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Abstract Chemical exposures, pre- and neonatal infections, psychosocial stress, and
the cross-generational cultural and epigenetic impacts of these and other toxicants
become an integrated, sometimes synergistic, signal that can overwhelm essential
neurodevelopmental regulation.We characterize that dynamic through statistical mod-
els based on the asymptotic limit theorems of control and information theories.
Schizophrenia and autism emerge as two different ‘phases’ of pathological neurode-
velopmental ‘condensations’ that impair the dynamic, shifting global workspace of
normal mental function.

Keywords Autism · Control theory · Data rate theorem · Information theory ·
Mitochondrial free energy · Phase transition ·Rate–distortion theorem · Schizophrenia

Early neglect and life course environmental insults ... can lead to impaired neu-
ronal responsiveness and symptoms of profound prefrontal cortical dysfunction,
providing a direct link between the environment and the cognitive impairments
observed in psychotic syndrome. (Os et al. 2010)

1 Introduction

Growing horror over the possible relation between the rapid spread of mosquito-
borne Zika virus and increased rates of microcephaly among children born to women
infected during pregnancy (Hayden 2016; Garcez et al. 2016) sharply focuses attention
on how environmental exposures, in a large sense, might trigger neurodevelopmental
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disorders. Here, we extend the perspective of Wallace (2015a), which focused on
the pathologies of aging, to examine the induction of developmental disorders in the
presence of environmental disruption, in a large sense.

The underlying importance of neurodevelopment in the etiology of serious mental
disorder has been described cogently by Corbin et al. (2008) who conclude that

. . . [U]nraveling the mechanisms of neural progenitor cell diversity in the brain
has tremendous clinical importance . . . [D]efects in any of these processes can
have devastating and long lasting consequences on brain function . . .

. . . [A]bnormal development of interneurons may be an underlying causative
factor, or contribute to the phenotype of a variety of developmental disorders
. . .[including] autism spectrum disorders . . . [and] schizophrenia . . .

Similarly, Tiberi et al. (2012) describe how the cerebral cortex is composed of
hundreds of different types of neurons, which underlie its ability to perform highly
complex neural processes. How cortical neurons are generated during development
constitutes a major challenge in developmental neurosciences with important implica-
tions for brain repair and diseases. Cortical neurogenesis is dependent on intrinsic and
extrinsic clues, which interplay to generate cortical neurons at the right number, time,
and place. Recent evidence, in their view, indicates that most classical morphogens,
produced by various neural and nonneural sources throughout embryonic develop-
ment, contribute to the master control and fine-tuning of cortical neurogenesis. They
conclude that the molecular control of cortical neurogenes involves the interplay of
intrinsic and extrinsic cues that coordinate the pattern of neural progenitor division
and differentiation.

Rapoport et al. (2012) find the neurodevelopmental model positing illness as the
end stage of abnormal neurodevelopmental processes that began years before the
onset of the illness. Environmental risk factors such as urbanicity, childhood trauma,
and social adversity have received strong replication with marked phenotypic non-
specificity pointing to common brain development pathways across disorders. The
neurodevelopmental model of schizophrenia has long existed as a model for other
childhood-onset conditions, including attention-deficit hyperactivity disorder, intel-
lectual deficiency, autism spectrum disorders (ASD), and epilepsy.

Rapoport et al. specifically identify infection/famine, placental pathology, low birth
weight, urban environment, childhood trauma, and ethnic minority/immigrant status
in disease etiology, concluding that in the central nervous system, neuronal prolif-
eration, cell migration, morphological and biochemical differentiation, and circuit
formation all depend on cell and cell–environment interactions that control develop-
mental process, and so can cause altered trajectories. Their Fig. 1 provides a summary
schematic.

A parallel line of argument explores mitochondrial abnormalities that are closely
associated with both schizophreniform and autism spectrum disorders.

Ben-Shachar (2002) finds mitochondrial impairment could provide an explanation
for the broad spectrum of clinical and pathological manifestations in schizophrenia.
Several independent lines of evidence, Ben-Shachar asserts, suggest an involve-
ment of mitochondrial dysfunction in the disorder, including altered cerebral energy
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metabolism, mitochondrial polyplasia, dysfunction of the oxidative phosphorylation
system, and altered mitochondrial-related gene expression. They conclude that the
interaction between dopamine, a predominant etiological factor in schizophrenia, and
mitochondrial respiration is a possible mechanism underlying the hyper- and hypo-
activity cycling in schizophrenia.

Prabakaran (2004) claim that almost half the altered proteins identified by a brain
tissue protenomics analysis of samples from schizophrenic patients were associated
with mitochondrial function and oxidative stress responses. They propose that oxida-
tive stress and the ensuing cellular adaptations are linked to the schizophrenia disease
process.

