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Abstract The identification of mechanisms responsible for recurrent epidemic out-
breaks, such as age structure, cross-immunity and variable delays in the infective
classes, has challenged and fascinated epidemiologists andmathematicians alike. This
paper addresses, motivated by mathematical work on influenza models, the impact of
imperfect quarantine on the dynamics of SIR-type models. A susceptible-infectious-
quarantine-recovered (SIQR) model is formulated with quarantined individuals
altering the transmission dynamics process through their possibly reduced ability to
generate secondary cases of infection. Mathematical and numerical analyses of the
model of the equilibria and their stability have been carried out. Uniform persistence
of the model has been established. Numerical simulations show that the model sup-
ports Hopf bifurcation as a function of the values of the quarantine effectiveness and
other parameters. The upshot of this work is somewhat surprising since it is shown
that SIQR model oscillatory behavior, as shown by multiple researchers, is in fact not
robust to perturbations in the quarantine regime.
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1 Introduction

The motivating disease behind this study is influenza type A, a recurrent communi-
cable viral disease, known for its ability to change due to point (most common) or
shift mutations. These variants are responsible for seasonal flu epidemics and some-
times pandemics. In 2009, a pandemic H1N1-strain of influenza type A was identified
in Mexico, spreading quickly around the world. Influenza has significant impact on
the world since it is responsible, for example, for nearly 40 000 deaths in the USA
alone each year. Recurrent influenza outbreaks place a significant social and economic
burden to society, and naturally, the possibility of the emergence of pandemic strains
has worried the world community since the devastating impact of the 1918 global
influenza pandemic. Consequently, the search for strategies that mitigate the impact
of seasonal influenza and strategies that may be also effective in reducing morbidity
and mortality in the case of a pandemia has always been of interest to the public health
communities. Given the variability and inability to quickly produce highly effective
vaccines and given the timing and uncertainty in the appearance and generation of
new strains, the use of strategies based on isolation and/or quarantine (I and Q) as
a way of containing communicable diseases in general (and influenza in particular)
has been used for many years. The appearance in 2002 of the severe acute respiratory
syndrome (SARS) was partially contained by the use of I and Q and fast diagnosis
(Chowell et al. 2003). Moreover, isolation precautions have been applied to prevent
the transmission of the 2009 H1N1 influenza A pandemic.

The effectiveness of I and Q isolation and quarantine policies is in general advan-
tageous albeit in some instances (e.g., rubella and chicken pox in China), their use may
have negative consequences (Castillo-Chavez et al. 2003). Although in the context of
this manuscript the terms I and Q are used in some sense interchangeable (cite paper
with my son), in general they have different meanings in the epidemiological and/or
bio-security literature. Isolation (I ) typically means that symptomatic infected are
separated from others during the duration of an outbreak, while quarantine (Q ) is
understood to mean the use or implementation of deliberate policies that limit the free
and natural movement of people who are infected or who may have been exposed to
infectious individuals.

In this work, quarantine means that somehow the ability of individuals to infect
others has been diminished. Specifically, only infected (assumed infectious) individ-
uals are quarantined and the effect of such a policy impacts the transmission process
in two ways. First, it reduces the effectiveness of the contacts with susceptibles,
and second, it reduces their frequency in the environments where transmission takes
place.

The role of quarantine has also been examined in the context of pandemic flu for
over a century. Quarantine and isolation measures were put in place during the 1918
flu pandemic in every part of the world, including the USA (Barry 2005), but it was
the emergence of SARS in 2002, which caused worldwide panic despite its ”low”
number of cases (8000), that brought the potential value of quarantine and/or isolation
effectiveness to the forefront of public health policy.

Isolation has historically been used to control contagious diseases with some suc-
cess (Castillo-Chavez et al. 2003; Gensini et al. 2004). There is plenty of evidence that
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when applied properly, isolation helps prevent the transmission of a contagious disease
as effective contact rates may be reduced long enough by setting infectious individuals
apart from the “rest” of the population (Ebola paper with Diego on the Lancet). In
general, the situation is rather complex since often the epidemiological status of indi-
viduals is not visible; latently infected individuals are sometimes asymptomatic and
yet still able to transmit the disease (Ebola paper with Diego on the Lancet). Further, in
general isolation and quarantine at large scales will be done primarily on a voluntary
basis and so their success may depend primarily on the public trust and understanding
of the necessity of such restrictions.

Mathematicalmodels have been used to study their impact on the dynamics of infec-
tious diseases under isolation and quarantine (I and Q) in order to test the effectiveness
of various scenarios (strategies) on the prevention or amelioration of the spread of
highly contagious diseases (Brauer and Castillo-Chávez 2012; Chowell et al. 2016;
Feng and Thieme 1995; Hethcote et al. 2002; Nuño 2005). The implementation of
quarantine has been assumed to be perfect in the sense that quarantined individuals
have been completely separated from the rest of the population, that is, all contacts
between quarantined infected and susceptible individuals have been eliminated with
some of these models capable of supporting sustained oscillatory outbreaks. In addi-
tion, extensions of the SIQRmodel that deliberately include a class A of asymptomatic
individuals have also been studied by Castillo-Chavez et al. (2003) and Vivas-Barber
et al. (2014).

The purpose of this paper is to introduce and analyze a model that incorporates a
partially effective quarantine (or isolation) policy to test themathematical robustness of
prior mathematical results to variations in isolation and quarantine effectiveness. Here,
the degree of effectiveness (i.e., reducing the movement of quarantined individuals) is
implemented through theuse of a single parameterσ with aperfect quarantine/isolation
model corresponding to σ = 1, which corresponds to the likelihood that a susceptible
meets an infectious individual (within a homogeneously mixing populations) going
from I/N to I/(N − Q). In general, it will go from I/N to I/(N − σQ) with σ ∈
[0, 1]. It has been shown for the case σ = 1 that classical quarantine models can
generate oscillations (Feng 1994; Hethcote et al. 2002). However, we show that if one
uses communicable disease parameters that oscillations are less likely when σ varies
in [0, 1]. Further, it is shown that for influenza parameters, oscillatory behavior takes
place only when σ is very close to 1 or when σ = 1; periodic solutions arise via a
Hopf bifurcation as σ varies in [0, 1]. Results on persistence and global stability of
the equilibria that generalize those in Feng (1994) are also presented in this paper.

