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Abstract This paper is concerned with stochastic SIR and SEIR epidemic models on
random networks in which individuals may rewire away from infected neighbors at
some rate ω (and reconnect to non-infectious individuals with probability α or else
simply drop the edge if α = 0), so-called preventive rewiring. The models are denoted
SIR-ω andSEIR-ω, andwe focus attention on the early stages of an outbreak,wherewe
derive the expressions for the basic reproduction number R0 and the expected degree
of the infectious nodes E(DI ) using two different approximation approaches. The
first approach approximates the early spread of an epidemic by a branching process,
whereas the second one uses pair approximation. The expressions are compared with
the corresponding empirical means obtained from stochastic simulations of SIR-ω and
SEIR-ω epidemics on Poisson and scale-free networks. Without rewiring of exposed
nodes, the two approaches predict the same epidemic threshold and the same E(DI ) for
both types of epidemics, the latter being very close to the mean degree obtained from
simulated epidemics over Poisson networks. Above the epidemic threshold, pairwise
models overestimate the value of R0 computed from simulations, which turns out to
be very close to the one predicted by the branching process approximation. When
exposed individuals also rewire with α > 0 (perhaps unaware of being infected),
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the two approaches give different epidemic thresholds, with the branching process
approximation being more in agreement with simulations.

Keywords Network epidemic models · Preventive rewiring · Branching process ·
Pair approximation

1 Introduction

Interactions among individuals in a population can be described by networks of who-
contacts-whom. Studies of contact networks in sexually transmitted diseases have long
revealed a high variability in the number of contacts per individual and highlighted
the importance of those individuals described as “super-spreaders” for the onset of
an epidemic (Anderson and May 1991; McCarthy et al. 2007). Similar conclusions
about the importance of super-spread events were drawn from contact tracing data
collected from recent epidemic outbreaks of airbone-transmitted diseases like those
of the severe acute respiratory syndrome (SARS) in 2002 and 2003 (Lipsitch 2003;
Riley 2003).

On the other hand, the risk perception among people during an epidemic outbreak
triggers behavioral responses to lower the risk of contagion (Lauet al. 2010;Springborn
et al. 2015), the avoidance of contacts with infected individuals being an example of
such responses (Fenichel et al. 2011). This sort of social distancing led to the idea
of disease-avoiding link rewiring and is one of the basis of the so-called adaptive or
dynamic networks. Such a preventive rewiring assumes transmission of information
which allows people to gather knowledge about the disease status of their neighbors.
Therefore, in such networks the contact pattern is no longer static but evolves with
the spread of an infectious disease according to the rules defining the rewiring process
(Gross et al. 2006; Juher et al. 2013; Risau-Gusman and Zanette 2009; Schwartz and
Shaw 2010; Schwarzkopf et al. 2010; Zanette and Risau-Gusmán 2008).

Pairwise models have been the main approach adopted for the analysis of epidemic
dynamics on adaptive networks (Gross et al. 2006; Juher et al. 2013; Kiss et al. 2012;
Llensa et al. 2014; Risau-Gusman and Zanette 2009; Schwarzkopf et al. 2010; Tay-
lor et al. 2012; Zanette and Risau-Gusmán 2008). This class of models was initially
developed to deal with processes defined on regular (random) networks and offers a
good description of their dynamics. In their classic formulation and over heteroge-
neous networks, however, their accuracy is far from being satisfactory, especially for
its prediction of the epidemic threshold. The so-called effective degree models are
extensions of them with a higher accuracy in their predictions (but also with a higher
complexity). In these models, in addition to the disease status of nodes, the number of
neighbors for each status is also considered (House and Keeling 2011; Lindquist et al.
2011; Marceau et al. 2010). At the individual level, pair-based epidemic models have
been developed in terms of master equations for the probabilities of the individual
pairs (Frasca and Sharkey 2016; Sharkey 2008). As with effective degree models, they
show a higher accuracy than pairwise models formulated at the population level, but
at the price of a higher computational complexity (Sharkey 2008).

123



A Network Epidemic Model with Preventive Rewiring... 2429

To analyze epidemic outbreaks on dynamic networks, stochastic models have also
been used. If the contact network has a large size and no cycles, it can be locally
described as a tree and the initial phase of an epidemic can be approximated by a
branching process (Diekmann et al. 2013). An example of a stochastic model defined
on a dynamic network is the one developed in Volz and Meyers (2007, 2009). The
model assumes that, at a given rate, the identities of neighbors change stochastically
bymeans of an instantaneous edge swap between a randomly selected pair of links. So,
this neighbor-exchange mechanism is independent of the epidemic dynamics because
it does not depend on the disease status of the involved nodes. In other words, it is not
an example of behavioral response against the presence of the disease. Other models
defined on dynamic networks whose architecture evolves by random edge swapping
can be found in Miller et al. (2012).

This paper aims mainly at comparing the predictions from both modeling method-
ologies (pairwise/stochastic) for the initial phase of susceptible–infectious–recovered
(SIR) and susceptible–exposed–infectious–recovered (SEIR) epidemics with preven-
tive rewiring among individuals (so,with an interplay between the spread of the disease
and the rewiring process, that is, between disease’s dynamics and network dynamics).
In particular, in the SIR model, we will assume that susceptible individuals break off
connections with infectious neighbors at a given rate ω and, in place of them, new
connections to susceptible and recovered individuals are created with probability α.
As for the SEIR model, we consider two alternative scenarios for the dynamics of
exposeds (i.e., infected but not infectious individuals). In the first one, exposed indi-
viduals break off with their infectious neighbors at a rate ωE I and, with probability α,
they reconnect to any non-infectious individual in the population. In turn, susceptibles
can also reconnect, with the same probability α, to exposeds (in addition to other
susceptibles and removed individuals) when breaking off with infectious neighbors.
In the second scenario, exposed individuals do not rewire at all (ωE I = 0), and sus-
ceptibles rewire away from both exposeds and infectives, and create new connections
with probability α. From a modeling viewpoint, the rewiring scenario can depend on
whether exposed individuals realize they have been infected (for instance, because
they show symptoms) or not (they are asymptomatic). In both scenarios, the degree
distribution changes over time and its mean degree is preserved only when α = 1.

The introduction of a reconnection probability α allows us to consider different
degrees of rewiring, ranging from a situation where each deleted link is replaced by
a newly created one (α = 1) to the limit case where no new connection is made and
edges are simply deleted (α = 0). In other words, α can be though of a measure of the
intensity of social distancing of rewiring individuals. As it is claimed in Fenichel et al.
(2011), people value person-to-person contacts and are willing to accept some disease
risk to gain contact-related benefits. So, different values of α could be considered
according to the type of social relationship modeled by the network.

The basic reproduction number R0, namely the average number of infections pro-
duced by a typical infectious individual when the fraction infected is still negligible,
is one of the compared quantities. Its predicted value will be checked against stochas-
tic simulations carried out on contact networks with degree distributions that follow
a Poisson distribution and a power law, respectively. It is worth noting that, while
the meaning of R0 in randomly mixing homogeneous populations is straightforward
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because any infectious individual is as likely as any other to infect a susceptible one, in
heterogeneous networks it requires that one specifies the meaning of typical individual
(Diekmann et al. (1990), Miller (2012)). In most network models (in particular, for
thosewithoutmultiple levels ofmixing), this definition implies that one has to compute
R0 from the average number of infections per infective once the early correlations of
disease status around infectious individuals have been formed, which takes a couple
of generations after the occurrence of the primary cases. Interestingly, this computa-
tion/redefinition of R0 has been obtained under both previous modeling approaches
(Eames and Keeling 2002; Keeling 1999; Pellis et al. 2012). In fact, it is well known
that both pairwise models and branching process approximations lead to the same
epidemic (or invasion) threshold in networks without rewiring (Keeling and Grenfell
2000).