Shao (2008) similarly find evidence of mitochondrial dysfunction in schizophre-
nia. Likewise, Scaglia (2010) suggests involvement of mitochondrial dysfunction
in schizophrenia and argues that mechanisms of dysfunctional cellular energy
metabolism underlie the pathophysiology of major subsets of psychiatric disorders.

Clay et al. (2011) point to an underlying dysfunction of mitochondria in bipolar dis-
order and schizophrenia including (1) decreasedmitochondrial respiration; (2) changes
inmitochondrialmorphology; (3) increases inmitochondrialDNA (mtDNA) polymor-
phisms and in levels ofmtDNAmutations; (4) downregulation of nuclearmRNAmole-
cules and proteins involved in mitochondrial respiration; (5) decreased high-energy
phosphates and decreased pH in the brain; and (6) psychotic and affective symptoms,
and cognitive decline in mitochondrial disorders. They conclude that understanding
the role of mitochondria, both developmentally and in the ailing brain, is of critical
importance to elucidate pathophysiological mechanisms in psychiatric disorders.

There is likewise considerable and growing evidence formitochondrialmechanisms
in autism spectrum disorders (ASD).

Palmieri andPersico (2010) findASDoften associatedwith clinical, biochemical, or
neuropathological evidence of altered mitochondrial function. The majority of autistic
patients displays functional abnormalities in mitochondrial metabolism seemingly
secondary to pathophysiological triggers. Thus, in their view, mitochondrial function
may play a critical role not just in rarely causing the disease, but also in frequently
determining to what extent different prenatal triggers will derange neurodevelopment
and yield abnormal postnatal behavior.

Giulivi (2010) similarly assert that impaired mitochondrial function may influence
processes highly dependent on energy, such as neurodevelopment, and contribute to
autism. In their study, children with autism were more likely to have mitochondrial
dysfunction, mtDNA overreplication, and mtDNA deletions than typically developing
children.

A long series of studies by Rossignol and Frye (2010) find evidence accu-
mulating that autism spectrum disorder is characterized by certain physiological
abnormalities, including oxidative stress, mitochondrial dysfunction, and immune
dysregulation/inflammation. Recent studies, they conclude, have reported these abnor-
malities in brain tissue derived from individuals diagnosed with ASD as compared to
brain tissue derived from control individuals, suggesting that ASD has a clear biolog-
ical basis with features of known medical disorders.

Goh et al. (2014) argue that impaired mitochondrial function impacts many bio-
logical processes that depend heavily on energy and metabolism and can lead to a
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wide range of neurodevelopmental disorders, including autism spectrum disorder.
Although, in their view, evidence that mitochondrial dysfunction is a biological sub-
type ofASDhas grown in recent years, no study had previously demonstrated evidence
of mitochondrial dysfunction in brain tissue in vivo in a large, well-defined sample of
individuals with ASD. Their use of sensitive imaging technologies allowed them to
identify in vivo a biological subtype of ASDwith mitochondrial dysfunction. Lactate-
positive voxels in their sample were detected most frequently in the cingulate gyrus, a
structure that supports higher-order control of thought, emotion, and behavior, and one
in which both anatomical and functional disturbances have been reported previously
in ASD.

For neurodevelopment, control of gene expression is everything, and mechanisms
by which environmental factors interfere with control are of essential clinical and
epidemiological concern.

Here, we will describe statistical models of developmental failure based on the
asymptotic limit theorems of control and information theories that may provide new
tools in exploring suchmechanisms. Themodels are analogous tomore familiar empir-
ical least-squares regression and may permit deep scientific inference arising from
comparison of similar systems under different, or different systems under similar,
experimental or observational circumstances.

2 A Control Theory Model

It is well understood that there is no gene expression without regulation. This implies
that gene expression is inherently unstable in the formal control theory sense of the
data rate theorem (Nair et al. 2007) and must be stabilized by provision of control
information at a critical rate. Failure to provide control information at or above that rate
initiates characteristic modes of system failure that, for neural systems, are expressed
as developmental disorders.More explicitly, assuming an approximate nonequilibrium
steady state, the simplest ‘regression’ model of deviations from that state—described
in terms of an n-dimensional vector of observables xt at time t—has the form

xt+1 = Axt + But + Wt (1)

where xt+1 is the state at time t + 1, ut is the imposed n-dimensional control signal
vector at time t , Wt is an added noise signal, and A and B are, in this approximation,
fixed n × n matrices. See Fig. 1 for a schematic.