The paper is organized as follows. In Sect. 2, the standard SIQR model, where
quarantine is assumed to be perfect, is introduced. In Sect. 3, a model variant with
imperfect quarantine is formulated and analyzed,where the basic reproduction number
R0 and model’s equilibria have been found. In this last case, the model is shown to
exhibit Hopf bifurcation. In Sect. 4, global stability analysis of the infection-free
equilibrium for R0 < 1 is established and uniform persistence proven. The paper
includes a discussion of the results in Sect. 5.
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2 The Standard Model

In this section, we revisit the analysis of the SIQR model shown in Hethcote et al.
(2002), where S, I, Q and R stand for the number of susceptible, infected, quarantine
and recovered individuals, respectively, so that S + I + Q + R = N . In this model,
the population is assumed to have constant size and its individuals are assumed to mix
at random, so that every individual has the same chance to make contact with others.
Here, a policy of perfect quarantine is considered. Thus, the incidence rate is given by
βSI/(N − Q) where β is the per-capita and per-infected effective contact rate, that is
the number of effective contacts leading to a secondary case of infection. It is assumed
further that the recovery and quarantine per-capita rates are constant as in Hethcote
et al. (2002). Hence, the mathematical representation of the above-described model is

dS

dt
= μN − βS

I

N − Q
− μS,

dI

dt
= βS

I

N − Q
− (θ + γ + μ)I,

dQ

dt
= θ I − (α + μ)Q,

dR

dt
= γ I + αQ − μR,

where μ is the per-capita birth and death rate, γ is the per-capita recovery rate, θ is
the per-capita isolation/quarantine rate, and α is the per-capita recovery rate for iso-
lated/quarantined individuals. State variables and parameters are defined in Tables 1
and 2. A thorough mathematical analysis of the above model, when γ = 0, is shown
in Feng (1994) and Feng and Thieme (1995). Specifically, it is shown in Feng (1994),
Feng and Thieme (1995) that the introduction of a fully isolated class could destabi-
lize the endemic equilibrium in a susceptible-infected-quarantined-recovered (SIQR)
model. Hethcote and his collaboratorsHethcote et al. (2002) expanded the SIQRmodel
via some variants that allowed for the movement of individuals to the Q-class at differ-
ent stages and corroborated the results in Feng (1994), Feng and Thieme (1995). Nuño
(2005) analyzed the impact of isolation/quarantine but in the context of a population
that is facing two competing strains of influenza. She focused on the situation where
the competition was mediated by cross-immunity. The introduction of a quarantine
class into a two-strain model (mediated by cross-immunity) not only continues to
prove its capability of generating sustained oscillations but also its ability to generate
them within a range of acceptable for “flu” parameter values [not the situation in Feng
(1994) and Feng and Thieme (1995)]. Furthermore, the oscillation periods seemed to
be consistent with those associated with recurrent influenza outbreaks.

Isolation/quarantine is a complicated process because we do not live in a perfect
world. In hospitals, patients may inadvertently or deliberately break from isolation and
(in the process) have casual contacts with others includingmedical personnel, staff and
visitors. In this work, we introduce and analyze a model that incorporates isolation,
under the assumption that only a fraction of individuals in theQ compartmentmanages
to stay totally isolated from the rest of the population.
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Table 1 Description of the
model state variables

State variables Description

S(t) Number of susceptible individuals at time t

I (t) Number of infected and infectious individuals at
time t

Q(t) Number of isolated/quarantined individuals at time t

R(t) Number of recovered individuals at time t

Table 2 Description of the
model parameters

Parameters Description

σ Proportion of effectively quarantined individuals

μ Per-capita birth and death rate of individuals

β Average rate of effective contacts that lead to infection
by infected individuals

β̂ Average rate of effective contacts that lead to infection
by not completely quarantined individuals

θ Per-capita quarantine rate of infected individuals

γ Per-capita recovery rate of infected individuals

α Per-capita recovery rate of infected individuals who
were quarantined

Fig. 1 (Color figure online)
Flowchart for the transition
between model states

μ

μ N

μ μ

μ

λ

αθ

γ

3 Model with σ -Quarantine Class

In the σ -quarantine model, it is assumed that the latency period is negligible and that
immunity is permanent. Hence, using the same notation as above and following the
flow diagram shown in Fig. 1, we come up with the σ -quarantine model

dS

dt
= μN − βS

I

N − σQ
− β̂S

(1 − σ)Q

N − σQ
− μS,

dI

dt
= βS

I

N − σQ
+ β̂S

(1 − σ)Q

N − σQ
− (θ + γ + μ)I,

dQ

dt
= θ I − (α + μ)Q,

dR

dt
= γ I + αQ − μR (1)

where the state variables and parameters are defined in Tables 1 and 2, with σ ∈ [0, 1].
The parameter σ denotes the effectiveness of isolation/quarantine, where a value of
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σ = 0 means that isolation/quarantine is totally ineffective, while σ = 1 is equivalent
to a totally perfect state of isolation/quarantine. The rate λ shown in the flowchart
represents the force of infection (the rate at which susceptible individuals acquire the
infection) and is such that

λ = β
I

N − σQ
+ β̂

(1 − σ)Q

N − σQ
.

Specifically, as shown in Table 2, β represents the effective rate of contacts between
susceptible and infected individuals, while β̂ represents the effective rate of contacts
between susceptible and imperfectly quarantined individuals. Since σ represents the
effectiveness of quarantine, then the total number of successfully quarantined indi-
viduals is σQ and therefore the total number of individuals who are available to mix
homogeneously is (N −σQ). Thus, if we have a susceptible individual, then the prob-
ability that this individual has a contact with an infected individual is I/(N − σQ),
while the probability that this susceptible individual encounters an imperfectly quar-
antined one is (1− σ)Q/(N − σQ). Hence, the new incidences due to contacts with
infected individuals are βSI/(N − σQ), while those occurring due to contacts of
susceptible with imperfectly quarantined individuals are β̂(1 − σ)SQ/(N − σQ).

It is assumed that Q-individuals tend to avoid any kind of contacts that are most
likely to lead to the transmission of the infectious agent. Hence, it is assumed that the
average number of effective contacts per unit time involving quarantined individuals,
β̂ is smaller than β. Mathematically, we set β̂ ≡ rβ, where r ∈ [0, 1]. Therefore, if
r = 0, thenQ-individuals (while still in circulation)manage to avoid all risky contacts.
On the other hand, if r = 1 then Q-individuals that circulate take no precautions to
avoid passing the infection.

3.1 Rescaled and Reduced Model

If we put S̄ = S/N , Ī = I/N , Q̄ = Q/N and R̄ = R/N , then the model is rewritten
in terms of proportions as

dS̄

dt
= μ − β S̄

[ Ī + r(1 − σ)Q̄]
1 − σ Q̄

− μS̄,

d Ī

dt
= β S̄

[ Ī + r(1 − σ)Q̄]
1 − σ Q̄

− (θ + γ + μ) Ī ,

dQ̄

dt
= θ Ī − (α + μ)Q̄,

d R̄

dt
= γ Ī + α Q̄ − μR̄ (2)

with initial conditions

S̄(0) = 1 − Ī0, Ī (0) = Ī0, Q̄(0) = 0, R̄(0) = 0.
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Thus, the variables S̄, Ī , Q̄ and R̄ denote the proportions of susceptible, infected,
isolated/quarantined and recovered individuals, respectively; i.e., S̄+ Ī + Q̄+ R̄ = 1.

