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Abstract Deterministic and stochastic methods relying on early case incidence data
for forecasting epidemic outbreaks have received increasing attention during the last
few years. In mathematical terms, epidemic forecasting is an ill-posed problem due to
instability of parameter identification and limited available data. While previous stud-
ies have largely estimated the time-dependent transmission rate by assuming specific
functional forms (e.g., exponential decay) that depend on a few parameters, here we
introduce a novel approach for the reconstruction of nonparametric time-dependent
transmission rates by projecting onto a finite subspace spanned by Legendre polyno-
mials. This approach enables us to effectively forecast future incidence cases, the clear
advantage over recovering the transmission rate at finitely many grid points within the
interval where the data are currently available. In our approach, we compare three
regularization algorithms: variational (Tikhonov’s) regularization, truncated singular
value decomposition (TSVD), and modified TSVD in order to determine the stabiliz-
ing strategy that is most effective in terms of reliability of forecasting from limited
data. We illustrate our methodology using simulated data as well as case incidence
data for various epidemics including the 1918 influenza pandemic in San Francisco
and the 2014–2015 Ebola epidemic in West Africa.
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1 Introduction

Real-time reconstruction of disease parameters for an emerging outbreak provides
crucial information to government agencies working to design and implement pub-
lic health intervention measures and policies. Despite tremendous progress in both
deterministic and stochastic algorithms for solving parameter estimation problems
in epidemiology, there is still a long way to go before our understanding of disease
transmission is sufficient for accurate control and forecasting.

In various compartmental models, the transmission rate parameter is defined as
the effective contact rate, that is, the probability of infection given contact between
an infectious and susceptible individual multiplied by the average rate of contacts
between these groups. It is the defining rate in disease progression and one of the two
components in the basic reproduction number, R0, by which the continued growth
or decline is decided. When R0 = β/γ = transmission rate/recovery rate < 1, an
outbreak dies off; otherwise, the outbreak continues to expand. The transmission rate
of a disease may vary in time (take measles and influenza, for example), and models
may incorporate seasonality characteristics to capture this behavior. The transmission
rate may also be directly affected by social response and public health policy by which
this effective contact rate is reduced to the point that the reproductive rate falls under
1, and the disease dies off. Public policies and control measures have their greatest
impact on the transmission rate of a disease. Having the tools needed to recover a
time-dependent transmission rate allows for the real-time analysis of the effectiveness
of control measures, for the ability to determine the most powerful response and,
finally, for the conceivably more accurate forecasting of the outbreak. Whereas other
systemparameters, i.e. recovery rates, are less dependent on interventionmeasures, the
reproductive capacity of an outbreak and the underlying transmission rate are directly
related to the efficiency of control and prevention.

There are a number of common approaches to investigating transmission rates of
diseases in the literature, based on system design with deterministic (Lipsitch et al.
2003; Rivers et al. 2014; Chowell et al. 2016; Pollicott et al. 2012; Lange 2016),
stochastic (Lekone and Finkenst 2006; Bjørnstad et al. 2002; Taylor et al. 2016; Pon-
ciano and Capistrán 2011), and network (Newman 2002; Kiskowski 2014; Xia 2004)
models being most prevalent and in many cases in combination. In these models, the
common practice is to either assume a constant transmission rate (although consid-
ering transmission from various settings: hospital, funeral, community) (Xia 2004;
Cauchemez et al. 2008; Lewnard et al. 2014; Chretien et al. 2015; Merler et al. 2015;
Taylor et al. 2016; Meltzer et al. 2016), or to assume that transmission rate behaves as
some pre-set periodic, exponential, or other function with a finite number of param-
eters (Bjørnstad et al. 2002; Chowell et al. 2016; Szusz et al. 2010; Finkenstädt and
Grenfell 2000; Ponciano and Capistrán 2011; Capistrán et al. 2009). In recovering
these parameter values, the most common methods are least squares data fitting or
optimization and statistical approaches (Finkenstädt and Grenfell 2000; Cauchemez
et al. 2008; Dureau et al. 2013; Biggerstaff et al. 2016).
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Pollicott et al. (2012) reconstructed a time-dependent transmission rate, β(t), by
reformulating the SIR model. However, their approach requires the knowledge of β0,
not easily determined, and the use of prevalence data. There are additional limitations
on changes in the infected class. Hadeler (2011) modified this approach so that S(0),
the initial number of susceptible individuals, is assumed to be given and, though it
uses incidence data, the formulation requires prevalence data at one point. Cauchemez
et al. (2008) use a stochastic framework and MCMC to recover time-dependent trans-
mission rate as well as other disease model parameters. The challenge here included
limitations on parameter relationships and the discrete form of the recovered trans-
mission rate. Camacho et al. (2015) model the time-varying transmission parameter,
β(t), by a Wiener process (also known as standard Brownian motion) with positivity
constraints using a stochastic SEIR framework. To estimate future cases in real time,
5000 stochastic trajectories are simulated by sampling a set of parameters and states
from the joint posterior distribution for the last fitted data point.

Regardless of the type of a transmission rate, fitting model predictions for an invad-
ing pathogen to a short-term incidence series results in an ill-posed problem due to
instability and lack of data. For classical compartmental models, parameter identifica-
tion is generally cast as an ODE constrained nonlinear optimization problem, where
a numerical method has to be coupled with an appropriate regularization strategy in
order to balance accuracy and stability in the reconstruction process. A reliable tool for
uncertainty quantification is equally important. Even if a computational algorithm is
carefully regularized, an iterative scheme for the nonlinear optimization would usually
consist of solving a sequence of ill-conditioned linear equations. With noise propaga-
tion at every step, the accuracy of the recovered transmission parameters turns out to
be low, especially in case of limited data for an emerging outbreak.