In Sect. 2, we present the SIR and SEIR epidemic models with rewiring, here
denoted by SIR-ω and SEIR-ω respectively. In Sect. 3, we use the branching process
approximation to analyze the early phase of an SIR-ω epidemic. In particular, we
compute R0 and the expected degree of infectives during this initial phase as a function
of the rewiring rate ω. In Sect. 4, the same approximation is applied to the study of
the early stage of an SEIR-ω epidemic under different types of rewiring processes.
Section 5 contains the results of the initial phase obtained for both epidemic models
using the pair approximation with the triple closure introduced in Juher et al. (2013),
Llensa et al. (2014) for heterogeneous networks. In particular, the SEIR-ω pairwise
model extends the one considered in Llensa et al. (2014) to account for the rewiring
of exposed individuals and the possibility that susceptibles reconnect to exposed ones
after breaking off an infectious link. In Sect. 6, numerical estimates of R0 and the
mean degree of infectives during the initial phase are obtained from continuous-time
stochastic simulations on heterogeneous networks. Finally, in Sect. 7, we discuss the
analytical results obtained from both approximations and compare them to the output
of the stochastic simulations. Moreover, we comment about the new insight into the
role of the rewiring process in the SEIR-ω epidemic model.

2 The Stochastic Network Epidemic Model with Rewiring

Let us define our stochastic network epidemic model. The population consists of a
fixed number N of individuals, and the stochastic network model is given by the
configuration model with degree distribution D ∼ {pk} having finite mean μ and
finite variance σ 2 (e.g., Durrett 2007). This model is defined by all individuals having
i.i.d. degrees Di and edge-stubs being pairwise connected completely at random with
any loop or multiple edge being removed making the graph simple. We are primarily
interested in the situation where N is large, and the approximations will rely on this.

On this network, we now define an epidemic model where susceptible individuals
may rewire if they are neighbors of infectious individuals. We start by defining an SIR
epidemic where infected people immediately become infectious and later recover, and
then extend the model to an SEIR model in which infected people are at first exposed
(latent), then they become infectious, and eventually they recover. The latter model
is a bit more complicated in that now the rate of rewiring could differ depending on
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whether the person rewiring is susceptible or exposed, and depending on whether the
person he/she rewires away from is exposed or infectious.

Note that such a rewiring process causes the degree distribution to change over
time. However, since we will focus our analysis on the early stage of an epidemic
outbreak where only a tiny fraction of individuals is initially infected, we will assume
that the degree distribution D does not change significantly during the initial phase of
the epidemic.

2.1 The SIR-ω Network Epidemic with Rewiring

In this model, individuals are at first susceptible. If an individual gets infected he/she
immediately becomes infectious, and after some random time he/she recovers and
becomes immune for the rest of the outbreak. SIR hence stands for susceptible–
infectious–recovered (e.g., Diekmann et al. 2013 for more on SIR and SEIR epidemic
models).

The SIR-ω model is defined on the network (described above) as follows. Initially,
one randomly selected individual is infectious and the rest are susceptible. An infec-
tious individual transmits the disease to each of its susceptible neighbors at a rate β,
and the infectious periods are i.i.d. following an exponential distributionwith rate para-
meter γ (so infectious individuals recover at a rate γ ). Further, susceptible individuals
that are neighbors with infectious ones break off with such neighbors independently
at rate ω and, with probability α, replace each lost connection by reconnecting to
a randomly selected non-infectious (i.e., susceptible or recovered) individual in the
community. Therefore, αω is the effective rewiring rate, i.e., the rate at which new
links are created by susceptibles in substitution for those previously deleted.

The SIR-ω network epidemic has the following parameters: β (infection rate),
γ (recovery rate), ω (rewiring rate), α (reconnection probability), and the degree
distribution D with mean μ and variance σ 2. We will focus on what happens early on
in the epidemic, before a substantial fraction of the community has been infected.

2.2 The SEIR-ω Network Epidemic with Rewiring

In the SEIR-ω model, an infectious individual transmits the disease to each of its
susceptible neighbors at a rate β, but, when this happens, the neighbor first becomes
exposed (or latent) and can transmit the disease only after a time delay. In other words,
such an exposed individual becomes infectious at a rate φ, and at this moment can start
infecting each of its susceptible neighbors at a rate β. As before, infectious individuals
recover at a rate γ .

As regards to rewiring, it can be modeled differently depending on when an indi-
vidual starts and stops having a rewiring rate and also depending on which individuals
it rewires away from. Our model considers three different rewiring rates: a suscepti-
ble individual rewires away from each exposed neighbor at a rate ωSE , a susceptible
individual rewires away from each infectious neighbor at a rate ωSI , and an exposed
individual rewires away from each infectious neighbor at a rate ωE I . It is of course
possible to also allow for rewiring from other states, e.g., that susceptible individuals
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rewire from recovered individuals, but since we are primarily focusing on the initial
phase such rewiring would have negligible effects. If infected people are detected only
when they become infectious (e.g., if the latent period is the same as the incubation
period), and hence individuals rewire away from infected neighbors only when those
become infectious and not while they are exposed, this would correspond to ωSE = 0
and ωSI = ωE I > 0: susceptible individuals are not aware of exposed (latent) neigh-
bors being infected and hence do not rewire, and susceptible but also exposed (latent
but unaware) individuals rewire away from the infectious ones. We could obtain a
second scenario if also exposed (latent) individuals are known to have been infected
(e.g., by contact tracing or because they show some symptoms). We would then have
ωSE = ωSI > 0 andωE I = 0: susceptible individuals rewire away both from exposed
and infectious neighbors, but exposed individuals do not rewire away since they know
they have already been infected. In all cases, the reconnection probability α modulates
the fraction of rewirings that are effectively done, and it is assumed to be the same
both for susceptibles and for exposeds. Therefore, αωi j is the effective rewiring rate
of individuals in state i away from individuals in state i .

The SEIR-ω network epidemic has all the parameters of the SIR-ω epidemic except
that the rewiring rate ω now becomes three different rates: ωSE , ωSI and ωE I , and
there is a rate φ at which latent individuals become infectious.

3 Branching Process Approximation of the Initial Phase of the SIR-ω
Epidemic

Most stochastic epidemic models allow for a branching process approximation of the
early stages of an outbreak, an approximation which can be made rigorous as the
population size N tends to infinity (e.g., Ball and Donnelly 1995). This applies also
to network epidemics—we now describe the approximation of the current model.

We derive expressions for the basic reproduction number R0, here denoted by RBA
0

to distinguish its expression from the one obtained using pair approximation. We also
derive the exponential growth rate r (the Malthusian parameter) for the situation that
R0 > 1, and the average degree of infected individuals. Since rewiring is a focus of
this paper, we look at both the degree of newly infected individuals as well as on the
average of all infectious individuals, the latter expected to be smaller than the former
since individuals rewire away from infectious neighbors.

3.1 The Basic Reproduction Number R0

Recall that R0 is defined as the mean number of new infections caused by a typical
infected individual during the early stage of the epidemic. Individuals that get infected
during the early stage will, at the time of infection, have the size-biased degree dis-
tribution of neighbors, D̃ ∼ { p̃k}, where p̃k = kpk/

∑
j j p j = kpk/μ (e.g., Britton

et al. 2007). One of the neighbors is its infector, whereas the remaining neighbors,
with large probability during the early stage of an outbreak, will be susceptible. When
considering the disease progress it is only the D̃ − 1 susceptibles that are of interest
since it is not possible to reinfect the infector.
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From the derivation above, the mean number of susceptible neighbors a typical new
infectee has during the early stages equals

E(D̃ − 1) =
∑

k

(k − 1)
kpk
μ

= μ − 1 + σ 2

μ

(e.g., Britton et al. 2007). The probability to infect a given such neighbor is obtained
by considering the competing events that may happen: there could be an infection
(rate β), the neighbor could rewire away from the infectee (rate ω), or the infectee
can recover (rate γ ). The probability of infection hence equals β/(β + γ + ω). The
basic reproduction number equals the mean degree multiplied by the transmission
probability, i.e.,

RBA
0 = β

β + γ + ω
E(D̃ − 1) = β

β + γ + ω

(

μ − 1 + σ 2

μ

)

. (1)

If there is no rewiring (ω = 0), the basic reproduction number equals E(D̃−1)β/(β+
γ ) as is well known. Therefore, the rewiring reduces R0, as expected. We note that
RBA
0 is independent of α, so it has no effect on the beginning of an outbreak if rewired

edges are dropped, always attached to new susceptible individuals or a mixture of two.