3.2 Equilibrium Analysis and the Basic Reproduction Number

3.2.1 IFE and R0

On putting the derivatives in the left-hand side of system (2) equal zero and solving
the resulting nonlinear algebraic system in terms of the variables S̄, Ī , Q̄ and R̄, we
get that the model has an infection-free equilibrium (IFE) E0 = (1, 0, 0, 0)′ and a
unique disease-endemic equilibrium E∗ = (S∗, I ∗, Q∗, R∗) that will be determined
later on.

To investigate the local stability of E0, we linearize model (2) around E0 to get
the corresponding Jacobian matrix. This matrix has two equal eigenvalues of negative
value −μ, in addition to the eigenvalues of the submatrix

J0 =
(

β − (θ + γ + μ) (1 − σ)rβ
θ −(α + μ).

)

To guarantee the local asymptotic stability of the disease-free equilibrium E0, the
conditions trace(J0) < 0 and det(J0) > 0 should be held. Since

trace(J0) = β − (α + μ) − (θ + γ + μ)

and

det(J0) = (α + μ)(γ + μ + θ) − β(α + μ) − (1 − σ)rβθ,

then the condition det(J0) > 0 implies the condition trace(J0) < 0. Hence, E0 is
locally asymptotically stable if and only if R0 < 1 where

R0 = β

(γ + μ + θ)
+ (1 − σ)rβθ

(α + μ)(γ + μ + θ)
(3)

= β

γ + μ + θ

[
1 + (1 − σ)

rθ

α + μ

]
(4)

is the basic reproduction number.
The form (3) means that R0 is the additive contribution of the two infective classes

( Ī and Q̄) to the generation of the secondary cases of infectious when S̄(0) ≈ 1.
Clearly, if r = 0, (totally effective quarantine), then R0 is reduced to what one gets
when theQ-class is incapable of generating secondary cases of infections. On the other
hand, if r = 1 and σ = 0, then we have the worst case scenario; that is, quarantine
plays no role.

On the other hand, the form (4) shows clearly that R0 is the multiplication of two
terms. The first term

β

γ + μ + θ
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represents the basic reproduction number for the model if the quarantine is totally
perfect. However, the second term contains in part the expression

(1 − σ)
rθ

α + μ

which represents the percent increase in the reproduction number due to the ineffec-
tiveness of quarantine. We have therefore established the following stability result.

Theorem 1 System (2) has a unique disease-free equilibrium point E0 = (1, 0, 0, 0)′,
which is locally asymptotically stable for R0 ≤ 1 and is unstable for R0 > 1.

3.2.2 Existence and Stability of a Unique Endemic Equilibrium

The equilibrium analysis of the nonlinear dynamical system (2) shows that it has (in
addition to the IFE) a unique endemic equilibrium corresponding to the persistence
of the infection, for values of R0 > 1. The following theorem gives insight on that
equilibrium and its local stability.

Theorem 2 If R0 > 1, then system (2) has a uniquely determined nonnegative equi-
librium point given by E∗ = (S∗, I ∗, Q∗, R∗)′, where S∗, I ∗, Q∗ and R∗ are given
by the following formulae ( in terms of R0)

I ∗ = R0 − 1

bR0 − σa
, Q∗ = aI ∗ = a

R0 − 1

bR0 − σa
, S∗ = 1 − bI ∗ = b − σa

bR0 − σa
,

R∗ = 1 − S∗ − I ∗ − R∗ = (b − a − 1)
R0 − 1

bR0 − σa
= γ + αa

μ
× R0 − 1

bR0 − σa
(5)

where

a = θ

α + μ
and b = γ + μ + θ

μ
.

In fact, it will be shown in Sect. 3.3 that a Hopf bifurcation may occur as parameters
are varied. We see that the stability of E∗ is characterized sometimes a stable spiral.
We will see that periodic solutions around E∗ can in fact be supported.

Proof It is easy to check that the components of the disease-endemic equilibrium E∗
of system (2) are given by (5). To investigate its stability, we compute its corresponding
4 × 4 Jacobian matrix. It could easily be checked that it has an eigenvalue −μ(< 0),
while the other three eigenvalues are those of the submatrix

Jsub =
⎛
⎝−A1 − μ −B1 −C1

A1 B1 − D1 C1
0 θ −E1

⎞
⎠
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with

A1 = β
I ∗ + r(1 − σ)aI ∗

1 − σaI ∗ = β

(
1 − 1

R0

) (
1 + (1 − σ)ra

b − σa

)
,

B1 = β
1 − bI ∗

1 − σaI ∗ = β

R0
= (α + μ)(γ + θ + μ)

α + μ + (1 − σ)rθ
,

C1 = r(1 − σ) + σ I ∗

1 − σaI ∗ B1 = B1

b − σa

(
σ + (1 − σ)rb − (1 + (1 − σ)ra)σ

R0

)
,

D1 = θ + γ + μ and E1 = α + μ.

�	
The characteristic equation of Jsub is a third-degree polynomial given by

P(λ) = a3λ
3 + a2λ

2 + a1λ + a0, (6)

with coefficients

a3 = 1,

a2 = μ + A1 + E1 + (D1 − B1),

a1 = (μ + A1)E1 + (μ + E1)(D1 − B1) + D1A1 − θC1,

a0 = μE1(D1 − B1) + A1D1E1 − μθC1.

It is easy to check that

D1 − B1 = (γ + θ + μ)

(
1 − α + μ

α + μ + (1 − σ)rθ

)
> 0.

Hence, a2 > 0. Moreover, the coefficient a1 could be proven positive by considering
it as a function of R0. To this end, we compute

a1|R0=1 = μ(α + μ) + μ(γ + θ + μ)

(
1 − α + μ

α + μ + (1 − σ)rθ

)
> 0,

∂a1
∂R0

= (α + μ)(γ + θ + μ)(1 + (1 − σ)ra)

(α + μ + (1 − σ)rθ)(b − σa)

(
α+γ+2μ+θ

(
1− σ

R2
0

))
>0.

Thus, a1 > 0. Similarly, we have

a0|R0=1 = 0,

∂a0
∂R0

= (α + μ)(γ + θ + μ)(1 + (1 − σ)ra)

(α + μ + (1 − σ)rθ)(b − σa)

(
(α+μ)(γ+μ+θ)−σμθ

R2
0

)
>0.

Hence, a0 > 0 for R0 > 1. Thus, for R0 > 1, all coefficients of the characteristic
polynomial (6) are positive.