The data rate theorem (Nair et al. 2007) states that, for an inherently unstable
system, the control information represented by the vector ut must be provided at a rate
H that is greater than the rate at which the system produces ‘topological information.’
For the system of Eq. (1) and Fig. 1, that rate is given as

H > log[| det(Au)|] ≡ α0 (2)

where det is the determinant and Au is the component submatrix of A that has eigen-
values ≥1.
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Fig. 1 ‘Regression model’ for a control system near a nonequilibrium steady state. xt is system output at
time t , ut the control signal, and Wt an added noise term

An alternate derivation of Eq. (2) is given in Sect. 6.
Generalization to more complex inherently unstable systems in the context of a

scalar integrated environmental insult ρ—for example, taken as the magnitude of the
largest vector of an empirical principal component analysis—suggests that Eq. (2) will
become something like

H(ρ) > f (ρ)α0 (3)

f (0)α0 is then interpreted as the rate at which the system generates topological
information in the absence of an integrated environmental exposure.

What are the forms ofH(ρ) and f (ρ)? In Sect. 6, we calculateH(ρ) as the ‘cost’ of
control information, given the ‘investment’ ρ, using a classic Black–Scholes approx-
imation (Black and Scholes 1973). To first order,

H(ρ) = κ1ρ + κ2 (4)

where the κi are positive or zero.
If we take the same level of approximation, f (ρ) in Eq. (3) can be similarly

expressed as κ3ρ + κ4 so that the stability condition is

T ≡ κ1ρ + κ2

κ3ρ + κ4
> α0 (5)

For small ρ, the stability requirement is κ2/κ4 > α0, and at high ρ it becomes
κ1/κ3 > α0. If κ2/κ4 � κ1/κ3, then at some intermediate value of ρ, the essential
inequality may be violated, leading to failure of neurodevelopmental regulation. See
Fig. 2.

Fetal, child, and indeed adult developmental trajectories are embedded not only
in environments of direct exposure, but of multimodal inheritance, both through
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Fig. 2 Horizontal line is the
limit α0. If κ2/κ4 � κ1/κ3, at
some intermediate value of
integrated environmental insult
ρ, T = (κ1ρ + κ2)/(κ3ρ + κ4)

falls below criticality, and
control of neural gene
expression fails catastrophically.
ρ itself might be calculated as
the magnitude of the ‘volume’
vector in an empirical principal
component analysis or through a
more complicated model that
explicitly accounts for different
epigenetic inheritances and their
cross-influences

cross-generational gene methylation and other biochemical mechanisms and via
sociocultural influences. It is, however, implicit that direct environmental exposures,
inherited genemethylation, sociocultural inheritance, and other important factorsmust
interact along the developmental trajectory. Thus, rather than a simple scalar, we are
confronted by an m × m matrix having elements ρi, j i, j = 1 . . .m.

Square matrices of order m, however, have m scalar invariants, m real numbers
that characterize the matrix regardless of how it is expressed in different coordinate
systems. The first is the trace, and the last± the determinant. In general, the invariants
are the coefficients of the characteristic polynomial P(λ):

P(λ) = det(ρ − λI )

= λm + r1λ
m−1 + · · · + rm−1λ + rm (6)

where λ is a parameter that is an element of some ring, det is the determinant, and I
the m × m identity matrix. Note that λ may, in fact, be taken as the matrix ρ itself,
since square matrices form a ring, in which case the relation is a matrix polynomial
P(ρ) = 0 × I .

For a m ×m matrix, we have invariants r1, . . . , rm and an appropriate scalar ‘ρ’ in
Eq. (6)—determining the ‘temperature’ T —is then a monotonic increasing function
of the ri :

ρ̂ = ρ̂(r1, . . . , rm) (7)

so that

T (ρ̂) = κ1ρ̂ + κ2

κ3ρ̂ + κ4
(8)
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We have invoked the ‘rate–distortion manifold’ of Glazebrook and Wallace
(2009)—formulated as a ‘generalized retina’ in Wallace and Wallace (2010)—to
project a complicated ‘information manifold’ down onto a lower dimensional ‘tan-
gent space’ tuned across that manifold in such a way as to preserve most of the
underlying information. Here, we assume a scalar tangent space. Higher dimensional
structures are possible in a standard manner at the cost of some considerable increase
in mathematical overhead.

What are the dynamics of T (ρ̂) under stochastic circumstances?We explore this by
examining how a control signal ut in Fig. 1 is expressed in the system response xt+1.
More explicitly, we suppose it possible to deterministically retranslate a sequence of
system outputs Xi = xi1, x

i
2, . . . into a sequence of possible control signals Û i =

ûi0, û
i
1, . . . and then compare that sequence with the original control sequence Ui =

ui0, u
i
1, . . .. The difference between them is a real number measured by a chosen

distortion measure, enabling definition of an average distortion

<d> =
∑

i

p(Ui )d(Ui , Û i ) (9)

where (1), p(Ui ) is the probability of the sequenceUi , (2) d(Ui , Û i ) is the distortion
betweenUi and Û i , and (3) the sequence of control signals has been deterministically
reconstructed from the system output.