3.2 The Exponential Growth Rate r

During the early stage and assuming a large population, the number of infectives in
the epidemic will asymptotically (as N → ∞) evolve like a branching process. R0 is
the corresponding mean offspring distribution. Another important quantity associated
with this branching process is λ(t), the expected birth rate (rate of new infections) of an
infectee having ”age” t , where age corresponds to time since infection. We now derive
λ(t) which in turn will help us derive the exponential growth rate of the epidemic.

As derived earlier, the average number of susceptible neighbors upon infection is
E(D̃− 1) = μ− 1+ σ 2/μ, and the infectee will infect each neighbor independently.
The average rate of infection (=”birth”) for each neighbor is obtained by considering
what must be fulfilled for infection to happen. In order to infect a neighbor t time
units after infection, the infectee must still be infectious, the neighbor should not
have rewired, and the infectee should not yet have infected the neighbor. Given this,
the infection rate equals β. Since all events are assumed to follow an exponential
distribution this gives us the following expression for λ(t):

λ(t) = E(D̃ − 1)βe−(β+γ+ω)t =
(

μ − 1 + σ 2

μ

)

βe−(β+γ+ω)t . (2)

The average total number of births (infections) is hence
∫ ∞
0 λ(t)dt = E(D̃−1)β/(β+

γ +ω) = R0 as it should be. The mean birth rate λ(t) also determines the exponential
growth rate of the epidemic, i.e., for which r , I (t) ∼ ert (cf. Jagers 1975). This r , the
Malthusian parameter, is given by the solution of the Euler–Lotka equation
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∫ ∞

0
e−r tλ(t)dt = 1.

For our model this gives us, after a bit of algebra,

r = βE(D̃ − 2) − γ − ω = β

(

μ − 2 + σ 2

μ

)

− γ − ω. (3)

Also the exponential growth rate is independent of α.

3.3 The Mean Degree of Infectives

We now turn to the mean degree of infectives during the early stages of the epidemic.
We consider two different means. The first one is for newly infected, which in fact
has already been shown: During the early stages, newly infected individuals will have
degree distribution D̃ (when considering the degree distribution we also count the
non-susceptible infector), so the mean degree of newly infected individuals equals
E(D̃) = μ + σ 2/μ.

The second mean, E(DI ), denotes the average number of neighbors of all infec-
tives during the early stages, not only that of the newly infected ones. As described
above, during the early stage of an outbreak, the degree distribution of newly infected
equals D̃. However, while still infectious, an individual loses susceptible neighbors by
rewiring: Each susceptible neighbor is lost at a rate ω. The probability that a suscepti-
ble neighbor v is still a neighbor (i.e., has not rewired) t time units after our individual
x was infected and given that x is still infectious, is obtained by conditioning on the
potential infection time of the neighbor (v only rewires if not yet infected). So, we
have

P(v still a neighbor at t) =
∫ t

0
P(v still a neighbor at s | v infected at s)βe−βsds

+ P(v still a neighbor at t | v not infected by t)e−βt

=
∫ t

0
e−ωsβe−βsds + e−(β+ω)t

= β

β + ω
+ ω

β + ω
e−(β+ω)t .

Note that we condition on that x remains infectious at t .
When deriving the degree distribution of all infectives during the early stage, we

have to take into account both this decrease in degree with age, but also the fact that,
in the exponential phase of the epidemic (recall that I (t) ∼ ert ), ”young” infectives
will be over-represented. The ratio of individuals infected s time units ago over the
number of individuals infected at present equals e−rs due to the exponential growth
rate. And only a fraction e−γ s of them are still infectious at present. Consequently,
the fraction of infectives that were infected s time units ago or longer equals e−(r+γ )s ,
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so the age distribution of infectives is exponential with parameter r + γ (this is the
so-called stable age distribution of this branching process, Jagers 1975).

The mean degree of all infectives during the early stage is obtained by conditioning
on their age:

E(DBA
I ) = 1 +

∫ ∞

0
E(D̃ − 1)

(
β

β + ω
+ ω

β + ω
e−(β+ω)s

)

(r + γ )e−(r+γ )sds

= 1 + E(D̃ − 1)

(
β

β + ω
+ ω(r + γ )

(β + ω)(β + ω + r + γ )

)

= E(D̃) − ω

β
, (4)

where, as before, E(D̃) = μ + σ 2/μ, and r = βE(D̃ − 2) − γ − ω was defined in
Eq. (3). This mean degree should be valid after a couple of generations and will then
change as the depletion of susceptibles will start affecting things.

As seen in (4) also, the mean degree of infectives is independent of α. At first,
this might seem surprising since the degree of infectious individuals is affected by
rewiring.However, an infectious individual can loose edges (which reduces the degree)
due to susceptible neighbors rewiring away from the infective, but it does not affect
the degree of the infective whether these links are simply dropped or the rewiring
susceptible connects to new individuals.

4 Branching Process Approximation of the Initial Phase of the SEIR-ω
Model

We now study the extended SEIRmodel recalling that individuals who get infected are
now first latent for an exponentially distributed time with rate parameter φ, after which
they become and remain infectious according to earlier rules. Individuals rewire away
from infected neighbors. More precisely, a susceptible individual rewires from each
exposed (latent) neighbor at a rateωSE and from each infectious neighbor at a rateωSI .
Moreover, exposed individuals rewire away from infectious neighbors at a rate ωE I .
Of course, some of these rewiring intensities may be zero (cf. Sect. 2.2). As before,
upon each rewiring event the individual reconnects to a randomly chosen susceptible
or recovered individual with probability α and with the remaining probability the edge
is simply dropped.

4.1 The Basic Reproduction Number R0 for the SEIR-ω Model

During the early stage of an outbreak, at the time of infection an exposed individual e
has degree distribution D̃ as before, one neighbor i being the infector and the remaining
neighbors being susceptible. So, e has E(D̃) − 1 expected susceptible neighbors.
However, in the SEIR model, this number can eventually increase by one, provided
that e can rewire away from its infector i (if not yet recovered) and reconnect to
a susceptible individual that will become a new neighbor. The probability for this
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to happen is αωE I /(φ + ωE I ). In consequence, the expected number of susceptible
neighbors for e is E(D̃) − 1 + αωE I /(φ + ωE I ). Any such neighbor, say s, will
get infected if e first becomes infectious (before s rewires away from e) and, then,
an infection occurs (before e recovers or s rewires from e). Hence, the probability
for this to happen is the product of the probabilities of these two events, namely,
φ/(φ + ωSE ) · β/(β + γ + ωSI ). To conclude, the expected number of neighbors
infected by e equals:

RBA
0 = φβ

(φ + ωSE )(β + γ + ωSI )

(

E(D̃) − 1 + α ωE I

φ + ωE I

)

. (5)

By studying Eq. (5), we make the following observations. If there is no rewiring
from any state, RBA

0 reduces to β/(β + γ ) E(D̃ − 1), i.e., the same as for the SIR
case. Further, RBA

0 is decreasing in both ωSE and ωSI as expected. However, RBA
0

increaseswith α andωE I . IfωSE = 0 andωSI = ωE I = ω, the perhaps most realistic
example discussed in Sect. 2.2, then RBA

0 can be increasing in ω for some parameter
setups, implying that the quicker individuals rewire the larger epidemic outbreak! The
explanation to this is that, when αωE I > 0, the exposed (latent) individuals can rewire
away from their infector to a susceptible neighbor, with the effect that they may later
(once they become infectious) infect the new susceptible neighbor.

4.2 The Exponential Growth Rate r for the SEIR-ω Model

As with the SIR-ω model, in order to compute the Malthusian parameter r we first
derive an expression for λ(t), the average rate at which an individual, whowas infected
during the initial phase of the epidemic, infects new individuals t timeunits after his/her
time of infection.

