species to seek out a resource. In the case
of competition, species which exploit the resource alone will disperse while avoiding
one another. In the case where one of the species is a predator which exploits the
other species, that species will tend to move toward the prey species, while the prey
will tend to avoid the predator. In Sect. 3, we consider the existence and stability of
uniform steady states for spatially homogeneous resources, showing that the long-
time dynamics are due primarily to the reaction kinetics. We also provide numerical
evidence that these spatially homogeneous states appear to be generic behaviors of
the model. We also demonstrate that on non-convex domains either homogeneous or
heterogeneous steady states may be stable (depending on the form of the domain).
In Sect. 4, we investigate the effects of heterogeneous resources, as well as the intro-
duction of spatial hazards in the model. We see that the individual preferences of
each species strongly dictate the dynamics, as does the heterogeneity of the domain.
Discussions and concluding remarks are given in Sect. 5.
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2 Two-Species Model on a Two-Dimensional Spatial Domain

The dimensional form of Grindrod’s two-species competition model (Grindrod 1988,
1991) with generalized kinetics is

∂ û1

∂t
= δ̂1�û1 − μ1∇ · (û1ŵ1) + r̂1û1 Ê1(x, û1, û2), (1)

∂ û2

∂t
= δ̂2�û2 − μ2∇ · (û2ŵ2) + r̂2û2 Ê2(x, û1, û2), (2)

−ε̂1�ŵ1 + ŵ1 = ∇ Ê1(x, û1, û2), (3)

−ε̂2�ŵ2 + ŵ2 = ∇ Ê2(x, û1, û2). (4)

Here ûi (x, t) denotes the population density of species i at x ∈ R
2, t > 0, ŵi is the

average velocity of those individuals of population i dispersing, and Êi is the projected
net rate of reproduction (fecundity) with δ̂i ∈ (0, 1), r̂i , μi , ε̂i ≥ 0.

We make the model non-dimensional in such a way that the advection coefficients,
μi , are unity. Dropping the hats to obtain non-dimensional variables, we can thenwrite
Eq. (1) as

∂ui

∂t
= ri ui Ei (x, u1, u2) + δi�ui − ∇ · (uiwi ), (5)

− εi�wi + wi = ∇Ei (x, u1, u2), (6)

where ui ≥ 0, εi ≥ 0, ri ≥ 0 and δi ∈ (0, 1). Note that r1 and r2 can be considered
as the efficiency of using fecundity or the efficiency of using the information about
the abundance of a resource, or the existence of a hazard. Note that −εi�wi is the
effective local average for smoothingwhich gives some notion of imprecise knowledge
of fitness gradients and helps regularize the advective dynamics. Equations (5) and
(6) are the most general formulation, and the wi may not be irrotational in general for
ε > 0.

In order to simplify the solution procedure, we define φi so that wi = ∇φi , where
φi is a velocity potential of wi . We are forcing wi to be the gradient of a potential, φi ,
and we are ruling out the existence of any non-trivial rotational part. While this will
invariably rule out some dynamics, this simplification of the model will be sufficient
in order to observe the types of behaviors we are interested in studying. We obtain

− εi�φi + φi = Ei (x, u1, u2). (7)

We also rewrite Eq. (5) by using the φi , obtaining

∂ui

∂t
= ri ui Ei (x, u1, u2) + δi�ui − ∇ · (ui∇φi ). (8)

Solutions of (7) and (8) reflect solutions of (5) and (6) under the additional assumption
of wi being irrotational.

The results of Theorem 2.6 of Nasreddine (2012) imply convergence of solutions
uniformly in t for ε → 0 of the one species model in one dimension with spa-
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tially homogeneous logistic kinetics. Assuming that the well-posedness results from
(Nasreddine 2014) can be extended to the two-species case given by Eq. (1), along
with some technicalities about the compactness of solutions, we expect this simpli-
fication to be asymptotically justified for ε � 1, since ε = 0 implies φi = Ei and
hence wi = ∇Ei .

In two-dimensions, the prey can move around the domain in order to evade the
predator, while in one dimension the prey cannot ‘pass through’ the predator and
hence will be caught. Microscale effects are smoothed over in the PDE formulation as
it describes population distributions. However, possible directions of movement are
not simply along parallel lines (which would be equivalent to the one-dimensional
case). While rotational motion due to movement toward a resource is neglected for
this study, the dynamics do allow for dispersion and advection. These need not be
in a uniform direction. For instance, two distinct groups of prey in different regions
may move in different directions to evade predators (so, the direction of movement is
not along parallel lines). We also observe colony formation and dispersion of groups
as seen in the one-dimensional model (Grindrod 1988). Hence, a wide variety of
dynamics are observed even without pure rotation within the advection part of the
equation. Note that the Laplacians in Eq. (8) still permit rotational motion as part
of the dispersion process (as those Laplacians are permitted to have a non-trivial
rotational part), this is just separate from the motion toward a resource or toward/away
from another population.

We extend the one-dimensional spatially homogeneous setting in Grindrod (1988,
1991) by setting E1 and E2 as

E1(x, u1, u2) = A1(x) − a1u1 − b1u2 − d1(x),

E2(x, u1, u2) = A2(x) − a2u1 − b2u2 − d2(x).
(9)

The fecundity terms Ei depend on the following parameters. The nonnegative param-
eters A1 and A2 express how the populations u1 and u2 exploit a spatially distributed
resource. If Ai is large, the populations have a greater chance to survive. The param-
eters a1 and b2 are intraspecies interaction terms. These parameters are positive, to
signify that members of the same species will tend to spread out in order to more
effectively exploit a common resource. The parameters a2 and b1 are interspecies
interaction terms. Positive values indicate that the species repel one another, while
negative values imply cooperation or attraction between species. In the case of com-
petition dynamics, the two populations should repel one another, in order to model
competition for a common resource. On the other hand, when one parameter is positive
and one is negative, the species for which the parameter is negative can be viewed
as a predator which is attracted to the other species, and that other species acts as
the prey (and is repelled by the predator). Finally the positive parameters di represent
hazards or dangerous regions where the populations locally die if di (x) ≥ Ai (x). We
incorporate these hazard effects into the fecundity terms to represent hostile regions
that the species’ can actively avoid via advective dispersal. One could compare these
effects with hazard functions introduced into the equations for ui , but not in Ei and
hence not in the equations for φi . These would represent ‘invisible’ hostile regions,
but for brevity we do not consider this here.
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We set the initial condition as

u1(x, 0) = U1(x) and u2(x, 0) = U2(x), (10)

where U1(x) ≥ 0 and U2(x) ≥ 0 denote the initial population distributions. We
consider Neumann boundary conditions so that there can be no flux of the populations
either into or out of the domain 
. Let n be the outer normal to the domain at x ∈ ∂
.
We have the Neumann conditions

n · ∇u1 = 0, n · ∇u2 = 0, n · w1 = n · ∇φ1 = 0, n · w2 = n · ∇φ2 = 0, (11)

for x ∈ ∂
, t ≥ 0. From these conditions, note that we have that

n · (δi∇ui − uiwi ) = 0, i = 1, 2, (12)

which is exactly the expected no-flux condition. Therefore, for this system, Neu-
mann conditions on each of the four partial differential equations imply no-flux
conditions hold on the two reaction–diffusion–advection equations. When solv-
ing the system numerically, we shall always implement the Neumann conditions
(11).

