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Abstract The advances in genetics and biochemistry that have taken place over the
last 10years led to significant advances in experimental and clinical immunology.
In turn, this has led to the development of new mathematical models to investigate
qualitatively and quantitatively various open questions in immunology. In this study
we present a review of some research areas in mathematical immunology that evolved
over the last 10years. To this end,we take a step-by-step approach in discussing a range
of models derived to study the dynamics of both the innate and immune responses
at the molecular, cellular and tissue scales. To emphasise the use of mathematics
in modelling in this area, we also review some of the mathematical tools used to
investigate these models. Finally, we discuss some future trends in both experimental
immunology and mathematical immunology for the upcoming years.
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1 Introduction

The immune system is subdivided into two main subsystems, the innate system and
the adaptive system, which are connected via the action of various cells (e.g., den-
dritic cells), cytokines, antibodies, etc.; see Fig. 1. These two subsystems generally
cooperate to ensure the protection of the host (Meraviglia et al. 2011). The innate
immune system focuses on the physical and chemical barriers formed of cells and
molecules that recognise foreign pathogens. The adaptive immune system focuses on
the lymphocytes’ action to clear these pathogens. The innate immune dendritic cells
(DCs), which connect the two immune subsystems, recognise pathogen molecules via
invariant cell-surface receptors and then display their antigens on their surface to be
recognised by the T cells of the adaptive immune response (Murphy 2012). In addition
to the DCs, the two subsystems can be also connected via the action of a particular type
of T cell, called the γ δ T cells, which are considered both a component of adaptive
immunity (since they develop memory) and of innate immunity (since some of their
alternative T cell receptors may be used as pattern recognition receptors) (Meraviglia
et al. 2011). We remark here that the notion of immune memory has been associated
for a long time with only the adaptive immune response (as mediated by the lympho-
cytes). However, very recent experimental results have shown also the existence of a
type of innate immune memory associated with macrophages (Yoshida et al. 2015) or
with NK cells (Borghesi and Milcarek 2007). Another distinction between the innate
and adaptive immunity is related to specificity: the innate immune response is con-
sidered to be non-specific (relying on a large family of pattern recognition receptors),
while the adaptive immune response is considered to be very specific (relying on clon-
ally distributed receptors for antigens, which allow cells to distinguish between, and
respond to, a large variety of antigens). Finally, both the innate and adaptive immunity
include humoral components (e.g., antibodies, complement proteins and antimicrobial
peptides) and cell-mediated components (that involve the activation of phagocytes and
the release of various cytokines); see Fig. 1.

Many of the complex interactions between the innate and adaptive immune sys-
tems and the pathogens that trigger the immune responses (interactionswhich occur via
complex networks of cytokines and chemokines) have started to be revealed in the last
10–15years, especially because of the advances in genetics, high-throughput meth-
ods, biochemistry and bioinformatics. A 2011 review in Nature Reviews Immunology
(Medzhitov et al. 2011) highlighted some of the fundamental advances in immunology
since 2001: e.g., improved understanding of Toll-like receptor signalling, improved
understanding of immune regulation by regulatory T cells, improved understanding
of myeloid-derived suppressor cells. In particular, one of the most cited immunology
papers over the last 10 years is a review of monocyte and macrophages heterogeneity
by Gordon and Taylor (2005). Other significant advances made in the last 10 years
were in the areas of cancer immunology and immunotherapy (Chen andMellman2013;
Kalos and June 2013), inflammation (Kim and Luster 2015), autoimmunity (Farh et al.
2014), infection (Rouse and Sehrawat 2010; Romani 2011), and metabolism (Mathis
and Shoelson 2011; Finlay and Cantrell 2011).

These recent advances in immunologyhave led to the development of a large number
of mathematical models designed to address some of the open questions unravelled by
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Fig. 1 Brief description of various components of the innate and adaptive immune responses. Both the
innate and adaptive immunity include humoral aspects (e.g., antibodies) and cell-mediated aspects (e.g.,
cytokines)

these advances. Particular interest was given to mathematical models for the activation
of T cells, models for the molecular pathways involved in the activation, migration
and death of various immune cells (e.g., T cells, B cells, neutrophils), models for
cancer–immune interactions, as well as models for the immune response against vari-
ous infectious diseases such as HIV, malaria, tuberculosis, etc. Over the last 10 years,
some of these mathematical models have been summarised and reviewed in various
contexts: choosing the correct mathematical models for describing an immune process
(Andrew et al. 2007), reviewing models for T cell receptor signalling (Coombs et al.
2011), models for various intracellular signalling networks (Janes and Lauffenburger
2013; Cheong et al. 2008; Kholodenko 2006), the evolution of mathematical models
for immunology (Louzoun 2007), non-spatial models of cancer–immune interactions
(Eftimie et al. 2010a), agent-based models of host–pathogen interactions (Bauer et al.
2009), multiscale models in immunology (Kirschner et al. 2007; Germain et al. 2011;
Cappuccio et al. 2015; Belfiore et al. 2014). This large number of reviews of vari-
ous types of mathematical models, published in both immunology and mathematical
journals, is a testimony of the great interest and fast advances in this research field.

In this study, we aim to give a review of mathematical immunology over the past
10 years (i.e., since 2006). To this end, we will cover the breadth of progress rather
than any particular research area in great detail. Nevertheless, given the spread of this
field, we will only offer a brief description of some of the mathematical models. To
ensure minimal overlap with previous reviews published since 2006, we will focus on
the most recent models, the techniques developed to investigate these models, and the
potential impact of the mathematical results to designing new experimental studies.
Since a brief PubMed search showed that a relatively equal number of papers have
been published in the last 10 years on either innate or adaptive immune cells (see
Fig. 2a), we decided to include in our review mathematical models for both innate
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Fig. 2 a Pie-chart description of the number of papers published on PubMed between 2006 and 2016,
which focus on different types of cells belonging to the innate and adaptive immunity. b Number of papers
published between 2006 and 2016 on PubMed, which deal with various aspects of the immune response:
from cancer immunology, to viral and bacterial immunology, immune pathways, etc. The data used to create
these figures were obtained from the PubMed database, using the words that appear on the figures labels as
the search words. For the red bars (grey on black/white prints) shown in b, we also added “mathematical
model” to the search words. Note that the mostly experimental studies described by the black bars and
the theoretical/mathematical studies described by the red bars follow similar patterns: a larger number of
studies on inflammation and on virus and bacterial immunology, and a much lower number of studies on T
cell and B cells receptors, or on single cell transcription (Color figure online)

and adaptive immune responses. In addition, since the immunological research over
the past decade covered a variety of immune responses associated with basic immune
activation (via T cell and B cell receptors), viral and bacterial infections, immune
response to cancers, inflammation, autoimmunity, etc. (see Fig. 2b; and our previous
discussion on recent advances in immunology), we will review mathematical and
computational models that were derived to address questions regarding these various
immuneaspects.Moreover,wewill discuss future trends inmathematical immunology,
as well as emphasise areas where mathematical immunology methods may be applied
beyond their original context.

Role of mathematical models in immunology There are many viewpoints in regard to
the purpose of developing mathematical models to describe immunological phenom-
ena: from explaining existing observations and generating new hypotheses that can be
tested empirically (Ankomah and Levin 2014), to understanding which assumptions
in the model are useful and generate outcomes consistent with data [and thus help dis-
criminate between different immune hypotheses (Antia et al. 2005) to uncover basic
mechanisms driving some phenomenon (Shou et al. 2015)], organising data resulting
from experiments (Shou et al. 2015), offering a selection criteria for ideas that could be
tested experimentally in vivo or in vitro (thus reducing the cost and the time associated
with performing large numbers of experiments) (Seiden and Celada 1992), evaluat-
ing the feasibility of an intuitive argument (Shou et al. 2015), or making theoretical
contributions to the knowledge related to immunological systems [by demonstrating
the possibility of some outcomes as a results of specific interactions in a particular
type of environment, and by suggesting further theoretical problems (Caswell 1988)].
Caswell (1988) distinguished two general purposes for mathematical models: to offer
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some general theoretical understanding for a theoretical problem (and this understand-
ing does not need to depend onmodel validation), and to help make predictions (which
depends on model validation).

Model validation Throughout this review,wheneverwe refer to “model validation”we
actuallymean [as discussed inOreskes et al. (1994)] thatmodels are partially confirmed
by showing agreement between observation and prediction [complete confirmation of
biological models being impossible (Oreskes et al. 1994)].

As stated in Rykiel (1996), the belief that complete model validation is impossible
is based on the idea that model falsification should be critical for science. However,
Karl Popper’s falsifiability criterion (Popper 1965) (i.e., a theory is scientific only
if it makes predictions that can be falsified), which has been already challenged by
other philosophers and scientists (Thagard 1988;Mentis 1988;Rykiel 1996), cannot be
easily applied to the subtleties of modelling biological phenomena, where many unob-
servable quantities (e.g., interaction rates) cannot be easily quantified, thus leading to
models that cannot be rejected directly (Rykiel 1996) (at least not with our current
knowledge). Moreover, as emphasised by Caswell (1988), experimentalists recognise
that no experiment represents the last word on the subject, and that an experiment
can be usually understood in the context of other experiments that manipulate differ-
ent factors (and thus might contradict the original empirical experiments), making it
difficult to validate mathematical and computational models in immunology.

Parameter estimation In mathematical and computational immunology, many
researchers use parameters published in the literature to justify the results of their
simulations (both parameters measured experimentally, and parameters taken from
other published mathematical and computational models). However, this represents
a major issue, since very few laboratories measure and estimate kinetic parameters;
see, for example, the studies in Boer and Perelson (2013), Gadhamsetty et al. (2015),
and their discussion on the difficulty of interpreting kinetic data. Moreover, even in
this case, the parameters are estimated for specific experimental systems/models and
might differ from study to study (depending on the estimation method used, and on
the characteristics of the experimental model, e.g., the inbreed strain of the laboratory
mouse used in experiments, or the cell line used in experiments) (Boer and Perelson
2013; Laydon et al. 2015). The only rigorous approach (very expensive and time con-
suming), which could lead to results that could have predictive power, is to estimate in
a laboratory all parameters required by a mathematical/computational model (describ-
ing a specific system). For simplicity, throughout the next four sections, whenever we
refer to models for which parameters were obtained from the literature (in contrast to
parameters calculated experimentally) we actually mean that those parameters were
not estimated in a rigorous manner and thus they might not depict accurately the kinet-
ics of the system. The studies where kinetic parameters were measured in a laboratory
will be emphasised separately throughout this review [see, for example, Sect. 5, where
we discuss the computational and theoretical approaches in Zheng et al. (2008) and
Henrickson et al. (2008)].
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Fig. 3 (Colour figure online) Caricature description of examples of immune processes atmolecular, cellular
and tissue levels. A different classification of multiscale immune processes focuses on the spatial ranges at
which these processes take place: microscale, mesoscale andmacroscale. Note the overlap between cellular-
and tissue-level processes with the mesoscale spatial level. This is the result of migration of cells between
different tissues (e.g., from the lymphoid tissue where cells get activated to the peripheral tissue where
pathogens reside). Immunological processes also vary across temporal scales: from nanoseconds (for some
molecular processes) to days and even years (for some cellular and tissue-level processes)

