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Abstract Dengue is a growing public health problem in tropical and subtropical cities.
It is transmitted by mosquitoes, and the main strategy for epidemic prevention and
control is insecticide fumigation. Effective management is, however, proving elusive.
People’s day-to-day movement about the city is believed to be an important factor in

This work was partially funded by Mexico’s National Council for Science and Technology (Grant
Number: CONACYT - SALUD-2012-01-161157). JAFL was a PhD student at the National Autonomous
University of Mexico and was granted scholarships from CONACYT, the PISA Program from Juarez
Autonomous University of Tabasco, the CONACYT International Mobility Program from National
Autonomous University of Mexico and the Visiting Postgraduate Scholar Programme from University of
Bath. JAFL wishes to thank to Servicios de Salud de Morelos for its support to the main field project from
which this work was derived.

Electronic supplementary material The online version of this article (doi:10.1007/s11538-016-0209-6)
contains supplementary material, which is available to authorized users.

B Ben Adams
b.adams@bath.ac.uk

1 Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica,
Universidad 655, Colonia Sta. Maria Ahuacatitlán, Cerrada Los Pinos y Caminera. C.P., 62100
Cuernavaca, Morelos, Mexico

2 Organizacion Latinoamericana de Fomento a la Investigacion en Salud, Calle 110 No. 21-30, Of.
604, Bucaramanga, Santander, Colombia

3 Subsecretaría de Prevención y Promoción de la Salud, Lieja 7, 1er piso, Colonia Juárez,
Del. Cuauhtémoc, C.P. 06600 Ciudad de Mexico, Mexico

4 UTMB Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd.,
Galveston, TX 77555-0435, USA

5 Department of Mathematical Sciences, University of Bath, Bath BA27AY, UK

6 Present Address: Carlos Slim Health Institute, Lago Zurich 245, Edif. Presa Falcón piso 20,
Ampliación Granada. Del. Miguel Hidalgo, C.P. 11529 Ciudad de Mexico, Mexico

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-016-0209-6&domain=pdf
http://dx.doi.org/10.1007/s11538-016-0209-6


2012 J. A. Falcón-Lezama et al.

the epidemiological dynamics. We use a simple model to examine the fundamental
roles of broad demographic and spatial structures in epidemic initiation, growth and
control. We show that the key factors are local dilution, characterised by the vector–
host ratio, and spatial connectivity, characterised by the extent of habitually variable
movement patterns. Epidemic risk in the population is driven by the demographic
groups that frequent the areas with the highest vector–host ratio, even if they only
spend some of their time there. Synchronisation of epidemic trajectories in different
demographic groups is governed by the vector–host ratios to which they are exposed
and the strength of connectivity. Strategies for epidemic prevention and management
may be made more effective if they take into account the fluctuating landscape of
transmission intensity associated with spatial heterogeneity in the vector–host ratio
and people’s day-to-day movement patterns.

Keywords Epidemic model ·Metapopulation · Host–vector · Control · Demography

1 Introduction

Dengue fever is the most important mosquito-borne viral disease in the world. It
is caused by infection with any of the four serotypes of dengue virus. Nearly half
of the human population lives in a dengue transmission area. A number of vac-
cines are under development, including the tetravalent Dengvaxia (CYD-TDV) which
has been approved for use in several countries and recommended for introduction in
areas with high endemicity (WHO 2016). Until the efficacy of this vaccine is prop-
erly established, however, control measures will continue to rely on the reduction in
transmission between people and mosquitoes. As an arthropod-borne virus, the basic
process of dengue transmission is well understood. An infected vector transmits the
virus to a susceptible host who, after an intrinsic incubation period, transmits the virus
to another vector which, following an extrinsic incubation period, starts a new cycle.
This process is, however, influenced by numerous factors including climate varia-
tion, human migration, immune cross-reaction, vertical transmission and widespread
asymptomatic, but transmissible, infection (Adams et al. 2006; Kyle and Harris 2008;
Adams and Boots 2010; Descloux et al. 2012; Yoon et al. 2012; Rabaa et al. 2013). At
the scale of a city or conurbation the pattern of people’s local, day-to-day movements
is emerging as a key factor shaping dengue epidemics. Here we develop a mathemati-
cal model to improve our understanding of how quotidian urban movement behaviour
contributes to the risk of dengue epidemics, and the epidemic trajectories when they
do occur, and consider transmission control strategies that account for these patterns.