To partially overcome this difficulty, we propose an alternative problem-oriented
approach, where the original nonlinear problem is reduced to a linear Volterra-type
operator equation of the first kind. The variable transmission rate is reconstructed by
fitting to both incidence and cumulative time series. Rather than pre-setting a specific
shape of the unknown function by using a solution space with a small number of
parameters, we discretize the time-dependent transmission rate by projecting onto a
finite subspace spanned by Legendre polynomials. We further show that recovering
the transmission rate as a linear combination of Legendre polynomials enables us to
effectively forecast future incidence cases, the clear advantage over recovering the
transmission rate at finitely many grid points within the interval where the data are
currently available. To incorporate stability into the linear equation, we employ three
regularization algorithms: variational (Tikhonov’s) regularization, truncated singular
value decomposition (TSVD), and modified TSVD (MTSVD) (Bakushinsky et al.
2015). The goal is to determine, which stabilizing strategy is the most effective in
terms of reliability of forecasting from limited data.

In Sect. 6, both short-term and long-term forecasts of disease incidence relying
on case incidence data of the early epidemic growth phase are carried out. In all
our experiments, “the early epidemic growth phase”, i.e., the minimum length of
the early growth phase that is required to initiate forecasting, is about 5–6 weeks of
incidence data. Further forecasting results as well as theoretical analysis of MTSVD
regularization procedure are given in “Appendix”.
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In our numerical study, case incidence data describing the trajectory of the 1918
influenza pandemic in San Francisco, California (daily incidence data) (Chowell et al.
2007), and the 2013–2015 Ebola epidemic in West Africa (weekly reported data)
(WorldHealthOrganization 2016) are used. Specifically, we investigate national Ebola
epidemic curves for Liberia and Sierra Leone and sub-national Ebola epidemic curves
for Montserrado in Liberia and Western Area Urban/Rural in Sierra Leone.

2 Problem Formulation

Consider a general SEIR transmission process (Chowell et al. 2004), where the pop-
ulation is divided in four categories: susceptible (S), exposed (E), symptomatic and
infectious (I ) and removed (R) individuals. The total population size, N , is assumed
constant and initially completely susceptible to an emerging viral infection. We also
assume that the population is well-mixed. That is, each individual has the same prob-
ability of having contact with any other individual in the population.

Susceptible individuals infected with a virus enter the latent period (category E)
at the rate β(t)S(t)I (t)/N , where β(t) is the mean transmission rate per day (week).
Latent individuals progress to the infectious class, I , at the rate k (1/k is themean latent
period). Infectious individuals recover or die at the rate γ , where the mean infectious
period is 1/γ . Removed , R, are assumed to be fully protected for the duration of the
outbreak. The deterministic equations of this compartmental model are given by:

dS

dt
= −β(t)S(t)

I (t)

N
(1)

dE

dt
= β(t)S(t)

I (t)

N
− kE(t) (2)

dI

dt
= kE(t) − γ I (t) (3)

dR

dt
= γ I (t). (4)

System parameters are either pre-estimated or fitted to the incidence data, dCdt , where

dC

dt
= kE(t). (5)

As it follows from (1)–(5),

d

dt
(S(t) + E(t) + C(t)) = 0, S(t) + E(t) + C(t) = S(t1) + E(t1) + C(t1).

From the above, one concludes

S(t) = −kE(t)

k
− C(t) + S(t1) + E(t1) + C(t1)
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= −1

k

dC

dt
(t) − C(t) + S(t1) + E(t1) + C(t1).

Substitute this expression into the equation

dS

S
= −β(t)

I (t)

N
dt, then ln

S(t)

S(t1)
= −

∫ t

t1
β(λ)

I (λ)

N
dλ. (6)

To find I (t), use the equation

dI

dt
+ γ I (t) = dC

dt
,

which gives

I (t) = I (t1) exp(−γ (t − t1)) +
∫ t

t1
exp(−γ (t − λ))

dC

dλ
(λ) dλ. (7)

Combining (6) and (7), one derives

−N ln

⎡
⎣− 1

k
dC
dt (t) − C(t) + E(t1) + C(t1)

S(t1)
+ 1

⎤
⎦

=
∫ t

t1
β(τ)

{
I (t1) exp(−γ (τ − t1)) +

∫ τ

t1
exp(−γ (τ − λ))

dC

dλ
(λ)dλ

}
dτ,

(8)

which is a linear Volterra-type integral equation of the first kind with the unknown
transmission rate, β(t), to be recovered from limited cumulative and incidence time
series, C(t) and dC

dt , respectively.

3 Regularization Strategies and Discrete Approximation

As it has been established in the previous section, the reconstruction of β(t) can be
reformulated as a linear equation of the first kind with noise added to the response
vector and to the operator itself

Aβ = f, X → R
n, (9)

where A is given by its h-approximation, ||A − Ah || ≤ h, and f is given by its
σ -approximation, || f − fσ || ≤ σ . Noise enters the operator through incidence data
under the kernel:

Ahβ(t) :=
∫ t

t1
β(τ)

{
I (t1) exp(−γ (τ − t1)) +

∫ τ

t1
exp(−γ (τ − λ))

dC

dλ
(λ)dλ

}
dτ ,
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and it enters the right-hand side through its dependence on both incidence and cumu-
lative data as shown in (8):

fσ := −N ln

⎡
⎣− 1

k
dC
dt (t) − C(t) + E(t1) + C(t1)

S(t1)
+ 1

⎤
⎦ .