Multiscale aspects of mathematical models in immunology To capture the complex
multiscale dynamics of the immune responses, the review will cover both innate and
adaptive immunity across the molecular/genetic scale, cellular scale, and tissue/organ
scale (see also Fig. 3). We emphasise that in addition to these spatial scales, immuno-
logical processes also span a range of temporal scales: from nanoseconds for peptide
binding, to seconds/minutes for the production and degradation of cytokines involved
in immune cells communication, and to days and months for the proliferation and
death of some long-lived immune cells (e.g., memory T cells). However, throughout
this study we will neglect the temporal scale (since many of the mathematical models
neglect it), and we will focus mainly on the spatial scale. At each of the spatial scales,
we will review some mathematical models derived to address some of the questions
that have dominated the immune research over the past 10 years. For example, at the
molecular scale, the past years have seen the immunology research being focused on:
(i) understanding the mechanisms for Tcell receptor binding to peptide major his-
tocompatibility complex (MHC) molecules and B cell receptor binding to antigens,
and (ii) understanding the different signalling pathways involved in the activation
and functionality of immune cells. This translated into a wide range of mathemat-
ical models that have been developed to investigate these aspects in the context of
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adaptive immune cells [both (i) and (ii)] and innate immune cells [mainly (ii)]. At
the cellular scale, the mathematical models followed the advances in the immunology
research of diseases (both viral and bacterial), autoimmunity and cancer. The review
will summarise models that investigate (i) only the role of innate immune cells, (ii)
only the role of adaptive immune cells, and (iii) models that combine both innate and
adaptive immunity. At the tissue scale, the few mathematical models for the immune
response focused mainly on the immunological aspects of wound healing and scaring,
as well as on the immune cells distribution inside solid tumours or granuloma. Finally,
we discuss multiscale models, which investigate immune processes that take place
across various spatial scales. The variety of mathematical models derived to capture
all these different immunological processes is depicted in Fig. 4 (with the models
briefly described and compared in “Appendix 1”). For completeness and accessibility,
we also added a glossary of mathematical terms in “Appendix 2”.
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Fig. 4 (Colour figure online) Schematic description of various types of mathematical models derived to
investigate immune dynamics (see also “Appendix 1”). In many cases, these types of models are combined;
for example CA models can be coupled with PDE models (which are discretised), PDE models can be
coupled with ODE models, CA models can be combined with AB models, etc. There are also many other
types of models not depicted here; e.g., probability models (e.g., quantifying the probability of encounters
betweenTcells anddendritic cells (Celli et al. 2012)), algebraicmodels describing the binding andunbinding
ofB cell receptors (Fellizi andComoglio 2015). All thesemodels are usually coupledwithODEs, to describe
multiscale immunological phenomena. For a review of various modelling frameworks in immunology see
Kim et al. (2009)
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We start each subsection by presenting a list of references emphasising the variety
of studies published after 2006 on that particular topic. Then, we discuss in more
detail two arbitrarily chosen studies: one study which emphasises the power or lim-
itations of experimentally validated models and one study which offers a theoretical
understanding of a model derived to simulate immunological phenomena.

Note that while we review only research published after 2006, wewill also refer to a
few types of general papers published before 2006: (i) older papers that put forward or
emphasised general ideas regarding the importance andmultiple roles ofmathematical
models in biology; (ii) older papers on the philosophy of science, which we refer to
when discussing our take on model validation; (iii) older experimental papers that
put forward an important immune concept that we need to refer to (especially in the
context of evolution of experimental research).

The article is structured as follows. In Sect. 2 we review mathematical models
that address questions regarding the molecular-level immune interactions. In Sect. 3
we review mathematical models for cellular-level immune interactions. In Sect. 4 we
review mathematical models for tissue-level immune interactions. In Sect. 5 we give
an overview of some of the models derived to investigate immunological phenomena
that takes place between different scales. We conclude with Sect. 6, where we discuss
the applicability of these models to a broader immunological context, and possible
future trends.

2 Models for the Molecular-Level Immune Dynamics

Two areas in molecular immunology where progress has been made in the past 10
years (see also Fig. 2b), andwhich generated the development of variousmathematical
models, are: (i) the mechanisms for T cell receptor (TCR) binding to peptide MHC
molecules and B cell receptor (BCR) binding to antigens; (ii) the different signalling
pathways involved in cell functionality. Note that while models (i) are developed in the
context of adaptive immunity, models (ii) are developed mainly for innate immunity.
In the following, we will briefly review the types of mathematical models derived to
address these immune aspects.

(i) Models for TCR and BCR binding and diversity The central aspect in the gener-
ation of an adaptive immune response is the binding of TCRs to peptide major
histocompatibility complex (pMHC) molecules (Coombs et al. 2011) and the
binding of BCRs to antigens, which leads to the activation of T cells and B cells.
Aberrant regulation of T cell and B cell activation not only impacts the fight
against infections, but it can also lead to autoimmunity (Chakraborty and Das
2010). One class of models derived to describe the biochemical signalling that
follows the TCR/pMHC binding are the kinetic proofreadingmodels, which were
introduced to explain how T cells can discriminate between ligands based on the
dissociation time of ligand–receptor interactions and were recently reviewed in
detail by Coombs et al. (2011). Over last 10 years, these models have been used,
for example, to calculate rigorously parameter values from experimental 2D and
3D data (Qi et al. 2006), to investigate the sensitivity of TCR to self and agonist
ligands (by combining the concepts of kinetic proofreading, cooperative inter-
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actions between self and agonist ligands that amplify signalling, and feedback
regulation of Lck kinase) (Wylie et al. 2007), to investigate the role of CD4 and
CD8 co-receptor molecules on TCR signalling (Artyomov et al. 2010), to inves-
tigate the timescale associated with T cell responses based on stochastic versus
deterministic (i.e., equilibrium) assumptions (Currie et al. 2012), to investigate the
bistability dynamics caused by positive and negative feedbacks in TCR signalling
(Lipniacki et al. 2008), or have been generalised to incorporate spatial movement
of TCR and pHMC particles along the cell membrane (Burroughs et al. 2006),
or to investigate the spatial segregation at the immune synapses of small proteins
(e.g., TCR/pMHC) and large proteins (e.g., CD45) on the surface of T cells and
NK cells (Burroughs et al. 2011). In fact, all these mathematical and computa-
tional models and many more other models not mentioned here focus in some
way or another on quantifying the TCR:pHMC dissociation rates for different
antigens, or the maximal T cell response obtained at saturating pMHC concentra-
tions, with the goal of understanding and predicting T cell and B cell activation
during infection or cancer immune therapies (Gannon et al. 2015; Dushek et al.
2014; Nag et al. 2010; Lever et al. 2014).
Another aspect investigated recently with the help of mathematical models is the
estimation of the size and diversity of T cell receptors (TCRs) and B cell receptors
(BCRs) (Stirk et al. 2008; Johnson et al. 2012; Baltcheva et al. 2012; Lythe et al.
2016), or the use of T cell receptor excision circles (TREC) to quantify thymic
output (Dool and Boer 2006).
Next, we will discuss in more detail two models: one which emphasises the
importance ofmodelling to discriminate between different assumptions following
comparison with experimental data and one theoretical model which investigates
the role of stochastic fluctuations in TCR signalling.
– Baltcheva et al. (2012) developed two non-spatial mathematical models (of
ODE type) and used them to understand the kinetics of the concentration of
DNA molecules obtained via the AmpliCot technique, which measures the
diversity of DNA samples through quantification of rehybridisation speed of
polymerase chain reaction (PCR) products. The two models in Baltcheva et al.
(2012) (a simple second-order kinetics for the formation of homoduplexes of
complementary strands of DNA, and a more complex heteroduplex model for
these DNA strands) were then used to fit the variable for the proportion of
fluorescent material in the sample to available experimental data. Confidence
intervals for the parameter values were also computed, using bootstrap repli-
cates of the data. The results showed a better fit for the heteroduplex model,
which can capture the nonlinearity in the data. It should be noted here that the
simple second-order kinetics model had only one parameter, while the more
complex heteroduplex model had 5 parameters. However, the authors used
the likelihood ratio test for nested models to show that the improved data fit
observedwith theheteroduplexmodelwas significant for all three data sets used
in model validation (Baltcheva et al. 2012). These types of results emphasise
the usefulness of mathematical models on allowing us to discriminate between
models/assumptions capable to fit or not the data [aspect considered important
by Oreskes et al. (1994)].
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– Lipniacki et al. (2008) derived a stochastic kinetic proofreading model that
includes competition between positive and negative feedbacks for T cell recep-
tors (on a single cell). To investigate the possibility of bistable behaviour, the
authors also derived a deterministic limit of this stochastic model. The deter-
ministic model does exhibit bistable behaviour as the number of activating
peptides is varied, which is the result of negative and positive feedbacks.More-
over, computational results showed that in the bistable case the deterministic
model cannot approximate adequately the averaged stochastic trajectories. On
the other hand, in the monostable case, the deterministic trajectories approx-
imate the stochastic averaged trajectories. Overall, these theoretical results
emphasise the qualitatively different dynamics exhibited by similar determin-
istic and stochastic models.

The majority of mathematical models for T cell and B cell activation are either
described by deterministic ODEs or are stochastic computation models (e.g.,
Monte–Carlo simulations, where reaction probabilities approximate the kinet-
ics of network components). Overall, pairing mathematical and computational
modelling with experimental results has ensured a better understanding of T cell
signalling (Chakraborty andDas 2010). Nevertheless, not all results of thesemod-
els were consistent with published data (see the discussion in Lever et al. (2014)
in regard to models for TCR-MHC binding). One possible reason for this incon-
sistency between analytical and experimental results is incomplete available data
(Lever et al. 2014). The spatial aspects of the local cell membrane environment,
which seem to play an important role in TCR function (Burroughs and Merwe
2007), make it even more difficult to obtain adequate data. Moreover, the models
that seem to explain the data are the phenotypicmodels that incorporate aminimal
set of assumptions, and not the mechanistic models based on a large number of
assumptions (Lever et al. 2014; Francois et al. 2013).