Humanmobility is known to be an important factor in infectious diseases epidemics
(Prothero 1977; Peiris et al. 2003; Merler and Ajelli 2010). The complexity of human
mobility is a challenge for field studies, but it has been estimated and characterised
by several methods including census surveys (Weber et al. 2003), cell phone usage
(Wesolowski et al. 2012) and GPS tracking (Seto et al. 2007). Recent studies have
started to examine how human mobility patterns are related to dengue transmission
(Vazquez-Prokopec et al. 2009, 2013; Stoddard et al. 2009). Understanding this rela-
tionship is particularly important because current dengue control measures rely on the
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management of mosquito vectors or the interruption of human–mosquito contact. The
World Health Organisation recommends that these control activities target residential
properties, their immediate vicinity and other locations where human–vector contact
occurs (WHO 2009). In practice, these activities tend to be focused on residential
properties due to limitations on cost, delivery and sustainability (Chang et al. 2011).
In addition, there is a lack of reliable information about human–vector contact out-
side of peridomestic areas. Recent field studies have reported the possibility that such
areas are important for dengue transmission in Southeast Asia and in South America
(Porter et al. 2005; Stoddard et al. 2013) but the extent of their role has yet to be
clarified.

Complementary to field studies, mathematical models have provided important
insights into the role of city-scale humanmobility in dengue transmission. Data-driven
individual-based simulation models incorporate detailed movement behaviours as a
matter of course, although analysis of these models does not usually focus on the
specific role of the mobility component (e.g. Chao et al. 2012; Karl et al. 2014). Some
more conceptual models have specifically focussed on the role of the mobility com-
ponent. The simplest models include random movement (Pongsumpun et al. 2008;
De Castro Medeiros et al. 2011) or regular commuter movement between two loca-
tions (Barmak et al. 2014; Nevai and Soewono 2013). More complex models include
multiple locations (Adams and Kapan 2009) and multiple population groups (Cos-
ner et al. 2009; Iggidr et al. 2014; Xiao and Zou 2014; Bichara and Castillo-Chavez
2015). Conceptual frameworks for modellingmovement can be broadly categorised as
Eulerian or Lagrangian. Eulerian approaches observe the flow of individuals through
fixed locations; individuals are labelled with their current location but not with addi-
tional identifiers such as their origin or residence. This method works well for models
of random or migratory movement. Lagrangian approaches track individuals’ move-
ments through all locations; individuals are labelled with their current location and
identifiers such as their origin or residential location. This method works well for
models of commuter movement (Okubo and Levin 2001; Cosner et al. 2009; Bichara
and Castillo-Chavez 2015).

The study we report here is motivated by the observation that, in broad terms, the
daily movement patterns of a population may be a combination of commuter move-
ment and random movement, often associated with different demographic groups.
We explore this idea by developing a fairly simple multi-patch multi-group model
framework that accounts for heterogeneous movement patterns and diurnal popula-
tion structures. This approach means that our model should not be viewed in direct
comparison with detailed individual-based simulation models. Instead it offers a com-
plementary perspective, based on the abstraction of motifs which may occur many
times within more detailed models, that is sufficiently simple and transparent to elu-
cidate the underlying mechanisms driving the epidemiological dynamics. We show
how the epidemic risk in the whole population is made up of contributions from dif-
ferent demographic groups with exposure to different mosquito populations. We show
how the epidemic trajectory through each of these groups is influenced by the mos-
quito populations in the places they visit, and the other groups that visit those places.
Finally, we consider how those factors affect epidemic management and prevention
strategies.
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2 Mathematical Model

We formulate the model as a deterministic compartmental system expressed in terms
of ordinary differential equations. In addition to employing analytic and numerical
methods to study this system, we simulate it stochastically by re-formulating it as an
agent-basedmodel. Themodel can be thought of as being composed of two submodels.
One corresponds to the spatial and demographic population structure, the other to the
epidemiological dynamics.