The true solution,β(t), in (9) lies in aHilbert spaceX , the noise-contaminatedoperator,
Ah , maps X into Rn , and fσ is a vector in the finite-dimensional data space, Rn . Due
to the nature of our application, X is infinite dimensional and, upon discretization, its
dimensionality is much larger than n. This results in an ill-posed problem that needs
to be regularized prior to its inversion.

To introduce the proposed regularization strategies, we consider a singular system
of the operator Ah , {ui , λi , vi }ni=1, with singular values

λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

Here vi ∈ X and ui ∈ R
n are such that (vi , v j )X = δi j and (ui , u j )Rn = uTi u j = δi j ,

and δi j denotes the Kronecker delta, equal to 1 if i = j and to 0 otherwise. If a
regularized solution, βα , is obtained by filtering the noisy data

βα :=
n∑

i=1

ωα(λi )
(ui , fσ )

λi
vi := Rα,h fσ , (10)

then the choice of ωα defines a particular type of a regularization strategy Rα : Rn →
X , and α is a stabilizing parameter, which regulates the extent of filtering and depends
on the level of noise in Ah and fσ . To reconstruct time-dependent transmission rate,
β(t), we use three admissible filters, which ensure convergence of the regularized
solution as the noise level tends to zero, Engl et al. (1996):

1) ωα(λ) = λ2

λ2+α
(Tikhonov’s regularization),

2) ωα(λ) =
{
1, λ ≥ √

α

0, λ <
√

α
(Truncated SVD),

3) ωα(λ) =
{
1, λ ≥ √

α
λ√
α
, λ <

√
α

(Modified Truncated SVD).

The first two filters are probably the most known and the most used. The third filter
(MTSVD) was recently studied in Bakushinsky et al. (2015) for the case of a noise-
free operator. It has a remarkable optimal property: among all filters with the same
level of stability, it provides the highest accuracy of the algorithm. In “Appendix,” we
will verify this property for the case of noise present both in the operator and in the
right-hand side. In our numerical experiments, discussed in the next sections, all three
filters give consistent results. However, MTSVD tends to do slightly better in terms
of forecasting from limited data.

As we discretize the unknown transmission rate, β(t), our goal is not to incorporate
any specific behavior of this function in Eq. (9). Instead, we attempt to recover that
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behavior in addition to recovering numerical values for all entries of the solution
vector. This aspect is extremely important since our experiments show that the shape
of β(t) can be drastically different for different outbreaks. What all transmission rates
have in common is that eventually the values of β(t) would go down. However, the
nature of that decay is never the same, and it is impacted by a large number of factors,
such as the severity of the outbreak spread over the period of its initial detection, the
timing and the efficiency of proper intervention and control measures, the intensity of
transmission pathways within various risk groups, etc.

For some outbreaks with an aggressive initial spread, β(t)may start off growing, or
it can remain near-constant through the first phase of the disease progression. At the
same time, if the government agencies act quickly or the population changes behavior
quickly, the transmission rate would decrease almost from the beginning. In case of the
most successful interventionmeasures, β(t) can decrease very fast before the outbreak
reaches its pick and then β(t) would remain essentially unchanged for the second half
of the outbreak. When intervention measures are less effective, the transmission rate
may oscillate a lot as it goes down, and the timing of its descent may be substantially
delayed. Capturing a unique behavior of a particular transmission rate is paramount
for the accurate forecasting of future incident cases as shown in Sects. 5 and 6 with
additional results presented in Appendix.

To recover the shape of β(t), we project this function onto a finite subset spanned by
the shifted Legendre polynomials of degree 0, 1, . . . ,m defined recursively as follows

x = 2t − a − b

b − a
, P0(x) = 1, P1(x) = x, t ∈ [a, b],

(m + 1)Pm+1(x) = (2m + 1)x Pm(x) − mPm−1(x).

These functions are orthogonal on the interval [a, b], the duration of the outbreak,
with respect to the L2 inner product

〈Pm, Pk〉 = b − a

2m + 1
δmk .

The discretization of the original operator equation by projection onto a finite subspace
spanned by Legendre polynomials results in solving (in the sense of least squares)
a linear system of n equations with m + 1 unknowns for the coefficients Ci , i =
0, 1, . . . ,m, in the Legendre polynomial expansion and then computing βα(t) as

βα(t) =
m∑
i=0

Ci Pi (t), t ∈ [a, b].