It then becomes possible to apply a classic rate–distortion theorem (RDT) argument.
According to the RDT, there exists a rate–distortion function (RDF) that determines
the minimum channel capacity, R(D), necessary to keep the average distortion <d>

below some fixed limit D (Cover and Thomas 2006). Based on Feynman (2000)
interpretation of information as a form of (free) energy, we can then construct a
Boltzmann-like pseudoprobability in the ‘temperature’ T as

dP(R, T ) = exp[−R/T ]dR∫ ∞
0 exp[−R/T ]dR (10)

since higher T necessarily implies greater channel capacity.
The integral in the denominator is essentially a statistical mechanical partition

function, and we can then define a ‘free energy’ Morse function F (Pettini 2007) as

exp[−F/T ] =
∫ ∞

0
exp[−R/T ]dR = T (11)

so that F(T ) = −T log[T ].
Then, an entropy analog can also be defined as the Legendre transform of F :

S ≡ F(T ) − T dF/dT = T (12)

As a first approximation, Onsager’s treatment of nonequilibrium thermodynamics
(Groot and Mazur 1984) can be applied, so that system dynamics are driven by the
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gradient of S in essential parameters—here T —under conditions of noise. This gives
a stochastic differential equation

dTt ≈ (μdS/dT ) dt + βTtdWt = μdt + βTtdWt (13)

where μ is a ‘diffusion coefficient’ representing the efforts of the underlying control
mechanism, and β is the magnitude of an inherent impinging white noise dWt in the
context of volatility, i.e., noise proportional to signal.

Applying the Ito chain rule to log(T ) in Eq. (13), a nonequilibrium steady-state
(nss) expectation for T can be calculated as

E(Tt ) ≈ μ

β2/2
(14)

Again, μ is interpreted as indexing the attempt by the embedding control apparatus
to impose stability—raise T . Thus, impinging noise can significantly increase the
probability that T falls below the critical limit of Fig. 2, initiating a control failure.

However, E(T ) is an expectation, so that, in this model, there is always some
nonzero probability that T will fall below the critical value α0 in the multimodal
expression for T (ρ̂): sporadic control dysfunctions have not been eliminated. Raising
μ and lowering β decreases their probability, but will not drive it to zero in this model,
a matter of some importance for population rates of neurodevelopmental disorders.

3 A ‘Cognitive’ Model

A different approach to the dynamics of neurodevelopmental regulation applies the
‘cognitive paradigm’ of Atlan and Cohen (1998), who recognized that the immune
response is not merely an automatic reflex, but involves active choice of a particu-
lar response to insult from a larger repertoire of possible responses. Choice reduces
uncertainty and implies the existence of an underlying information source (Wallace
2012, 2015a, b).

Given an information source associated with an inherently unstable, rapidly acting
cognitive neurodevelopmental control system—called ‘dual’ to it—an equivalence
class algebra can be constructed by choosing different system origin states a0 and
defining the equivalence of two subsequent states at timesm, n > 0, written as am, an ,
by the existence of high-probability meaningful paths connecting them to the same
origin point. Disjoint partition by equivalence class, analogous to orbit equivalence
classes in dynamical systems, defines a symmetry groupoid associated with the cogni-
tive process. Groupoids are deep generalizations of the group concept in which there
is not necessarily a product defined for each possible element pair (Weinstein 1996).

The equivalence classes define a set of cognitive dual information sources avail-
able to the inherently unstable neurodevelopment regulation system, creating a large
groupoid, with each orbit corresponding to a transitive groupoid whose disjoint union
is the full groupoid. Each subgroupoid is associated with its own dual information
source, and larger groupoids will have richer dual information sources than smaller.
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Let XGi be the control system’s dual information source associated with the
groupoid element Gi , and let Y be the information source associated with embed-
ding ‘normal’ environmental variation that impinges on development. Wallace (2012,
2015b) gives details of how environmental regularities imply the existence of an
environmental information source that, for humans, particularly includes cultural and
socioeconomic factors (e.g., Wallace 2015c).

We can again construct a ‘free energy’ Morse function (Pettini 2007). Let
H(XGi ,Y ) ≡ HGi be the joint uncertainty of the two information sources. Another
Boltzmann-like pseudoprobability can then be written as

P[HGi ] = exp[−HGi /T ]∑
j exp[−HG j /T ] (15)

T is the ‘temperature’ from Eq. (9), via the ρ̂ of Eq. (7), and the sum is over the
different possible cognitive modes of the full system.

A new Morse function F is defined by

exp[−F/T ] ≡
∑

j

exp[−HG j /T ] (16)

Given the inherent groupoid structure as a generalization of the simple symmetry
group, it becomes possible to apply an extension of Landau’s picture of phase transition
(Pettini 2007). In Landau’s ‘spontaneous symmetry breaking,’ phase transitions driven
by temperature changes occur as alteration of system symmetry, with higher energies
at higher temperatures being more symmetric.