At the timewhen an individual gets infected he has on average E(D̃) neighbors, one
being infectious (its infector) and the remaining E(D̃− 1) will, with large probability
since we are in the beginning of the epidemic, be susceptible. At a rate β, the infected
individual infects each of the E(D̃−1) initially susceptible neighbors t time units after
infection if the following conditions are fulfilled: The infected individual must have
terminated the latent period without the neighbor having rewired, and after that the
infectious period should still be active, an infection should not yet have taken place,
and the neighbor should not have rewired. As mentioned in the previous subsection,
it is also possible that the infected individual infects through the link to the infector.
This happens with a rate β at t time units after infection if the following holds: The
infected individual rewired from its infector (and connects to a susceptible neighbor)
while still latent, and after this the infected individual has become infectious, has not
yet infected the neighbor nor has the new neighbor rewired. The above reasoning leads
to the following expression for λ(t):

λ(t) = βE(D̃ − 1)P(infectious, neighbor did not rewire, neighbor not yet infected, at t)

+ βP(rewired while latent, infectious, neighbor not rewired, neighbor not infected, at t).

(6)
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By conditioning on the end of the latency period, the first probability equals

∫ t

0
φ e−φse−ωSE se−γ (t−s)e−ωSI (t−s)e−β(t−s)ds.

The second probability, now conditioning both on the time of first rewiring and the
end of the latent period, equals

∫ t

0

∫ s

0
φ e−φsαωE I e

−ωE I ue−ωSE (s−u)e−γ (t−s)e−ωSI (t−s)e−β(t−s)du ds.

Using these expressions in Eq. (6) and solving the integrals results in the following
expression for λ(t):

λ(t) = E(D̃ − 1)βφ
e−(ωSI+γ+β)t − e−(φ+ωSE )t

φ + ωSE − (ωSI + γ + β)

+ β
φαωE I

ωSE − ωE I

(
e−(φ+ωE I )t − e−(ωSI+β+γ )t

ωSI + β + γ − (φ + ωE I )
− e−(φ+ωSE )t − e−(ωSI+β+γ )t

ωSI + β + γ − (φ + ωSE )

)

.

We now use λ(t) to derive the exponential growth rate r of the epidemic in case it
takes off, and also to confirm our expression for R0. The latter is easy. If we compute∫ ∞
0 λ(t)dt using the expression above we get exactly R0 as defined in Eq. (5), as
it should be. As for the Malthusian parameter r , this is given as the solution to the
equation

∫ ∞
0 e−r tλ(t)dt = 1. For the expression of λ(t) above, this can be shown to

be equivalent to

βφ

(r + ωSI + β + γ )(r + φ + ωSE )

(

E(D̃ − 1) + αωE I

r + φ + ωE I

)

= 1. (7)

For αωE I > 0, this is a third-order equation, but for positive values of r (the relevant
values as we assume R0 > 1) the left-hand side is decreasing in r , starting from a
value larger than 1 when r = 0 and decreasing to 0 as r → ∞ implying that there is
a unique solution to the equation.

Equation (7) is not explicit, but it is still possible to see how various parameters
affect the growth rate. For example, r is increasing in the infection rate β and the
mean degree E(D̃). As regards to the rewiring rates, r decreases in ωSI and ωSE but
increases with the “harmful” rewiring rate αωE I . Finally, as we increase the rate to
leave the latent state (i.e., making the latent state shorter), the effect depends on other
parameter values, but if we increase φ toward infinity it can be shown that we obtain
the expression for r of the SIR-ω model (cf. Eq. (3)) as expected.

4.3 The Mean Degree of Infectives and Related Quantities

For the SEIR-ω model, it is also possible to derive specific features of infected indi-
viduals during the initial phase of an epidemic. For example, as we did for the SIR-ω
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case, we can compute E(DI ), the average degree of infectives during the early stage
of the outbreak. However, other mean quantities might be equally relevant as, for
instance, the mean degree E(DL) of infected but still latent individuals, or the mean
degree E(DI+L) of either latent or infectives, or for that matter the expected number
of susceptible neighbors while in one of these states. For brevity and because some of
these quantities have even more complicated expressions, we compute E(DI ) with-
out solving the integrals appearing in the derivation and indicate how to modify the
derivations if we want to compute another mean.

To compute E(DI ), let us pick at random an infectious individual i during the early
stage of an outbreak and let T denote how long ago this individualwas infected.Wefirst
compute the expected degree of i conditional upon T = t , denoted by E(Di |T = t).
This is done by conditioning on the duration of the latent period L = s, which must
lie between 0 and t since i is infectious t time units after infection:

E(Di |T = t) =
∫ t

0
E(Di |T = t, L = s) fL(s|T = t)ds.

The second factor is givenby fL (s|T = t) = φe−φse−γ (t−s)/
(∫ t

0 φe−φue−γ (t−u)du
)
.

As for the first factor, the individual has E(D̃) expected neighbors at the time of infec-
tion, one being infectious and the rest being susceptible. For the susceptible neighbors,
we compute the probability that they are still neighbors. For the infector, it could have
lost a neighbor from this edge only if i rewired away from the infector to a susceptible
neighbor and the new neighbor later rewired away from i . We hence get

E(Di |T = t, L=s)=E(D̃−1)P(susceptible neighbor did not rewire|L = s, T = t)

+ 1 − P(i looses edge to infector |L = s, T = t). (8)

The first probability in (8) is obtained by conditioning on whether the susceptible
neighbor was infected or not, and, in the former case, whether the latent period ended
before t or not:

P(susceptible neighbor did not rewire | L = s, T = t)

= e−ωSE s
(∫ t

s
βe−(β+ωSI )(u−s)

(∫ t

u
φe−(φ+ωE I )(v−u)dv + e−(φ+ωE I )(t−u)

)

du+

e−(ωSI+β)(t−s)
)

.

Here there should be no α in front of ωE I because the event concerns an exposed
neighbor and it is irrelevant for the degree of the infective whether this neighbor
reconnects or not upon rewiring.

The second probability in (8) consists of two events. Either i rewired away from
its infector and dropped the edge while exposed, or else i rewired away from infector
and reconnected while exposed, and the new neighbor rewired away from i . The first
event has probability
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P(i rewired and dropped edge | L = s, T = t) = (1 − α)

∫ s

0
ωE I e

−(ωE I+γ )udu.

The second event is obtained by conditioning on the time when i rewires away from
the infector and reconnects to a susceptible neighbor, whether the second rewiring
happens during the latency or infectious period of i , and in the latter case whether
infection takes place or not:

P(i rewired and reconnected, and new neighbor rewired away from i | L=s, T = t)

=
∫ s

0
αωE I e

−(ωE I+γ )u
(∫ s

u
ωSEe

−ωSE (v−u)dv

)

du

+
∫ s

0
αωE I e

−(ωE I+γ )u
(

e−ωSE (s−u)

∫ t

s
e−(β+ωSI )(v−s)

(

β

∫ t

v

ωE I e
−(ωE I+φ)(z−v)dz + ωSI

)

dv

)

du.

Note that α appears in front of ωE I only when it concerns the infective, because then
it has to reconnect to make spreading to a new individual possible, whereas there is no
α when the rewiring refers to exposed neighbors rewiring away from the infective. In
the latter case, it is irrelevant for the degree of the infective whether or not the exposed
individual reconnects upon rewiring.

It remains to derive the distribution for T , the time since infection. For this, we
know that due to the exponential growth rate r of infectives, there is a fraction
e−r t to choose from t units earlier as compared to present time. However, we also
require that the individual is infectious at present, an event which happens with prob-
ability

∫ t
0 φe−φse−γ (t−s)ds. The probability density of T is hence proportional to

e−r t
∫ t
0 φe−φse−γ (t−s)ds, which after a bit of algebra gives the following density

fT (t) = (r + γ )(r + φ)

φ − γ

(
e−(r+γ )t − e−(r+φ)t

)
.

Finally, the expected degree of a randomly chosen infective during the early stages is
obtained by integrating with respect to this density:

E(DBA
I ) =

∫ ∞

0
E(Di |T = t) fT (t)dt. (9)

In order to compare this predicted E(DI ) with the one obtained from pair approxi-
mation (see next section), for each set of values of the parameters we obtain the value
of r given by the positive solution of (7) and evaluate the resulting expression of the
previous integral.

If we were to compute, e.g., the average degree of a latent individual E(DL), we
would similarly condition on the time T since infection of the randomly chosen latent
individual. This individual would have E(D̃) neighbors at the time of infection, one
infectious and the rest susceptible, and we need to compute the probability that these
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neighbors would not have been lost similarly to what we did before. We would then
integrate this expected value with respect to the probability density of T , which is
proportional to e−r t e−φt .