2.1 Population Structure and Movement Submodel

The spatial environment is divided into five patches (Fig. 1). Twopatches (Hi , i = 1, 2)
represent geographically distinct residential areas. Twopatches (Si , i = 1, 2) represent
locations that are geographically distinct from the residential areas but tightly coupled
socially so that the majority of people that commute to patch Si are resident in patch
Hi . These patches might, for instance, be schools. Note that we will sometimes
refer to the H , or S, patches by which we mean H1 and H2, or S1 and S2. The
fifth patch (W ) represents a location which receives commuters from both residential
areas. This patch might, for instance, be a large, centralised workplace. This five-patch
formulation was considered the minimum necessary to provide an insight into the
complex interplay of spatial and temporal structures. The population moves between
the patches. It is divided into seven groups based on movement behaviour. Groups
NMi , (i = 1, 2) are non-mobile. They remain in their designated residential patch (Hi )
at all times.These groupsmaybebroadly interpreted as the very old and the very young.
Groups NCi , (i = 1, 2) are non-mixing commuters. They commute to and from a
residential patch (Hi ) and the corresponding uniquely coupled destination patch (Si ).
These groups may be broadly interpreted as school children. Groups MCi , (i = 1, 2)
are mixing commuters. They commute to and from a residential patch (Hi ) and the
shared destination patch (W ). These groups may be broadly interpreted as the regular
workforce of large centres such as offices, factories, hospitals or markets. Note that

Fig. 1 Schematic diagram of
spatial structure and population
movement. H1 and H2 are
residential patches, and
non-mobile groups
(NM1, NM2) remain here all
the time. S1 and S2 receive
non-mixing commuters
(NC1, NC2) from H1 or H2,
but not both. W receives mixing
commuters (MC1, MC2) from
H1 and H2. The highly mobile
population (HM) moves
between all patches at random,
as indicated by the dashed lines
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we will sometimes refer to the NM group by which we mean NM1 + NM2, and
similarly for NC and MC groups. Group HM is highly mobile. They move between
all five patches frequently and at random. This group may be broadly interpreted as
peripatetic workers such as taxi drivers, small tradesmen or salesmen. The proportion
of the total population in group X is denoted pX , and the total size of group X in patch
Y is denoted NY

X . Individuals in the NCi and MCi groups leave their residential patch
at rate ρNC , ρMC and return at rate τNC , τMC . Individuals in the HM group move to
a random new patch at rate ρHM .

2.2 Epidemic Submodel

Each population group is subdivided into compartments according to disease state:
susceptible (S), exposed but not yet infectious (E), infectious (I ), recovered and
immune (R). The total size of the population of group X in patch Y and in disease
state Z is denoted ZY

X . Summing over all patches gives the total size of the population
in group X and state Z , ZX = ∑

Y ZY
X . Each patch Y also has a mosquito population

of size NY
V . Each mosquito population is subdivided into compartments according to

disease state: susceptible (S), exposed but not yet infectious (E) and infectious (I ). The
total size of the mosquito population in patch Y in state Z is denoted ZY

V . Mosquitoes
do not move between patches. The mosquito population in each patch has a constant
mortality rate μ, and birth rate κN

5 μ where N is the number of people in the entire
system. So, at equilibrium, each patch has one-fifth of the mosquito population and
the vector–host ratio in the whole system is κ . It would be straightforward to modify
the mosquito birth rates such that the vector–host ratio in the whole system is still
κ but mosquito population sizes are heterogeneous between patches. Non-uniform
mosquito distributions are likely typical in the real world. However, we maintain a
uniform distribution in order to focus on the role of human movement. We return to
this point in the discussion.

Mosquitoes are assumed to bite at a constant rate β regardless of the size of the
human population in their patch. Consequently, susceptible people in group X and

patch Y are infected at rate β
SYX
NY

Σ

I YV where NY
Σ is the total number of people in patch

Y . Following infection, people enter the exposed state and progress to the infectious
state at rate ε. They recover from the infectious state at rate γ and then retain lifelong
immunity. So, if the recovered population is initially zero,

∑
X RX (0) = 0, then∑

X RX (t) is the total number of people that have been infected and recovered at time
t , a measure of the epidemic size. Susceptible mosquitoes in patch Y are infected at

rate β
I YΣ
NY

Σ

SYV where I YΣ is the total number of infected people in patch Y . Following

infection, mosquitoes enter the exposed state and progress to the infectious state at rate
εV . They do not recover. The complete system is composed of 72 equations. The part of
the system representing the people in the non-mixing commuter (NCi ) groups is given
in Eqs. (1–8). The equations for the mixing commuter (MCi ) groups are similar. The
equations for the non-mobile (NMi ) groups are similar, except there are no movement
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terms, and these groups are restricted to the residential patches. The equations for the
highly mobile group (HM) are similar except there is a set of equations for each of the
five patches, the rate at which the population in state Z leaves patch Y is ρHM ZY

HM

and the rate at which the population arrives from each of the other four patches Ŷ is
ρHM
4 ZŶ

HM . All of these equations are provided in full in the Appendix. The part of the
system representing the mosquitoes in patch Y is given by Eqs. (9–11).