For thismodel, the shift between symmetries is highly punctuated in the temperature
index T under the data rate theorem for unstable control systems. Typically, there are
only a very limited number of possible phases, which may or may not coexist under
particular circumstances.

Decline in T can lead to punctuated decline in the complexity of cognitive process
possible within the neurodevelopmental control system, driving it into a ground-state
collapse in which neural systems fail to develop normally.

The essential feature is the integrated environmental insult ρ̂. Most of the topol-
ogy of the inherently unstable neurodevelopmental system has been ‘factored out’ so
that ρ̂(r1, . . . , rm) remains the only possible index of the rate of topological informa-
tion generation for the DRT. Thus, in Eqs. (15) and (16), T (ρ̂) is again the driving
parameter.

Increasing ρ̂ is then equivalent to lowering the ‘temperature’ T , and the system
passes from high symmetry ‘free flow’ to different forms of ‘crystalline’ structure
—broken symmetries representing the punctuated onset of significant neurodevelop-
mental failure.

Again, if κ2/κ4 � κ1/κ3 in Eq. (8), accumulated environmental insult will quickly
bring the effective ‘temperature’ below some critical value, raising the probability for,
or triggering the collapse into, a dysfunctional ground state of low symmetry in which
essential network connections are not made or else become locally overconnected and
globally disjoint.
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Sufficient conditions for the intractability—stability—of the pathological ground
state can be explored using the methods of Wallace (2016). Given a vector of para-
meters characteristic of and driving that phase, say J, that measures deviations from
a nonequilibrium steady state, the ‘free energy’ analog F in Eq. (16) can be used to
define a new ‘entropy’ scalar as the Legendre transform

S ≡ F(J) − J · ∇JF (17)

Again, a first-order dynamic equation follows using a stochastic version of the
Onsager formalism from nonequilibrium thermodynamics (Groot and Mazur 1984)

dJ it ≈
(

∑

k

μi,k∂S/∂ J kt

)
dt + σi J

i
t dBt (18)

whereμi,k defines a diffusionmatrix, the σi are parameters, and dBt represents a noise
that may be colored, i.e., not the usual Brownian motion under undifferentiated white
noise.

If it is possible to factor out J i , then Eq. (18) can be represented in the form

dJ it = J it dY
i
t (19)

where Y i
t is a stochastic process.

The expectation of J can then be found in terms of the Doleans-Dade exponential
(Protter 1990) as

E(J it ) ∝ exp(Y i
t − 1/2[Y i

t ,Y
i
t ]) (20)

where [Y i
t ,Y

i
t ] is the quadratic variation in the stochastic process Y i

t (Protter 1990).
Heuristically, invoking the mean value theorem, if

1/2d[Y i
t ,Y

i
t ]/dt > dY i

t /dt, (21)

then the pathological ground state is stable: deviations from nonequilibrium steady
state measured by J it then converge in expectation to 0. That is, sufficient ongoing
‘noise’—determining the quadratic variation terms—can lock-in the failure of neu-
rodevelopment with high probability, in this model.

Parallel stability arguments arise in ecosystem resilience theory (Holling 1973)
which characterizes multiple quasi-stable nonequilibrium steady states among inter-
acting populations. Pristine alpine lake ecosystems, having limited nutrient inflows,
can be permanently shifted into a toxic eutrophic state by excess nutrient influx, e.g.,
a sewage leak and fertilizer runoff. Once shifted, the lake ecology will remain trapped
in a mode of recurrent ‘red tide’-like plankton blooms even after sewage or fertilizer
inflow is stemmed.

The quadratic variation in a stochastic process Xt , which we write as [Xt , Xt ],
is important to understanding the pathological stability of ‘eutrophic’ neurodevelop-
mental trajectories, in this model. It can be estimated from appropriate time series
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data using a Fourier expansion methodology adapted from financial engineering, as
described in Sect. 6.

4 The Mitochondrial Connection

Development is not simply a matter of response to external signals, powerful as such
effects may be. Metabolic free energy—the high-energy conversion of ATP to ADP—
powers themany cognitive process of gene expression thatmust control developmental
trajectories. Most directly, we can posit a rate–distortion argument in which a develop-
mentalmessage is sent alongbiochemical channels, and the success of failuremeasured
by complicated control and feedback mechanisms as indicated by the schematic of
Fig. 1. In essence, there must be a parallel argument to that leading to equation (10),
where T is replaced by the rate of metabolic free energy M .