For all three regularization algorithms, the value of α is chosen from the goodness
of fit of the incidence data, generated by βα , to the real data used for the inversion
(discrepancy principle).
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Fig. 1 (Color figure online) Recovery of βα(t) by MTSVD, TSVD and Tikhonov’s stabilizing algorithms
from full synthetic incidence data set and quantification of uncertainty inβα(t) . aComparison of the original
β(t) used to solve the forward problem to the approximate functions βα(t) recovered by the regularization
methods. b Comparison of incidence data generated by the original function β(t) to the incidence data
resulting from the recovered values of βα(t). c The incidence curve C ′(t) generated by the original β(t)
together with 2000 noisy incidence curves obtained by adding Poisson noise to C ′(t). d Mean values of
βα(t) along with 95% confidence intervals recovered with MTSVD, TSVD and Tikhonov’s stabilizing
algorithms

4 Numerical Experiments with Simulated Data

First, we test the above regularizationmethods using a simulated set of data. The exper-
iment is conducted as follows. We discretize the infinite-dimensional Hilbert space,
X = L2[a, b], by projecting onto a subspace spanned by a large number of Legendre
polynomials (250) to get an accurate approximation of the original β(t). Given this
β(t), we generate incidence data by solving the forward problem (See Fig. 1). Once
the incidence data, dCdt , have been computed, we solve the inverse problem by TSVD,
MTSVD, and Tikhonov’s regularization algorithms. To examine both regularization
and discretization errors, while solving the inverse problem we discretize X with a
smaller number of Legendre polynomials (100). Figure1 illustrates how the original
β(t) compares to βα(t) recovered by each regularization scheme.
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In (8), we choose the total population size, N , and the initial number of cumulative
cases, C(0), to be 1.5 × 106 and 3, respectively. Mimicking an 8 day latent period
and a 6 day infectious period, we take κ = 7/8 and γ = 7/6 and assume that
[a, b] = [1, 50], i.e., the outbreak is over in 50 weeks. Due to ill-posedness of the
inverse problem, all three regularization methods are semi-convergent in a sense that
the discrepancy initially goes down as α decreases, but then it begins to grow after
α reaches a certain admissible level. We choose α right before it happens. For that
α, the discrepancy is about the same as the amount of noise in the incidence data.
The values of the regularization parameter, α, as selected by the discrepancy principle
(Morozov 1984), are 1.26× 10−7, 3.00× 10−8, and 1.50× 10−8 for MTSVD, TSVD
and Tikhonov regularization methods.

To quantify uncertainty in βα(t) for the three methods, we take the simulated inci-
dence curve (shown in black in Fig. 1), add Poisson noise to this curve to generate
2000 boot-strap curves, and reconstruct the mean value of βα(t) and the associated
95% confidence intervals. The Poisson curves and the resulting uncertainty in each
βα(t) are presented in Fig. 1, which highlights a slightly higher uncertainty for TSVD
regularization procedure as compared to Tikhonov’s and MTSVD.

5 Approximation of Time-Dependent Transmission Rate and
Quantification of Uncertainty for Real Data

In this section, we use real data for the most recent outbreak of Ebola Virus Disease
(EVD) in West Africa, predominately affecting Guinea, Liberia, and Sierra Leone,
in order to examine regularizing properties of the proposed algorithms. This EVD
outbreak,which began in early 2014, has receivedwide attention due to its scale, scope,
location and alarming potential. The World Health Organization (WHO) declared the
latest Ebola outbreak a public health emergency on August 8, 2014 (World Health
Organization 2014). By the 21st of that month, the case count exceeded the total
of all other previous outbreaks combined—2387 cases. As of the most recent WHO
situation report (March 30, 2016) , there have been 28,646 Ebola cases with 11,323
fatalities (World Health Organization 2016), and these numbers are widely believed
to be underreported.

In the beginning of our numerical analysis, we take full data set for the 2014 EVD
outbreak in Sierra Leone and apply Tikhonov’s, TSVD, and MTSVD regularization
schemes to pre-estimate βα(t) in each case. To quantify the uncertainty in the recov-
ered βα(t), we add Poisson noise (2000 iterations for the results given, see Fig. 2) to
the incidence curve and reconstruct the corresponding βα(t) via the respective meth-
ods. This yields 95% confidence intervals for the approximate βα(t) as well as the
mean values of the recovered function. The reconstructed values of βα(t) and the
corresponding forecasting curves for TSVD and Tikhonov’s regularization schemes
are very difficult to tell apart. Therefore, TSVD results are not included in Fig. 2.
Tikhonov’s and MTSVD approximations of βα(t) are slightly different (see Fig. 2).
The forecasting curves for partial data sets obtained with MTSVD βα(t) are the most
accurate and the least uncertain as illustrated in Figs. 5 and 7 below.
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Fig. 2 (Color figure online) Noisy data used to quantify uncertainty in the transmission rate βα(t) together
with 95% confidence intervals and mean values of βα(t) reconstructed from full incidence data set for
Ebola epidemic in Sierra Leone. a Real EVD incidence data C ′(t) along with 2000 noisy incidence curves
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Fig. 3 (Color figure online) Selection of regularization parameter, α, for the reconstruction of βα(t) from
real incidence data on Ebola epidemic in Sierra Leone—full data set. a Relative discrepancy between
actual and recovered incident case values as a function of α for MTSVD, TSVD and Tikhonov’s stabilizing
algorithms, α ∈ [0, 10−6]. b The magnified view of relative discrepancy as a function of the regularization
parameter, α, for MTSVD, TSVD and Tikhonov’s stabilizing algorithms, α ∈ [0, 10−9]