123



Mathematical Analysis of an SIQR Influenza Model with… 1621

Based on the application of the Routh–Hurwitz criteria, it remains to show that
the Hurwitz determinants 	i are all positive Lancaster (1969). For the third-degree
polynomial (6), the Hurwitz determinants are given explicitly by 	1 = a2, 	2 =
a2a1 − a3a0, and 	3 = a0	2 where

	1 = A1 + μ + D1 + E1 − B1 > 0,

	2 = (A1 + μ + D1 + E1 − B1)(A1D1 + D1E1 + A1E1

+μ(D1+E1 − B1)−B1E1−θC1)−(A1D1E1+μ(D1E1−B1E1−θC1)),

	3 = (A1D1E1 + μ(D1E1 − B1E1 − θC1))	2.

The Hurwitz necessary and sufficient conditions for the local asymptotic stability
require that all coefficients ai as well as the determinants 	i (i = 1, 2, 3) should be
positive. Now, since a0 > 0,	1 > 0 and 	3 = a0	2, then the Hurwitz conditions
are reduced to the inequality 	2 > 0. However, 	2 has subtracted terms so that it
may have negative values for some range of the model parameters, which means that
the Hurwitz conditions may not always be satisfied. Hence, for certain values of the
parameters, some eigenvalues may cross the horizontal line to have purely imaginary
values. Thus, a Hopf bifurcation may exist.

3.3 Existence of Hopf Bifurcation

Hopf bifurcation is the local appearance or disappearance of a periodic solution froman
equilibrium when a parameter crosses a critical value. More precisely, it occurs when
a branch of periodic solutions bifurcates from an equilibrium when that equilibrium
loses its stability, as a complex conjugate pair of eigenvalues crosses the imaginary
axis and changes its sign due to a change in the value of somemodel parameters (Guck-
enheimer and Holmes 1983). In terms of mathematical notations, in “Appendix B,”
we state (without proof) the classical result of Hopf on the conditions exhibiting Hopf
bifurcation and a lemma that gives equivalent conditions required for the existence of
Hopf bifurcation.

In this work, we will numerically show that our model exhibits Hopf bifurcation by
applying Lemma 5. Accordingly, since our characteristic polynomial (6) is of degree
three and since all the coefficients ai are positive and 	1 > 0, we will focus on
the surface in parameter space where 	2 is zero. That is the surface where complex
conjugate pair of eigenvalues is pure imaginary. The left subfigure of Fig. (2) shows
the surface in the space (σ, R0, θ) for fixed values of r, μ, α and γ . It shows that
there is a small “bump” for values of 0.995 < σ < 1. A cross section for the Hopf
surface in the space (α, R0, θ) is shown in the right subfigure of Fig. (2). The bump
appearing in Fig. (2) (left) occurs at a value of R0 corresponding to the minimum
value of σ at which Hopf bifurcation occurs. The value of σ at which Hopf bifurcation
occurs is drawn as a function of R0, for different values of θ , in Fig. 3b. The figure
shows that on the Hopf bifurcation surface, if we keep θ fixed, then for a feasible
value of R0, Hopf bifurcation starts to appear when σ = 1. If we let R0 increases,
then σ decreases till reaching a minimum after which it starts to increase again till
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Fig. 2 (Color figure online) Hopf bifurcation surface in the space (σ, R0, θ ) for parameter values μ =
1/3650 ≈ 0.00027397, γ = 0.5, α = 0.4 per week and r = 0.11 (left figure). The right figure shows the
cross section of the Hopf surface in the (α, R0, θ) space for parameter values μ = 1/3650, γ = 0.5 per
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Fig. 3 (Color figure online) a Curve obtained using MATCONT that represents the values of σ and the real
part of one of the complex eigenvalues. The mark represents the point at which the Hopf bifurcation appears
at σ = 0.9973971. Simulations are done with parameter values μ = 1/3650, γ = 0.5, α = 0.4, θ = 4
per week, r = 0.11 and R0 = 2.5. b The critical value of σ at which Hopf bifurcation appears as a
function of R0 for different values of θ , while the other parameters are kept fixed as in part (a)

reaching one. On the other hand, if we keep R0 fixed at a feasible level, but let θ

increases, then the value of σ that produces Hopf bifurcation decreases. Our results
have also been realized using MATCONT. Figure 3a shows that the model exhibits
Hopf bifurcation for parameter values as shown in the figure’s caption. It shows that
the Hopf bifurcation occurs for very high enough values of σ (very close to 1). Time
series analysis and phase space solutions are shown in Figs. (4, 5). For σ = 1 and
other parameter values as in the captions, the analysis shows the existence of limit
cycles, see Fig. (4). However, if σ is reduced enough, while other parameter values
are kept fixed as in Fig. (4), then the analysis shows that the trajectories are inward
spirals, see Fig. (5).
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the phase space suggest the existence of limit cycles
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Fig. 5 (Color figure online) For the values of the parameters μ = 1/3650, α = 0.4, γ = 0.5, θ = 4 per
week, r = 0.11, R0 = 2.5 but σ = 0.8, we can see that trajectories of the infectives are damped. The orbits
in the phase space are inward spirals

4 Global Stability and Uniform Persistence

Model (2) could be rescaled by putting

x = S̄

A
, y = Ī

A
, q = (1 − σ)Q̄

A
, z = R̄

A

where

A = 1 − σ Q̄ and
dA

dt
= −σ

dQ̄

dt
= −σθ Ī + σ(α + μ)Q̄

and introduce the rescaled parameters

α̂ = α

β
, θ̂ = θ

β
, γ̂ = γ

β
, μ̂ = μ

β

and rescaled time s = βt leading to the following equivalent system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = μ̂(1 − x) + σ
1−σ

μ̂q − xy + x(σ θ̂ y − (m + r)q),

ẏ = r xq + y(x + σ θ̂ y − mq − (θ̂ + γ̂ + μ̂)),

q̇ = (1 + σ
(1−σ)

q)(θ̂ (1 − σ)y − (α̂ + μ̂)q),

ż = 1
(1−σ)

α̂q − μ̂z + γ̂ y + z(σ θ̂ y − mq),

(7)
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where the dot means differentiation with respect to s (i.e., ẋ = dx/ds) and m =
σ(α + μ)/[(1 − σ)β]. The relation A = 1 − σ Q̄ implies that

x + y + q + z = 1. (8)

The use of relation (8) means that one of the equations in (7) is “redundant.” The
elimination of the equation for ẋ leads to the following three-dimensional equivalent
system of nonlinear differential equations.

⎧⎪⎨
⎪⎩

ẏ = (rq + y)(1 − y − q − z) + y(σ θ̂ y − mq − (θ̂ + γ̂ + μ̂)),

q̇ = (1 + σ
(1−σ)

q)(θ̂(1 − σ)y − (α̂ + μ̂)q),

ż = 1
(1−σ)

α̂q − μ̂z + γ̂ y + z(σ θ̂ y − mq),

(9)

As model (7) monitors human population, all its parameters and state variables
should be nonnegative for t > 0. Moreover, in order that this model makes epidemi-
ologically meaningful sense, it is important to prove that all its state variables are
nonnegative for all times. That is, we need to show that solutions starting with initial
positive values remain positive for all time t > 0. Therefore, we state and prove theo-
rem [3] that determines the basic dynamical features of model (7). Its proof is deferred
to “Appendix A.”