3 Spatially Homogeneous Domains

We now demonstrate the existence and sketch some results about the stability of
uniform steady states for the problem (5) when the fecundity terms Ei do not depend
on x. In this setting, we also neglect hazards and so set di = 0, as any constant di can
just be added to the resource constants Ai . Grindrod (1988) had previously derived
a stability criteria for dynamics of two-species in one spatial dimension. Throughout
this section, we shall always assume A1, a1, b1, b2 > 0, while A2 ≥ 0 and a2 ∈ R.
Population u1 will avoid u2 (b1 > 0) and will disperse from members of its own
species (a1 > 0), while utilizing a resource measured by A1 > 0. Population u2
will disperse from members of its own species (b2 > 0). However, we have three
possibilities for the other parameters. If we have competition dynamics, where both
species must share a common resource, we have A2 > 0 and a2 > 0. If we have
predator–prey dynamics, where population u2 serves as the predator and is attracted
to u1 (the prey in this scenario), then we must have A2 = 0 and a2 < 0. In the case
where u2 is a generalist predator which preys on u1 yet also makes use of a shared
resource, we have A2 > 0 and a2 < 0. In this case, type of interaction is often
referred to as intraguild predation, and it is often modeled by having three equations
for the intraguild predator, intraguild prey, and resource (Ryan and Cantrell 2015).
We note that our assumptions on b2 and A2 imply that our analysis does not extend
to the classical Lotka–Volterra model (Volterra 1931) which has the form A2 < 0
and b2 = 0, but the results in this case are broadly similar, although typically less
stable.
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3.1 Feasibility of Uniform Steady States

Under the assumption of uniform steady states, the model equations reduce to

0 = r1u∗
1

(
A1 − a1u∗

1 − b1u∗
2

)
,

0 = r2u∗
2

(
A2 − b2u∗

2 − a2u∗
1

)
,

ϕ∗
1 = (

A1 − a1u∗
1 − b1u∗

2

)
,

ϕ∗
2 = (

A2 − a2u∗
1 − b2u∗

2

)
.

(13)

We obtain four possible uniform steady states from (13). These are

(
u∗
1, u∗

2, ϕ
∗
1 , ϕ

∗
2

) = (0, 0, A1, A2), (14)

(
u∗
1, u∗

2, ϕ
∗
1 , ϕ

∗
2

) =
(
0,

A2

b2
, A1 − b1

A2

b2
, 0

)
, (15)

(
u∗
1, u∗

2, ϕ
∗
1 , ϕ

∗
2

) =
(

A1

a1
, 0, 0, A2 − a2

A1

a1

)
, (16)

(
u∗
1, u∗

2, ϕ
∗
1 , ϕ

∗
2

) =
(

A1b2 − A2b1
a1b2 − a2b1

,
A2a1 − A1a2
a1b2 − a2b1

, 0, 0

)
, (17)

for a1b2 �= a2b1. The uniform steady state (14) corresponds tomutual extinction of the
populations. The steady states (15) and (16) correspond to extinction of populations
u1 and u2, respectively. Finally, the steady state (17) corresponds to the case where
both populations are able to survive. The values the steady state populations take
will depend on the resource availability (e.g., land fertility) divided by intraspecies
competition minus interspecies species interaction, which considers the preference
toward the other species.

The steady states (14) and (16) always exist. The steady state (15) exists only if
A2 > 0 [otherwise, it reduces to the steady state (14) when A2 = 0]. The existence
of the steady state (17) is more complicated and is outlined in Theorem 1.

Theorem 1 For each of the three types of dynamics, a positive uniform steady state
solution (17) exists when

(i) competition dynamics (a2 > 0 and A2 > 0): either

b1
b2

<
A1

A2
<

a1
a2

or
a1
a2

<
A1

A2
<

b1
b2

;

(ii) generalist predator–prey dynamics: for

b1
b2

<
A1

A2
;

(iii) and always for predator–prey dynamics.
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Proof (i) For competition, assume a2 > 0, and A2 > 0. Then, from the formula for a
nonzero steady state, we need a1b2 −a2b1 > 0, A1b2 − A2b1 > 0, A2a1 − A1a2 > 0,
or a1b2 − a2b1 < 0, A1b2 − A2b1 < 0, A2a1 − A1a2 < 0. In the first case, since all
parameters are positive, divide the first inequality by b2 and a2, the second by b2 and
A2, and the third by A2 and a2. This gives

a1
a2

− b1
b2

> 0,
A1

A2
− b1

b2
> 0,

a1
a2

− A1

A2
> 0.

Then, manipulating the inequalities, we obtain

b1
b2

<
A1

A2
<

a1
a2

.

Likewise, in the second case, dividing the first inequality by b2 and a2, the second by
b2 and A2, and the third by A2 and a2, we find

a1
a2

− b1
b2

< 0,
A1

A2
− b1

b2
< 0,

a1
a2

− A1

A2
< 0.

Manipulating these, we have

a1
a2

<
A1

A2
<

b1
b2

.

These are the only possible cases for competition.
(ii) For the generalist predator–prey dynamics, let A2 > 0 and a2 < 0. Then, a1b2 −
a2b1 > 0 and A2a1 − A1a2 > 0 are always true. For the last condition, we need
A1b2 − A2b1 > 0. Since A1, b1, A2, b2 > 0, this holds whenever b1

b2
< A1

A2
.

(iii) For the predator–prey dynamics, A2 = 0 and a2 < 0. Then, the conditions
a1b2 − a2b1 = a1b2 + |a2|b1 > 0, A1b2 − A2b1 = A1b2 > 0, and A2a1 − A1a2 =
0− A1a2 = A1|a2| > 0 all hold, since A1, b1, A2, b2 > 0. Hence, A2 = 0 and a2 < 0
imply the existence of a positive predator–prey constant steady state. 	