(ii) Models for cell signalling pathways The response of cells to external signals is
encoded by the spatial and temporal dynamics of the signalling pathways activated
by membrane receptors (Kholodenko 2006). Dysregulation of these pathways
leads to diseases that range from developmental diseases, to cancer, diabetes, etc.
(Kholodenko 2006). Over the last 10 years various mathematical models have
been developed to investigate some of these pathways in the context of the innate
immune responses (Cheong et al. 2008; Vodovotz et al. 2008), or in the context
of the adaptive immune responses (Perley et al. 2014). Since most of the B cell
and T cell receptors discussed previously can initiate intracellular signalling by
the activation of protein tyrosine kinases (Murphy 2012), some of these models
also investigate signalling through T cell receptors (Perley et al. 2014).
In regard to innate immunity, one of themost investigated signalling pathway is the
NF-κB,which controls the regulation of genes involved in immune and inflamma-
tory responses (Bonizzi and Karin 2004). There are actually two such pathways:
a classical activated pathway mostly involved in innate immunity and an alterna-
tive activated pathway involved in adaptive immunity (Bonizzi and Karin 2004).
The classical pathway (which is activated in monocytes, macrophages and other
innate cells by specific pathogen-associated molecular patterns) is triggered by
ligand binding to tumour necrosis factor type 1/2 receptors (TNFR1/2), T cell
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receptors, B cell receptors or the Toll-like receptors and leads to a persistence
of inflammatory responses and promotion of cell survival (Nishikori 2005). The
alternative pathway is activated by B cell activating factor belonging to the TNF
family, Toll-like receptors or CD40 ligand and seems to be important in develop-
ment and maintenance of secondary lymphoid organs (Bonizzi and Karin 2004).
The majority of mathematical models developed to investigate the NF-κB path-
way focused only on the classical pathway (Cheong et al. 2008; Basak et al.
2012; Williams et al. 2014; Yilmaz et al. 2014; Tay et al. 2010). These models
studied different aspects of the pathway: from a minimal model of 3 coupled
ODEs derived to understand oscillations in the nuclear-cytoplasmic translocation
of the NF-κB transcription factor (Krishna et al. 2006), to more complex models
derived to understand the feedback between components of the pathways such as
IκBα, IκBβ and IκBε with the help of 24 ODEs describing the time evolution
of molecular species of this pathway and one PDE for the diffusion of TNF-α
molecules (Cheong et al. 2006). This later study showed that NF-κB is sensitive
to a wide range of TNF-α concentrations. The model in Cheong et al. (2006) was
later generalised in Tay et al. (2010) to include stochastic effects, and compari-
son with high throughput quantitative data revealed that not all cells responded
to TNF-α. Other ODE models have been derived to exemplify parameter fitting
methods and sensitivity analysis for parameters describing the rates cell signalling
pathways (Fujarewicz et al. 2007), or to exemplify the use of bifurcation theory
to obtain a better understanding of the system’s response to TNF-α (Wang et al.
2012). In addition to these ODE models, there are other models that investigate
the dynamics of the molecules, receptors and genes in the NF-κB pathway using
an agent-based approach (Pogson et al. 2006). For a recent review of these NF-κB
models, see Williams et al. (2014).
It should be mentioned that there are many more mathematical models that
focus on other signalling pathways. For example, a few models were derived
to help understanding lipopolysaccharide (LPS) signalling via Toll-like receptor
4 (TLR4) in macrophages during inflammation and sepsis (Rivière et al. 2009;
An 2008). Some of these models were described by ODEs (Rivière et al. 2009),
while other models considered an agent-based approach (An 2008). For a more
detailed review of models for signalling pathways activated during inflammation,
see Vodovotz et al. (2008). Also in the context of innate immunity wemention the
existence of models for signalling pathways activated following infections with
different pathogens [e.g.,Francisella tularensis (Leander et al. 2012)], models for
signalling pathways (e.g., PI3K) that control migration and polarisation of neu-
trophils (OnsumandRao2007),models that try to elucidate the pathways involved
in the crosstalk betweenvarious cytokines that regulate immune responses, such as
IFN-γ and IL-6 (Qi et al. 2013), models for gene regulatory networks that control
genetic switching between cell fates, such as the GATA genes in hematopoietic
stem cells (Tian and Smith-Miles 2014), or models for the regulation of signalling
pathways in innate immune cells following viral infections (Tan et al. 2012) and
the optimal control of the innate response (Tan and Zou 2015).
However, not allmodels in the literature focus on intracellular signalling pathways
in the context of healthy immune cells. For example, there are a range of ODE
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models that investigate various pathways involved in metabolism and disease:
from glutathione metabolism (Reed et al. 2008), to folate-mediated one-carbon
metabolism (Reed et al. 2006), arsenic metabolism (Lawley et al. 2014), or glu-
cose metabolism (Chew et al. 2009). For a review of these metabolic models see
(Nijhout et al. 2015).We emphasise that the recent focus of experimental research
on themetabolic regulation of the immune response (Ganeshan andChawla 2014)
will see the adaptation of these mathematical models to the reality of metabolic
pathways inside immune cells.

The majority of models discussed in the previous paragraphs are described by
relatively low numbers of equations. However, there are models that try to incorporate
all components of the signalling networks, thus being described by hundreds and even
thousands of equations (Danos et al. 2007). These complex models are investigated
numericallywith the help of software such asBioNetGen,COPASI,KappaorNFsim—
the last one generalising an agent-based kinetic Monte–Carlo method (Faeder et al.
2009; Sekar and Faeder 2012; Danos et al. 2007; Sneddon et al. 2011; Tóth et al. 2015;
Hoops et al. 2006).

Next, we will discuss in more detail one such complex model, which can offer
mainly a theoretical understandingof the system. In addition,we also present a (slightly
simpler) model which was validated against some experimental data and further used
to make predictions (in the absence of experimental understanding) regarding the
synergy between the two components of a signalling pathway and its effect on immune
response to infection.

– An example of a complex ODE model investigated with the help of BioNetGen
was introduced in Barua et al. (2012) to describe the signalling pathways activated
by the binding of BRC to antigens. The rule-based model, which incorporated
six signalling proteins (BCR, Lyn, Fyn, Csk, PAG1 and Syk) and was described
by 1122 equations, was investigated using bifurcation analysis to show bistability
dynamics of the Lyn tyrosine kinase involved in early BCR signalling events.
The bifurcation parameter was the strength of antigen signal. To ensure that the
bifurcation persists when varying the 25 parameters considered essential for model
dynamics, the authors also performed a sensitivity analysis. The results of the
model seemed consistent with known effects of Lyn and Fyn deletion on BCR
signalling: Lyn deletion caused a delayed and enhanced activation of Syk, while
Fyn deletion caused impaired Syk activation (Barua et al. 2012). It should be noted
that, in general, very largemodels are not easily investigated in terms of bifurcation
analysis. Moreover, we emphasise that despite that it has become easier to model
very large signal transduction networks, we are still not close to a mechanistic
understanding of the effects of various components of the networks on the final
outcome. To this end, it is necessary to look for reduced models within the larger
network (e.g., network motifs) and to try to understand these reduced models
first (Prasad 2012).

– Despite evidence (provided by various experimental data on the CR3/TLR2
crosstalk during F. tularensis infection) confirming that Lyn kinase and PI3K are
essential components of the CR3 pathway that influence TLR2, detailed infor-
mation about the components responsible for upstream signalling is not available
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experimentally. To test some hypotheses regarding the components of the CR3
pathway responsible for the inhibition of ERK activity, Leander et al. (2012)
developed a mathematical model of Complement Receptor 3 (CR3) and Toll-like
Receptor 2 (TLR2) signalling in response to the intracellular pathogen F. tularen-
sis. The authors first showed that the mathematical model (described by ODEs)
was consistent with experimental results in Dai et al. (2011) for the concentra-
tions of various signalling molecules. With the help of numerical simulations, the
authors predicted that the Akt and Ras-GAP components of the pathway played an
important role in ERK inhibition. Uncertainty and sensitivity analysis (via Latin
hypercube sampling)wasperformed to assess howuncertainty inmodel parameters
(the majority of which being taken from the published literature) affected model
consistency with experimental data. The authors concluded that the model was
consistent with experimental data over a wide range of parameter values (Lean-
der et al. 2012). This analysis also allowed the authors to identify those molecules
(incorporated into themodel equations)which seemed to be important for theCR3-
mediated inhibition of the ERK component of the pathway: the over-expression
of TLR2 or Ras, or reduced expression of Ras-GAP.

Finally, we remark that the majority of mathematical models studying molecular-
level processes are described by non-spatial ODEs. While the use of these equations
renders the investigated problem more tractable and the model more easy to inves-
tigate, it may not capture all biological phenomena. For example, Chaplain et al.
(2015) showed that, while a 2-equation ODE model of the Hes1 transcription factor
cannot exhibit the experimentally observed oscillations in both mRNA and protein
concentration levels, a spatially-explicit PDE version of the model can account for
these oscillations (via the Hopf bifurcation it exhibits). Therefore, more research is
necessary to discern between the types of mathematical models that can be applied to
model specific biological phenomena.

3 Models for Cellular-Scale Immune Dynamics

To overview the mathematical models derived to describe cell-level immune dynam-
ics, we will present separately some models that investigate (i′) only innate immune
responses, (ii′) only adaptive immune responses, and (iii′) immune responses involv-
ing Dendritic Cells (DCs), which act as a bridge between the innate and adaptive
immunity. We will also briefly summarise some models that investigate the interplay
between innate and adaptive immune responses (without the explicit incorporation of
antigen-presenting cells). For this cellular-scale dynamics, in addition to the models
describing direct cell–cell interactions, we will also focus on models describing the
interactions between cells and cytokines, antigens and viruses (since, despite themole-
cular action of antigens/cytokines/viruses, the majority of mathematical models treat
them as object similar to cells, where the interactions are averaged). We emphasise
here that in contrast to the models discussed in Sect. 2, the models for cellular-scale
dynamics are described by fewer equations. This allows for a more detailed mathe-
matical investigation of the models, as will be discussed at the end of this section.

123



2104 R. Eftimie et al.

(i′) Models for cell-level dynamics during innate response The dynamics of the
innate immune response has been investigated with the help of mathematical
models, for example, in the context of bacterial infections alone (Malka et al.
2010; Smith et al. 2011; Mochan et al. 2014; Zaitseva et al. 2014; Gillard et al.
2014; Day et al. 2011), viral infections alone (Saenz et al. 2010; Canini and
Carrat 2011), viral and bacterial infections (Smith et al. 2013), chronic wound
inflammation (Nagaraja et al. 2014) or more general inflammation (Dunster
et al. 2014), and immune responses to cancer (Webb et al. 2007; Knútsdóttir
et al. 2014). These mathematical models range from simple deterministic ODEs
(Day et al. 2011; Canini and Carrat 2011) and PDEs (Knútsdóttir et al. 2014;
Webb et al. 2007), to stochastic models (Gillard et al. 2014).
Some of thesemathematical models have been validated quantitatively and qual-
itatively against available data and then investigated numerically. Other studies
on the innate immune response combined numerical and analytical tools to obtain
a deeper understanding of the nonlinear dynamics of the models. Next, we will
discuss in more detail two such complementary approaches to model and inves-
tigate innate immune responses.
– Mochan et al. (2014) introduced an ODE model that described the interplay
between the populations of S. pneumoniae in the lungs and blood, the concen-
tration of phagocytes (neutrophils) and a variable that described the damage
to the epithelium, with the purpose of providing some insight into why dif-
ferent murine strains elicit different immune responses when challenged with
the same bacterial load. The authors designated four model parameters to be
“strain-dependent” (i.e., varied between mouse strains), and fitted their model
to literature-available experimental data corresponding to 4 different mouse
strains (CBA/Ca, MF1, BALB/c and C57BL/6) infected with the pneumo-
coccal bacteria. It should be stressed that the four experimental studies used
to estimate the parameters of this model, all had different setups and differ-
ent levels of bacterial load (thus different data available for comparison: all
4 experimental studies had data on lung pathogen levels, while 3 experimen-
tal studies had also data on blood pathogen levels and activated phagocytes).
Moreover, the authors used some data sets (with lower bacterial load) to obtain
a set of parameter values and then validated the models against secondary
data sets (with higher bacterial load). Uncertainty analysis was used to show
the distribution of both strain-independent and strain-dependent parameters
(within defined parameter ranges estimated from the literature), and the prin-
cipal component analysis was used to identify the most sensitive directions in
the parameter space. The principal component analysis results showed that the
CBA/Ca mice were most sensitive to the activation rate of neutrophils and to
the non-specific clearance rate, the MF1 mice were most sensitive to the non-
specific immunity and to the activation rate of neutrophils, BALB/c mice were
most sensitive to the blood pathogen phagocytosis rate and to the non-specific
immunity, and the C57BL/6 mice were most sensitive to the lung pathogen
phagocytosis and the neutrophils activation rate. The numerical simulations
also showed higher influx rates of neutrophils for the C57BL/6 andMF1 mice,
and lower influx rates for CBA/Ca mice. Since experimental studies suggested
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that infection resistant mice (BALB/c and C57B/6) have a higher influx of
neutrophils compared to mice that do not survive the infection (CBA/Ca and
MF1), this results raises a few questions regarding the activation status of the
phagocytes, or the potential role of other immune cells (e.g., macrophages) on
the outcome of the infection and the survival of mice.