Theorem 3 Let x0, y0, q0, z0 ≥ 0 , x0 + y0 + q0 + z0 = 1. Then there exists a unique
solution x, y, q and z of (7) with initial data x0, y0, q0, z0 at time 0 that is defined for
all forward times. Moreover, x, y, q and z are nonnegative, where x + y + q + z = 1.
If y0 = 0, then y(t) ≡ 0. If y0 > 0, then x(t), y(t), q(t), z(t) are strictly positive for

all t > 0. Furthermore, q is bounded by q̂, where q̂ = max{q0, (1 − σ) θ̂
α̂+μ̂

}.

4.1 Global Stability of the Infection-free Equilibrium

We start this section by introducing some notation that is needed in the analysis below.
For a bounded real-valued function f on [0,∞), we define

f∞ = lim inf
t→∞ f (t), f ∞ = lim sup

t→∞
f (t).

We also define
u := y

1 + σ
(1−σ)

q
. (10)

Thus, from (7) we get

u̇ = u

[
x

(
1 + r

q

y

)
− (θ̂ + γ̂ + μ̂)

]
. (11)

Now, to establish the global asymptotic stability of the infection-free equilibrium,
two lemmas are needed. The first lemma is known as the fluctuation lemma and it will
be stated without proof, while the second lemma will be stated with a detailed proof.
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Lemma 1 Let f : [0,∞) → R be bounded and twice differentiable with bounded
second derivative. Then there are sequences tn → ∞, sn → ∞ such that for all
n → ∞, it holds limn→∞ f (tn) = f ∞, limn→∞ f (sn) = f∞, f ′(tn) = f ′(sn) = 0,
f ′′(tn) ≤ 0 and f ′′(sn) ≥ 0 , n ∈ N.

Lemma 2 If u converges, so do y, q and z.

Proof In Theorem 3, we proved that the set

D = {(x, y, q, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ q ≤ κ, 0 ≤ z ≤ 1}

is forward invariant for any κ ≥ (1 − σ)θ̂/(α̂ + μ̂). A direct use of Lemma 1 means
that we can choose two sequences tn and sn with tn → ∞ and sn → ∞ such that

q(tn) → q∞, q̇(tn) → 0,

and

q(sn) → q∞, q̇(sn) → 0.

Then from (7) we have

q∞ ≤ (1 − σ)θ̂

α̂ + μ̂
y∞, q∞ ≥ (1 − σ)θ̂

α̂ + μ̂
y∞. (12)

Using (11) and (12), we have

q∞ ≤ (1 − σ)θ̂

α̂ + μ̂
y∞ ≤ (1 − σ)θ̂

α̂ + μ̂
(1 + σ

(1 − σ)
q∞)u∞,

and

q∞ ≥ (1 − σ)θ̂

α̂ + μ̂
y∞ ≥ (1 − σ)θ̂

α̂ + μ̂
(1 + σ

(1 − σ)
q∞)u∞.

Therefore, since u converges, then u∞ = u∞. Consequently,

q∞

1 + σ
(1−σ)

q∞ ≤ (1 − σ)θ̂

α̂ + μ̂
u∞ = (1 − σ)θ̂

α̂ + μ̂
u∞ ≤ q∞

1 + σ
(1−σ)

q∞

and

q∞
(
1 + σ

(1 − σ)
q∞

)
≤ q∞

(
1 + σ

(1 − σ)
q∞

)
.
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It follows that q∞ ≤ q∞ and therefore that q converges. From (10), it follows that y
also converges.

To show that z converges, we let ȳ = y∞ = y∞, q̄ = q∞ = q∞. Applying
Lemma 1 to the ż equation in (7) means that we can choose two sequences tn and sn
with tn → ∞ and sn → ∞ such that

z(tn) → z∞, z̈(tn) → 0, z(sn) → z∞, z̈(sn) → 0.

Therefore,

α̂

(1 − σ)
q̄ − μ̂z∞ + γ̂ ȳ + σ θ̂ ȳz∞ − mq̄z∞ ≤ α̂

(1 − σ)
q̄ − μ̂z∞

+ γ̂ ȳ + σ θ̂ ȳz∞ − mq̄z∞

or, equivalently,

μ̂z∞ + (mq̄ − σ θ̂ ȳ)z∞ ≤ μ̂z∞ + (mq̄ − σ θ̂ ȳ)z∞.

From (12) we have that mq̄ = σ θ̂ ȳ and therefore z∞ ≤ z∞. That is, z converges. �	
Theorem 4 For model (7), if R0 < 1, then the unique disease-free equilibrium point
E0 = (1, 0, 0, 0) of system (7) is globally asymptotically stable.

Proof Let R0 ≤ 1. The use of Lemma 1 means that we can choose a sequence tn with
tn → ∞ such that

u(tn) → u∞, u̇(tn) → 0.

Direct use of (11) and (12) implies that

0 ≤
(
1 + (1 − σ)r θ̂

α̂ + μ̂

)
u∞

(
x∞ − 1

R0

)

Since 1
R0

> 1 and x∞ ≤ 1, we have u∞ ≤ 0. However, u ≥ 0, and therefore, u∞ ≥ 0

from which it follows that u(t) → 0 as t → ∞. In addition, since q∞ ≤ (1−σ)θ̂
α̂+μ̂

, then
it follows from (10), (12) and the fact that u∞ ≥ 0 that

y∞ ≤
(
1 + σ

(1 − σ)
q

)
u∞ = 0, q∞ ≤ (1 − σ)θ̂

α̂ + μ̂

(
1 + σ

(1 − σ)
q

)
u∞ = 0.

Therefore, y(t) → 0, q(t) → 0 as t → ∞. Using Lemma 1, the z equation in (7) and
y∞ = q∞ = 0, we can show that z∞ = 0. That is, we have that z(t) → 0 as t → ∞
and therefore

x(t) = 1 − y(t) − z(t) − q(t) → 1 as t → ∞.
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Let R0 = 1. From (11) and the fact that u̇(t) ≤ 0, we conclude that u(t) converges.
There are two cases.

• Case 1, u(t) → 0 as t → ∞. Similar to the proof for R0 < 1, it can be easily
shown that

y(t) → 0, q(t) → 0, z(t) → 0 and x(t) → 1 as t → ∞.

• Case 2, u∞ > 0. Choose tn with tn → ∞ and such that u(tn) → u∞ and
u̇(tn) → 0. Then from (11) we see that u(tn)(x(tn) − 1) → 0 as n → ∞. Since
u∞ > 0, we have x(tn) → 0 and therefore x∞ ≥ 1. However, since it is also true
that x∞ ≤ 1, x∞ = x∞ = 1. Consequently,

x(t) → x∞ = 1 as t → ∞.