3.2 Linear Stability of Uniform Steady States

We now assume a uniform steady state plus a small perturbation,

ui (x, t) = u∗
i + ωûi (x, t), φi (x, t) = ϕ∗

i + ωϕ̂i (x, t), i = 1, 2, (18)

for small perturbation parameter |ω| � 1, where u∗
1, u∗

2, ϕ∗
1 , and ϕ∗

2 are constants
(corresponding to uniform steady states) satisfying (13). We plug these into the model
equations, to obtain, at O(ω), the equations

∂ û1

∂t
= r1

(
A1û1 − 2a1u∗

1û1 − b1
(
u∗
2û1 + u∗

1û2
)) + δ1�û1

−∇ · (
u∗
1∇ϕ̂1 + ϕ∗

1∇û1
)
,
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∂ û2

∂t
= r2

(
A2û2 − 2b2u∗

2û2 − a2
(
u∗
1û2 + u∗

2û1
)) + δ2�û2

−∇ · (
u∗
2∇ϕ̂2 + ϕ∗

2∇û2
)
,

−ε1�ϕ̂1 + ϕ̂1 = −a1û1 − b1û2,

−ε2�ϕ̂2 + ϕ̂2 = −a2û1 − b2û2. (19)

As the equations at O(ω) are linear, linear stability of the steady states (14)–(17)
can be determined by assuming the following form of the perturbations,

û1, û2, ϕ̂1, ϕ̂2 ∝ exp(ηt + ik · x), (20)

where k is the wavevector of the perturbation and η is the linear growth factor; see
Murray (2003). Substituting this expression intoEq. (19)wehave a systemof four alge-
braic equations. Requiring non-trivial solutions, corresponding to non-trivial Fourier
expansions of the perturbations, we can set the determinant of this system to zero
in order to find a dispersion relation η = η(k2) where k = |k| is the wavenumber.
Linear stability corresponds to Re(η(k2)) < 0 for all k ≥ 0, although the permit-
ted wavenumbers k will depend on the spectrum of the Laplacian, and hence on the
domain in question.

We shall now classify the linear stability of each of the spatially uniform (homo-
geneous) steady states (14)–(17) on bounded domains 
 ∈ R

2 in Theorems 2–5.
We do not consider the case of heterogeneous steady states, which might be stable
on non-convex domains. Indeed, for non-convex domains, related reaction–diffusion
systems have been shown to admit stable heterogeneous steady states (Lou and Ni
1996; Matano and Mimura 1983).

Recall that on bounded convex 
 ⊂ R, the minimal eigenvalue of the Laplacian
with Neumann boundary conditions is zero, meaning that the minimal wavenumber
is k = 0. Let us introduce the notation K
 to denote the spectrum of wavenumbers
for a given bounded domain 
. As we are free to pick the εi ’s, we shall assume that
εi �= k−2 for any k ∈ K
, otherwise this results in degeneracy. As this is a measure
zero case due to K
 being discrete, we can typically ignore it. In the case where
ε1 = ε2 = k2 for some k ∈ K
, the only perturbation is the zero perturbation. For
ε1 �= ε2 and k2 = εi for one i = 1, 2, we obtain a degeneracy resulting in a nonzero
perturbation.

Theorem 2 The extinction steady state (14) is always unstable over any bounded
domain 
.

Proof Consider an arbitrary perturbation of the form

(û1, û2, ϕ̂1, ϕ̂2)
T = exp(ηt + ik · x)(û10, û20, ϕ̂10, ϕ̂20)

T , (21)
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where η ∈ C, k ∈ R
2, and (û10, û20, ϕ̂10, ϕ̂20)

T is a constant vector. The perturbation
(21) satisfies the system (19) if and only if

det

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

r1A1 − η 0 0 0
−(δ1 − A1)k2

0 r2A − 2 − η 0 0
−(δ2 − A2)k2

−a1 −b1 −(1 + ε1k2) 0

−a2 b2 0 −(1 + ε2k2)

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

= 0. (22)

This condition is equivalent to either of the two conditions

η = A1(r1 + k2) − δ1k2 (23)

or
η = A2(r2 + k2) − δ2k2 . (24)

Thismeans that there exist two non-trivial perturbation vectors.When condition (23) is
satisfied, the perturbation is in the direction (û10, 0, ϕ̂10, ϕ̂20)

T ; when condition (24) is
satisfied, the perturbation is in the direction (0, û20, ϕ̂10, ϕ̂20)

T . Now, the perturbation
is linearly stable if Re(η) < 0, and this implies that each of conditions (23), (24)
should be set to less than zero if we want linear stability of all perturbations to the
zero steady state. This gives

A1 < min
k∈K


{
δ1k2

r1 + k2

}
and A2 < min

k∈K


{
δ2k2

r2 + k2

}
. (25)

Since the rational functions of k are monotone increasing, the wavenumber k = 0
corresponding to the minimal Neumann eigenvalue minimizes these rational function.
Therefore, A1 < 0 and A2 < 0. Yet, A1 > 0 by assumption, so linear stability is not
possible. This establishes the result. 	


Theorem 3 The asymmetric steady state (15) is linearly stable (when feasible) pro-
vided that

A1 <
b1
b2

A2.

Proof Consider an arbitrary perturbation of the form (21). The perturbation (21) sat-
isfies the system (19) if and only if
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det

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

(
A1 − b1

b2
A2

)
(r1 + k2) 0 0 0

−η − δ1k2

− r2a2 A2
b2

−η − δ2k2 − r2A2 0 A2
b2

k2

−a1 −b1 −(1 + ε1k2) 0

−a2 −b2 0 −(1 + ε2k2)

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

= 0.

(26)
This condition is equivalent to either of the two conditions

η =
(

A1 − b1
b2

A2

)
(r1 + k2) − δ1k2 (27)

or

η = −
(

r2 + k2

1 + ε2k2

)
A2 − δ2k2. (28)

Condition (27) implies that η < 0 if and only if

A1 <
b1
b2

A2 + min
k∈K


{
δ1k2

r1 + k2

}
= b1

b2
A2, (29)

since the right-hand side of the inequality in (29) is increasing in k, and therefore
k = 0 is the minimizing wavenumber.

As A2 > 0 (by feasibility), condition (28) always gives η < 0. Therefore, the result
follows. 	

Theorem 4 The asymmetric steady state (16) is linearly stable (when feasible) pro-
vided that

A2 <
a2
a1

A1.

Proof Consider an arbitrary perturbation of the form (21). The perturbation (21) sat-
isfies the system (19) if and only if

det

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

−η − r1A1 − δ1k2 − r1b1 A1
a1

A1
a1

k2 0

0
(

A2 − a2
a1

A1

)
(r2 + k2) 0 0

−η − δ2k2

−a1 −b1 −(1 + ε1k2) 0

−a2 −b2 0 −(1 + ε2k2)

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

= 0.