Similar multi-patch multi-host frameworks have been used in other recent studies.
Iggidr et al. (2014) consider a model with n groups, which may be thought of as
locations, and generalised terms for cross-transmission between these groups. Bichara
and Castillo-Chavez (2015) consider a model with multiple locations and multiple
socio-demographic host groups distinguished by the expected proportion of time spent
in each location (the residence time). Both of these studies are based on quite general
Lagrangian models and focus on rigorous mathematical analysis of the existence and
stability of equilibrium states.

2.2.1 Equations for Non-mixing Commuter Groups and Mosquitoes

dSHi
NCi

dt
= −β I Hi

V

SHi
NCi

N Hi
Σ

− τNC S
Hi
NCi

+ ρNC S
Si
NCi

(1)

dEHi
NCi

dt
= β I Hi

V

SHi
NCi

N Hi
Σ

− εEHi
NCi

− τNC E
Hi
NCi

+ ρNC E
Si
NCi

(2)

dI Hi
NCi

dt
= εEHi

NCi
− γ I Hi

NCi
− τNC I

Hi
NCi

+ ρNC I
Si
NCi

(3)

dRHi
NCi

dt
= γ I Hi

NCi
− τNC R

Hi
NCi

+ ρNC R
Si
NCi

(4)

dSSiNCi

dt
= −β I SiV

SSiNCi

N Si
Σ

− ρNC S
Si
NCi

+ τNC S
Hi
NCi

(5)

dESi
NCi

dt
= β I SiV

SSiNCi

N Si
Σ

− εESi
NCi

− ρNC E
Si
NCi

+ τNC E
Hi
NCi

(6)

dI SiNCi

dt
= εESi

NCi
− γ I SiNCi

− ρNC I
Si
NCi

+ τNC I
Hi
NCi

(7)

dRSi
NCi

dt
= γ I SiNCi

− ρNC R
Si
NCi

+ τNC R
Hi
NCi

(8)

where i = 1 or 2 and NHi
Σ is the total human population in patch Hi .

dSYV
dt

= κN

5
μ − βSYV

I YΣ
NY

Σ

− μSYV (9)
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Table 1 Parameter definitions and values used in all analysis and simulations in this paper unless otherwise
stated. All rates are per day

Parameter Meaning Value

N Total human population size 4000

pNC Non-mixing commuter proportion, evenly distributed between groups 1 & 2 0.25

pMC Mixing commuter proportion, evenly distributed between groups 1 & 2 0.3

pHM Highly mobile proportion 0.05

pNM Non-mobile proportion, evenly distributed between groups 1 & 2 0.4

ρNC Rate at which non-mixing commuters move from H -patch to S-patch 1.5

ρMC Rate at which mixing commuters move from H -patch to W -patch 1.5

ρHM Rate at which highly mobile individuals leave current patch 8

τNC Rate at which non-mixing commuters move from S-patch to H -patch 3

τMC Rate at which mixing commuters move from W -patch to H -patch 3

εh Incubation rate in people 0.25

γ Recovery rate of people 0.2

κ Overall vector–host ratio 1

εV Incubation rate in mosquitoes 0.14

μ Mortality rate in mosquitoes 0.14

β Transmissible biting rate of mosquitoes 0.26

dEY
V

dt
= βSYV

I YΣ
NY

Σ

− εV E
Y
V − μEY

V (10)

dI YV
dt

= εV E
Y
V − μI YV . (11)

2.3 Parameterisation

The parameter values used for computational analysis of the model are given in Table
1. The epidemiological parameters are reasonable estimates for dengue. εh = 0.25
corresponds to an expected incubation period in people of 4 days (Rudolph et al.
2014; Snow et al. 2014). γ = 0.2 corresponds to an expected infectious duration in
people of 5 days (Gubler et al. 1981; Duong et al. 2015). εv = 0.14 corresponds
to an expected incubation period in mosquitoes of 7 days; in reality, the incubation
period is strongly dependent on temperature, but 7 days is plausible for many areas
(Rohani et al. 2009). μ = 0.14 corresponds to a mosquito life expectancy of 7 days;
female Aedes mosquitoes are reported to live up to 30 days in laboratory conditions
(Xavier et al. 1991), but the greatly increased hazards of natural conditions make
7 days a reasonable estimate. The transmissible biting rate of 0.26 corresponds to
approximately one bite every 4 days. Female Aedes mosquitoes require blood in order
to complete their gonotrophic cycle. According toWong et al. (2011), the length of the
gonotrophic cycle is 3–4 days. The vector–host ratio κ gives a person–person basic
reproduction number R2