Assuming a Gaussian channel, having the rate–distortion function R(D) =
(1/2) log[σ 2/D], where D is the average distortion by the square measure (Cover
and Thomas 2006) and σ 2 the inherent channel noise, we can write, for the mean of
D = σ 2 exp[−2R],

<D> =
∫ ∞
0 σ 2 exp[−2R] exp[−R/ωM]dR

∫ ∞
0 exp[−R/ωM]dR

= σ 2

2ωM + 1
(22)

ω represents the efficiency with which the system converts mitochondrial free
energy into control information. Small ω implies greatly increased levels of mito-
chondrial free energy are necessary for successful development, i.e., small<D>. The
obvious inference is that ω will be affected by the degree of integrated environmental
insult indexed by T , so that we can to first order at least assume ω = ω0T and write
the synergistic relation

<D> = σ 2

2ω0T M + 1
(23)

inversely characterizing the success of the developmental control systems: large<D>

indicates failure. Other channels, as a consequence of the convexity of the rate–
distortion function in D, will have similar expressions.

A next level of approximation takes M itself as a monotonic increasing function of
T —normalized by α0 of Eq. (2)—so that, to first order, <D> ∝ 1/T 2. Under such
a model, rising environmental insult, leading to the condition T < 1, rapidly distorts
developmental process by impairing mechanisms for both the generation and use of
mitochondrial free energy.

5 Discussion and Conclusions

Chemical exposures, pre- and neonatal infections, psychosocial stress, genetic predis-
position, and the cross-generational cultural and epigenetic impacts of these and other
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toxicants become an integrated, perhaps synergistic, signal that can overwhelm essen-
tial neurodevelopmental regulation, demanding levels of mitochondrial free energy
that cannot be met. Such insult may, as well, directly interfere with the production
of mitochondrial free energy. We have characterized that dynamic through statistical
models based on the asymptotic limit theorems of control and information theories,
models that are the functional equivalent of the usual least-squares regression based on
other asymptotic limit theorems of probability theory. The greatest scientific utility of
such models remains the experimental or observational comparison of similar systems
under different, and different systems under similar, conditions.

The use of such tools, however, often is not easy, as the sometimes deceptive
subtleties of ‘ordinary’ regression remind us. Nonetheless, the conceptual approach
taken here may still illuminate empirical studies.

A recent paper by Berman et al. (2016) describes the phenomenon of childhood-
onset schizophrenia, a ‘pure’ formof the disorder observedwithout the often confusing
correlates of an extended disease course (Lancaster andHall 2016).Berman et al.write:

. . . [W]e examined large-scale network interactions in childhood-onset schizophre-
nia . . . Using . . . resting-state functional magnetic resonance imaging . . . [that]
identified 26 regions with decreased functional correlations in schizophrenia
compared to controls . . .

Lancaster and Hall (2016) find that the results of Berman et al. are compatible with
a pathodevelopmental model in which patients with childhood-onset schizophrenia
experience excessive ‘over-pruning’ of short-distance functional connections.

By contrast, autism spectrumdisorders aremarkedby excessive early neural growth.
Rapoport et al. (2009) assert that in autism there is an acceleration or excess of early
postnatal brain development (1–3years), whereas in childhood-onset schizophrenia
(COS), there is exaggeration of the brain maturation processes of childhood and early
adolescence (10–16 years):

Both could be seen as ‘increased gain’ of general developmental processes, albeit
at different stages; both patterns could also be seen as an abnormal ‘shift to the
left’ with respect to age compared to normal brain development, with autism
showing initial overgrowth and COS showing greater ‘pruning down’ of the
cortex in early and middle parts of the trajectory; both accelerations normalizing
with age . . .

Indeed, a recent comprehensive analysis of US insurance data indicates a strong
role for environmental factors in the etiology of autism spectrum disorders. Rzhetsky
et al. (2014) write

By analyzing the spatial incidence patterns of autism and intellectual disability
drawn from insurance claims for nearly one third of the total US population, we
found strong statistical evidence that environmental factors drive apparent spatial
heterogeneity of both phenotypes [intellectual disability and autism] while eco-
nomic incentives and population structure appear to have relatively large albeit
weaker effects. The strongest predictors for autism were associated with the
environment . . . The environmental factors implicated so far include pesticides
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. . . environmental lead . . ., sex hormone analogs . . .medications . . . plasticizers

. . . and other synthetic molecules . . .

It is very likely that the list of environmental factors potentially affecting devel-
opment of human embryo is large and yet predominantly undocumented . . .

Our results have implications for the ongoing scientific quest for the etiology of
neurodevelopmental disorders. We provide evidence [for] routinely expanding
the scope of inquiry to include environmental, demographic and socioeconomic
factors, and governmental policies at a broad scale in a unified geospatial frame-
work.

Environmental effects are now frequently cited as important in the etiologyof autism
and similar conditions (e.g., Croen et al. 2011; Landrigan 2010; DeSoto 2009). Keil
and Lein (2016) in particular identify epigenetic mechanisms linking environmental
chemical exposures to risk of autism spectrum disorders. Govorko et al. (2012) explore
the male germline transmission of adverse effects of alcohol on fetal development.