(30)
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This condition is equivalent to either of the two conditions

η =
(

A2 − a2
a1

A1

)
(r2 + k2) − δ2k2 (31)

or

η = −
(

r1 + k2

1 + ε1k2

)
A1 − δ1k2. (32)

Condition (31) implies that η < 0 if and only if

A2 <
a2
a1

A1 + min
k∈K


{
δ2k2

r2 + k2

}
= a2

a1
A1, (33)

which gives the first inequality.
A1 > 0 by assumption, condition (32) always gives η < 0. Therefore, the result

follows. 	


Theorem 5 The positive steady state (17) is linearly stable (when feasible) provided
that a1b2 − a2b1 > 0.

Proof Consider an arbitrary perturbation of the form (21). The perturbation (21) sat-
isfies the system (19) if and only if

det

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

−η − r1a1u∗
1 − δ1k2 −r1b1u∗

1 u∗
1k2 0

−r2a2u∗
2 −η − r2b2u∗

2 − δ2k2 0 u∗
2k2

−a1 −b1 −(1 + ε1k2) 0

−a2 −b2 0 −(1 + ε2k2)

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

= 0.

(34)
For simplicity of notation, we use u∗

i for both positive steady states, rather than their
explicit expression in terms of model parameters.

The determinant gives a quadratic polynomial in η. In the case where k �= ε
−1/2
i

for either i = 1, 2, we may scale the polynomial so that it is monic, obtaining

η2 + ξ1(k)η + ξ0(k) = 0, (35)

where ξ1(k) and ξ0(k) are defined as

ξ1(k) = a1

(
r1 + k2

1 + ε1k2

)
u∗
1 + b2

(
r2 + k2

1 + ε2k2

)
u∗
2 + (δ1 + δ2)k

2 (36)
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and

ξ0(k) = (a1b2 − a2b1)

(
r1r2+ r1k2

1 + ε2k2
+ r2k2

1 + ε1k2
+ k4

(1 + ε1k2)(1 + ε2k2)

)
u∗
1u∗

2

+ a1δ2k2
(

r1 + k2

1 + ε1k2

)
u∗
1 + b2δ1k2

(
r2 + k2

1 + ε2k2

)
u∗
2 + δ1δ2k4.

(37)
In order to deduce the sign of the roots of (35), the condition for Re(η) < 0 is that
both ξ1 > 0 and ξ0 > 0. Note that ξ1(0) > 0 and ξ1(k) is increasing in k; hence, it is
always positive, so we must ensure that ξ0(k) is positive.

We see immediately that, at the minimal wave number k = 0, ξ0(0) = (a1b2 −
a2b1)u∗

1u∗
2. Therefore, when a1b2 − a2b1 < 0, we have ξ0(0) < 0. This means that

(35) has a real positive root η > 0; hence, the steady state is unstable. On the other
hand, when a1b2 − a2b1 > 0, we have that both roots η1,2 < 0, hence linear stability
of the positive steady state. (Recall that the case a1b2 − a2b1 = 0 is ruled out by
Theorem 1) This establishes the result. 	


For sake of comparison, we provide the following result for the non-spatial model
including only the reaction kinetics.

Theorem 6 Consider the dynamical system

dui

dt
= ri ui (Ai − ai u1 − bi u2) , i = 1, 2, (38)

with reaction kinetics identical to those of (5). The system has four steady states, equal
to the first two components of the steady states given in (14)–(17). The feasibility of
each steady state is the same as given in Theorem 1, while the linear stability of each
steady state is as follows.

– The steady state
(
u∗
1, u∗

2

) = (0, 0) is always unstable.

– The steady state
(
u∗
1, u∗

2

) =
(
0, A2

b2

)
is linearly stable provided A1 < b1

b2
A2 and

A2 > 0.

– The steady state
(
u∗
1, u∗

2

) =
(

A1
a1

, 0
)

is linearly stable provided A2 < a2
a1

A1.

– The steady state
(
u∗
1, u∗

2

) =
(

A1b2−A2b1
a1b2−a2b1

, A2a1−A1a2
a1b2−a2b1

)
is linearly stable provided

a1b2 − a2b1 > 0.

Proof The Jacobian for the system (38) evaluated at a steady state is given by

J |(u∗
1,u

∗
2)

=
⎡

⎣
r1(A1 − 2a1u∗

1 − b1u∗
2) −r1b1u∗

1

−r2a2u∗
2 r2(A2 − a2u∗

1 − 2b2u∗
2)

⎤

⎦ . (39)

Using this Jacobian matrix, the proof of the four results is standard. 	

A comparison between Theorems 6 and 2–5 shows that advection-diffusion does

not stabilize or destabilize any steady state over arbitrary perturbations, suggesting
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that the long-time dynamics are controlled by the reaction kinetics, with advection
and diffusion controlling transient dynamics.

Note that these stability results are valid not just for two-dimensional bounded
domains, but for one- or three-dimensional bounded domains, as well, as the change in
spatial dimension will simply modify the elements of the spectrum K
. With zero flux
conditions, the smallest eigenvalue of the Laplacian is zero; hence, the zero wavenum-
ber will still control the stability or instability of the steady states, in general. Note
also that the stability results we obtain are distinct from those of the one-dimensional
two-species model in Grindrod (1988), as those results corresponded to the r1, r2 → 0
limit, hence the present results are more general.

We should also remark that the stability results of Grindrod (1988) were given in
terms of fixed wavenumbers, rather than for general perturbations. A general pertur-
bation will involve a superposition of modes over all of K
, rather than a fixed mode
corresponding to a single wavenumber in K
. However, one can imagine situations
where knowledge of the stability or instability of a uniform steady state under a very
specific form of perturbation is useful. If we restrict to wave numbers above a thresh-
old k ≥ k > 0, then the asymmetric steady states will maintain the stability criteria
given in Theorems 3 and 4, as the stability eigenvalues will not change sign for any
nonnegative wavenumber. However, when δ1 > r1A1 and δ2 > r2A2, the zero steady
state can become stable for large enough wavenumber threshold k. Similarly, for large
enough wavenumber threshold k, the function ξ0(k) in the proof of Theorem 5 will
become positive, no matter the sign of a1b2 − a2b1, for any δ1, δ2 > 0. Therefore,
if the perturbation contains only large wavenumbers, the spatial terms can actually
stabilize the uniform positive steady states when the reaction kinetics might suggest
instability.

It is presently unknownwhether non-uniform steady states are necessarily unstable,
although this can be shown for certain similar models in convex domains. For instance
in the case without advection, Kishimoto andWeinberger (1985) show that for general
competition kinetics, all non-uniform steady states are unstable on convex domains.
Numerically we observe convergence only to one of the four uniform steady states
(14)–(17) for all choices of kinetic parameters and initial conditions, as well as varying
diffusion parameters for each species δi . For this reason, we conjecture that stable non-
uniform steady states do not exist for this model for spatially homogeneous fecundity
parameters when the domain is convex. We also considered simulations for convex
domains with holes, and for such non-convex domains we still observed convergence
to one of the uniform steady states. Still, there may exist non-convex domains for
which there are stable heterogeneous steady states, as shown for other models (Lou
and Ni 1996; Matano and Mimura 1983).