– Malka et al. (2010) derived a 1-equationmodel for the time-changes in the con-
centration of some generic bacteria, with nonlinear terms describing growth
towards a maximum capacity and death in the presence of neutrophils. The
authors created bifurcation diagrams to show that for particular parameter val-
ues, the model exhibited either (i) one equilibrium point for the concentration
of bacteria (which was inversely proportional to the neutrophil concentration);
or (ii) bistability between 2 different levels of bacterial concentration (and for
relatively large values of neutrophils). The authors discussed their results in the
context of experimental support for bistability phenomena, and in the context
of some contradictory results in clinical studies (which might be explained
by the existence of this bistability phenomenon). Since the conclusions of
the model depended on four assumptions incorporated into the equation for
bacterial dynamics (assumptions which might be difficult to test in vivo), the
authors also discussed in detail the limitations of their model. The study con-
cluded with the authors emphasising that this simple model, which exhibits
bistability behaviour, can be used as a building block in the derivation of other
phenomenological, more complex models.

(ii′) Models for cell-level dynamics during adaptive response A large variety of
mathematical studies focused on addressing basic questions about T lympho-
cyte dynamics: from quantifying T cells turnover (Bains et al. 2009; Boer and
Perelson 2013) and T cell movement (Beauchemin et al. 2007; Beltman et al.
2009), to quantifying B cell turnover (Hawkins et al. 2007; Callard and Hodgkin
2007), quantifying differentiation patterns of T cells (Gerlach et al. 2013), quan-
tifying asymmetric lineage development in the CD4/CD8 T cell ratio (Sinclair
et al. 2013), quantifying cell killing by cytotoxic T lymphocytes (Ganusov and
Boer 2008; Gadhamsetty et al. 2015), or maintenance of naive T cell popula-
tion (Braber et al. 2012; Hapuarachchi et al. 2013). Other mathematical studies
investigated analytically and/or numerically the immune response (i.e., T cells
and/or B cells) to different bacterial (Ankomah and Levin 2014; Reynolds et al.
2013) and viral infections (Lee et al. 2009; Miao et al. 2010; Huynh and Adler
2012; Luo et al. 2012;Macnamara and Eftimie 2015; Crauste et al. 2015) includ-
ing autoimmune responses (Blyuss and Nicholson 2012) and immunodeficient
responses (Figge 2009), the dynamics between different types of CD4+ T cells
during allergy (Gross et al. 2011) or during the immune response to cancer
(Eftimie et al. 2010b, a; Kronik et al. 2008), or investigate the generation of
memory cells and the passive attrition phenomenon (Davis and Adler 2013).
Moreover, recent mathematical models have started investigating the differenti-
ation of memory and effector T cells following antigen stimulation (Macnamara
and Eftimie 2015; Crauste et al. 2015; Gong et al. 2014). Other models focus
on investigating the regulation of the T cell responses (Kim et al. 2007, 2009;
Saeki and Iwasa 2010; García-Martínez and León 2010). The majority of these
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models consider explicit dynamics of the immune response. However, there are
also a fewmodels that describe the evolution of different infections and consider
the implicit effect of the host adaptive immune response [see, for example, the
first model in Luo et al. (2012)].
We emphasise that themodels used to quantify cell kinetics are usually described
by simple ODEs, which can be fitted easily to experimental data (thus avoiding
the overfitting problems generated by toomany parameters). There are alsomore
complex models for cell-level dynamics, which are mainly used for the theoreti-
cal investigation of various aspects of the immune response. These models range
from classical ODEs [see, for example, Huynh and Adler (2012), Reynolds et al.
(2013), Macnamara and Eftimie (2015) and the references therein] and DDEs
[to account for the time delay between viral infection and immune response
(Lee et al. 2009), or for the time delay between initial CD8+ T cell stimulation
and full activation (Kim et al. 2007)], to probabilistic models to describe, for
example, different probabilities of cell proliferation and death, as in Davis and
Adler (2013).
Next, we discuss in more details to studies: one quantitative study aimed at inter-
preting labelling data on lymphocyte kinetics, which emphasised the difficulties
of interpreting the results and one theoretical study aimed at investigating, only at
theoretical level, three hypotheses regarding the factors that affect the dynamics
of viral infections that might lead to infectious mononucleosis in young people.
– Choo and Murali-Krishna (2010) combined a simple stochastic model for cell
division with murine experiments, to investigate the proliferation and main-
tenance of memory CD8 T cell population following LCMV infection. With
the help of the mathematical model (which calculated the mean number of
divisions and variance in the number of divisions of memory CD8 T cells
from CFSE data), the authors determined that the proliferation was homoge-
neous and stochastic, with a small fraction of cells completing division at any
given time within an averaged interval of 50 days (this corresponds to a rate of
0.02 divisions/day). Comparison of the memory cells for different epitopes of
LMV leads to the conclusion that all memory cells exhibit similar homeosta-
tic turnover characterised by a slow, continuous recruitment into cell division
(irrespective of cell specificity and mouse strain) (Choo and Murali-Krishna
2010). Moreover, the authors showed that the homeostatic proliferation of
CD8 T cells was independent of CD4 T cell help (the cells being recruited into
division in a stochastic manner). The stochastic nature of the turnover in the
memory CD8 T cell population was validated by showing that the numbers of
divisions follow a Poisson distribution (as predicted by the stochastic model).
While more and more modes are being derived to quantify various aspects of
cell kinetics, the interpretation of the results of these simple models is still
a difficult aspect, since the results could depend on the assumptions incor-
porated into the models, or on the methods/techniques used to obtain them,
e.g., the short or long duration of the cell labelling period, deuterium vs. BrdU
labelling (Boer and Perelson 2013). The results of these quantitative models
have significant consequences on other models for immune responses that use
the parameters quantified here. For example, it has been shown that the lifes-
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pan of naive T cells differs by a factor of fifty between mice and men, while
the lifespan of memory T cells differs by a factor of twenty between mice
and men (Boer and Perelson 2013). Therefore, to have any predictive value,
the mathematical models that use quantified parameters should make it clear
whether they use mice or human data, whether their parameters are fitted to
CD4+ or CD8+ T cells (with the CD4+ T cells having a higher turnover),
whether the immune data corresponds to acute or chronic immune responses,
etc. (Boer and Perelson 2013).

– Huynh and Adler (2012) derived a system of 12 ODE equations for the regu-
lation of Epstein–Barr virus (EBV) infection within a host and the impact on
time-dynamics of infectious mononucleosis (IM) in young people. The model
was then used to theoretically investigate three hypotheses explaining the high
incidence on IM in young adults: increase in saliva and antibodies with age,
high cross-reactive T cell responses which vary with age, high initial viral
loads (Huynh and Adler 2012). Steady-state and stability analysis (which lead
to the calculation of a basic reproductive ratio for viral infection) first identi-
fied combinations of parameter values that ensured persistent EBV infections.
Then, numerical simulations (which showed the effect of changes in various
model parameters on two key measurements of IM: the total number of T cells
and the lytic T cell ratio at the peak of the infection) were performed to test the
three hypotheses and revealed that the first two hypotheses are supported by
the model. The authors concluded that their study highlighted a need for fur-
ther experimental investigation on the constituents of the saliva that influence
infection of B cells and epithelial cells, to help identify thresholds in antibody
levels that affect the evolution of the infection.

(iii′) Models for Dendritic Cell (DC) dynamics Dendritic cells are a heterogeneous
population of antigen-presenting cells, which receive signals from the environ-
ment and, based on these signals, can initiate an appropriate adaptive immune
response (by migrating to the draining lymphoid tissues and activating the T
cells) (Hugues 2010). Thus, the DCs are a key piece in the innate-to-adaptive
immune response. The majority of mathematical models in the literature have
been derived to investigate qualitatively and quantitatively various aspects of
the interactions between DCs and T cells. The models derived in the past 10
years range from ODE-type equations that focus only on the temporal inter-
actions between DCs and T cells (DePillis et al. 2013; Wares et al. 2015), to
delay differential equations (DDEs) that incorporate delays between the DC-T
cell contact time and the expansion of T cells (Castillo-Montiel et al. 2015), or
agent-based models that consider the spatial structure of the lymph nodes (LN)
where the DC-T cell interactions take place (Bogle and Dunbar 2008, 2010).
Note that theODEs can incorporate the spatial aspect ofDC traffickingby consid-
ering multiple compartments; see the spleen, blood and tumour compartments in
DePillis et al. (2013). Other mathematical and computational models described
the probabilistic interactions between the antigen-presenting cells and regulatory
and effector CD4+ T cells inside the LN, in the context of immunity as well as
autoimmunity and immunological self-tolerance (Figueroa-Morales et al. 2012;
Celli et al. 2012). Some of these models combine computational/mathematical
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approaches with experimental approaches that involve, for example, flow cytom-
etry and intravital photon imaging, with the purpose of quantifying the number
of T cells and DCs to further address questions about their dynamics (e.g., num-
ber of DCs required to initiate T cell responses) (Moreau et al. 2016; Celli et al.
2012). Next, we will discuss in more detail the outcomes of such a model.
– Celli et al. (2012) developed a computation model describing the encounters
between T cells and DCs in the lymph node (with the T cells performing a
3D Brownian motion, and the DCs being immotile and randomly distributed).
With the help of this computational model and an experimental study that
measured the efficacy of T cell activation by DCs in vivo, the authors estimated
the probability for a T cell to interact with a DC, given a certain number of
DCs present in the lymph node. They concluded that fewer than 100 antigen-
bearing DCs could be sufficient to initiate a T cell response in a lymph node,
when starting from a T cell precursor frequency of 10−6. While there are
experimental studies which showed a reduced number of DCs in the lymph
node that triggered an immune response (Verdijk et al. 2009), there are no
experimental studies yet that could test the quantitative prediction made in
Celli et al. (2012).

– DePillis et al. (2013) developed a mathematical model (described by 8 ODEs
and DDEs) for the interactions between DCs, cytotoxic T lymphocytes and
tumour cells. Some of the model parameters were chosen form the published
literature,while the remaining parameterswere fitted to experimental data from
Lee et al. (2007). Then, the authors used this model to explore hypothetical
treatment variations: intratumoral DC injections vs. intravenous DC injec-
tion; modifying dose timing; the effect of prophylactic vaccines (i.e., vaccine
administered prior to tumour challenge). Some of the simulation results (e.g.,
tumour dynamics following a prophylactic vaccine) showed qualitative agree-
ment with experimental data in. Overall, this approach shows the potential of
using modelling to investigate the possible outcomes of various hypothetical
scenarios, to gain more understanding on the .