Figure3 demonstrates the parameter selection process for this experiment. The
first plot in Fig. 2 shows the dependence of relative discrepancy on α in the interval
[0, 10−6]. For each method, the corresponding graph gives the lower bound of α

that cannot be crossed. If α moves below this value, the discrepancy goes up almost
vertically, and the relative error on the generated data quickly reaches 100%. The
TSVD curve illustrates the discrete nature of TSVD regularization: for all values
of α between two consecutive singular values, λk and λk+1, the filtering function,
ωα , remains the same, and therefore the regularized solution, βα(t), and the resulting
discrepancy do not change either. After the initial preview of a big picture, wemagnify
the area where the discrepancy reaches its minimum, [0, 10−9], and for each method
we select the smallest value of α where this minimum is attained.
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Fig. 4 (Color figure online) Noisy data used to quantify uncertainty in the transmission rate βα(t) together
with 95% confidence intervals andmean values of βα(t) reconstructed from full incidence data set for Ebola
epidemic in Liberia. a Real EVD incidence dataC ′(t) along with 2000 noisy incidence curves generated by
adding Poisson noise to the values of C ′(t). b Mean values of βα(t) along with 95% confidence intervals
recovered by MTSVD regularization method

The reproduction number, R0, of an outbreak gives the number of cases one case
generates on average over the course of its infectious period during the early epidemic
growth phase in a completely susceptible population. When R0 < 1, we expect the
outbreak to die out; with R0 > 1, the infection can spread andwith higher values of R0,
it can become harder to control the outbreak. In the model given, R0(t) = β(t)/γ and
therefore reconstruction of time-dependent β(t) has direct ties to R0(t). Since R0 ∝ β,
qualitatively the behaviors are the same. The transmission rate and the corresponding
R0(t) curve, recovered from Sierra Leone data, evidence sporadic decline (Fig. 2).
Some of this behavior may be attributed to noise in the data, but for the most part
we see it as the result of less than effective implementation of control measures.
When we apply the MTSVD regularization method to Liberia’s data from the 2014
EVD outbreak using the full data set, we see a marked drop in the transmission rate
(Fig. 4) and a more smooth transition to an outbreak die off level. The application of
MTSVD enables us to capture differing behaviors of the transmission rate that may be
correlated to the efficiency of control measures or other intervention tools impacting
the transmission rate. The early lack of fit of themodel to the Ebola epidemic in Liberia
highlights that regularization algorithms prevent over-fitting in the reconstruction of
βα(t) to account for the presence of noise in the incident case data.

6 Forecasting from Limited Data for Emerging Outbreaks

Since our algorithm produces coefficients in the Legendre polynomial expansion, we
can use βα(t) recovered from early data to forecast the remaining part of the outbreak.
In order to determine the forecasting curves, data are taken for the first n weeks and
the regularization parameter, αn , is estimated by the discrepancy principle (Morozov
1984) as in the previous sections. At the next step, βα(t) is recovered based on n weeks
of data. It is then used to generate an incidence curve for the entire duration of the
outbreak.
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Table 1 Regularization parameters chosen by discrepancy principle in combination with MTSVD, TSVD
and Tikhonov’s stabilizing algorithms applied to real incidence data on Ebola epidemic in Sierra Leone

Week MTSVD TSVD Tikhonov

α RD α RD α RD

6 6.31e−11 0.123 6.12e−11 0.692 6.12e−11 0.440

11 1.04e−10 0.174 6.12e−11 0.316 6.12e−11 0.322

16 1.83e−10 0.139 6.12e−11 0.427 6.12e−11 0.198

21 3.67e−10 0.130 1.22e−10 0.263 6.12e−11 0.146

26 5.07e−10 0.101 6.12e−11 0.107 1.22e−10 0.122

In the first forecasting experiment, we employ all three, TSVD, Tikhonov’s, and
MTSVD regularization methods on limited data sets for 2014 EVD outbreak in Sierra
Leone. Table1 gives the respective chosen regularization parameters for each method
and the associated relative discrepancy (RD). For Sierra Leone, MTSVD does a better
job forecasting from 6 and 26weeks of incidence data (Fig. 5). The results from using
Tikhonov’s method tend to overstate the forecasted incidence until after the outbreak’s
peak (Fig. 5). The results obtained by TSVD algorithm, unlike Tikhonov’s scheme,
tend to underestimate future incidence cases.

While MTSVD does a better job at forecasting with time-dependent β(t), all three
methods are a vast improvement over forecasting that results from the use of constantβ.
We compare them in Fig. 6. The forecasting curves for Liberia (with a time-dependent
β(t)) at week 13 indicate a potentially much larger outbreak; the largest recovered
reproductive number was observed at week 12. This is not surprising if one takes into
consideration that β(t) is growing for the first 12weeks, when the outbreak is on its
rise. However, between weeks 12 and 13, β(t) declines very fast. The forecasting
curve captures that decline, and, despite of overestimating future cases, it shows a
clear turning point (that is not far from the actual turning point), and a rapid decrease
afterward.

The subsequent forecasting curveswith a time-dependentβ(t) do an excellent job in
approximating future incidence levels. The forecasting curves with a constant β show
a growing number of incidence cases suggesting the growth will continue until the
population runs out of susceptible individuals. Forecasting curves for various districts
for the EVD outbreak are given in “Appendix.”

Table2 illustrates the forecasting performance of MTSVD regularization method
with time-dependent transmission rate, β(t), at 4, 5, and 6weeks ahead as compared
to the null model where β is constant. The lower part of the table gives the correspond-
ing forecasting errors. Table2 quantitatively shows that forecasting with variable β(t)
outperforms the one with constant β. Figure6 provides visual evidence of this con-
clusion.