3.3 Numerical Solution Approach

Having studied the uniform steady states of the problem (5) with spatially homoge-
neous fecundity, we now turn our attention to transient behavior in this case, before
moving on to more interesting spatially inhomogeneous resources and hazards in
Sect. 4. In the numerical experiments, we take the domain to be the unit square,
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 = [0, 1]2.We discretise in space using centered finite differences and apply a fourth-
order Runge–Kutta scheme for the two-species model, using the Matlab function
‘ode45.’ The temporal domain can be normalized to the interval [0, 1] by selecting
the maximal simulation time, T ∗, in terms of the reaction timescale r = r1 = r2
assuming all other reaction parameters are order O(1) (that is T ∗ = T ∗(r)). In this
way, t = T ∗ t̂ , δi = (T ∗)−1δ̂i , φi = (T ∗)−1φ̂i , r = (T ∗)−1r̂ . We note that T ∗ need
not be very large. From Grindrod (1988), we see that the natural time taken to arrive
at a steady state solution was of order 10, and for parameter values used here, one
can see stabilization even sooner for some cases (since the eigenvalues are larger in
magnitude and the convergence rate from excitations to a steady state is exponential).
This approach allows us to see the transient behaviors, while the long-time behaviors
are rather more tame for the homogeneous parameters (as was the case in the original
work in one spatial dimension Grindrod 1988, 1991). This timescale corresponds to
approximately reaching steady state for t̂ = 1, where we observe only uniformity in
the homogeneous case, but spatial structure for the inhomogeneous case. As a check
on our numerical scheme, and to consider non-convex geometries, we also simulated
these equations using the finite element software COMSOL. For all such simulations,
more than 50,000 triangular elements were used.

In what follows we shall drop hats on time for convenience, with the understanding
that we have scaled time appropriately so that the dynamics occur for t ∈ [0, 1]. Note
that the scale T ∗ is different for each parameter combination. Since we are primarily
interested in the qualitative behavior of these systems rather than quantitative analysis,
we just report plotswith themaximal run time already scaled to 1, as the particular value
of T ∗ in each case is not particularly interesting for our discussions. For numerical
computations, the spatial domain is divided into 50 × 50 increments. We constrained
the maximum timestep to be 10−2. Unless otherwise mentioned, we set δ1, δ2 = 0.1,
ε1, ε2 = 0.025, r1 = r2 = 1, and the reaction term coefficients as a1 = 1, a2 =
3, b1 = 2, b2 = 1 for competition dynamics and a1 = 1, a2 = −3, b1 = 2, b2 = 1
for predator and generalist predator-prey dynamics. For predator–prey, we will always
have A2 = 0 for all (x1, x2) ∈ 
 for all numerical experiments. We will denote steady
states by u∗

i and by u∗
i = ∫



u∗

i (x1, x2)dx1dx2 we denote the steady state averaged
over the domain.

3.4 Simulations on Spatially Homogeneous Domains

We use periodic functions for the initial conditions, given by

u1(x1, x2, 0) = 1

4
(sin(x1) + 1)(sin(x2) + 1),

u2(x1, x2, 0) = 1

4
(cos(2x1) + 1)(cos(2x2) + 1).

(40)

The choice of initial conditions for the spatially homogeneous case is relatively incon-
sequential, and the long-time dynamics can in many cases just be predicted by the
total population of each species in the domain, and the fecundity parameters.
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Fig. 1 (Color figure online) Competition dynamics in a spatially homogeneous domain, with fecundity
parameters A1 = 1, A2 = 1.5, a1 = 1, a2 = 3, b1 = 2, b2 = 1 using the sinusoidal initial conditions (40)

As an example of the spatially homogeneous parameters, we show competition
dynamics in Fig. 1. The populations quickly separate into two distinct regions and
appear to be content in their separate parts of the domain. However, on the time scale
of the diffusive dispersal, u2 begins to locally encroach on u1 which flees into a smaller
region, and is eventually driven into extinction throughout the entirety of the domain
.

As in Grindrod (1988), small random initial populations will form clusters and
aggregates, but these will eventually disperse and lead to uniform steady states, which
are dominated by the interaction parameters. As an example of this, consider the
competition dynamics in Fig. 2. Random initial populations were generated by taking
the absolute value of a normal random variate with mean 0 and variance 0.25 for
each population at each finite element. These quickly aggregate with the populations
clustering away from one another. Over time, the more fit population overtakes the
competing species, driving it into a corner of the domain and eventually to extinction.

We now consider domains of different shapes, and in particular patterning in non-
convex domains. Using the same kind of random initial data from Fig. 2, we consider a
square hole of side length 0.5 in the center of the larger square domain of side length 1,
and these results are displayed in Fig. 3. As in the case of the square domain, transient
population clustering occurs, but eventually the population u1 is driven to extinction
by population u2. We simulated several different realizations of initial conditions, as
well as the initial conditions (40), but never observed any long-time clustering in either
the square or the perforated domain.
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Fig. 2 (Color figure online) Competition dynamics in a spatially homogeneous domain, with fecundity
parameters A1 = 1, A2 = 1.5, a1 = 1, a2 = 3, b1 = 2, b2 = 1 using random initial conditions

Finally,motivated by non-uniformpatterns present in non-convex domains (Matano
and Mimura 1983), we consider the same competition dynamics in a ‘dumbbell’-
shaped domain consisting of two squares of unit side lengthwith a connecting rectangle
between them of unit length and height 0.1. We used the following initial conditions,
with x1 = 0 denoting the midpoint of the connecting rectangle,
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Fig. 3 (Color figure online) Competition dynamics in a square domain with a hole, with fecundity param-
eters A1 = 1, A2 = 1.5, a1 = 1, a2 = 3, b1 = 2, b2 = 1 using random initial conditions

u1(x1, x2, 0) = tanh(100x1),

u2(x1, x2, 0) = tanh(−100x1).
(41)

We plot the steady state behavior of this simulation in Fig. 4. While the more fit
population, u2, is able to occupymost of the connecting rectangle, it is unable to invade
into the right-hand side of the domain. We note that we only observed patterning in
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Fig. 4 (Color figure online) Competition dynamics in a non-convex ‘dumbbell’ domain, with fecundity
parameters A1 = 1, A2 = 1.5, a1 = 1, a2 = 3, b1 = 2, b2 = 1 using random initial conditions

this domain if the population densities were initially very separated, as in (41). Other
simulations with random initial conditions, or for some other values of the kinetic
parameters, did not admit patterned populations as numerically stable steady states.