Finally, we emphasise that there are many more mathematical models that inves-
tigate the cell-level dynamics of the interactions between the innate and adaptive
immune responses following pathogen stimulation, following trauma, or following
the injection of cancer cells [see, for example, Vodovotz et al. (2006), Mallet and
Pillis (2006), Hancioglu et al. (2007), Marino et al. (2010), Eftimie et al. (2010b),
Ankomah and Levin (2014), Cao et al. (2015), Pappalardo et al. (2011) and the refer-
ences therein]. Other models investigate the interactions between the innate/adaptive
immune responses and the pharmacokinetics and pharmacodynamics of specific drugs
(Ankomah and Levin 2014). The complex interactions between the innate and adap-
tive immunity leads to difficulties in parametrising appropriately the models. Next,
we will discuss in more detail two models (an experimentally validated model and a
theoretical model) that investigate in an integratedmanner the innate/adaptive immune
responses, to provide some mechanistic understanding of some of the experimentally
observed complex immune dynamics.

123



Mathematical Models for Immunology: Current State of the Art. . . 2109

– Miao et al. (2010) combined modelling approaches with experimental data to
quantify the innate and adaptive immune responses to primary influenza A virus
infection (forwhichwe lack a detailed and quantitative understanding). To this end,
the authors developed a mathematical model to describe the dynamics between the
target epithelial cells, influenza virus, cytotoxic T lymphocytes and virus-specific
IgG and IgM antibodies. Because of the complexity of the model (described by
15 equations and 48 parameters), many of the parameters could not be measured
directly from the data. To address this issue, the authors have split the model into
smaller submodels with parameters that can be estimated from experimental data:
a model for the initial innate phase and a model for the later adaptive phase. Both
models were fitted to experimental data onmice infection with the H3N2 influenza
virus A/X31 strain: the first model was used to fit viral titer data between days
0–5, while the second model was used to fit viral titer data between days 5–14,
and data on T cell counts and antibody concentrations for the whole period of
the experiment. However, before fitting models to the data, the authors performed
structural identifiability analyses (Miao et al. 2011) to check whether all parameter
values can be uniquely determined from the model and the data and confirmed
that this is the case with the exception of one parameter (which, if arbitrarily
fixed, will not change the estimated values of all other parameters). For the time
period dominated by innate immune response, the authors estimated the half-life
of infected epithelial cells to be ≈1.2 days and the half-life of free infectious
influenza virus to be ≈4h. For the time period dominated by the adaptive immune
response, the authors estimated the half-life of infected epithelial cells to be ≈0.5
days and the half-life of free infectious virus to be≈1.8min. The results confirmed
that the cytotoxic lymphocytes were crucial in limiting the infected cells, while
the antibodies regulated the levels of free virus particles. The authors concluded
that this validated model could be further used to predict other aspects of influenza
immunity (e.g., the generation of memory CD8+ T cells).

– In the context of cancer immunotherapies, Eftimie et al. (2010b) used a math-
ematical approach to propose a mechanistic explanation behind a surprising
experimental observation regarding the anti-tumour effects of CD4+ Th2 and
Th1 cells: in Mattes et al. (2003) it was experimentally shown that the Th2 cells
could reject the B16F10 melanoma in mice, while the Th1 cells could only inhibit
tumour growth for a short period of time (which was in contrast to the gener-
ally accepted idea that the Th1 cells are the ones eliminating tumours). To this
end, the authors developed two ODE models for the interactions between the B16
melanoma cancer cells and the innate and adoptive immune responses described by
neutrophils/eosinophils, Th1/Th2 CD4+ T cells and cytokines (type-I or type-II,
tumour-suppressing and tumour-promoting). The two models (for tumour-Th1-
neutrophils interactions via cytokines and tumour-Th2-eosinophils interactions
via cytokines) differed in the production rates of cytokines, and in the functions
describing the apoptosis of neutrophils and eosinophils, and apoptosis of Th1 and
Th2 cells, as controlled by various cytokines. While many of the parameter values
were obtained from the published mathematical literature, there were some para-
meters (e.g., cytokines half lives) which were estimated based on experimental
studies and following discussions with immunologists. To clarify the effect that

123



2110 R. Eftimie et al.

these parameters had on the model outcomes, the authors performed sensitivity
analysis (Eftimie et al. 2010b). The results of themodels confirmed the experimen-
tal observations that the Th2 cells can eliminate the tumour cells in the presence of
eosinophils,while theTh1cells canonly reduce for some time the tumour size—but
they cannot eliminate the tumour. The suggested biological mechanisms behind
this particular tumour-immune outcome was that the rate of tumour killing by
eosinophils through degranulation had a more pronounced effect than the rate of
tumour killing by tumour-suppressing cytokines (e.g., TNF-α, IFN-γ ).

Since many models for cell-level dynamics are described by relatively few equa-
tions, it is easier to investigate them using analytical tools (in addition to the numerical
simulations). For example, the complex dynamics between some of the components
of the adaptive and/or innate immune responses, or between immune cells and tumour
cells, has been investigated with the help of stability and bifurcation theory; see for
example Webb et al. (2007), Liu et al. (2009) and Foryś (2009). These analytical tech-
niques helped address questions regarding the existence of particular types of states
(e.g., periodic solutions that arise via Hopf bifurcations), or questions regarding the
possible immunological mechanisms behind the transitions between various states.

4 Models for Tissue-Scale Immune Dynamics

In addition to immunological processes that occur inside cells (at molecular level)
and between immune cells (at cellular level), there are also immunological processes
that occur at tissue level where cells assemble themselves into multicellular struc-
tures. Since these tissue-level processes involve interactions between cells, there is
sometimes a very fine line between cell-level and tissue-level models (see also Fig. 3).
The mathematical models for tissue-level processes are mainly described by PDEs,
agent-based or cellular automata models, or hybrid models that combine both PDEs
and agent-based approaches—to incorporate the spatial effects of the immune cells
on the tissues [see, for example, Su et al. (2009), Sun et al. (2009), Kim and Othmer
(2013), Kim and Othmer (2015)]. Nevertheless, there are also a few ODE models that
investigate tissue-level processes by ignoring the spatial aspects of these processes
and measuring the accumulation of immune cells in the tissues (which can sometimes
lead to tissue damage and organ failure, as emphasised by Shi et al. (2015) in a model
for immune response to Salmonella infections).

Themost common immunological aspects that have been investigated at tissue level
are: wound healing (Sun et al. 2009; Cumming et al. 2010; Sun et al. 2009; Adra et al.
2010), tumour-immune dynamics (Su et al. 2009; Kim and Othmer 2015, 2013), the
formation of granulomas (Su et al. 2009; Clifone et al. 2013; Fallahi-Sichani et al.
2012), or the formation ofmicro-abscesses following bacterial infection (Pigozzo et al.
2012).Nextwediscuss inmore detail twomathematicalmodels that emphasise the lack
of data (at tissue level) to parametrise models, and the potential use of mathematical
techniques (e.g., asymptotic analysis) to gain a deeper understanding of the transitions
between different regimes in the dynamics of a biological system.

– As an example of a mathematical model derived to understand a particular aspect
of the tissue-level immune response (in the absence of experimental results), we
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mention the study by Clifone et al. (2013), which used a hybrid model that com-
bined an agent-based approach for the stochastic behaviour of macrophages and
T cells in the lung, with ODEs for the dynamics of the cytokines that control the
infection (IFN-γ , TNF-α) and those that activate the macrophages (IL-10), and
PDEs for the dynamics of chemokines, to investigate the multiscale effects of the
cytokines on the formation of granulomas (at the tissue scale) during M. tuber-
culosis infection. The authors first identified a baseline set of parameters which
controlM. tuberculosis infection to levels that were similar to the infection levels
observed in various human and non-human primates (some parameters were taken
from the published literature, while others were estimated using uncertainty and
sensitivity analysis, to match the observed qualitative behaviours). The model was
further validated by performing virtual deletion experiments for TNF-α, IFN-γ ,
and IL-10, and the results—which showed that TNF-α and IFN-γ were unable to
control disease progression due to a lack of activated macrophages and bacterici-
dal activity, while IL-10 was necessary to control infection—were consistent with
previously published experimental data. Then, using sensitivity analysis on the
molecular-level parameters related to TNF-α and IL-10 (which, for each cytokine,
were grouped in 3 classes: parameters that influenced cytokine synthesis, those that
influenced binding and signalling, and those that influenced spatial localisation of
cytokines), allowed the authors to confirm that both TNF-α and IL-10 were impor-
tant in controlling bacterial load and tissue damage. In particular, they showed that
a balance between TNF-α and IL-10 was necessary to mediate between the control
ofM. tuberculosis infection and the prevention of host-induced tissue damage, thus
defining the granuloma environment. Further computational studies have focused
on macrophages polarisation (towards an M1 or M2 phenotype)—as a metric for
cytokine signalling—during the progression ofM. tuberculosis infection (Marino
et al. 2015), on the role of IL-10 on lesion sterilisation (Cilfone et al. 2015), or
on the designing of various treatments for M. tuberculosis infection (Linderman
et al. 2015). All these studies were performed only computationally, due to a lack
of experimental models of human M. tuberculosis infection, and an awareness
that the results of the experimental murine and non-primate models existent in the
literature might not be reflective of human infections.

– In the context of more theoretical approaches, we discuss next a model for wound
healing. While immunity plays an important role in wound healing [with immune
cells secreting signalling molecules such as cytokines, chemokines and growth
factors, during the inflammatory response (Strbo et al. 2014)], many mathematical
models for wound healing treat the immune response in an implicit manner. For
example, Flegg et al. (2012) derived a PDEmodel for wound healing as controlled
by oxygen concentration, capillary tip density and blood vessel density. Instead of
incorporating explicitly the VEGF dynamics (VEGF=vascular endothelial growth
factor—a chemokine important in the inflammation stage of wound healing), the
authors assumed that oxygen andVEGFprofiles are complementary, andmigration
up spatial gradients of VEGF would be equivalent to migration down gradients
of oxygen. The model equations were first dimensionalised and then simulated
numerically for different cases where healing was successful or failed. Next, the
authors focused on asymptotic methods to establish conditions under which the
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growth of new blood vessels can be initiated. These conditions were given in terms
ofmodel parameters associatedwith oxygen supply andoxygen consumption in the
wound (and therefore, these conditions depended implicitly on VEGF dynamics—
although not included in the model). Bifurcation diagrams were created to show
(in a parameter space determined by the oxygen supply and consumption rates),
five distinct healing regimes corresponding to successful healing and unsuccessful
healing (due to either insufficient and excessive oxygen). The authors concluded
their study by comparing the efficacy of different treatments, which were simu-
lated via changes in various model parameters, and the effects of these treatments
on shifting model dynamics between different healing regimes. Overall, this the-
oretical modelling and analysis approach to wound healing lead to a mechanistic
characterisation of the transitions between different healing regimes.

We emphasise that many of the models that describe tissue-level dynamics of
immune cells are actually multiscale models, since processes that occur in the tissue
are the result ofmolecular and cellular interactions. (Wewill return to this discussion in
the next section.) Due to the complex nature of these models, it is usually very difficult
to estimate model parameters, especially since in tissue there are mechanical forces
that act among cells and which are never measured and accounted for in these models.
The studies that do parametrise these mathematical models generally use parameter
estimates done in isolation, via single experiments, or use parameters estimated for
different diseases, cell lines and animal models (Flegg et al. 2015). Thus, the results
of these models are mostly qualitative.