The next experiment shows that one can use early data, before incidence peaks, to
forecast in short forward time the projected incident cases with confidence intervals.
In this application, we utilize n weeks of data and recover βα(t). Given this βα(t),
we generate the initial n week incidence data curve and add Poisson noise to this
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Fig. 5 (Color figure online) Comparison of forecasting curves generated from early incidence data for
Ebola epidemic in Sierra Leone by MTSVD, TSVD and Tikhonov’s algorithms. a Forecasting incidence
curves generated by MTSVD method from 6, 11, 16, 21 and 26weeks of data, respectively, as compared
to actual incidence data. b Forecasting incidence curves generated by Tikhonov’s method from 6, 11, 16,
21 and 26weeks of data, respectively, as compared to actual incidence data. c Forecasting incidence curves
generated by TSVD method from 6, 11, 16, 21 and 26weeks of data, respectively, as compared to actual
incidence data. d Forecasting incidence curves generated byMTSVD, TSVD and Tikhonov’s methods from
16weeks of data as compared to actual incidence data

curve (2000 iterations for the results given). For each noisy curve, βα(t) is recovered
employing a data-specific regularization parameter, α. Each recovered βα(t) is then
used to project forward n + 5 weeks for Sierra Leone and n + 2 weeks for Liberia,
and confidence intervals are determined from the forecasts at each week. We repeat
this process every 5 and 2weeks, respectively, until the incidence peak is reached, and
present the results for Sierra Leone and Liberia in Fig. 7.

Forecasting for Sierra Leone begins at week 11 and does an excellent job capturing
future epidemic behavior. For Liberia, where we begin forecasting at week 13, there
tends to be an overestimate of incidence cases. This can be explainedwhenwe consider
the behavior of βα(t) in Fig. 5. We note that the peak of βα(t) occurs at week 12, and
the transmission rate makes a sharp drop continuing to epidemic peak at week 19,
and this is the period of forecasting. The overestimate in this method is considerably
less significant when compared to either a constant β forecast or to forecasting with
Tikhonov’s and TSVD regularization methods.
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Fig. 6 (Color figure online)Comparison of forecasting curves generated fromearly incidence data for Ebola
epidemic in Liberia by MTSVD regularization scheme using time-dependent and constant transmission
rates. a Forecasting incidence curves generated with variable β(t) from 13, 15, 17 and 19weeks of data,
respectively, as compared to actual incidence data. b Forecasting incidence curves generated with constant
β from 13, 15, 17 and 19weeks of data, respectively, as compared to actual incidence data

The impact of intervention and control on a disease transmission rate can also
be seen when the algorithm is applied to outbreaks other than EVD. The recovered
transmission rate may then be used to forecast future incidence cases. Prior to the
implementation of vaccination for measles (1948–1964), outbreaks of the disease
were common. The 1948 outbreak in London produced 28,000+ cases in 40 weeks.
The model parameters are κ = 7/8 and γ = 7/6 indicating an 8-day latent period
and a 6-day infectious period. London’s population in 1948 was 8,200,000.

Another example is the pandemic influenza outbreak in 1918, which affected many
cities. San Francisco experienced 28,310 cases in 63 days. For this disease, the latent
and infectious periods are given as 2 and 4days, respectively; the population of San
Francisco at that timewas 550,000. The last two plots in Fig. 7 demonstrate forecasting
results for the 1948 measles outbreak in London and for the 1918 pandemic influenza
outbreak in San Francisco obtainedwithMTSVD regularizationmethod. InAppendix,
we include numerical experiments for various districts affected by the EVD outbreak
of 2014-2016.

7 Discussion and Concluding Remarks

Static SEIR epidemic models that assume constant transmission rates tend to over-
estimate epidemic impact owing to the assumption of early exponential epidemic
growth. Yet, disease transmission is not a static process, and a number of factors
affect the transmission dynamics during an epidemic including the effects of reactive
behavior changes, control interventions (e.g., school closures, market closures), and
spatial heterogeneity that can dampen or amplify disease transmission rates. Indeed,
several studies have reported sub-exponential growth patterns in case incidence even
during the first few generations of disease transmission across a range of infectious
disease outbreaks includingHIV/AIDS (Colgate et al. 1989; Szendroi and Csnyi 2004;
Viboud et al. 2016), Ebola (Viboud et al. 2016; Chowell et al. 2015), and foot-and-
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Fig. 7 (Color figure online) Short-term forecasting curves with confidence intervals generated byMTSVD
regularization algorithm with time-dependent transmission rate and data-specific regularization parameter,
α. a Short-term forecasting curves with confidence intervals for Ebola epidemic in Sierra Leone generated
from 11,16, 21 and 26weeks of data used to project 5weeks forward. b Short-term forecasting curves with
confidence intervals for Ebola epidemic in Liberia generated from 13, 15, 17 and 19weeks of data used to
project 2weeks forward. c Short-term forecasting curves with confidence intervals for Measles Outbreak
in London generated from 10, 12, 14 and 16weeks of data used to project 2 weeks forward. d Short-term
forecasting curves with confidence intervals for Influenza in San Francisco generated from 18, 22, 26 and
30days of data used to project 4days forward

mouth disease (Viboud et al. 2016). In a recent study (Viboud et al. 2016), the authors
investigated this early ascending phase for 20 infectious disease outbreaks using a
generalized growth model, in which a “deceleration of growth” parameter modulates
the early epidemic phase. Findings revealed significant diversity in the early dynam-
ics of epidemic growth across infectious disease outbreaks, highlighting the presence
of sub-exponential growth, which contrasts with the traditional assumption of early
exponential epidemic spread (Viboud et al. 2016).