We ran many other numerical simulations which demonstrate interesting dynamics
at small timescales, such as the colony formation and aggregation of populations noted
in Grindrod (1988) and seen above. However, in convex domains or for approximately
homogeneous initial conditions, these dynamics tended toward spatially homogeneous
steady states at larger timescales, as our stability analysis implied. Therefore, the large
time dynamics tending to homogeneous steady states seems robust on convex domains.
We also ran simulations in cases with a non-convex domain consisting of a convex
domain with a central hole in the domain, and in all of the simulations we again
observed convergence to homogeneous states for sufficiently large time. No spatial
patterning or non-equilibrium dynamics were observed for large time. This suggests
that convergence to homogeneous steady states is fairly ubiquitous for this family of
models when the domain is homogeneous, at least on convex and certain non-convex
domains, and hence that the colony formation and aggregation seen at small timescales
and due to a combination of diffusion and advection is indeed transient, with long-time
dynamics governed by the reaction kinetics.

4 Spatially Heterogeneous Domains

Since heterogeneous steady states do not appear to be stable in convex domains,
we shall next turn to numerical solutions with spatially inhomogeneous parameters
in the fecundity terms in order to demonstrate asymptotic clustering and aggregation
mechanisms not present in the spatially homogeneous model (5). In particular, we now
consider the fecundity functions Ei to depend on space explicitly. We first consider
spatially varying resources Ai (x) with varying levels of spatial structure. We then
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consider introducing spatially dependent deaths into the functions Ei to model the
presence of hazards in the domain.

4.1 Single Bump Resource

Consider the following resource functions

A1(x1, x2) = exp (−(x1 − 0.5)2 − (x2 − 0.5)2), for all t > 0,

A2(x1, x2)

=
{

A1(x1, x2), for competition and generalist predator-prey interactions,
0, for predator-prey interactions.

(42)

This describes a Gaussian-shaped resource with a single peak at [0.5, 0.5], symmetric
about this peak in 
. For all types of interactions, after a short transient period of
motion, both populations settle onto the resource surface and interact in essentially
the spatially independent ways that they do for uniform populations.

Figure 5 shows predator–prey dynamics with both species eventually settling down
to a spatially heterogeneous steady state. While this steady state is not uniform, it is
essentially predictable from the spatially independent kinetics Ei . This state appears to
be spatially determined by the resource function, but quantitatively only determined by
the total amount of the resource, and the parameters defining the interspecies dynamics.

To be precise, we can compare the quantitative differences between the population
averages, u∗

1 and u∗
2, and the spatially homogeneous steady states where we aver-

age the resource functions Ai (x1, x2) over the domain and substitute this value into
Eq. 17. The steady states obtained via numerical simulation for the Gaussian resource,
averaged over the domain, are in each case within 1% of the values predicted for the
homogeneous steady states. This was compared for several initial data and diffusion
parameters δi , and the deviations were always very small. We conjecture that this is
due to the fact that the resource function is symmetric in 
 and the magnitude of A1
varies only gently across the domain.

4.2 Multiple-Bump Resource Surface

Consider the following resource distributions

A1(x1, x2) = 1

2
+ 9 sin2 (2πx1) sin2 (2πx2)

20
,

A2(x1, x2)

=
{

1
2 + 9 cos2 (2πx1) cos2 (2πx2)

20 , competition and generalist predator-prey interactions,
0, predator-prey interactions.

(43)
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Fig. 5 (Color figure online) Gaussian resource distribution and predator–prey dynamics. Both populations
settle down to non-uniform steady states, distributed more-or-less on top of the resource surface. Reaction
coefficients are a1 = 1, a2 = −3, b1 = 2, b2 = 1

This describes the more spatially structured domain depicted in Figs. 6, 7 and 8. For
the case of competition or generalist predator dynamics, we have varied the phase of
the resource such that different parts of the domain are nutritionally dense for each
species. For predator–prey dynamics, we observe the same behavior as in the previous
discussion of a single bump resource: both populations accumulatewhere the resources
are dense and are sparse elsewhere. For competition dynamics, however, we observe
more spatially structured interactions between the species.

Figure 6 shows competition dynamics. u2 initially expands into the domain, setting
up a colony around the central resource-rich “bump” in A2(x, y). For later times,
this colony is abandoned, as u1 expands across the domain, driving the other species
away. This suggests a spatial effect competition has on the dynamics, mediated by
the dispersal in this heterogeneous environment. Note that eventually, in the steady
state, both populations choose not to occupy certain resource-rich regions close to the
other, competing species. There is now a noticeable effect of the initial condition that
persists at steady state, and we anticipate many more possible steady states depending
on the choice of initial population distributions.

To understand the competition effect in terms of the interaction parameters between
the species, we now modify the reaction term coefficients, so as to reduce the com-
petitive interaction. Let a1 = 1, a2 = 0.01, b1 = 0.01, b2 = 1. Figure 7 shows the
competition dynamics for this choice of parameters. Drastically reducing the compe-
tition coefficient did indeed allow both species to occupy all food-rich regions of 
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Fig. 6 (Color figure online) Multiple-bump resource function; competition dynamics. Both populations
settle down to non-uniform steady states, avoiding certain areas of the domain 
. Reaction coefficients are
a1 = 1, a2 = 3, b1 = 2, b2 = 1

and again reduces the spatial structure of the populations to following the resource
distributions closely.

We can also see what happens for increased intraspecies overcrowding coefficients
a1, and b2. Let a1 = 2, a2 = 1, b1 = 1, b2 = 3. Figure 8 shows the effect this choice
of parameters has on the behavior of our system. Just as with reduced competition, the
advection away from competing species is weaker in this case than in the intraspecies
interactions shown before, and so the steady states match the resource-rich regions of

. This suggests that, depending on the spatial distribution of resources in the domain,
we expect non-trivial interactions between the species only in certain subsets of the
parameter space-namely when interspecies competition is strong.

4.3 Half-Domain Resource

In many of the situations considered above, the species would generally cluster around
the spatially distributed resource. We now consider their spatiotemporal interactions
during a migration between two patches of resources. In Fig. 9, we plot competition
dynamics under the resource distributions
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Fig. 7 (Color figure online) Multiple-bump resource function; competition dynamics. Both populations
settle down to non-uniform steady states, avoiding certain areas of the domain 
. Reaction coefficients are
a1 = 1, a2 = 0.01, b1 = 0.01, b2 = 1

A1(x1, x2) = 1 − 1

2
tanh

(
12

(
x2 − 1

2

))
,

A2(x1, x2)

=
{
1 + 1

2 tanh
(
12

(
x2 − 1

2

))
, competition and generalist predator-prey interactions,

0, predator-prey interactions.