5 Models for Multiscale Immune Dynamics

As mentioned in the previous section, many of the mathematical models that describe
tissue-level dynamics of the immune response are multiscale models, since they focus
on the role ofmolecular-level dynamics—such as changes in the components of various
signalling pathways, or in the number of cell receptors – on controlling the formation
of cellular aggregation structures inside tissues. However, in addition to the models
discussed in the previous section, there aremany other models that focus on themacro-
scale dynamics of the immune cells. For example, in a 2007 review on the multiscale
aspect of antigen presentation in immunity, Kirschner et al. (2007) emphasised that
while antigen presentation appears to occur only at molecular and cellular scales, the
outcome can be affected by events that occur at other scales (e.g., by increased/reduced
trafficking of T cells inside the lymph nodes (LN), which might enhance/reduce the
opportunity for antigen presentation by DCs). Since multiscale models are being used
more frequently to explore the interconnected pathways that control immune responses
across different scales (Kidd et al. 2014), in this section we expand the discussion on
multiscale models started in Sect. 4, by also including multiscale models that focus
on the formation of spatial aggregation structures inside tissues. For a more in-depth
review of multiscale modelling in immunology—but with a focus on immunologi-
cal processes that take place at macroscopic level, which includes both tissue-level
models and multicompartment models that describe the movement of cells between
organs/tissues/compartments—see Cappuccio et al. (2015).
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The majority of multiscale mathematical models in immunology have been devel-
oped to investigate phenomena that occur atmolecular scale but influence the cell-level
dynamics (e.g., cell proliferation, death, cell size, etc.). For example, models have been
developed to study the maturation of CD8 T cells in the lymph node as a result of the
molecular profile of these cells (as described by TCR and caspase activation, IL-2
production and activation of IL2 receptor, and Tbet protein levels) (Prokopiou et al.
2014); to study the inflammatory response associated with burn injuries (as described
by the release of TNF cytokine due to the burn injury, the activation of NF-κB path-
way, which triggers early, intermediate and late immune responses associated with
increased expression of cytokines) (Yang et al. 2011); to study the regulation of NFκB
signals in the context of macrophage response to M. tuberculosis (Fallahi-Sichani
et al. 2012); to investigate the movement and activation of immune cells in response
to receptor levels and antigen levels (Zheng et al. 2008; Malkin et al. 2015); to study
how the balance between IL-10 and TNF-α (and the binding and trafficking of their
receptors) influences the formation of granuloma (comprising macrophages and T
cells) following M. tuberculosis infections (Linderman et al. 2015); or to study the
interactions between metabolism (as determined by levels of glucose and insulin pro-
duced by β-cells) and the autoimmune response (caused by macrophages) that lead to
the loss of pancreatic β-cells (Marino et al. 2010).

Another class of multiscale models focused on connecting within-host immuno-
logical processes following viral infections to between-host epidemiological models
for the spread of the infection throughout a population, thus aiming to understand the
effect of population immunity on epidemiological patterns (Feng et al. 2012, 2013;
Numfor et al. 2014).

Finally, a completely different class of multiscale models is represented by the
kinetic models for active particles (Bellomo and Delitala 2008; Bellomo and Forni
2008; Bianca 2011; Bellouquid et al. 2013; Bianca and Delitala 2011; Kolev et al.
2013; Bellouquid 2014). These models (given by integro-differential equations or
partial integro-differential equations) describe the time evolution of heterogeneous
populations of cells that have a certain microscopic state (continuous or discrete),
which can represent, for example, the degree of activation of a cell, or the degree
of cell functionality. In the context of immunology, they have been used mainly to
investigate tumour-immune interactions that involve different types of immune cells,
as well as mutated (cancer) cells (Bellomo and Forni 2008; Bellouquid et al. 2013;
Bianca and Delitala 2011; Bellouquid 2014). However, more recent models have been
used to study cytotoxic T lymphocytes (CTL) differentiation (Kolev et al. 2012, 2013)
or wound healing (Bianca and Riposo 2015). The complexity of these models makes
it difficult to quantify them by fitting the model parameters to the data (since at this
moment it is difficult to quantify, for example, the flux/death/proliferation of cells that
belong to a subpopulation i and have an activity state j). Moreover, the complexity of
these models does not allow for intensive numerical simulations to investigate large
regions of the parameter space. Nevertheless, these kinetic models could be suitable
to describe qualitatively the type of experimental data that cannot be quantified at this
moment (e.g, data obtained via immunoblotting techniques)—although, to our knowl-
edge, this has not been done yet mainly due to the lack of immunological knowledge
of researchers who develop these kinetic models.
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Next we discuss in detail two studies ofmultiscale dynamics for immune responses:
one study that combined modelling approaches with experimental approaches to pro-
pose a mechanistic framework for the decision of T cells to make extended contacts
with DCs and one theoretical study that investigated the link between HIV transmis-
sion in a population and the immunity level in a host, and showed how optimal control
theory can be used as a tool to reduce the infection at the level of individuals and at
the level of population.

– Zheng et al. (2008) used a stochastic model for the spatial aspects of DC-T cell
interactions, to understand the behaviour of T cells in the lymphoid tissue in
response to the level of pMHC expression. The cells (T cells, DCs that bear pMHC
ligands, and DCs that do not bear these pMHC molecules) moved on a lattice
representing the lymph nodes, and the movement was described by a Monte–
Carlo algorithm. To keep the model relatively simple, the authors did not link their
model to an explicit model for signalling pathways, but modelled implicitly the
relation between T cells movement/stop responses and antigen concentration with
the help of a sigmoidal curve (which described observed TCR-pMHC binding
characteristics). With the help of this model, the authors showed that the decision
of T cells to stop moving (whose probability was incorporated in the model as part
of the Monte–Carlo algorithm) and make stable contacts with DCs, depended on
the concentration of pMHC molecules (in a nonlinear manner), on the stability
of complexes formed between the cognate peptide and MHC proteins, and on the
density of DCs in the lymphoid tissue (in a linear manner). The numerical results
of this studywere shown to be qualitatively similar with some experimental studies
performed in parallel (Henrickson et al. 2008). These combined computational and
experimental approaches allowed the authors to propose a mechanistic framework
that connected the decision of T cells to make extended contacts with DCs, with
the level and type of antigens as well as the ability of T cells to detect the antigen.

– In the context of understanding the effect of population immunity on epidemiolog-
ical patterns, Numfor et al. (2014) formulated an immuno-epidemiological model
that linked a within-host model for the dynamics of HIV particles and infected and
non-infected CD4+ T cells (described by ODEs), with a between-host model for
the dynamics of infected and susceptible individuals in the population (described
by ODEs and PDEs). The authors first showed the existence of biologically realis-
tic (i.e., positive and bounded) solutions for this mathematical model. Then, they
investigated the local and global stability of the steady states, with the purpose
of gaining a better understanding on the long-term behaviour of the system (as
controlled by various model parameters). Finally, the authors applied optimal con-
trol theory to design intervention strategy for the control of HIV infection based
on controlling both the infection transmission rate (between healthy and infected
CD4+ T cells) and the production rate of HIV virions. The aimwas tominimise the
number of infectious individuals, the level of free virus particles, and the toxicity
of drugs that were given to reduce viral transmission and virion production. A large
part of the study was devoted to the rigorous proof of the mathematical machinery
that allows for implementation of an optimal control. Numerical simulations have
compared the dynamics of the system for two cases: in the presence and absence
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of drugs that suppress virus transmission and virus production. The drugs lead to
an increase in the number of healthy cells, a reduction in the number of infected
cells at the host-level and a reduction in the number of infectious cases at the level
of the human population.

6 Summary and Further Discussion

Mathematical models can provide a valuable framework to organise in a systematic
manner immunological concepts, to show the range of outcomes of various immuno-
logical hypotheses that cannot be yet tested experimentally, and to generate new
mechanistic hypotheses (based on assumptions made regarding the nonlinear interac-
tions among the various components of the complex systems), hypotheses which can
then be attempted to be tested experimentally. In this review, we aimed to offer a broad
overview of the progress in mathematical immunology over the past 10 years. Due to
the extremely large numbers of mathematical models developed during this time, and
the large variety of immunological aspects investigated by these models, it was impos-
sible to provide a detailed description of all these models and the subjects covered.
Rather, we aimed to emphasise some immunology areas that have been investigated
mathematically, the types of mathematical models developed, and the methods used
to understand the dynamics of these models. In terms of mathematical models, we
remark a shift from simple ODE models to more complex (and sometimes very large)
systems of ODEs, stochastic models that require intensive Monte–Carlo simulations,
and hybrid and multiscale models that combine ODEs with PDEs and agent-based
approaches (Louzoun 2007). However, increased model complexity leads to difficul-
ties in model calibration and model use for quantitative predictions, as well as difficul-
ties to analytically investigate these models. Nevertheless, we need to emphasise that
the last 10 years have also seen a shift fromaqualitative investigation of immunological
processes to a more quantitative investigation of these processes. The development of
high-throughputmethods to generate new data, as well as the development of immuno-
logical methods to quantify available data [e.g., quantification of antigen molecules
with flow cytometry (Moskalensky et al. 2015), or detection of antigen-specific T
cells (Andersen et al. 2012)] have led to more complex mathematical and computa-
tional models that investigate large numbers of interactions (among cells, antigens,
cytokines) which occur at different spatial and temporal scales. However, due to the
complexity of these new mathematical models they cannot always be fully validated,
and the hypotheses generated with their help still have a large qualitative component.

In spite of the very large number of mathematical models developed over the last
decade, there are still many immunological aspects not investigated with the help of
thesemodels. For example, the recently discoveredγ δ Tcells [which canbe considered
a component of both innate and adaptive immunity (Meraviglia et al. 2011)] have not
been yet the subject of mathematical modelling and investigation. There are also no
mathematical models to investigate the type of innate immune memory associated
with macrophages (Yoshida et al. 2015), as well as a few other aspects related to
immunological memory [e.g., the role of tissue-resident memory T cells (Mueller and
Mackay 2016), regulatory T cell memory (Rosenblum et al. 2016), or the effect of
antigen load on memory expansion (Kim et al. 2015)]. There are, of course, many
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other research directions in immunology where mathematical models could propose
hypotheses regarding mechanistic understanding of biological phenomena (and we
will mention some of them below, in Sect. 6.3).

For a better understanding of the impact of mathematical models in immunology,
in the following we discuss: (1) the benefits of mathematical immunology to date; (2)
the opportunities to broaden the applicability of some of the models and analytical
methods mentioned in this review; (3) the anticipated trends.