0 of approximately 2, a reasonable value for dengue (Kuno
1997). The total human population size N can be scaled out of the ordinary differential
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equation model, and so its value is arbitrary. However, it is fundamental in the agent-
based model and N = 4000 was the largest number for which simulations could be
computed sufficiently quickly. The other demographic parameters are broad estimates
based on cohort studies conducted by our group in Morelos, Mexico (Martínez-Vega
et al. 2015; Falcón-Lezama et al. submitted). The proportions of people in each group
pNM = 0.4, pNC = 0.25, pMC + pHM = 0.35 and movement rates are based
on age distribution and activity type data. The movement rates ρX , τX determine
the expected proportion of time individuals in each group spend in each patch. For
commuting groups, the proportion of time spent away from the residential location
is ρX/(ρX + τX ) = 1/3. For individuals in the highly mobile group, the expected
sojourn time in each patch is 1/8 day, representative of frequent movement but with
visits long enough for interaction with the local mosquito population.

3 Results

The model population is structured into two non-mixing ‘local’ subpopulations, each
composed of non-mobile (NMi ) residents in Hi and non-mixing commuters (NCi )
moving between Hi and Si . The subpopulations are connected by mixing commuters
(MCi ) moving between Hi andW , and the highly mobile (HM) population. We now
examine the role of each of these demographic groups in determining key epidemio-
logical characteristics such as the basic reproduction number, the final epidemic size
and themaximum prevalence.We particularly focus on the contrasting roles of the two
‘connecting’ groups, the mixing commuters and the highly mobile population. To this
end, the total population size is held constant, and the proportion of the population in
theMC and HM groups combined is held constant at p = pMC+ pHM . However, the
distribution of the population between these two groups is adjusted with a parameter q
where the proportion of the population in the HM group is pq and the proportion in the
two MC groups is p(1−q), divided equally between each of them. If q = 0, there are
no highly mobile individuals. If q = 1, there are no mixing commuters. The number
of mosquitoes in each patch is held constant. Consequently, adjusting the population
distribution between the MC and HM groups has two effects. It changes the nature
of the connection, and so the dispersal of infection, between the two ‘local’ popula-
tions. It also changes the size of the human population present in each patch. This is
important because of the dilution effect (Schmidt and Ostfeld 2001). If the size of the
human population increases, but the size of the mosquito population remains constant,
then frequency-dependent biting means that each person is bitten less often. Hence,
the expected number of mosquitoes infected by each infectious person decreases. But
the expected number of people infected by each infectious mosquito does not change.

3.1 Basic Reproduction Number

The basic reproduction number R0 is most generally defined as the expected number
of secondary infections resulting from a ‘typical’ infected individual in an otherwise
susceptible population. It is ameasure of the epidemic risk in a disease-free population.
In this definition, the so-called typical infected individual is composed of contributions
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from each infectious population group, both hosts and vectors, in proportion to their
representation in the initial exponential growth phase of the epidemic (Diekmann
et al. 2013). In the analysis of host–vector models, it is conventional to consider
the basic reproduction number over two infection generations, R2

0. This form has
the intuitive interpretation of the expected number of people infected by one typical
infection person, or the expected number ofmosquitoes infected byone typical infected
mosquito.

The basic reproduction number is easily found using the next-generation matrix
approach. Full details of this method can be found elsewhere (e.g. Diekmann et al.
2010). Briefly, we limit our attention to the infection subsystem, i.e. the equations for
those state variables that represent infected states, in our case EY

v , EY
X and I Yv , I YX for

all groups X and patchesY .We linearise this system about the disease-free equilibrium
and write the right-hand side of the differential equations as sum of two matrices, T
which represents transmission, i.e. the production of new infections, and Σ which
represents transition, i.e. change from one infected state into another. Then, KL =
−TΣ−1 is referred to as the Next Generation of Large Domain (Diekmann et al.
2010), or sometimes just the next-generationmatrix (VandenDriessche andWatmough
2002). The next-generation matrix of Large Domain can be reduced in dimension if
not all infected states are ‘states-at-infection’. These are the states individuals enter
immediately following infection, in our case EY

v , EY
X . This reduction is achieved by

constructing an auxiliary matrix E (as detailed in Diekmann et al. (2010)) such that
K = EKL E−1 has dimension equal to the number of states-at-infection and is the
next-generation matrix as defined in Diekmann et al. (1990). Element ki j of K is the
expected number of infections with state-at-infection i generated by one individual
that becomes infected with state-at-infection j . The basic reproduction number R0 is
the largest eigenvalue of K , which is also the largest eigenvalue of KL .