(44)

As expected, in the long run both populations settle down to steady states in the
part of 
 where there is the greatest abundance of the food they consume. In the
transient dynamics, however, instead of traveling as an aggregate, the populations
appear to set up new clusters in food-rich regions and let the old colony die out. This
appears to be due to the advective dispersal away from the other species during the
migration into the food-rich area. We can experiment to test whether this is due to the
animals’ proclivity for local clustering by reducing intraspecies coefficients. If a1 =
0.1, a2 = 3, b1 = 3, b2 = 0.1, the populations tend to repel each other but overcrowd-
ing within each one species is subdued. We observe similar behavior to that seen in
Fig. 9.
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Fig. 8 (Color figure online) Multiple-bump resource function; competition dynamics. Both populations
settle down to non-uniform steady states, avoiding certain areas of the domain 
. Reaction coefficients are
a1 = 2, a2 = 1, b1 = 1, b2 = 3

4.4 Spatially Heterogeneous Death Rates

We now consider the effect of introducing a nonzero spatial death term di �= 0 to the
fecundity terms (9). We take the form of this to be

di (x1, x2) =
{
5, 1−a

2 < x1, x2 < 1+a
2 where 0 < a < 1,

0, otherwise,
(45)

for i = 1, 2. We also set Ai (x1, x2) = 1. This describes a spatially homogeneous
resource with presence of a deadly square region of side length a in the center of the
domain. Physically, this can represent a danger present in only part of the domain.

Figure 10 shows competition dynamics for this model, for a = 0.2. Note the
transient behavior of u2 in particular, which initially gets pushed into the bottom
left corner of the domain, but instead of being driven to extinction, migrates to the
middle of the square to settle down to a steady state on the brim of the hazardous
region, where the generalist predator species is less prevalent. This is possible as the
generalist predator species forms a circular, rather than square-like distribution around
the deadly region, leaving a thin stripe of 
 capable of supporting the prey species.
This circular brim is likely due to the corners of the small square inducing a smoothing
effect due to the advection away from them by the predator.
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Fig. 9 (Color figure online) Half-domain resource with competition dynamics. After transient colony
formation period, populations settle down into steady states. Rather than migrating along as a group, the
species form new colonies in resource-rich regions and let the original colony die out. Reaction coefficients
are a1 = 1, a2 = 3, b1 = 2, b2 = 1

We now consider generalist predator–prey dynamics. Figure 11 shows the a = 0.5
case, where the prey species u1 dies out eventually. Note how again the generalist
predator population forms a circular, rather than a square, colony. This is also likely
due to the advective dispersal around the corners of the hazard.

We contrast this with the a = 0.8 case, depicted in Fig. 12. For a larger hazard, the
prey species tends to survive and settle down to a positive steady state, by aggregating
along the outer rim of the domain. The generalist predator forms a circular colony,
again allowing the prey to exist between the generalist predator and the hazard. Finally,
as we increase the spatial size of the hazard further, we find that the prey species dies
out near around a = 0.95. There is therefore a range of values of a for which the prey
species survives in this particular model of a hazard.

123



Two-Species Migration and Clustering in Two-Dimensional… 2327

Fig. 10 (Color figure online) Square death rates with competition dynamics. The population u2 undergoes
interesting transient dynamics before settling on the brim of the hazard. Reaction coefficients are a1 = 1,
a2 = 3, b1 = 2, b2 = 1

5 Discussion

We have extended the model of Grindrod (1988) to study population dynamics of
two competing species in two-dimensional domains. The primary benefit of including
two-dimensional aggregate motion is that this permits far more realistic dispersion
compared to dynamics in only one spatial dimension. Additionally, realistic het-
erogeneity can be directly modeled in a two-dimensional domain, allowing for the
persistent aggregation of populations.

In Sect. 3, we demonstrated that three types of uniform steady states are possible:
complete extinction of both species, partial extinction (one species goes extinct, the
other persists), and a positive steady state (persistence of both species). We were able
to give criteria for the feasibility of each in terms of the model parameters. We were
then able to discuss the linear stability of these uniform steady states under small
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Fig. 11 (Color figure online) Square death region with generalist predator–prey dynamics, for square side
a = 0.5. The prey population dies out eventually. Reaction coefficients are a1 = 1, a2 = −3, b1 = 2,
b2 = 1

perturbations obeying Neumann boundary conditions. Under arbitrary perturbations,
the instability or linear stability of the uniform steady states agrees with correspond-
ing results for an ODE system involving only the reaction kinetics. We also mention
that, if perturbation to the uniform steady states have large wavenumbers only, then
it is possible for the zero steady state to stabilize if the diffusion parameters are large
enough. Similarly, if the wavenumbers are sufficiently large, then it is possible to sta-
bilize the positive steady states in the competition regime. Note that these stability
results are valid for homogeneous steady states. We did not observe any stable het-
erogeneous steady states in convex domains. However, stable heterogeneous steady
states may exist for some non-convex domains, as there are a number of examples of
this in the literature when considering reaction–diffusion dynamics for related mod-
els on specific non-convex domains (Lou and Ni 1996; Matano and Mimura 1983).
Indeed, through numerical simulations we found what appear to be heterogeneous
steady states which are stable when taking the ‘dumbbell’ domain in Fig. 4, as this
domain was considered for a similar purpose but with different dynamics in Matano
and Mimura (1983). Meanwhile, non-convex domains with a central hole still appear
to give dynamics which tend to stable homogeneous steady states.

The reaction terms are seen to determine the structure of uniform positive steady
states. Indeed, such states are specified uniquely by the form of the reaction functions.
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Fig. 12 (Color figure online) Square death region with generalist predator–prey dynamics, for square side
a = 0.8. Both populations settle down to a positive steady state. Reaction coefficients are a1 = 1, a2 = −3,
b1 = 2, b2 = 1

Therefore, we anticipate that the reaction terms dominate for large enough time. On
the other hand, advection toward resources or toward/away from other species, or
dispersion throughout the domain, will occur more rapidly. Hence, advection and dis-
persion are responsible for transient dynamics, while asymptotics are likely dominated
by reaction terms. This makes sense: For small times, movement around the domain
and advection toward resources are short time, local occurrences. On the other hand,
the reaction terms model the long-time fitness of the species, given their interactions
and availability of ambient resources.