We conclude from (8) that y(t) → y∞ = 0, q(t) → q∞ = 0 and z(t) → z∞ = 0
as t → ∞.

�	

4.2 Uniform Persistence

In this subsection, we study the uniform persistence of our rescaled model (7). Before
going into details, we state and prove two lemmas which are needed in the analysis
later on.

Lemma 3 Let R0 > 1. If u(0) > 0, then u does not converge to 0 and x∞ ≤ 1
R0

.

Proof Assume that u(t) → 0 as t → ∞. Then the fluctuation lemma guarantees that
there exists a sequence tn with tn → ∞ such that u(tn) → 0 as n → ∞ and u̇(tn) < 0.
From (12), we see that if u(t) goes to zero then y(t) and q(t) also go to zero. Then
making the use of z equation in (7) and Lemmas 1 and 2, it is easily shown that z(t)
goes to zero and therefore, x(t) → 1 as t → 0. Since R0 > 1, x(tn) − 1

R0
> 0 for

sufficiently large n. Hence, from (11) it is seen that u̇(tn) ≥ 0 but since u̇(tn) < 0, we
have reached a contradiction. Therefore, u(t) does not go to zero.

Now, from (11), we have

u̇ = u

[
x

(
1 + r

q

y

)
− (θ + γ + μ)

]
≥ u

[
x

(
1 + r

q∞
y

)
−

(
θ̂ + γ̂ + μ̂

)]
. (13)

Therefore, with the application of the fluctuation method, there exists a sequence (tn)
such that tn → ∞, u(tn) → u∞ and u̇(tn) → 0 as n → ∞. Hence,

0 ≥ u∞
[
x∞ (1 + rq∞/y∞) − (θ̂ + γ̂ + μ̂)

]
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and with the help of (12) we have

x∞ ≤ θ̂ + γ̂ + μ̂

1 + rq∞/y∞
≤ θ̂ + γ̂ + μ̂

1 + r(1 − σ)θ̂/(α̂ + μ̂)
= 1/R0.

Thus, x∞ ≤ 1
R0

and the proof of Lemma 3 is now complete. �	
Lemma 4 Let R0 > 1 and y(0) > 0. Then there exists a small δ > 0 independent of
y(0) such that y∞ > δ.

Proof By the z-equation in (7) we have

ż ≤ α

(1 − σ)
q − μ̂z + γ̂ y + σ θ̂ y.

The fluctuation lemma guarantees the existence of a sequence tn with tn → ∞ such
that z(tn) → z∞ and ż(tn) → 0 as n → ∞. Therefore,

0 ≤ α̂

(1 − σ)
q∞ − μ̂z∞ + γ̂ y∞ + σ θ̂ y∞

and using (12) we have that

z∞ ≤ α̂

(1 − σ)μ̂
q∞ + γ̂ + σ θ̂

μ̂
y∞

z∞ ≤ α̂

(1 − σ)μ̂

(1 − σ)θ̂

(α̂ + μ̂)
y∞ + γ̂ + σ θ̂

μ̂
y∞

z∞ ≤
(

α̂θ̂

μ̂(α̂ + μ̂)
+ γ̂ + σ θ̂

μ̂

)
y∞

y∞ + z∞ + q∞ ≤
(
1 + α̂θ̂

μ̂(α̂ + μ̂)
+ γ̂ + σ θ̂

μ̂
+ (1 − σ)θ̂

α̂ + μ̂

)
y∞.

The use of Equation (8) leads to

y∞ + z∞ + q∞ ≥ (y + q + z)∞ = (1 − x)∞ = 1 − x∞

and by Lemma 3 we have that x∞ ≤ 1
R0
; therefore,

y∞ + z∞ + q∞ ≥ 1 − 1

R0
> 0

which implies that

y∞ ≥ δ
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where δ = (1 + α̂θ̂
μ̂(α̂+μ̂)

+ γ̂+σ θ̂

μ̂
+ (1−σ)θ̂

α̂+μ̂
)−1(1 − 1

R0
). �	

In addition to the above-mentioned lemmas, we need the following persistence
results which are taken from (Thieme 1993). Let us consider the system ẏ = h(y) on
Rn and define a metric space (U, d), where U is the union of two disjoint subsets U1
and U2 of Rn . Assume that the solution of ẏ = h(y) exists for all t ≥ 0 if y(0) ∈ U1.
Let U1 be an open set inU and y(t, y0) be continuous solution in U1 with y(0) = y0,
i.e., y(t, y0) ∈ U1 for all t ≥ 0 and y0 ∈ U1. The distance between two points
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is given by

d(x, y) =
n∑

k=1

|xk − yk | ,

and the distance of a point x ∈ U from a subset E of U is defined by

d(x, E) = inf
u∈E d(x, u).

Let us further give the following definitions and theorem as stated in Thieme (1993).

Definition 1 U2 is called a uniform weak repeller for U1 if

lim sup
t→∞

d(y(t, y0),U2) > ε,

for all y0 ∈ U1, for some ε > 0 that is independent of y0.

Definition 2 U2 is called a uniform strong repeller for U1 if

lim inf
t→∞ d(y(t, y0),U2) > ε,

for all y0 ∈ U1, for some ε > 0 that is independent of y0.

Theorem 5 Let (U, d) be locally compact metric space and letU be the disjoint union
of two sets U1 andU2 such that U2 is compact. Let
 be a continuous semi-flow onU1.
Then U2 is a uniform strong repeller for U1, whenever it is a uniform weak repeller
for U1.

We now state and prove the following theorems on the uniform persistence of our
system.

Theorem 6 For R0 > 1, model (9) is uniformly persistent. That is, the solutions are
eventually uniformly bounded by positive constants from both below and above.

Proof Let R0 > 1 and choose

U1 = {(y, q, z) : 0 < y ≤ 1, 0 ≤ q ≤ κ, 0 ≤ z ≤ 1}
U2 = {(0, q, z) : 0 ≤ q ≤ κ, 0 ≤ z ≤ 1}
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where κ ≥ (1 − σ)θ̂/(α̂ + μ̂). U1 and U2 are two disjoint subset of R3. It can be
easily shown that for the given U1 and U2, U2 is compact and U = U1UU2 is also
compact. Note that y(t) > 0 if y(0) > 0 and therefore by Theorem 3, we have
(y(t), q(t), z(t)) ∈ U1 if (y(0), q(0), z(0)) ∈ U1 and hence, q(0) < κ and q∞ ≤
(1 − σ)θ̂/(α̂ + μ̂); therefore, there exists a t1 > 0 such that

q(t1) <
(1 − σ)θ̂

α̂ + μ̂
+ 1

2

(
κ − (1 − σ)θ̂

α̂ + μ̂

)
≤ κ.