In the initial exponential growth phase of the epidemic, the relative proportions
of each state-at-infection remain constant and can be found from the next-generation
matrix K . If the host states-at-infection are indexed 1, . . . ,m and the vector states-
at-infection are indexed m + 1, . . . , n then the next-generation matrix has the form

K =
(

0 Kvh

Khv 0

)

where thematrix Kvh encapsulates the infection of hosts by vectors,

and Khv encapsulates the infection of vectors by hosts. The two generation matrix is

K 2 =
(
Khh 0
0 Kvv

)

where the elements of Khh = KvhKhv are the expected number of

host infectionswith state-at-infection i fromone infected hostwith state-at-infection j ,
and similarly with respect to vectors for Kvv = KvhKhv . The dominant eigenvalue of
K 2 is R2

0, which is also the dominant eigenvalue of both Khh and Kvv . The eigenvector

w associatedwith R2
0 has the formw =

(
h
v

)

whereh is an eigenvector associatedwith

R2
0 for Khh , and v is an eigenvector associated with R2

0 for Kvv (Turner et al. 2013).
Normalising h such that the sum of the elements

∑m
j=1 h j = 1 gives the proportional

representation of each host state-at-infection in the initial epidemic growth phase, i.e.
the composition of the ‘typical’ infected host.
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Fig. 2 The basic reproduction number and its constituents as a function of the proportion q of the total
highly mobile (HM) andmixing commuter (MC) population that is in the HM group. aBasic reproduction
number R2

0 for the entire metapopulation. Layers show the contribution to R2
0 from each demographic group

X = NM, NC, MC, HM . b Proportion PX of infections during the initial phase of the epidemic that occur
in each demographic group X = NM, NC, MC, HM . cReproduction numbers R2

0 j for states-at-infection
j—the expected number of people infected from one infected person with state-at-infection j during the
initial phase of the epidemic. States-at-infection j are EY

X for patch Y and group X . However, in this figure,
for each group X = NM, NC, MC, HM the reproduction numbers are almost identical for all patches Y
in which that group occurs. This means that the number of infections caused by an individual in any given
group X is only very weakly dependent on the patch Y in which that individual was infected. So we label
the lines in the graph by group X , but not patch Y . All parameters as in Table 1

The sum of column j = 1, . . . ,m of K 2
hh is the expected number of host infections

resulting (via vector-mediated transmission) from one infected host with state-at-
infection j . We label this R2

0 j . The contribution of each host state-at-infection j to

R2
0 is given by h j R2

0 j , the proportion of the infectious population in that state, and its
potential for onward transmission. To see this, let 1 be the column vector of length
m with all entries 1. Then 1T Khh is a row vector of length m with elements R2

0 j .
The expected number of infections from a typical infected host in the initial epidemic
growth phase is

∑m
j=1 h j R2

0 j = 1T Khhh = 1T R2
0h = R2

0

∑m
j=1 h j = R2

0. We find

the total contribution to R2
0 of hosts in group X , across all patches, by summing h j R2

0 j
over all states j that make up group X . In addition, we find PX , the proportion of hosts
in group X , across all patches, during the initial epidemic growth phase by summing
the appropriate h j terms.

Figure 2 shows how the value and composition of the basic reproduction number
depend on the population distribution q between theMC (mixing commuter) and HM
(highly mobile) groups. The components of this figure were computed numerically
from the next-generation matrix K , using the column sums, dominant eigenvalue and
associated eigenvector as described above.As q increases, and the HM group becomes
larger, R2

0 decreases, saturating when the HM–MC ratio is about 1:1 (q = 0.5).When
q = 0, about 80% of infections in the initial phase of the epidemic occur in the NC
(non-mixing commuter) group.When the HM–MC ratio is low, the number of people
in the H and W patches at any time is large compared to the S patches. So dilution
means that there is relatively little transmission in the H andW patches. As the HM–
MC ratio increases, individuals in the mixing commuter group become highly mobile
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and disperse among all the patches. There is a net increase in the number of people in
the S patches, diluting transmission. There is a small net decrease in the H patches,
and a large net decrease in the W patch, both increasing transmission. Consequently
the contribution of the NC group to R2

0 decreases. The contribution of the NM groups
increases slightly but, because all groups spend some time in the H patches, there is
strong dilution and transmission in these patches is never a major component of R2