6.1 The Benefits of Mathematical Immunology to Date

Over the last 10 years, various theoretical models have been able to explain exist-
ing experimental observations and to generate new hypotheses regarding different
immunological phenomena. These theoretical models have ranged from models for T
cell receptor signalling and T cell activation (Coombs et al. 2011), to models for T cell
and B cell turnover (Boer and Perelson 2013), and models for the immune response
during specific infections and their associated therapies (Perelson and Guedj 2015;
Canini and Perelson 2014). For example, Canini and Carrat (2011) used a simple
ODE model for the kinetics of human influenza A/H1N1 infections and the anti-viral
innate immune response mediated by cytokines and NK cells. The model was fitted
to individual influenza virus kinetics data obtained from 44 infected volunteers, and
the results of the model predicted that the NK cell activity would peak 4.2 days after
inoculation (the authors specified that they had no prior data on cytokine or cellular
responses, only viral shedding data). Interestingly, an experimental study published
in the following year (Pommerenke et al. 2012) confirmed that the NK cell activity
during influenza infections peaked around day 5. Since the data were only shown for
specific days (e.g., days 3, 5, 8; see Fig. 3 in Pommerenke et al. (2012)) the match
between theoretical predictions and data observations seems reasonable. Overall, the
majority of mathematical models that have influenced immunology research over the
past 10 years were simple models (usually described by ODEs) that could be easily
calibrated to experimental data. Nevertheless, also models more difficult to calibrate
were beneficial to immunology. For example, the various qualitative models for T cell
receptor signalling, such as the kinetic proofreading model that explains pMHC dis-
crimination based on TCR/pMHC bond off-rate (Coombs et al. 2011), have proposed
mechanistic hypotheses to shed light on the complex spatial and non-spatial receptor
dynamics involved in T cell activation and receptor signalling. Due to a lack of data,
these models cannot be confidently parametrised for now (Coombs et al. 2011). Other
types of model that have been beneficial to immunology research, despite a lack of
model calibration in the absence of relevant data, are the complex systems immunol-
ogy models that attempt to simulate very large cell signalling pathways (Perley et al.
2014), or models describing complex nonlinear interactions between large numbers
of immune cells, cytokines and chemokines (Bianca et al. 2012; Pappalardo et al.
2011; Carbo et al. 2013; Halling-Brown et al. 2010), with the purpose of achieving
a global understanding of the possible outcomes of the immune response following
small changes in the components (understanding which is difficult to be obtained
experimentally due to high costs).
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The continuous advances in quantitative experimental techniques (Bandura et al.
2009; Andersen et al. 2012; Newell and Davis 2014), combined with the demand to
interpret ever larger and complex data sets to gain a more mechanistic understanding
of the immunological phenomena, will eventually lead to new investigative (modelling
and analysis) approaches that have better predictive power and will be more readily
accepted by the immunological community when designing new studies. On the other
hand, the development of new mathematical and computational models (e.g., kinetic
multiscalemodels of active particles) that can use existent datawill also help inform the
design of new experiments. It is envisaged that mathematical modelling will become
more and more intertwined with experimental immunology, in an attempt to answer
fundamental questions about how immune system works and evolves over time [thus
following the path taken by theoretical ecology, which now relies on sophisticated
mathematical- and computer-based models in addition to traditional fieldwork (Otto
and Day 2007)].

6.2 Broader Applicability of Some Methods and Models

When thinking about broader applicability of mathematical approaches in immunol-
ogy, there are two aspects that we need to discuss: (i) broader applicability of certain
types of mathematical models and (ii) broader applicability of analytical methods used
to investigate specific models.

(i) In regard to the broader applicability of some models, we note that complex mul-
tiscale mathematical models (such as kinetic active particle models, or hybrid
models) are less likely to be applied widely across different subfields in math-
ematical immunology. For example, despite the potential of kinetic models for
active particles to simulate interactions between cells that have specific traits (e.g.,
different activation level, different functionality, different markers) (Bellomo and
Forni 2008), these models have been generally ignored by the mathematical
immunology community since they are more difficult to describe (in particu-
lar the integral terms for binary interactions), and more difficult to parametrise.
Moreover, as discussed in Sect. 2, the majority of models employed to describe
molecular-level dynamics are non-spatial.Nevertheless, advances in experimental
techniques have started to reveal the importance of spatial protein dynamics inside
cells or on membrane surfaces. It is possible that by focusing only on non-spatial
models, one can miss some of the dynamics resulting from spatial movement of
proteins, or can incorrectly associate certain non-spatial mechanisms to observed
spatial dynamics. As emphasised in Chaplain et al. (2015), simple spatial mathe-
matical models can sometimes exhibit more complex dynamics compared to their
non-spatial counterparts and thus can propose different biological mechanisms
for the same observed biological pattern [e.g., observed mRNA oscillations in
Chaplain et al. (2015)]. It is therefore expected that the next decade will see a
wider use of spatial models and multiscale models to gain a better understanding
of various immunological phenomena.

(ii) In regard to the broader applicability of some methods, we emphasise that while
simple non-spatial ODE models can be investigated using a large variety of
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analytical methods (ranging from stability and bifurcation theory, to optimi-
sation theory) and can be easily parameterised, more complex agent-based or
cellular automata models cannot be investigated as easily due to the lack of spe-
cific mathematical methods. Moreover, the knowledge of researchers deriving
the mathematical models can impact on the types of analytical methods used
to investigate them. For example, while the majority of mathematical models
in immunology have been subjected to some sort of local sensitivity analysis
(where one parameter is varied at a time within a chosen range), only a few
studies focused on global sensitivity analysis using the Latin Hypercube Sam-
pling approach (which allows multiple parameters to be varied simultaneously)
(Kirschner et al. 2007). This approach has been applied to both ODEs and agent-
based models for immune system dynamics (Kirschner et al. 2007). Another
analytical technique that could have broader applicability is the optimal control
theory. This technique has been often applied to models in the context of cancer
immunotherapies and chemotherapies, to determine the optimal time to adminis-
ter the anti-cancer treatment, as well as the optimal dose (Castiglione and Piccoli
2006; Ghaffari andNaserifar 2010; Hamdache et al. 2014; Castiglione and Piccoli
2007; Pillis et al. 2007; Pappalardo et al. 2010; Ledzewicz et al. 2012; Itik et al.
2009). However, despite the potential applications to improve therapeutic proto-
cols for various diseases (e.g., diseases caused by viral and bacterial infections),
optimal control is not commonly applied to other immunology subfields. Among
the few studies that use optimal control theory to improve specific or generic
immune therapies, we mention (Tan and Zou 2015) that focused on controlling
strategies to enhance the innate immune response to viruses, Stengel (2008) that
focused on minimising the HIV viral load and the concentration of infected CD4
T cells, Bayón et al. (2016), Chen et al. (2011) that focused on enhancing various
aspects of the innate immune response against some general pathogen, or Numfor
et al. (2014) that focused on controlling the transmission rate of HIV infection
(between healthy and infected CD4 T cells) and the suppression of HIV virions
production with the help of drugs, in an immuno-epidemiological model.
We emphasise that optimal control approaches combined with experimental
approaches could be used successfully to improve current clinical adaptive
interventions (Nahum-Shani et al. 2012), with the end goal of designing bet-
ter personalised patient treatments. Nevertheless, despite the potential of various
optimal control approaches to be used in immunology (e.g., to improve the opti-
mal design of clinical trials (Villar et al. 2015), while reducing the costs of these
trials), the complexity of mathematical formulation in the context of optimal
control makes it difficult for these models to be understood and used by experi-
mentalists and clinicians. Among the few studies that can be applied to clinical
trials, we only mention a model describing the probability of not rejecting the
null hypothesis, where the optimality of the model (defined in terms of using a
minimum sample size) is being investigated using a simple grid search in the
parameter space (Mander and Thompson 2010). We believe that more complex
optimal control approaches could be used to improve current clinical trials, pro-
vided that the researchers involved in these trials are made aware of the bigger
picture behind the complex mathematical machinery.
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6.3 Anticipated Future Trends

Mathematical immunology is a rapidly evolving field, which continues to follow the
development of experimental immunology and at the same time tries to influence it
by providing qualitative and quantitative assessments of various immune processes.
While the power of modelling and computational approaches in immunology has been
recognised in various review studies published in high-impact journals (Chakraborty
et al. 2003; Goldstein et al. 2004; Morel et al. 2006; Chakraborty and Das 2010), from
an impact point of view the results are still not very encouraging, since these models
did not influence significantly the work of experimental immunologists (Andrew et al.
2007).

Despite the fast expansion of mathematical immunology, there are a set of factors
that have limited its progress. These factors range from unavailable data to be used by
mathematical models, to unavailable models that can interpret existent types of data
(e.g., data resulting fromWestern blots), or more computation power for the numerical
simulations of complex models [e.g., 3D agent-based models for particle/cell/protein
movement, which sometimes incorporate stochastic rules that require repeated runs
to obtain statistical significance (Thorne et al. 2007)]. The progress of mathematical
immunology was also limited by an overall lack of interactions between experimental-
ists andmathematicians.As remarked 10 years ago inCallard andYates (2005), there is
confusion within the general immunology community about how mathematical mod-
els can help understand complex nonlinear interactions. Unfortunately, ten years later
this confusion still persist (although at a reduced level). On the other side, mathemati-
cians are not always aware of the most recent developments in various immunology
subfields that can benefit from modelling, or of the “hidden” questions in immunol-
ogy that need an immediate answer to be able to move the subfields forward. Neither
are they always aware of the amount and type of data that could be available. This
lack of awareness might prevent modellers from asking the right questions which, in
turn, creates confusion about the value of modelling. Also, when it comes to using
data to parametrise mathematical models, mathematicians are often confronted with
a multitude of seemingly similar experimental studies which often hold contradictory
results. The variety and interpretation of many immunological observations from in
vitro and in vivo experiments was also acknowledged by Zinkernagel (2005). There-
fore, discussions with experimental immunologists are crucial in this case to decide
which data are most appropriate to use for the validation of the model under consider-
ation. In recognition of this necessary approach, recently there have been suggestions
to change graduate programmes in immunology to incorporate training in quantitative
and computational biology (Spreafico et al. 2015).

It is expected that by removing the limiting factors related to data availability,
as well as by tightly integrating the efforts of immunologists and modellers would
accelerate the progress in mathematical immunology as well as in experimental and
clinical immunology. In particular, this approach will lead to:

(i) the development of new mathematical and computational models (or generali-
sations of older models) to address the questions considered most important by
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the experimentalists, thus providing a faster mechanistic understanding of those
immunological problems;

(ii) the proposal of new hypotheses regarding the emergent properties of complex
immunological systems (Chavali et al. 2008; Krummel 2010);

(iii) the proposal of new, possibly counter-intuitive hypotheses regarding the outcome
of nonlinear and non-local interactions between the components of complex
immune sub-systems (Chakraborty and Das 2010) [the counter-intuitive aspect
of these hypotheses is mainly associated with the limited human brain abil-
ity to understand nonlinearity, which determines our focus primarily on linear
interactions (Singer 2007)];

(iv) the proposal of mechanistic explanations for some un-intuitive experimental
results;

(v) a reduction in (but not complete elimination of) the costs of experiments required
to test multiple hypotheses (including a reduction in the use of animals in
research—the 3Rs principles for humane experimentation on animals https://
www.nc3rs.org.uk/the-3rs), which can then allow a re-allocation of some funds
to investigate other research questions;

(vi) the development ofmathematical and computationalmodels to help translational
immunology research (one of the major limitations of the progress in human
immunology being the observed differences between some successful experi-
mental results in mice and poor clinical results in humans (Germain 2010);

(vii) the final use of mathematical and computational models in clinical decision
making (e.g., to forecast response to treatment, or to help develop optimal
immunotherapy schemes).