We have considered three biologically relevant cases when simulating the two-
dimensional dynamics numerically for homogeneous domains, including competition
dynamics, generalist predator-prey dynamics, and predator–prey dynamics. For each
we observed transient pattern formation in many cases, with populations forming
intricate and highly localized colonies, but eventually dispersing to a uniform density.
Numerical simulations suggested transient dynamics with cluster formation of popu-
lations, similar to what was found in the one-dimensional case (Grindrod 1988), but
all long-time dynamics that we simulated converged to uniform steady states, as our
linear stability results indicate. This suggests that the model given by Eq. (5) does not
exhibit stable non-uniform (or, heterogeneous) steady states when the spatial domain
is convex, which is in line with simpler reaction–diffusion–advection models, e.g.,
(Kishimoto and Weinberger 1985). While we also considered non-convex domains
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with a hole in our numerical simulations, and these also appeared to give dynamics
which tend to uniform steady states, it may be possible that more exotic non-convex
spatial domains could give non-uniform steady states, since this may depend strongly
on the form of the domain. There is some valuable information in understanding
transient aggregation behaviors, particularly biologically, but the long-time dynamics
appear to be dominated by the kinetics, again with the proviso that advection and
diffusion parameters can modify the stability of the long-time asymptotic solutions.

While we have included numerical simulations which demonstrate interesting
dynamics, note that a number of other numerical simulations were considered in
order to determine the robustness of the dynamics observed. In cases with a convex
domain or a domain with a central hole, all of the simulations resulted in convergence
to homogeneous steady state solutions for sufficiently large time, rather than spatial
patterning or non-equilibrium dynamics. This suggests that convergence to homoge-
neous steady states is fairly ubiquitous for this family of models when the domain
is homogeneous, at least on convex and certain non-convex domains. In contrast,
results on cross-diffusion mechanisms for multispecies interaction discussed earlier
demonstrate that heterogeneous pattern formation is indeed possible on homogeneous
domains, suggesting one measurable difference between the two classes of models.

Introducing spatially distributed resources, as we have done in Section 4, allows for
non-uniform steady states, alongside more interesting transient interactions between
the species. For simple spatial distributions, such as the single bump function in
Fig. 5, we observe steady states that essentially recapitulate the spatially homoge-
neous resource dynamics by having the populations conform to the spatially distributed
resources. However, for more intricate spatial structures, we observe non-trivial inter-
actions between species, such as the abandoning of resources demonstrated in Fig. 6
that persist for asymptotically large times. We also demonstrate how this model can
be used to understand migration between resource patches when the species inter-
act during this transition. This suggests that advection along fitness gradients can
induce non-trivial dispersal mechanisms, such as a separation of population centers
during a migration demonstrated in Fig. 9. Finally, we considered the introduction of
a hazardous region into the domain in Sect. 4.4. We observe that several phenomena
are possible: extinction of one or both species, or the clustering of prey populations
between hazards and predators. This later effect is an unexpected feature of the model,
and we conjecture that this is due to how the predators avoid hazards around the square
corners of the hazards, but the prey are able to randomly diffuse into this region.

That the incorporation of spatial heterogeneity in the fecundity can result in spatial
patterning and segregation, even on convex domains, suggests that advection toward
favorable or away from unfavorable regions of space can be used to strongly influ-
ence the dynamics of the populations. Interestingly, although the mechanism is a bit
different, the results are akin to those concerning convergence of random motion to
an ideal free distribution. In that setting, spatial forcing functions are also used to
denote favorable or unfavorable regions of the domain, and under diffusion the pop-
ulations find their way to favorable regions as time increases. A primary difference
in our approach is that, instead of using heterogeneous forcing as an input into the
reaction–diffusion system directly (as done in studies on the ideal free distribution,
which results in purely local reaction–diffusion dynamics), the heterogeneity also
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enters into the separate advection equations in our model, and for εi �= 0 this results
in a non-local forcing toward the resource or away from the hazard. However, in both
cases, one observes convergence of populations to favorable regions. As we demon-
strate in numerical simulations, however, there is not uniform convergence throughout
the domain, but rather there are hysteresis effects due to the initial distribution of the
populations. This can result in some favorable regions being under utilized relative to
others.

Both the stability results and the numerical simulations point to the fact that at small
timescales, the diffusion and advection terms play a dominant role. This means that
foraging and linear interactions are the primary driving mechanisms for small times,
and this completely agrees with our intuition for the biological problem. Meanwhile,
at larger timescales, the reaction terms become dominant, influencing both the form
and the stability of steady state solutions. Indeed, for larger timescales, the overall
fitness of each species plays a larger role, and this fitness includes both the ability to
exploit resources as well as to survive alongside the other species (and members of
the same species).

Future work could take multiple avenues. One could try and show that globally,
uniform steady states are the only possible asymptotics dynamics of (5), although for
two-species interactions there are some technical obstructions in the predator–prey
case (see Kishimoto and Weinberger 1985 and references therein). It could be pos-
sible to consider disjoint resource subsidies, so that a predator or generalist predator
would need to choose between moving toward a prey or a spatially separate sub-
sidy. Such a scenario has been considered under the ‘Stepping-Stone’ framework (in
which ODEs are defined at each separate location, rather than a continuous spatial
domain); see Nevai and Gorder (2012). Furthermore, one might consider the inclu-
sion of non-autonomous or stochastic forcing terms in order to model seasonality
and other perturbations to the system. Similarly, one might consider domains with
time-dependent boundaries, in order to model the effects of flooding or other natural
disasters which would limit domain availability to the populations.

The results for the reaction–diffusion–advection models we consider point to the
lack of pattern formation on larger timescales when there is no heterogeneous forcing
present; indeed, the stability results exclude the possibility of Turing instabilities.
This is in contrast to cross-diffusion type models, for which pattern formation was
shown to be possible (Lou and Ni 1996). Note, however, that one might consider
other reaction kinetics rather than simply quadratic interactions, which might result in
Turing instability and hence pattern formation. This would be an interesting direction
for future work. Additionally, one might consider a composite model, incorporating
both advection toward resource gradients and cross-diffusion terms, in order to see
the relative dominance of each effect on the resulting dynamics. Such a model with
both nonlinear diffusion and non-local advection would likely result in a variety of the
aforementioned dynamics in relevant parameter regimes, and spatial forcing would
likely not, particularly if the reaction kinetics were selected in such a way that Turing
instabilities are permitted.

Mathematically, it may be useful to study rotational forms of the wi , since for
simplicity we have restricted our attention to irrotational advection by assuming that
the wi can be written as the gradient of a potential function. Indeed, while we have
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seen motion around a centrally placed barrier or obstruction, we would need to permit
the wi to have non-trivial rotational parts in order to obtain circular motion due to
a resource or avoidance of other species in a uniform domain without obstructions.
The drawback would lie in the need to consider more complicated equations for the
wi , resulting in a system of six, rather than four, nonlinear PDEs. Aside from steady
states, one could attempt to find other classes of non-uniform steady states, or even
time-dependent asymptotic solution structures, such a traveling waves or quasi-steady
structures which describe non-steady predator–prey pursuit and evasion dynamics.
We observed none of these in our simulations, although we suspect that they exist for
certain choices of the kinetic parameters and spatial domains.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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source, provide a link to the Creative Commons license, and indicate if changes were made.
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