0.
The contribution of the MC group to R2

0 initially increases as the HM–MC ratio
increases. The decrease in the local population size intensifies transmission in the W
patch. However, as the HM–MC ratio increases further, the declining size of the MC
group reduces its contribution to R2

0, despite the transmission intensification. The con-
tribution of the HM group increases because this group becomes larger. Furthermore,
HM individuals are exposed, for at least some of the time, to all of the mosquito
subpopulations including those in patches where the transmission intensity is high
due to the small number of people present. When q = 1, about 25% of infections in
the initial phase of the epidemic occur in the NC group, and about 60% occur in the
HM group.

3.2 Epidemic Trajectory

We now consider numerical solutions of the ordinary differential equation system to
examine how the demographic structure affects the transient epidemiological dynam-
ics beyond the initial epidemic phase. Stochastic simulations with the agent-based
model show broadly consistent behaviour (Supplementary Figures S1 and S2). Dilu-
tion remains an important factor, but the manner in which people spread the infection
among distinct mosquito populations also has a role.

Figure 3a–c shows how prevalence changes over time following the introduction of
infection into a susceptible population. When the highly mobile to mixing commuter
(HM–MC) ratio is low, the initial epidemic is driven by the non-mixing commuter
(NC) group, due to infection in the S patches. The infection is slow to spread to
groups associated with the H and W patches due to strong dilution in those patches,
and weak connectivity. In particular, the main route by which infection disperses
from the mosquito population in the S patches to that in the W patch is via the H
patches, where dilution is strongest and weak transmission slows the spread. The
infection does, however, become established in these patches eventually and, as the
epidemic reaches its peak and declines, the non-mobile (NM) and mixing commuter
(MC) populations account for a large proportion of infections. As the HM–MC ratio
increases, infections become distributed more evenly in proportion to the size of each
group throughout the entire epidemic. Although dilution continues to modulate the
local transmission intensity in each patch, highlymobile individuals disperse infection
from patches where the transmission intensity is high, because few people are present,
to patcheswhere the transmission intensity is lower. This dispersal tends to synchronise
the epidemics in each population group.

Figure 3d–e shows how key characteristics of the epidemic vary with the HM–
MC ratio. As this ratio increases, there is a marked decrease in the proportion of the
NC group that is infected. There is a smaller, but notable, decrease in the infected
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Fig. 3 The epidemic trajectory and its constituents as a function of the proportion q of the total highly
mobile (HM) and mixing commuter (MC) population that is in the HM group. a–c Prevalence over time
as a proportion of the total population (

∑
X IX (t)/N ) for q = 0.05, 0.5, 0.95. Layers show the contribution

from each demographic group (IX (t)/N ). d Proportion of the total population (
∑

X RX (1000)/N ), and of
each group (RX (1000)/NX ), infected over the entire course of the epidemic. eMaximum prevalence in the
total population, and in each group, during the epidemic. f Time of maximum prevalence in total population
and each group. Parameters as in Table 1. Initially, all population groups were entirely susceptible except
for five exposed individuals distributed evenly over all 15 exposed classes of the human population, i.e.
SYX (0) = NY

X (0) − 5/15, EY
X (0) = 5/15 for all 15 valid combinations of group X and patch Y

proportion of the HM group, although the total size of this group increases. There is a
marked increase in the infected proportion of the MC group, although the total size of
this group deceases, and a slight increase in the infected proportion of the NM group.
The net impact on the entire population is just a slight increase in the total proportion
that is infected. The changes are mainly related to the extent of dilution in the patches
people in each group frequent.

As the HM–MC ratio increases, the maximum prevalence, at the epidemic peak,
decreases markedly in the NC group, decreases and then increases in the HM group,
increases markedly in the MC group and remains almost constant in the NM group.
Overall, the maximum prevalence shows only slight variation, reaching a minimum
when the HM–MC ratio is 1:1. When the HM–MC ratio is low, the maximum
prevalence is reached in the NC and HM groups at about the same time, before the
other groups. The local epidemics in the NC groups drive the epidemic in the HM
group, but it is slow to spread to the other groups due toweak connectivity and dilution.
When the HM–MC ratio is intermediate, themaximum prevalence is reached at about
the same time in the NC, MC and HM groups. The transmission intensity is similar
in the S andW patches, and they are strongly connected by the HM population.When
the HM–MC ratio is high, the maximum prevalence is reached in the MC and HM
groups at about the same time, before the other groups. The local epidemic in the MC
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0 from each patch type. Parameters as in Table 1

group drives the epidemic in the HM group and builds slightly more slowly in the
other groups due to dilution.