Thus, it seems reasonable to infer that cross-generational transmission of gene
methylation may also affect probabilities of ASD and other neurodevelopmental dis-
orders. As Bohacek et al. (2013) comment,

Psychiatric diseases are multifaceted disorders with complex etiology, recog-
nized to have strong heritable components. Despite intense research efforts,
genetic loci that substantially account for disease heritability have not yet been
identified. Over the last several years, epigenetic processes have emerged as
important factors for many brain diseases, and the discovery of epigenetic
processes in germ cells has raised the possibility that they may contribute to
disease heritability and disease risk.

They specifically note ‘. . . [E]vidence suggests that highly stressful experiences at
different stages of life can markedly affect behaviors across generations and might
constitute heritable risk factors for affective disorders’ and go on to examine the
opposite effects of chemical exposures and environmental enrichment.

One central feature of the cognitive ‘phase change’ approach above is the possibility
of a ‘supercooled’ state during critical neurodevelopmental periods. That is, although
the ‘temperature’ defined by T falls below threshold for phase transition, ‘condensa-
tion’ into nonfunctional neuronetwork configuration during a critical growth domain
is made more probable rather than inevitable.

Under such a condition, however, as with supercooled liquids, some sudden per-
turbation can then trigger ‘crystallization’ from high to low symmetry states, i.e.,
from a normal system capable of the full ‘global workspace’ dynamics that Bernard
Baars asserts are necessary and sufficient for consciousness in higher animals (Wal-
lace 2012), to a fractured and fragmented structure in which essential subcomponent
networks are not sufficiently linked, or become, in fact, overlinked. Different con-
densation dynamics would broadly account for the observations of Berman et al. and
Rapoport et al., the difference between autism spectrum and COS disorders being seen
as different condensation phases. Typically, in such ‘spontaneous symmetry breaking,’
there will be only a small number of possible different phases. Comorbidity would be
seen as the existence of both possible phase types in the same individual.
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This inference may constitute the most central outcome of the modeling exercise,
i.e., that ‘environmental’ stress, in a large sense, during a critical growth regime can
trigger a relatively small number of characteristic phase change analogs in neurode-
velopment, although the symmetry shifts will likely involve subtle groupoid changes
rather than alterations of the finite groups more familiar from network theory (Yeung
2008, Ch. 16; Golubitsky and Stewart 2006). Again, simultaneous occurrence of sev-
eral such ‘phase condensations’ would account for observed patterns of comorbidity,
albeit with distinct cultural convolutions.

Indeed, asWallace (2015c) puts it, the stabilization of human cognition via feedback
from embedding social and cultural contexts is a dynamic process deeply intertwined
with it, constituting the ‘riverbanks’ directing flow of a stream of generalized con-
sciousness at various scales and levels of organization: Cultural norms and social
interaction are synergistic with individual and group cognition and their disorders.
That analysis finds high rates of psychopathic and antisocial personality disorder, as
well as obsessive/compulsive disorder, to be culture-bound syndromes particular to
Western ‘atomistic’ societies, or to those undergoing social disintegration. Some such
cultural patterning may well express itself across the forms of developmental neural
malcondensation described here (e.g., Kleinman 1991; Kleinman and Cohen 1997).

While detailed application of the modeling strategies outlined here to experimental
or clinical data remains to be done, the unification, after a concerted 50-year effort, of
control and information theories via the data rate theoremmay provide opportunity for
conceptual advance. Although high-end neural structures and the genetic regulators
that build them are most definitely not computers in the severely limited mathematical
venue of the Turing Machine, all such systems—including computers—are bounded
by the asymptotic limit theorems that constrain the generation and transmission of
information in the context of dynamic control.

6 Mathematical Appendix

6.1 An RDT Proof of the DRT

The rate–distortion theorem of information theory asks how much a signal can be
compressed and have average distortion, according to an appropriate measure, less
than some predetermined limit D > 0. The result is an expression for the minimum
necessary channel capacity, R, as a function of D. See Cover and Thomas (2006) for
details. Different channels have different expressions. For the Gaussian channel under
the squared distortion measure,

R(D) = 1

2
log

[
σ 2

D

]
D < σ 2

R(D) = 0 D ≥ σ 2 (24)

where σ 2 is the variance of channel noise having zero mean.
Our concern is how a control signal ut is expressed in the system response xt+1.

We suppose it possible to deterministically retranslate an observed sequence of sys-
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tem outputs x1, x2, x3, . . . into a sequence of possible control signals û0, û1, . . . and
to compare that sequence with the original control sequence u0, u1, . . ., with the dif-
ference between them having a particular value under the chosen distortion measure,
and hence an observed average distortion.