Therefore, without lose of generality, it can be assumed that (y(0), q(0), z(0)) ∈ U1
for all solutions. By Lemma 4, y∞ > δ as long as y0 = y(0) > 0 where δ is
independent of the initial conditions. Hence, if (y0, q0, z0) ∈ U1 then

lim sup
t→∞

d((y(t, y0), q(t, q0), z(t, z0)),U2) > δ,

that is, U2 is a uniform weak repeller for U1. From Theorem 5, it follows that U2
is a uniform strong repeller for U1. Hence, there is a δ1 independent of the initial
conditions such that

lim inf
t→∞ d((y(t, y0), q(t, q0), z(t, z0)),U2) > δ1.

Now, sinced((y(t, y0), q(t, q0), z(t, z0)),U2) = y(t, y0), then lim inf t→∞ y(t, y0) >

δ1. Thus, y∞ > δ1. Further, since

(1 − σ)θ̂

α̂ + μ̂
y∞ ≤ q∞ ≤ q∞ ≤ (1 − σ)θ̂

α̂ + μ̂
y∞,

the use of the z-equation in (7) and Lemma 1 means that we can choose a sequence tn
with tn → ∞ such that z(tn) → z∞ and ż(tn) → 0. Therefore,

0 ≥ α̂

(1 − σ)
q∞ − μ̂z∞ + γ̂ y∞ + σ θ̂ y∞z∞ − mq∞z∞

≥ α̂

(1 − σ)
q∞ − μ̂z∞ − mq∞z∞

≥ α̂

(1 − σ)
q∞ − (γ̂ + μ̂ + θ̂ )z∞

or equivalently

z∞ ≥ α̂

(1 − σ)(γ̂ + μ̂ + θ̂ )
q∞.

The fact that R0 > 1 and q∞ ≥ (1−σ)θ̂
α̂+μ̂

y∞ leads to

z∞ ≥ α̂

(1 − σ)(γ̂ + μ̂ + θ̂ )
q∞ ≥ α̂θ̂

α̂ + μ̂ + r(1 − σ)θ̂
y∞.
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Further,

x∞ = 1 − y∞ − q∞ − z∞ ≤ 1 − y∞ − q∞ − z∞,

completing the proof. �	
Theorem 7 Let R0 > 1 and y(0) > 0 and define

x̄(t) = 1

t

∫ t

0
x(s)ds

Then

lim sup
t→∞

x̄(t) ≤
(
1 + r(1 − σ)θ

α + μ

)
x∗.

Proof By Theorem 2, we know that there exists a unique positive equilibrium point
(S∗, I ∗, Q∗) for R0 > 1 of system (2). x∗ = S∗

A∗ = 1
R0
. We also know from Theorem 6

that y(0) is bounded away from zero and therefore I (0) is also bounded away from
zero. Therefore, from the equation for I ′(t) in System (2), we conclude that

I ′(t) = βS
[I + r(1 − σ)Q]

A
− (θ + γ + μ)I,

I ′(t) ≥ βS
I

A
− (θ + γ + μ)I,

I ′(t)
I (t)

≥ β
S

A
− (θ + γ + μ).

Integrating both sides of the last inequality gives

ln I (t) − ln I (0) ≥ β

∫ t

0
x(s)ds − (θ + γ + μ)t.

Dividing both sides by βt and taking the limit as t goes to infinity give

0 ≥ lim sup
t→∞

¯x(t) − (θ + γ + μ).

Dropping the hats and making the use of the expression for R0 give

lim sup
t→∞

x̄(t) ≤
(
1 + r(1 − σ)θ

α + μ

)
x∗.

We conclude that the average number of susceptibles on the long run is always less
than or equal to the equilibrium value times a constant. �	
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5 Discussion

Disease patterns generated by communicable diseases have been documented for vari-
ous pathogens acrossmultiple levels of organization and spatial scales over the past two
centuries. Recurrent epidemic outbreaks like those generated by measles or influenza
are of extreme biological, epidemiological and health public importance. It is therefore
not surprising that efforts to identify and assess the importance of mechanisms respon-
sible for recurrent epidemic patterns have been carried out for over a century with the
aid of mathematical models. The impact of the continuous evolution of influenza
genetic diversity driven by antigenic “drift,” the driver of strain heterogeneity and
antigenic “shift,” the generator of subtype variability across levels of organization is
one of the most challenging evolutionary biology problems due to its implications
on the health and lives of more than seven billion people (Thacker 2005). The fact
that influenza lives in avian and mammal populations with genetic recombination and
human local, regional and global mobility playing a major role on its local, regional
and global dynamics provides one of a most challenging convergence research land-
scapes at the interface of the life, social, computational and mathematical sciences.
Influenza dynamics live in a changing environmental landscape that it is altered in
response to seasonality, delays driven by human interventions (quarantine/isolation),
human population structure and heterogeneity, behavioral responses, public health
policy and technological advances. (Castillo-Chavez et al. 1988, 1989; Valle et al.
2005; Hethcote 2000; Hethcote et al. 2002; Nuño 2005).

Our work focuses on the role of host quarantine/isolation within a broad of epi-
demiological framework. Our work is motivated by our interest on the mathematical
resilience of influenza dynamics, with emphasis on the role of intervention policies
that are not carried out effectively, imperfect quarantine. The work is theoretical and
so the effectiveness of quarantine is measured by a single parameter σ ∈ [0, 1]. The
mathematical analysis shows that the model has a disease-free equilibrium which is
globally stable whenever control is effective, that is, when R0 < 1 and otherwise it is
unstable. Furthermore, it is shown that this model has a unique endemic equilibrium
whenever R0 > 1 with the disease being uniformly persistent as long as R0 > 1.

Past research has studied themathematical impact of quarantine/isolation on disease
dynamics whenever R0 > 1. It has been shown that such public health interventions
support, within appropriate regimes of parameter space (see Fig. 2), the existence of
stable periodic solutions (recurrent outbreaks); that is instability as parameters are
varied. These results are not robust as the quarantine policy is varied within the epi-
demiological parameter regime that will support them when quarantine is perfect. Our
results provide strong support for the existence of periodic solutions (via Hopf bifur-
cation) as quarantine effectiveness (σ ) varies but only when it is executed close to
perfection (results verified numerically via MATCONT, Fig. 3). Our model assumes
that infective individuals gain full immunity after recovery and so the results in Fig. 4
suggest that interepidemic periods are in the range of 9.5–11 years when the effective-
ness of quarantine σ is slightly smaller than 1. As the level of inefficiency increases,
imperfect quarantine, damped periodic solutions arise (see Fig. 5). Note that the values
for the reproduction number R0 inside the Hopf Bifurcation curves in Fig. 2 (right)
are chosen between 1 and 16, which include estimated influenza values of 1 and 2.5
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(Nishiura et al. 2009, 2010; Nuño 2005). The parameter valuesμ = 1/3650, γ = 0.5,
and θ = 1, 2, 4 and 6 per week used for Fig. 2 (right) are plausible, since they corre-
spond to an average lifetime 1/μ of 3650 weeks, about 70 years; an average infectious
period 1/θ before quarantine of 0.15 to 1 week; and an average infectious period 1/γ
before going to the removed class of 2 weeks. Note that the Hopf bifurcation curves
in Fig. 2 (right) are almost independent of the value of γ in the range between 0.1
and 2, but are strongly dependent on the value of θ . From a practical point of view, it
is likely that the quarantine period 1/α would be chosen to be at least as large as the
average infectious period 1/γ , so that α ≤ γ .