5 R0 and E(DI ) for the SIR and SEIR Pairwise Models with Rewiring

We now derive expressions for R0 and E(DI ) using an alternative deterministic
approximation based on the closed-form equations for the dynamics of pairs of disease
status, the so-called pairwise models. While the SIR-ω pairwise model was already
introduced in Llensa et al. (2014), the SEIR-ω pairwise model is a generalization of
the one also introduced in Llensa et al. (2014) that includes rewiring of exposeds and
reconnection rules introduced in accordance with it. This extended model will allow
for a better understanding of the impact of rewiring on R0 derived under this approach,
here denoted by RPA

0 .

5.1 The SIR-ω Pairwise Model

Let [S], [I ] and [R] be the expected number of susceptible, infectious, and recovered
individuals, respectively. Moreover, let [i j] be the expected number of non-ordered
i– j pairs, i.e., pairs whose individuals are in states i and j , and let [i jk] the expected
number of non-oriented i- j-k triples (i, j ∈ {S, I, R}). So, if N is the network size
and L is the total number of links in the network, then [S] + [I ] + [R] = N and
[SS] + [SI ] + [SR] + [I I ] + [I R] + [RR] = L .

The SIR-ω model formulated in terms of triplets can be closed by assuming the
statistical independence at the level of pairs which leads to the following approx-
imations for the expected number of the involved triples: [SSI ] ≈ (E(D̃) − 1)
2[SS][SI ]/(μ[S]), [I S I ] ≈ 1/2 ·(E(D̃)−1)[SI ]2/(μ[S]), and [I SR] ≈ (E(D̃)−1)
[SI ][SR]/(μ[S]) with μ = 2L/N being the average degree (see Llensa et al. 2014
for details). Note that, since we focus our analysis on the early epidemic stage with a
very small number of initially infectious nodes, we approximate the expected degree
of the susceptible central node of a triple by E(D̃), the mean degree of a node reached
by following a randomly chosen link in a wholly susceptible population at t = 0, i.e.,
when the degree distribution is the initial one.

Upon introducing the triple closure into the original model, the initial dynamics of
the SIR-ω model is determined by

d

dt
[S] = −β[SI ],

d

dt
[I ] = β[SI ] − γ [I ],

d

dt
[SI ] =

(

βz

(
2[SS]
[S] − [SI ]

[S]
)

− β − γ − ω

)

[SI ],
d

dt
[I I ] = β

(

1 + z
[SI ]
[S]

)

[SI ] − 2γ [I I ], (10)
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d

dt
[SS] = α ω

[S]
N − [I ] [SI ] − βz

2[SS]
[S] [SI ],

d

dt
[SR] =

(

γ + α ω
[R]

N − [I ]
)

[SI ] − βz
[I S]
[S] [SR],

d

dt
[I R] = 2γ [I I ] − γ [I R] + βz

[I S]
[S] [SR],

where z := (E(D̃) − 1)/μ. Note that susceptible individuals break off (at a rate ω)
with infectious neighbors and reconnect (at a rate α ω) to other susceptibles or to
recovered individuals with probability [S]/(N −[I ]) and [R]/(N −[I ]), respectively,
in place of the deleted links.

The average number of susceptible individuals around an infective is [SI ]/[I ]. If
this quantity stabilizes to a value ([SI ]/[I ])∗ during the initial exponential growth of
an epidemic, then we can use it to compute R0 as (Llensa et al. 2014)

RPA
0 := β

γ

( [SI ]
[I ]

)∗
. (11)

Moreover, if [I I ]/[I ] and [I R]/[I ] also stabilize during this initial phase, then the
mean degree of the infectives at this stage is given by

E(DPA
I ) =

( [SI ]
[I ]

)∗
+

(
2[I I ]
[I ]

)∗
+

( [I R]
[I ]

)∗
. (12)

The equations for the dynamics of the local densities [SI ]/[I ], 2[I I ]/[I ] and
[I R]/[I ] are obtained from the SIR-ω model by using the standard rules of differen-
tiation and are given by

d

dt

( [SI ]
[I ]

)

= −
(

β + ω + βz

( [SI ]
[S] − 2[SS]

[S]
)

+ β
[SI ]
[I ]

) [SI ]
[I ] ,

d

dt

(
2[I I ]
[I ]

)

= 2β

(

1 + z
[SI ]
[S]

) [SI ]
[I ] −

(

γ + β
[SI ]
[I ]

)
2[I I ]
[I ] , (13)

d

dt

( [I R]
[I ]

)

= γ
2[I I ]
[I ] + βz

[SI ]
[S]

[SR]
[I ] − β

[SI ]
[I ]

[I R]
[I ] .

Now, taking the limit when 2[SS]/[S] → μ = 2L/N , and [SI ]/[S] → 0, i.e.,
after the introduction of the first infectious individuals, we obtain the following limit
system:

d

dt

( [SI ]
[I ]

)

=
(

β(E(D̃) − 2) − β
[SI ]
[I ] − ω

) [SI ]
[I ] ,

d

dt

(
2[I I ]
[I ]

)

= 2β
[SI ]
[I ] −

(

γ + β
[SI ]
[I ]

)
2[I I ]
[I ] , (14)

d

dt

( [I R]
[I ]

)

= γ
2[I I ]
[I ] − β

[SI ]
[I ]

[I R]
[I ] .
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Fig. 1 Basic reproduction number of an SIR-ω epidemic as a function of the infection rate β. Dashed line
corresponds to R0 = 1. PA: pair approximation. BA: branching process approximation.Open circles (solid
dots) correspond to R0 computed from stochastic simulations of the epidemic on a Poisson (scale-free)
network. Each network has a degree sequence with an average size-biased degree very close to E(D̃) = 10.
This fact allows a direct comparison of outputs on each network. Parameters: γ = 1, α = 1, ω = 1

It is interesting to observe that the reconnection probability α does not appear in the
system. This means that disconnections from infectious individuals play a role in the
early epidemic dynamics, but the way the new connections are created, or even if they
occur at all (α = 0), does not play any role at this stage.

The first equation of (14) is decoupled from the other two and has a unique positive
equilibrium ([SI ]/[I ])∗ = E(D̃)−2−ω/β, which is globally asymptotically stable.
From this equilibrium and (11), it immediately follows that

RPA
0 = β

γ

(

E(D̃) − ω

β
− 2

)

(15)

which defines the same epidemic threshold R0 = 1 as RBA
0 (cf. Eq. (1)), but overesti-

mates R0 when it is larger than one. A graphical comparison of the expressions of R0
obtained fromeachmodeling approach is shown inFig. 1 usingβ as a tuning parameter.

The other components of the positive equilibrium of (14) follow upon substituting
([SI ]/[I ])∗ for [SI ]/[I ] into the last two equations. Then, from (12), we have

E(DPA
I ) = E(D̃) − ω

β
, (16)

which is the same expression as the one obtained for E(DBA
I ) (cf. Eq. (4)).