The correspondence expansion is as follows.
Feynman (2000), following ideas of Bennett, identifies information as a form of free

energy. Thus, R(D), the minimum channel capacity necessary for average distortion
D, is also a free energy measure, and we may define an entropy S as

S ≡ R(D) − DdR/dD (25)

For a Gaussian channel under the squared distortion measure,

S = 1/2 log[σ 2/D] + 1/2 (26)

Other channels will have different expressions.
The simplest dynamics of such a system are given by a nonequilibrium Onsager

equation in the gradient of S, (Groot and Mazur 1984) so that

dD/dt = −μdS/dD = μ

2D
(27)

By inspection,
D(t) = √

μt (28)

which is the classic outcome of the diffusion equation. For the ‘natural’ channel having
R(D) ∝ 1/D, D(t) ∝ the cube root of t .

This correspondence reduction allows an expansion to more complicated systems,
in particular, to the control system of Fig. 1.

Let H be the rate at which control information is fed into an inherently unstable
control system, in the presence of a further source of control system noise β, in
addition to the channel noise defined by σ 2. The simplest generalization of Eq. (27),
for a Gaussian channel, is the stochastic differential equation

dDt =
[

μ

2Dt
− M(H)

]
dt + βDtdWt (29)

where dWt represents white noise and M(H) ≥ 0 is a monotonically increasing
function.

This equation has the nonequilibrium steady-state expectation

Dnss = μ

2M(H)
(30)

measuring the average distortion between what the control system wants and what it
gets. In a sense, this is a kind of converse to the famous radar equation which states
that a returned signal will be proportional to the inverse fourth power of the distance
between the transmitter and the target. But there is a deeper result, leading to the DRT.
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Applying the Ito chain rule to Eq. (29) (Protter 1990; Khashminskii 2012), it is
possible to calculate the expected variance in the distortion as E(D2

t )−(E(Dt ))
2. But

application of the Ito rule to D2
t shows that no real number solution for its expectation

is possible unless the discriminant of the resulting quadratic equation is ≥0, so that a
necessary condition for stability is

M(H) ≥ β
√

μ

H ≥ M−1(β
√

μ) (31)

where the second expression follows from the monotonicity of M .
As a consequence of the correspondence reduction leading to Eq. (29), we have

generalized the DRT of Eq. (2). Different ‘control channels,’ with different forms of
R(D), will give different detailed expressions for the rate of generation of ‘topological
information’ by an inherently unstable system.

6.2 A Black–Scholes Model

We look at H(ρ) as the control information rate ‘cost’ of stability at the integrated
environmental insult ρ. To determine themathematical form ofH(ρ) under conditions
of volatility i.e., variability proportional to a signal, we must first model the variability
of ρ, most simply taken as

dρt = g(t, ρt )dt + bρtdWt (32)

Here, dWt is white noise and—counterintuitively—the function g(t, ρ) will fall
out of the calculation on the assumption of certain regularities.

H(ρt , t) is the minimum needed incoming rate of control information under the
data rate theorem. Expand H in ρ using the Ito chain rule (Protter 1990):

dHt = [∂H/∂t + g(ρt , t)∂H/∂ρ + 1

2
b2ρ2

t ∂
2H/∂ρ2]dt

+[bρt∂H/∂ρ]dWt (33)

It is now possible to define a Legendre transform, L , of the rate H, by convention
having the form

L = −H + ρ∂H/∂ρ (34)

H is an information index, a free energy measure in the sense of Feynman (2000),
so that L is a classic entropy measure.

We make an approximation, replacing dX with 
X and applying Eq. (33), so that


L =
(

−∂H/∂t − 1

2
b2ρ2∂2H/∂ρ2

)

t (35)

According to the classical Black–Scholes model (Black and Scholes 1973), the
terms in g and dWt ‘cancel out,’ and white noise has been subsumed into the Ito
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correction factor, a regularity assumption making this an exactly solvable but highly
approximate model.

The conventional Black–Scholes calculation takes 
L/
T ∝ L . At nonequilib-
rium steady state, by some contrast, we can assume 
L/
t = ∂H/∂t = 0, giving

− 1

2
b2ρ2∂2H/∂ρ2 = 0 (36)

so that
H = κ1ρ + κ2 (37)

The κi will be nonnegative constants.

6.3 Estimating the Quadratic Variation from Data

So-called white noise has quadratic variation ∝ t . The ‘colored’ noise relation can
be estimated from the observed periodogram using the methods of Dzhaparidze and
Spreij (1994).

For a stochastic process Xt and a finite stopping time T and each real number λ,
the periodogram of X evaluated at T is defined as

IT (X; λ) ≡ |
∫ T

0
exp[iλt]dXt |2 (38)

Take ε as a real random variable that has a density ω symmetric around zero and
consider, for any positive real number L , the quantity

Eε[IT (X; Lε)] =
∫ +∞

−∞
IT (X; Ls)ω(s)ds (39)

Dzhaparidze and Spreij (1994) show that, for L → ∞,

Eε[IT (X; Lε)] → [XT , XT ] (40)

Thus, the quadratic variation can be statistically estimated from observational time
series data, as is routinely done in financial engineering, from which, in fact, this
analysis is taken.
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