Slower than exponential epidemic growth could be derived by models that incor-
porate transmission rates that decline over time (Chowell et al. 2016). Incorporating
time-dependent transmission rates in epidemic models is crucial to reliably forecast
disease spread in a population. For this purpose, in this paper we introduced a novel
approach for estimating the transmission rate of an epidemic in near real time for
SEIR-type epidemics in order to generate informative forecasts of epidemic impact.
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We demonstrate the practical utility of our methodology using synthetic and real out-
break data for influenza and Ebola in various settings.

In summary, we have introduced a novel nonparametric methodology to estimate
the time-dependent changes in the transmission rate during epidemics that can be
modeled using the standard SEIR transmission processes. We show that this method
is able to provide reasonable forecasts of epidemic impact using different regular-
ization techniques and varying the length of the early epidemic growth phase. Our
methodology is designed to help with forecasting of emerging and re-emerging infec-
tious diseases, and it could be adapted to incorporate other additional epidemiological
(e.g., varying levels of infectiousness) and transmission (e.g., environmental vs. close
contact transmission) mechanisms.

Appendix

Theoretical Analysis

In what follows, we show that gentle regularization

βα :=
n∑

i=1

ωα(λi )
(ui , fσ )

λi
vi := Rα,h fσ with ωα(λ) =

{
1, λ ≥ √

α
λ√
α
, λ <

√
α

(11)

has a certain optimal property, which may be the reason for some computational
advantage it has over other regularization algorithms. Let β̂ be the exact solution to
Aβ = f . From (11), one concludes

β̂ − βα = β̂ − Rα,h Ah β̂ + Rα,h[(Ah − A)β̂ + f − fσ ],

and therefore

||β̂ − βα|| ≤ ||β̂ − Rα,h Ah β̂|| + ||Rα,h || ||A||
[

||Ah − A|| ||β̂||
||A|| + || f − fσ ||

||A||

]
.

Taking into consideration the obvious estimate || f || ≤ ||A|| ||β̂||, i.e., 1
||A|| ≤ ||β̂||

|| f || ,
one obtains

||β̂ − βα||
||β̂|| ≤ ||β̂ − Rα,h Ah β̂||

||β̂|| + ||Rα,h || ||A||︸ ︷︷ ︸
condRα,h (A)

[ ||Ah − A||
||A|| + || f − fσ ||

|| f ||
]

. (12)

In case of a noise-free operator, the first term in (12) measures the loss of accuracy
due to a numerical algorithm, and if one passes to the limit in (12) as α → 0+, one
gets the classical estimate
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||β̂ − βσ ||
||β̂|| ≤ ||A−1|| ||A||︸ ︷︷ ︸

cond(A)

|| f − fσ ||
|| f || (13)

known for un-regularized problems. Hence, the product ||Rα,h || ||A|| may be under-
stood as the generalized condition number.

Now assuming that both the operator, A, and the right-hand side, f , are noise-
contaminated, i.e., ||Ah − A|| ≤ h and || fσ − f || ≤ σ , we formulate the
problem:amongall regularizing strategieswith the samecondRα,h (A) = ||Rα,h || ||A||,
find a strategy that minimizes the error of the computational algorithm, ||β̂ −
Rα,h Ah β̂||/||β̂||.

Let N be the fixed value of the generalized condition number condRα,h (A). It
appears that gentle truncation (11) solves the above problem provided that the regu-

larization parameter, α̂, is selected as α̂ = ||A||2
N 2 . In other words,

βopt :=
n∑

i=1

ω̂α̂(λi )
(ui , fσ )

λi
vi := R̂α̂,h fσ , (14)

where

ω̂α̂(λ) =
{
1, λ ≥ ||A||/N
Nλ/||A||, λ < ||A||/N .

(15)

Indeed, assume the converse. From (11) and (12), one has

||β̂ − Rα,h Ah β̂|| =
∥∥∥∥∥β̂ −

n∑
i=1

ωα(λi )
(ui , Ah β̂)

λi
vi

∥∥∥∥∥ . (16)

Notice that
(ui , Ah β̂) = (A∗

hui , β̂) = λi (vi , β̂). (17)

According to (16) and (17), one concludes

||β̂ − Rα,h Ah β̂||2 =
∥∥∥∥∥β̂ −

n∑
i=1

ωα(λi )(vi , β̂)vi

∥∥∥∥∥
2

=
n∑

i=1

(1 − ωα(λi ))
2|(vi , β̂)|2.

Let R̄ᾱ,h := ∑n
i=1 ω̄ᾱ(λi )

(ui , · )
λi

vi be some other strategy with condRα,h (A) = N that

results in a higher accuracy of the algorithm as compared to R̂α̂,h . Then, there exists
λ j , 0 < λ j ≤ ||Ah ||, such that

(1 − ω̄ᾱ(λ j ))
2 < (1 − ω̂α̂(λ j ))

2. (18)

Since 0 ≤ ωα(λ) ≤ 1 for all α > 0 and 0 < λ ≤ ||Ah ||, (15) and (18) imply

1 − ω̄ᾱ(λ j ) <

{
0, λ j ≥ ||A||/N
1 − Nλ j/||A||, λ j < ||A||/N .
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The first case is not possible. The second case yields ω̄ᾱ(λ j ) > Nλ j/||A||. Hence

||R̄ᾱ,hu j ||2 =
∥∥∥∥∥

n∑
i=1

ω̄ᾱ(λi )
(ui , u j )vi

λi
vi

∥∥∥∥∥
2

=
[
ω̄ᾱ(λ j )