5.2 The SEIR-ω Pairwise Model

According to the rewiring processes described in Sect. 2.2, and using the same notation
and the triple closure as before, the equations of the SEIR model at the initial phase
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of the epidemic and with the three types of rewiring are

d

dt
[S] = −β[SI ], d

dt
[E] = β[SI ] − φ[E], d

dt
[I ] = φ[E] − γ [I ],

d

dt
[SI ] =

(

−βz
[SI ]
[S] − β − γ − ωSI

)

[SI ] + φ[SE],
d

dt
[SE] = βz

(
2[SS]
[S] − [SE]

[S]
)

[SI ] − (φ + ωSE ) [SE]

+α ωE I
[S]

N − [I ] [E I ] + α ωSI
δ[E]

N − [I ] [SI ],
d

dt
[SS] =

(

−βz
2[SS]
[S] + α ωSI

[S]
F([S], [E], [R])

)

[SI ] + α ωSE
[S]

[S] + [R] [SE],
d

dt
[SR] =

(

−βz
[SR]
[S] + γ + α ωSI

[R]
F([S], [E], [R])

)

[SI ]

+α ωSE
[R]

[S] + [R] [SE], (17)

d

dt
[E I ] = β

(

z
[SI ]
[S] + 1

)

[SI ] − (φ + γ + ωE I ) [E I ] + 2φ[EE],
d

dt
[EE] = βz

[SE]
[S] [SI ] − 2φ[EE] + α ωE I

[E]
N − [I ] [E I ],

d

dt
[ER] = βz

[SR]
[S] [SI ] +

(

γ + α ωE I
[R]

N − [I ]
)

[E I ] − φ[ER],
d

dt
[I I ] = φ[E I ] − 2γ [I I ],

d

dt
[I R] = φ[ER] + γ (2[I I ] − [I R]) ,

with [S]+[E]+[I ]+[R] = N , [SS]+[SE]+[SI ]+[SR]+[EE]+[E I ]+[ER]+
[I I ]+ [I R]+ [RR] = L , z = (E(D̃)−1)/μ, and μ = 2L/N the mean degree of the
initial degree distribution D. Moreover, F([S], [E], [R]) = [S]+[E]+[R] = N−[I ]
and δ = 1 if ωSE = 0, whereas F([S], [E], [R]) = [S] + [R] and δ = 0 otherwise.
In the first case, susceptible individuals do not disconnect from exposed individuals
and can reconnect to the latter when they rewire away from an infectious neighbor.
In the second case (ωSE > 0), susceptible individuals recognize exposed ones, rewire
away from them, and only reconnect (with probability α) to other susceptibles or to
recovereds (so, δ = 0). Note that, in both cases, F([S], [E], [R]) → N at the early
stage of an epidemic.

If ωE I > 0, exposed individuals who break off a link with an infectious neigh-
bor randomly reconnect to any susceptible, recovered, or exposed individual with a
probability α[S]/(N − [I ]), α[R]/(N − [I ]), and α[E]/(N − [I ]), respectively. This
corresponds to the situation where latent individuals are asymptomatic and, so, they
do not know they have already got the infection. Therefore, one can also assume that
susceptible individuals do not know the disease status of the exposed neighbors and
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take ωSE = 0. Hence, susceptibles who break off a link with an infected neighbor
reconnect to any susceptible, exposed or recovered individual with the same probabil-
ities as the exposed ones, namely α[x]/(N − [I ]) with x ∈ {[S], [E], [R]}. In Fig. 2,
we show the predicted and observed R0 as a function of the infection rate β. The
values of the parameters are the same in both panels except for ωSE and ωE I which
are 1 and 0 in the left panel, and 0 and 1 in the right one, respectively.

It is illustrative to check that the limit system for the dynamics of the local densities
of disease status around an infectious individual (see Appendix) only contains one
term with the reconnection probability α, namely the one with α ωE I as a prefactor.
Therefore, the other contributions from the remaining rewiring rates in (17) do not
appear when we restrict ourselves at the early stage of an epidemic. In other words, the
precise rules for reconnecting susceptibles who have rewired away from an infectious
neighbor, even if there is no reconnection at all of those individuals (α = 0), does
not affect the epidemic dynamics during the initial phase. This claim, however, is not
true for exposed individuals when α > 0. The last term of the equation for [SE]/[I ]
tells us that, when αωE I > 0, exposeds enhance the spread of the disease by rewiring
away from infectious neighbors (because they will replace the latter with susceptible
individuals) and, hence, RPA

0 must increase under this rewiring.
The expression of R0 defined by (11) and computed from the corresponding positive

equilibrium of the limit system for the local densities (see “Appendix”) is given by

RPA
0 = φ

γ
ξ∗

(

ξ∗ − γ

φ
+ 1

)

(18)

with ξ∗ being the positive solution of Eq. (20) (in the “Appendix”) satisfying ξ∗ >

γ/φ − 1. If such a solution ξ∗ does not exist, then ([SI ]/[I ])∗ = 0 is the only
equilibrium value of [SI ]/[I ] at the early stage of an epidemic and, hence, RPA

0 = 0.
Note that, for α = 0 (no reconnection of broken links), Eq. (20) becomes a quadratic
equation in ξ which is independent of ωE I . This implies that, in this case, RPA

0 does
not depend on the rewiring of exposeds because ξ∗ turns out to be independent ofωE I .

From Eq. (18), the expression for RBA
0 , and Eq. (20) one obtains the following rela-

tionships between estimations of the epidemic thresholds (see Appendix for details):

– If α ωE I = 0, then RPA
0 = 1 ⇐⇒ RBA

0 = 1.
– If α ωE I > 0, then RPA

0 = 1 
⇒ RBA
0 > 1, and RBA

0 = 1 
⇒
RPA
0 < 1.

That is, both approaches predict the same epidemic threshold either when exposed
individuals do not rewire (ωE I = 0), or when there is no reconnection of broken links
(α = 0).When the effective rewiring rate α ωE I is strictly positive, pair approximation
predicts a higher epidemic threshold in terms of β than the one obtained from the
branching process approximation (see the right panel in Fig. 2).Moreover, simulations
show that RPA

0 always overestimates the basic reproduction number when RBA
0 > 1

if ωE I = 0. Finally, from Eq. (20) it follows that, for α > 0, ξ∗ increases with ωE I ,
which implies that, as expected, RPA

0 also increases with ωE I .
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Fig. 3 Expected degree of the infectious individuals, E(DI ), at the early stage of an SEIR-ω epidemic with
φ = 1, γ = 2, α = 1, ωSE = 0, ωSI = ωE I = ω, and E(D̃) = 10. Both predictions curves, E(DBA

I )

and E(DPA
I ), are almost graphically indistinguishable (the lower the thickness of the lines, the higher the

overlap of the curves). Dashed horizontal line in the left panel corresponds to E(DI ) without rewiring

On the other hand, from the positive equilibriumof the limit system for the local den-
sities, E(DPA

I ) is computed as ([SI ]/[I ])∗+(2[I I ]/[I ])∗+([E I ]/[I ])∗+([I R]/[I ])∗
which gives

E(DPA
I ) = (

(1 + ξ∗)φ − γ
) ξ∗

β
+ ((1 + ξ∗)φ − γ )(ξ∗ + 2) + γ

(1 + ξ∗)φ + ωE I
. (19)

Note that, when there is no rewiring (ωSI = ωSE = ωE I = 0), it follows that
E(DPA

I ) = E(D̃), as expected. Moreover, when ωE I = 0, ξ∗ is given by (21) and
E(DPA

I ) can be explicitly expressed in terms of the model parameters. Similarly,
E(DPA

I ) is also explicit when α = 0 because then Eq. (21) becomes quadratic in ξ .
For α ωE I > 0 and ωSE = 0, the numerical evaluation of the previous expression

and its comparison with that of E(DBA
I ) show that both predictions are very close

to each other (see Fig. 3). Indeed, they are graphically distinguishable only for low
values of β (left panel) or for high values of the rewiring rate ω (right panel), i.e., for
those parameters values that give R0 close to 1. In these cases, differences occur at
the second decimal place of the predicted mean degree. For ωE I = 0 and α ∈ [0, 1],
both expressions give the same value for E(DI ).

6 Stochastic Simulations

To carry out continuous-time stochastic simulations, we generated Poisson networks
with E(D) = 9 and scale-free (SF) networks with characteristic exponent 4 and
minimum degree kmin = 5, i.e., p(k) = 3k3mink

−4. So, in both cases, E(D̃) = 10.
All the networks had N = 10000 nodes. The SF networks were generated using the
configurationmodel algorithm. For each network and each combination of parameters,
we averaged the outputs over 250 initial sets of 10 individuals infected uniformly at
random (primary cases). Moreover, we take the reconnection probability α = 1 in
all simulations because it is when rewiring has the biggest effect. The stochastic time
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Fig. 4 Mean degree (left) and total number (right) of infectious nodes in an SIR-ω epidemicwith γ = 1 and
β = 0.4, over a Poisson network of mean degreeμ = 9, and for α = 1 and ω ∈ {0.5, 1}.Dashed horizontal
lines correspond to the predicted E(DI ) according to (4). Outputs averaged over 250 runs. Network size
is N = 10,000, and the initial fraction of infected nodes is 0.1%. The predicted mean degree during the
exponential phase is close to the observed one

evolution of the infection spread was simulated by means of the Gillespie algorithm
(Gillespie 2007).