The issue of what epidemiological models actually support sustained oscillations
is of mathematical and biological interest. The data and time series available are
not long enough to in fact determine whether or not what we are seeing are the
results of periodic dynamics or damp oscillations. Nevertheless, it is important from a
theoretical epidemiological perspective to knowwhat are themechanisms that stabilize
or destabilize disease dynamics under appropriate parameter regimes. The results of
this paper address the mathematical robustness of such models. We show that simple
epidemiological models can’t generate sustained oscillations as a result of quarantine
policies, since their implementation at larger population scales will be in general
impossible due to errors, human behavior and lack of resources.

Theoretical results can impact public policy. For example, the problems raised by
the distribution and misuses of antibiotics or by nosocomial infections have been
documented and models have been developed to study the impact of errors in drug
administration with the impact of those results closely tied in to the policy objective
(Chow et al. 2011; Lipsitch et al. 2000). And so the value of this contribution is tied
in to the fact that it uses parameters that are common to influenza outbreaks and it
shows, perhaps clearly for the first time, that human decisions, policy effectiveness
can shift disease dynamics from apparently unstable (ups and downs) to predictable,
that is, endemic.
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Appendix A

Proof of theorem 3 The right-hand side of (7) is continuously differentiable function
of the state variables, and hence, it is locally Lipschitz. Therefore, there exists a unique
local solution x , y, q, z to (7) with the initial data x0, y0, q0,z0. This unique solution
is defined on a maximum forward interval of existence (Hale and Kocak 1991).

Next, we observe that

D = {(x, y, q, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ q ≤ κ, 0 ≤ z ≤ 1}

is forward invariant set for any κ ≥ (1 − σ)θ/(α + μ). In fact, it follows that S(t) ≥ 0
for all t ≥ 0 if S(0) ≥ 0. In order to see this, let us assume that S(t1) = 0 for some
t1 ≥ 0. A direct use of the S-equation (in (2)) implies that
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dS(t1)

dt
= μ > 0

that is S(t) is strictly increasing at t = t1. From the I -equation (in (2)), we conclude
that

dI

dt
= βS

[I + r(1 − σ)Q]
1 − σQ

− (θ + γ + μ)I

or equivalently that

I ′

I
≥ βS

1

1 − σQ
− (θ + γ + μ).

It is easy to conclude, from the integration of both sides, that I (t) ≥ 0 for all t ≥ 0 if
I0 ≥ 0.

The third equation in (2) can be formally solved to give

Q(t) = e(α+μ)(t0−t)
[
Q0 +

∫ t

t0
θ I (ζ )e(α+μ)(ζ−t0)dζ

]

and a similar formal expressions can be found for R(t) (from (2)). From the expressions
for R(t) and Q(t), we see that Q(t) ≥ 0 and R(t) ≥ 0 for all t ≥ 0.

Finally, we claim that q(t) ≤ κ for all t ≥ 0 and that κ ≥ (1−σ)θ
α+μ

if q(0) ≤ κ . These
results follow directly from the q-equation in system (9). To show this, assume that
the above inequalities do not hold. Then, the use of the equation for q in (9) implies
the existence of a time t1 such that

q ′(t1) =
(
1 + σ

(1 − σ)
q(t1)

)
(θ̂(1 − σ)y(t1) − (α̂ + μ̂)q(t1))

≤
(
1 + σ

(1 − σ)
q(t1)

)
(θ̂(1 − σ)y(t1) − (α̂ + μ̂)

θ̂ (1 − σ)

(α̂ + μ̂)
)

≤
(
1 + σ

(1 − σ)
q(t1)

)
(θ̂(1 − σ)(y(t1) − 1))

≤ 0

However, the above result is a contradiction since y(t1) ≤ 1 and q(t1) ≥ 0. Finally,

we let q(0) >
θ̂(1−σ)
α̂+μ̂

and show that q(t) ≤ q(0) for all t ≥ 0. If this last inequality

were not to hold, then a time t2 > 0 would exist such that q(t2) ≥ q(0) and q ′(t2) > 0.

However, since q(t2) >
θ̂(1−σ)
α̂+μ̂

, then

q ′(t2) =
(
1 + σ

(1 − σ)
q(t2)

)
(θ̂(1 − σ)y(t2) − (α̂ + μ̂)q(t2))
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≤
(
1 + σ

(1 − σ)
q(t2)

) (
θ̂ (1 − σ)y(t2) − (α̂ + μ̂)

θ̂ (1 − σ)

(α̂ + μ̂)

)

≤
(
1 + σ

(1 − σ)
q(t2)

)
(θ̂(1 − σ)(y(t2) − 1))

≤ 0

But since q ′(t2) > 0, a contradiction has been reached. Hence, q(t) is bounded from

above by q̂ , where q̂ = max{q0, (1−σ)θ̂
α̂+μ̂

}. �	

Appendix B

Consider the system of differential equations

y′ = h(y, σ )

where y ∈ Rn , σ ∈ R and h is smooth. Assume that this system has an equilibrium
solution given by y = y0(σ ). The classical result of Hopf is that this system exhibits a
Hopf bifurcation at the point (y0, σ0), if the following conditions are held, see theorem
3.4.2 of Guckenheimer and Holmes (1983)

1. the Jacobian J (σ ) = Dyh(y0(σ ), σ ) has a pair of complex conjugate eigenvalues
r(σ ) ± iω(σ);

2. that for some value σ = σ0, we have that r(σ0) = 0, ω(σ0) > 0, r ′(σ0) 
= 0,
(“eigenvalues crosses the imaginary axis with a nonzero velocity”); and

3. the remaining eigenvalues of J (σ0) have nonzero real parts.

Assume that the characteristic polynomial of the Jacobian matrix at the endemic
equilibrium y = y0 is given by

Pn(λ) = anλ
n + an−1λ

n−1 + · · · + a1λ + a0 = 0

and that 	n(σ ) denote the n dimensional Hurwitz determinant. Then, the following
lemma gives criteria that guarantee the satisfaction of the first above-mentioned two
conditions for Hopf bifurcation (Shen and Jing 1995).

Lemma 5 If 	n−1(σ0) = 0,	n−2(σ0) 
= 0,	n−3(σ0) 
= 0, ai (σ0) > 0, for i =
1, . . . , n and (

∂	n−1
∂σ

)(σ0) 
= 0, then the first two conditions for the existence of a Hopf
bifurcation are satisfied.
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