λ j

]2
|(u j , u j )|2 >

N 2

||A||2 ||u j ||2

= N 2

||A||2 ,

which proves that condR̄ᾱ,h
(A) = ||R̄ᾱ,h || ||A|| > N . Thus, we arrive at a contradic-

tion, and the choice of R̂α̂,h by (14)–(15) is, in fact, optimal.
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Fig. 8 (Color figure online) Noisy data used to quantify uncertainty in the transmission rate βα(t) together
with 95% confidence intervals and mean values of βα(t) reconstructed from full incidence data set for
EVD in Sierra Leone—Western Areas Urban and Rural. a Real EVD incidence data C ′(t) along with
2000 noisy incidence curves obtained by adding Poisson noise to the values of C ′(t)—Western Area
Urban. bMean values of time-dependent βα(t) along with 95% confidence intervals recovered by MTSVD
regularization procedure—Western Area Urban. c Real EVD incidence data C ′(t) along with 2000 noisy
incidence curves obtained by adding Poisson noise to the values of C ′(t)—Western Area Rural. d Mean
values of time-dependent βα(t) along with 95% confidence intervals recovered by MTSVD regularization
procedure—Western Area Rural
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Additional Numerical Results

The districts Western Area Urban and Western Area Rural are 2nd of 14th districts in
Sierra Leone. Freetown, the capital and the largest city in Sierra Leone, is located in
Western Area Urban. Population for the two districts are 1.1 million and 500 thousand,
respectively, and these two districts were primary hotspots of the 2014 EVD outbreak.
Utilizing weekly data sets from these two regions, we approximate βα(t) by MTSVD
regularization method. Figure8 gives these results. We use 1000 noisy data sets to
quantify the uncertainty. It appears that the transmission rate was effectively reduced
in the urban district, but that this reduction was more erratic in the rural area. In the
rural area, the decline in speed and behavior more closely matches the country-wide
result. The forecasting curves for both districts are given in Fig. 9.

The 2014 outbreak in Liberia consisted of 10,678 cases and 4810 deaths. The
experiments are conducted with the country-wide data for the outbreak as well as for
two of the country’s districts: Montserrado and Gueckedou. Montserrado district is
home to Monrovia, the capital of Liberia, and two of its infected individuals were
responsible for the outbreak in Nigeria and for the cases in the USA. Gueckedou is
the site of the index case for the 2014 outbreak and is located in the vicinity of the
conflux of borders between Liberia, Sierra Leone and Guinea.

Figure10 gives the uncertainty quantification for 2000 noisy curves. Figure11
illustrates the forecasting results. For these Liberia districts, we see similarity in the
behavior of βα(t) for the urban district of Montserrado as compared to the country as
a whole. The rural district exhibits a slower decline in the transmission rate.
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Fig. 9 (Color figure online) Comparison of forecasting curves generated from early incidence data for
Ebola epidemic in Sierra Leone by MTSVD regularization algorithm—Western Areas Urban and Rural.
a Forecasting incidence curves generated by MTSVD method from 6, 11, 16, 21 and 26weeks of data,
respectively, as compared to actual incidence data—Western Area Urban (Sierra Leone). b Forecasting
incidence curves generated by MTSVD method from 7, 12, 17 and 22 weeks of data, respectively, as
compared to actual incidence data—Western Area Rural (Sierra Leone)
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Fig. 10 (Color figure online) Noisy data used to quantify uncertainty in the transmission rate βα(t) together
with 95% confidence intervals and mean values of βα(t) reconstructed from full incidence data set for EVD
in Liberia—Montserrado and Gueckedou Districts. aReal EVD incidence dataC ′(t) along with 2000 noisy
incidence curves obtained by adding Poisson noise to the values of C ′(t)—Montserrado District. b Mean
values of time-dependent βα(t) along with 95% confidence intervals recovered by MTSVD regularization
procedure—Montserrado District. cReal EVD incidence dataC ′(t) along with 2000 noisy incidence curves
obtained by adding Poisson noise to the values of C ′(t)—Gueckedou District. d Mean values of time-
dependent βα(t) along with 95% confidence intervals recovered by MTSVD regularization procedure—
Gueckedou District

123



4364 A. Smirnova et al.

Number of Weeks

0

50

100

150

200

250

300

350

400

I
n
c
i
d
e
n
c
e
 
D
a
t
a

Incidence Data Generated by Recovered 
β  -  Montserrado - MTSVD

Data, 6 weeks
Data, 10 weeks
Data, 14 weeks
Data, 18 weeks
Real Data

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 45
Number of Weeks

0

5

10

15

20

25

30

35

I
n
c
i
d
e
n
c
e
 
D
a
t
a

Incidence Data Generated by Recovered 
β  -  Gueckedou - MTSVD

Data, 6 weeks
Data, 12 weeks
Data, 18 weeks
Data, 24 weeks
Real Data

(a) (b)

Fig. 11 (Color figure online) Comparison of forecasting curves generated from early incidence data for
Ebola epidemic in Liberia by MTSVD regularization algorithm—Montserrado and Gueckedou Districts. a
Forecasting incidence curves generatedbyMTSVDmethod from6, 10, 14 and18weeksof data, respectively,
as compared to actual incidence data—Montserrado District (Liberia). b Forecasting incidence curves
generated by MTSVD method from 6, 12, 18 and 24 weeks of data, respectively, as compared to actual
incidence data—Gueckedou District (Liberia)
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