Asmentioned in the introduction, since primary cases are selected at random regard-
less of their degree, a correct empirical computation of R0 relies on counting the mean
number of infections produced by the secondary cases (individuals infected by the
primary cases). So, for each experiment (that is, for each initial set of 10 random
primary cases) we let the epidemic evolve until all primary and secondary cases have
recovered. In Figs. 1 and 2, corresponding, respectively, to SIR-ω and SEIR-ω mod-
els, we compare the value of R0 predicted by Eqs. (1) and (5) with that obtained from
Eqs. (15) and (18), respectively, and with the outputs of stochastic simulations carried
out on a Poisson and a scale-free network. Since the variance of the theoretical SF
degree distribution is quite high (it equals 3k2m/4 = 18.75), there is a high variability
among generated SF networks. Therefore, in order to compare the results for both
types of networks in the same figure, we have chosen a random SF network whose
degree sequence leads to a value of E(D̃) very close to the expected one (μ = 7.5262,
σ 2 = 18.6399, and hence E(D̃) = 10.0029).

We have also tested the accuracy of the analytical predictions for E(DI ). Recall
that, for the SIR-ω model, both approaches lead to the same value of E(DI ) (cf.
Eq. (4) and (16)), whereas, for the SEIR-ω model, both predictions are very close to
each other if α ωE I > 0 and are the same if α ωE I = 0. As it was mentioned, the
predicted mean degree of the infectious individuals should be valid after a couple of
generations, only as long as the growth of the epidemic is in its initial exponential
phase, after which the depletion of susceptibles makes the hypothesis of the derivation
no longer valid. In Figs. 4, 5, 6 and 7 we show, for two values of ω, the evolution of
the total number I (t) of infectious individuals at time t , the average degree DI (t) of
the infected individuals, and the corresponding analytical predictions. At any given
time t , the value of DI (t) is computed as the total number of links containing an
infected individual (the edges joining two infected are counted twice) over I (t). The
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Fig. 5 Mean degree (left) and total number (right) of infectious nodes in an SIR-ω epidemic over a SF
network with p(k) ∼ k−4 and kmin = 5 which gives a mean degree μ = 3kmin/2 = 7.5. Outputs averaged
over 250 runs.Dashed horizontal lines correspond to E(DI ) according to (4). Parameters: γ = 1, β = 0.4,
α = 1, ω ∈ {0.5, 1}. N = 10000 and the initial fraction of infected nodes is 0.1%

time (latent periods)
0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

12

time (latent periods)
0 1 2 3 4 5 6 7 8 9 10

0

100

200

300

400

500

600

700

Fig. 6 Mean degree (left) and total number (right) of infectious nodes in an SEIR-ω epidemic over a Poisson
network with mean degree μ = 9. Outputs averaged over 250 runs. Dashed horizontal lines correspond
to the predicted E(DI ): 9.75 for ω = 0.1, and 8.84 for ω = 0.5 (both approaches lead to these rounded
values). Parameters: φ = 1, γ = 2, β = 1.2, α = 1, ωSE = 0, and ωSI = ωE I = ω ∈ {0.1, 0.5}.
N = 10,000 and the initial fraction of infected nodes is 0.1%

right panels of these figures show that the curve I (t) fits to an exponential function
(initial phase) on an interval [0, te]with te less than the time I (t) attains its maximum.
It is precisely on this interval that the mean degree DI (t) on Poisson networks keeps
almost stationary around a value close to the predicted one (see left panels of Fig. 4 and
6). Such a plateau in the profile of DI (t) is not so nicely observed when simulations
are carried out on scale-free networks.

7 Discussion

It is known that pairwise models for the spread of SIR-type diseases through static
homogeneous networks predict the same epidemic threshold as the one obtained from
the probabilistic computation of R0 when infectious periods are exponentially distrib-
uted (Keeling 1999; Keeling and Grenfell 2000). By using a pairwise model with a
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Fig. 7 Mean degree (left) and total number (right) of infectious nodes in an SEIR-ω epidemic over a SF
network with p(k) ∼ k−4 and kmin = 5 which amounts to a mean degree μ = 3kmin/2 = 7.5. Outputs
averaged over 250 runs. Dashed horizontal lines correspond to the predicted E(DI ): 9.75 for ω = 0.1, and
8.84 for ω = 0.5 (both approaches lead to these rounded values). Parameters: φ = 1, γ = 2, β = 1.2,
α = 1, ωSE = 0, and ωSI = ωE I = ω ∈ {0.1, 0.5}. N = 10000 and the initial fraction of infected nodes
is 0.1%

triple closure introduced in Juher et al. (2013) and Llensa et al. (2014), and a branching
process approximation of a stochastic network epidemic, we have seen that the same
epidemic threshold is also predicted for dynamic networks whose topology evolves
according to the preventive rewiring of susceptible individuals. As expected from a
preventive rewiring, the higher the rewiring rateω, the lower R0 is for both predictions,
and this is true regardless of the value of the reconnection probability α. However, for
any ω, the pair approximation overestimates R0 when it is larger than 1 as compared
to stochastic simulations and to the value RBA

0 obtained from the branching process
approximation. The reason is that the value RPA

0 predicted by the pairwise model is a
linear function of the infection rate β and, hence, an unbounded number of new cases
are predicted as β increases (cf. Eq. (15)). Such a linear dependence on the infection
rate is a common feature of deterministic epidemic models (Anderson andMay 1991).
In contrast, the hyperbolic dependence of RBA

0 on β (cf. Eq. (1)) reflects the saturation
in the production of new infections for high infection rates and leads to values of R0
that are closer to those obtained from the simulations.

The same relationships between estimates of R0, and between epidemic thresholds,
also hold for SEIR-ω models when susceptible (but not exposed/latent) individu-
als break off connections with their infectious/exposed neighbors and reconnect to
randomly chosen susceptible or recovered individuals with a given probability α

(ωE I = 0). However, if exposed individuals also disconnect from infectious neighbors
and reconnect to randomly chosen non-infectious individuals (α ωE I > 0), then the
epidemic thresholds from the two approaches differ from each other, with RBA

0 > 1
when RPA

0 = 1. Interestingly, as long as α > 0, this rewiring of exposeds is not
preventive but harmful since it does not help to contain the disease: Sooner or later
exposed individuals will become infectious and, when an exposed replaces its infector
with a susceptible individual, the number of infections he/she can produce increases.
This is why R0 increases with αωE I , in contrast to what happens with the other two
rewiring rates, ωSI and ωSE .
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Note that, because we are concerned with the initial stage of an epidemic, in large
networks rewired links will, with a very high probability, point to susceptible individ-
uals. Therefore, as long as only susceptible individuals rewire, the initial propagation
of the disease will not be particularly affected by the type and intensity (α) of the
reconnection process. In fact, this is what follows from the computation of R0 under
both approaches. For the SIR-ω model, for instance, this can be easily seen from the
derivation itself of R0 under the branching process approximation since the former
does not depend on how new connections (if any) are made. Similarly, from direct
inspection of the limit system governing the dynamics of the local densities around
infectious individuals (cf. Eq. (14)), one sees that there is no term corresponding to
reconnection of links (i.e., terms with αω as a prefactor).

Both estimates of R0 have been checked by obtaining, from stochastic simulations
carried out on random networks, the mean number of infections produced not by
the first infectious individuals landing in the population (primary cases), but by the
second generation of infectives (secondary cases). It has been recognized elsewhere
(Eames and Keeling 2002; Keeling 1999; Pellis et al. 2012) that this “redefinition”
of R0 for epidemics on networks is the suitable one because it takes into account the
local correlations of disease status developed around infectives during the epidemic
exponential growth (initial phase). Simulation results clearly indicate that the estima-
tion of R0 obtained from the branching process approximation is much better than
the one derived from pairwise models and gives the correct epidemic threshold when
αωE I > 0. In particular, for the SEIR-ω model there is an excellent agreement for all
the shown values of β (Fig. 2), whereas for the SIR-ω model the agreement is not as
good when β is not close to its critical value (Fig. 1).