The changes we mentioned previously in the context of progress in mathemati-
cal immunology will be supported by changes in computational and experimental
capabilities. The expected increase in computational power over the next few years
will lead to a rapid development of 2D and 3D simulations of immune response in
tissues and organs—even for large numbers of components of the immune response
(using agent-based, cellular automata, PDE models, or hybrid combinations or these
approaches). Comparison between these in silico simulations and imaging studies of
the immune response [e.g., from lymphocyte activation (Balagopalan et al. 2011), to
tracking immune cells in vivo (Ahrens and Bulte 2013), or phenotyping immune cells
(Mansfield et al. 2015)] will increase the quantitative understanding of spatio-temporal
processes in immunology. The increase in computational power will also allow the
incorporation into the models of extremely large numbers of possible complexes that
can arise in signalling cascades following the multiple ways proteins can be combined
and modified (Goldstein et al. 2004). Finally, possible step changes in the progress of
mathematical immunology will likely be associated with the evolution of experimen-
tal techniques (Schnell et al. 2012; Köbig et al. 2012; Winter et al. 2015) (e.g., new
experimental techniques that could quantify protein levels would lead to a multitude
of models for the molecular-level dynamics of these proteins, whose predictions could
be tested experimentally).

Since mathematical immunology will continue to follow the developments in
immunology, many of the research directions in mathematical immunology that will
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become most prominent over the next 10 years will follow the main research topics in
immunology. A 2011 review article in Nature Reviews Immunology (Medzhitov et al.
2011) highlighted some of the future research directions in immunology: understand-
ing the complexities in the development and heterogeneity of macrophages, dendritic
cells and T helper cells, as well as understanding the immune processes involved in
diseases such as cancer (and their escape mechanisms). Other research directions in
immunology that are expected to become prominent in the next years will focus on the
development of new vaccines for diseases that do not usually induce robust resistance
in infected individuals (Germain 2010) or of vaccines for new infectious diseases, on
understandingofmetabolic pathways in immune cell activation andquiescence (Pearce
and Pearce 2013; Pearce et al. 2013), or on understanding how the immune system is
integratedwith the endocrine and nervous systems (Kourilsky 2012). Another research
direction that will likely become prominent in the next decades is the application of
nanotechnology in the field of immunology to improve treatment of various infectious
andnon-infectious diseases (Smith et al. 2013). The interactions betweennanoparticles
and various components of the immune system have been shown in some cases to trig-
ger undesirable effects such as immunostimulation or immunosuppression, and more
research will be necessary to improve our understanding of these interactions (Zolnik
et al. 2010). Also, the upcoming years will see immunology research attempting to
integrate the controlled environmental conditions associatedwith the laboratory exper-
iments, into the variable complex world outside the laboratory (Maizels and Nussey
2013), thus starting addressing questions about the evolutionary processes responsible
for observed immunogenic variation, and the importance of the environmental context
in various diseases (from parasitic infections, to autoimmunity and cancer). Therefore,
from an immunological perspective, it is expected that next decades will see the devel-
opment of new mathematical and computational models that investigate qualitatively
and quantitatively various open questions associated with these prominent research
directions in immunology.

From a more mathematical perspective, the research in the next years will likely
focus on a few directions, which will include:

(a) deciding whether to use of stochastic versus deterministic models to better
describe certain problems (Heffernan 2011), while taking into consideration the
few analytical methods available to investigate stochastic models, compared to
the large number of methods available for deterministic models;

(b) increasing the use of optimal control theory to design optimal treatment strategies
in the context of various diseases (Heffernan 2011);

(c) focusing on the trade-off between complex immunological systems and simple
models that can be validated based on existing data (Heffernan 2011);

(d) increased focus on the development and investigation of multiscale models, to
try to understand in an integrated manner the nonlinear interactions between the
different components of the immune system which act not only across different
spatial scales (from molecular, to cellular, tissue and eventually organ scales) but
also across different temporal scales (Cappuccio et al. 2015);

(e) combiningmathematical approaches from evolutionary ecology and immunology
to understand the evolution of immunological responses in an environmental-
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dependent context, thus leading to the further development of the eco-immunology
field (Norris and Evans 2000; Garnier and Graham 2014; Serichantalergs et al.
2010);

(f) in the context of an increase in human infectious diseases outbreaks (Smith et al.
2014), mathematical research will see the further development and investigation
ofmodels that link intra-host and inter-host dynamics,with particular applications
to the transmission (vector-borne and non-vector-borne) and control of existent
and emerging infectious diseases.

To conclude, we emphasise that mathematical immunology is one of the fastest
growing subfields ofmathematical biology, and the forthcoming yearswill see this sub-
fieldbecomingmore interlinkedwith experimental (and eventual clinical) immunology
research.
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Appendix 1: Similarities and Differences Between the Main Mathematical
Modelling Approaches in Immunology

1. Ordinary Differential Equations (ODEs) are the most mature models. They require a shorter
simulation time and can be easily calibrated against available data. For these reasons they are
preferred to describe interactions among very large numbers of cells/molecules. ODEs can also be
investigated using a variety of mathematical techniques: from uncertainty and sensitivity analysis,
to optimal control methods, bifurcation results and existence of bounded solutions (i.e.,
biologically realistic solutions). Moreover, these types of models have been used to develop
various immune simulator platforms, such as COPASI (Hoops et al. 2006), or BioNetGen (Faeder
et al. 2009)

2. Delay Differential Equations (DDEs) incorporate various time delays in the reactions. These
models are less common in mathematical immunology compared to classical ODEs. The DDEs
are also slightly more complex to simulate numerically (compared to the ODEs)

3. Stochastic Differential Equations (SDEs) are derived from ODEs, when the reaction rates between
the components of the system are probabilistic. Computationally, these models are slightly more
complex than the ODEs. The SDEs are also more difficult to parametrise compared to the ODEs.
Also, they are less common in mathematical immunology compared to the classical ODEs

4. Partial Differential Equations (PDEs) are more complex than the ODEs and DDEs and have started
to be used more often in the context of modelling spatial and age-related aspects of immune
processes. These models require a longer simulation time compared to the ODEs and DDEs and
cannot be calibrated very easily (especially when one has to approximate the movement rates of
cells/molecules through blood or tissues). Sensitivity analysis can also be applied to PDEs
(Kabala and Milly 1991), but this rarely happens for immunology models. Nevertheless, PDEs
can be investigated in more detail, due to a large number of analytical techniques available in the
literature
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5. Agent-Based Models (ABMs) are appealing to non-mathematicians because of the simple, logical
rules they incorporate (Chavali et al. 2008). These models can easily account for stochasticity in
immunological interactions and individual diversity in a population. However, they are relatively
difficult to parametrise. Moreover, these models are computationally very intensive and difficult to
analyse mathematically. Sensitivity analysis has been applied to these models (Kirschner et al.
2007), but the approach is still in its infancy. Since ABMs usually try to replicate the complexity
of biological systems, they have been used to construct a number of immune simulator platforms,
such as NFSim (Sneddon et al. 2011), Kappa (Danos et al. 2007), or ENISI (Wendelsdorf et al.
2011)

6. Cellular Automata (CA) models are appealing to non-mathematicians because of the simple rules
they incorporate. The CA models are computationally intensive and more difficult to parametrise
and analyse mathematically. Sensitivity analysis could be applied to CA models (Kocabas and
Dragicevic 2006), but the approach is still in its infancy

7. Hybrid models are the most complex models, since to simulate them one has to simulate separately
their different components (i.e., ODEs, PDEs, ABMs or CA components, using specific methods
for each of these components). Therefore, they are computationally intensive. They are also the
most difficult to calibrate, since each component has to be calibrated separately using specific
methods. Optimisation techniques or sensitivity analysis are almost never applied to these types of
models

Appendix B: Glossary of Mathematical Terms

Glossary

Agent-based models (ABMs) a modelling framework to simulate the dynamics of the components of the
system (called “agents”), in discrete time and space. Agents could be individual cells or molecules.
This dynamics is described by rules, which are usually literature-derived. The agents are mobile and
can interact with other agents or with the environment. Moreover, they can update their states
independently of one another

BioNetGen a software for rule-based modelling, which allows for the development of large systems of
ODEs, and/or the development of programs that implement discrete-event Monte–Carlo algorithms for
simulating stochastic kinetics

Cellular Automata (CA) a modelling framework related to ABMs, which defines a set of rules for
updating the state of cells on a grid (this state can be “on” or “off”)

Cellular Potts a lattice-based computational modelling framework that simulates the collective behaviour
of (some of) the components of the system (i.e., cells). It uses a set of probabilistic rules to update the
interactions among cells (i.e., cell-cell adhesion, cell signalling, cell proliferation, chemotaxis)

Complex system a system formed of numerous interconnected components, which interact with each
other. A complex system could exhibit feedback loops and emergent organisation

COPASI a modelling platform used for ODE-based modelling approaches of large systems
Deterministic a system (or a component of a system) whose behaviour is in the future is fully determined
by its current state

Eco-immunology an interdisciplinary field that combines aspects of immunology, ecology and evolution,
in an attempt to explain natural variation in immune responses

ENISI a modelling platform used for ABM-based modelling of large systems
Gillespie algorithm a type of Monte–Carlo algorithm that generates a realistic trajectory of a stochastic
system

Hybrid models models that could combine ODEs, with PDEs, ABMs or CA
Immuno-epidemiology an interdisciplinary field that combines individual (immunological) approaches
and population-level (epidemiological) approaches to investigate how differences in individual immune
responses affect the population dynamics of parasites or infectious pathogens

Integro (partial) differential models models given by equations that involve both integrals and derivatives
of functions
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Glossary

Kappa a modelling platform used for ABM-based modelling approaches of large systems
Latin hypercube method (or Latin hypercube sampling; LHS) a statistical method that generates a sample
of parameter values from a multidimensional distribution of values.

Monte–Carlo algorithms are computational methods to simulate the behaviour of a system (or
components of a system) for which stochastic fluctuations are important

NFSim a modelling platform used for ABM-based modelling approaches of large systems
Ordinary Differential Equations (ODEs) equations describing the time evolution of some variables
representing the averaged concentrations/densities for the components of the system. The models are
usually deterministic. They are appropriate to use when the spatial organisation of the components is
not important

Optimal control theory an optimisation method that leads to the selection of control policies, based on
some defined criteria. It usually reduces to finding the best value of an objective function (best in terms
of maximum or minimum), given a set of constraints.

Partial Differential Equations (PDEs) equations describing the time and (usually) space evolution of
some variables describing concentrations/densities for the components of the system. They are
appropriate to use when the spatial organisation of the components of the system is important

Principal component analysis (PCA) a statistical method that converts a set of possibly correlated
variables, into a set of uncorrelated variables called principal components. The first principal
component accounts for the most variability in the data, and the second principal component has the
second largest variance (being also orthogonal to the preceding component), etc. PCA is usually used
as a tool to explore the data

Sensitivity analysis a technique used to quantify the relation between the variation in the input parameters
and the effect on model outputs. Could be local (when one parameter is varied at a time) or global
(when variations in multiple parameters are investigated simultaneously)

Stochastic a system (or a component of a system) whose behaviour is driven by probabilistic rules. In
many stochastic models, the interaction rates between the components of the system are described by
probabilistic rules

Stochastic Differential Equations (SDEs) are derived from ODEs that incorporate probabilistic rates for
the interactions between system components
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