On the other hand, for the SIR-ω model, we have also seen that both approaches
predict the same expected degree E(DI ) of infectives at the early stage of an epidemic.
In particular, it follows that E(DI ) is a linear decreasing function of the rewiring rate
ω. Its computation from stochastic simulations clearly shows that, for moderately
large values of ω and β, the mean degree of the infectious nodes DI (t) remains quite
constant during the exponential phase of the disease.Moreover, the agreement between
theoretical predictions and observations using both ω and β as tunable parameters is
very good in Poisson networks for low values of the rewiring rates andmoderate values
of β. For high values of β, the exponential phase is so fast that the time window where
DI (t) is roughly constant is hardly noticeable. Similarly, when rewiring is high, DI (t)
decreases monotonously without any plateau during this initial phase. For scale-free
networks andmoderate values ofβ andω, however, the predicted E(DI ) overestimates
the observed DI (t) (cf. Figs. 4 and 5).

As for the SEIR-ω model, the values of E(DI ) computed from both approaches are
very close to each other (see Fig. 3) and show a very good agreement with the simula-
tions on Poisson networks (see Fig. 6). However, the corresponding expressions are not
easily manageable (both depend on the solution of a cubic equation when α ωE I > 0)
and, therefore, they have been evaluated numerically. From these evaluations, it fol-
lows that, when α > 0 andωE I = 0 or, alternatively, when α = 0 (dropping of edges),
both approaches lead to the same values of E(DI ). For α ωE I > 0, predictions are
almost graphically indistinguishable from each other (for α = 1 and ωSI = ωE I ,
the maximum differences occur at second decimal place of the expected degree). As
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with the SIR-ω model, when the simulations take place on scale-free networks, the
predicted E(DI ) overestimates the observed DI (t) (see Fig. 7).

Finally, it is important to note that, for dynamic heterogeneous networks whose
degree distribution evolves in time, the value of R0 does not determine the final epi-
demic size. While the computation of R0 is based on the initial degree distribution,
the final epidemic size depends on the whole evolution of the degree distribution. In
particular, since reconnection is assumed to be uniform with respect to the degree of
nodes, the variance of the degree distribution decreases over time whenever the initial
network is highly heterogeneous (see Juher et al. 2013). Determining an expression for
the final epidemic size, using any approximation method, and studying how it depends
on model parameters, remains a highly interesting open problem.
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Appendix

The Limit System for the SEIR-ω Model and Its Equilibria

The limit system for the local densities involved in the computation of E(DI ) for the
SEIR pairwise model when 2[SS]/[S] → 2L/N (the mean degree), [SE]/[S] → 0,
[SI ]/[S] → 0, and [SR]/[S] → 0, i.e., at the beginning of an epidemic, is

d

dt

( [SI ]
[I ]

)

= −
(

β + ωSI + φ
[E]
[I ]

) [SI ]
[I ] + φ

[SE]
[I ]
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where q̄ := E(D̃). Note that only one positive term contains a rewiring rate, namely
the last one in the second equation which has α ωE I as a prefactor. Since [SE]/[I ]
increases with α ωE I and, in turn, the first equation tells us that [SI ]/[I ] increases
with [SE]/[I ], the presence of such a positive term means that also R0 will increase
with α ωE I . On the other hand, since the first three equations of the limit system are
decoupled from the other five when α = 0, the same three equations will also govern
the dynamics of [SI ]/[I ] when individuals simply drop connections to infectious
neighbors (α = 0). In particular, this reflects the (expected) fact that whether exposed
individuals break off with infectious neighbors (ωE I > 0) or not (ωE I = 0) does not
affect the early dynamics of [SI ]/[I ] as long as they do not replace these links with
new connections.

For a given value ξ of ([E]/[I ])∗, the equilibrium equations (i.e., the equations
obtained by making the right-hand side (rhs) of the previous system equal to 0) define
a linear system for the remaining variables and, hence, the equilibrium can be easily
expressed in terms of ξ . A simple inspection of the equations shows that there are two
equilibria, P1 = (0, 0, 0, 0, 0, 0, 0, 0) and P2 = (0, 0, γ /φ − 1, 0, 0, 0, 0, 0), where
the local densities around infectious nodes, ([SI ]/[I ])∗, (2[I I ]/[I ])∗, ([E I ]/[I ])∗,
and ([I R]/[I ])∗, are zero. Moreover, from the third equation, we see that there exists
an equilibriumwith ([SI ]/[I ])∗ > 0 if and only if ([E]/[I ])∗ > γ/φ−1,which in turn
implies that (2[EE]/[I ])∗ = 0. Consequently, the first four equations at equilibrium
do not depend on the last four.

Expressing ([SI ]/[I ])∗, ([SE]/[I ])∗ and ([E I ]/[I ])∗ in terms of ξ , and replacing
them into the second equation, it follows that there will be an equilibriumwith positive
local densities around infectious nodes if there exists a solution ξ∗ > 0 of the equation

(q̄ − 1)(1 + ξ)φ + (q̄ + α − 1) ωE I = φ2

β

(

ξ + φ + ωSE − γ

φ

) (

ξ + ωSI + β

φ

)

(

ξ + φ + ωE I

φ

)

(20)

such that ξ∗ > γ/φ − 1 if γ > φ. Note that, for ωE I = 0, Eq. (20) becomes a
quadratic equation in ξ with a positive solution ξ∗ given by (see Llensa et al. 2014)

ξ∗ = 1

2φ

(

γ − β − φ − ωSI − ωSE +
√

(γ + β − φ + ωSI − ωSE )2 + 4φβ(q̄ − 1)

)

(21)
with the proviso that φβ(q̄ − 1) > (φ + ωSE − γ )(β + ωSI ). Moreover, in this case
(ωE I = 0), when γ > φ it follows that ξ∗ > γ/φ − 1 if φβ(q̄ − 1) > ωSE (γ + β +
ωSI − φ).

If γ ≥ φ and ωE I > 0, a necessary and sufficient condition for the existence of
a unique solution ξ∗ of (20) such that ξ∗ > γ/φ − 1 is that the straight line defined
by the left-hand side (lhs) of (20) intersects the vertical line ξ = γ /φ − 1 above the
intersection with this vertical line of the cubic polynomial defined by the rhs of (20).
This polynomial has two negative roots, ξ1 and ξ2, and the third root ξ3 can be positive
or negative depending on the sign of γ − φ − ωSE . The resulting condition on the
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parameters is

φβ((q̄ − 1)γ + (q̄ + α − 1) ωE I ) > ωSE (γ + β + ωSI − φ)(γ + ωE I ).

Note that this condition is fulfilledwhenωSE = 0whichwas, indeed,whatwe assumed
in the model if ωE I > 0.

If γ < φ, then ξ3 < 0 and a sufficient condition for the existence of a ξ∗ > 0 is
that the intersection of the lhs of (20) with the y-axis is above the intersection with
this axis of the rhs of (20). This condition leads to

φβ((q̄ − 1)φ + (q̄ + α − 1) ωE I ) > (φ − γ + ωSE )(ωSI + β)(φ + ωE I ).

Since we are assuming ωE I > 0, then ωSE = 0, and from this inequality it follows a
simpler sufficient condition for the existence of ξ∗ > 0, namely (q̄ − 2)β > ωSI .

Relationship between the basic reproduction numbers RBA
0 and RPA

0 for the
SEIR-ω model

From (18), it follows that the only positive value of ξ∗ forwhich RPA
0 = 1 is ξ∗ = γ /φ.

After replacing ξ∗ by this value, expression (20) can be rewritten as

φβ

(φ + ωSE )(γ + β + ωSI )

(

E(D̃) − 1 + α ωE I

γ + φ + ωE I

)

= 1.

Comparing this expression and that of R0 given by (5), it follows that RPA
0 = 1 ⇔

RBA
0 = 1 if α ωE I = 0, and that RPA

0 = 1 ⇒ RBA
0 > 1 (and RBA

0 = 1 ⇒ RPA
0 < 1)

if α ωE I > 0. So, for α > 0, both approximations lead to the same epidemic threshold
when ωE I = 0.
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