4 Epidemic Management and Prevention

One of the primary methods of dengue control is fumigation to reduce the size of
the adult mosquito population. We consider two aspects, epidemic prevention and
epidemic management. A disease-free population will remain disease-free if the basic
reproduction number is less than 1. Our model parameterised as in Table 1 has R2

0 > 1
for all values of q. So, for epidemic prevention, we consider the extent to which the
mosquito population in each patch must be reduced in order to reach the threshold
R2
0 = 1. Figure 4c shows the contribution of each mosquito population to R2

0. Figure
4a shows the reduction in each of these populations required for R2

0 = 1. When the
HM–MC ratio is low, epidemic prevention can be achieved by reducing the mosquito
population by 60% in the S patches, or by 55% in the S andW patches, or by just over
50% in the S and H patches, or by 50% in all of the S, H and W patches. Targeting
the W or H patches alone cannot prevent an epidemic.

We evaluate the control effort associated with each of these strategies by assum-
ing it is proportional to the total reduction in the mosquito population size. So, given
equal mosquito population sizes in each patch, the effort required for a reduction by
a proportion r in n of the five patches is n

5r . Figure 4b shows the effort required by
each strategy. For q close to 0, it is most efficient to target the S patches only. As q
increases, it becomes beneficial to include the W patch because of high transmission
associated with the localised increase in the vector–host ratio in that patch. Strategies
that include the H patches are less efficient because low vector–host ratios in these
patches mean that the extra effort of treating two additional areas has a limited return.
For larger values of q, which lead to high vector–host ratios in the W patch, it may be
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more efficient to target all patches than just the S and H patches. As the HM–MC ratio
increases, epidemic prevention requires a greater reduction in the mosquito population
if only the S patches are targeted. The benefit of including the H patches in the pre-
vention strategy remains similar, but the advantage of including theW patch increases
markedly. The focus here is on the role of the mosquito population in each patch, not
the human population groups, although it is the latter that are usually observed in epi-
demiological data. In this particular model system, an epidemic requires transmission,
i.e. the presence of mosquitoes, in the S patches. Hence, epidemic prevention requires
reducing the mosquito populations in these patches. However, as the HM–MC ratio
increases, the role of the S patches reduces due to dilution and the role of the W
patch becomes more important due to transmission intensification and the dispersal of
infection to other patches. Consequently, prevention may be achieved more efficiently
by a strategy that also includes this patch.

If R2
0 > 1 and infection is introduced into the population, an epidemic will occur,

at least in the deterministic model. For epidemic management, we consider how the
trajectory of this epidemic is affected by reducing some or all of the mosquito popula-
tions whenever a specified trigger incidence is reached in the entire human population.
We consider several strategies based on applying the control to the mosquito popula-
tions in different subsets of patches. This model assumes that the control method is
fumigation. In order to simulate the operational limitations encountered in the field a
control decision is made every seven days, based on the incidence over the previous
seven-day period. If incidence exceeds the trigger values, all of the mosquito popula-
tions included in the control strategy are reduced instantaneously to zero. Of course,
such effective mosquito eradication is not possible in reality but, in our model, it pro-
vides a clear illustration of the potential impact of mosquito reduction measures on the
epidemiological dynamics. The control is repeated whenever the seven-day incidence
reaches the trigger level. As themosquito population grows again, transmission returns
and the epidemic builds again if the susceptible population is still sufficiently large.
Nevertheless, transmission control stalls the epidemic momentum and can reduce the
final epidemic size, as well as spreading the demands on the healthcare system.

Figure 5 shows the final epidemic size, relative to the final size of an uncontrolled
epidemic, as a functionof the trigger incidence.Applying the control to all themosquito
populations simultaneously can reduce the final epidemic size by up to 25%. The
reduction is largest when the trigger incidence is low. In this case, control is applied
several times over the course of the epidemic. Higher trigger incidences tend to lead to
less effective management, but the effect is not monotonic. The point in the epidemic
at which the control is applied is critical because management is only achieved by
reducing the epidemicmomentum. It turns out that, if the trigger incidence is increased
but the number of controls does not change, the epidemic management becomes more
effective, i.e. the final epidemic size decreases. However, if the interplay of the control
and the epidemic trajectory is such that increasing the trigger incidence causes one
less control to be triggered over the course of the epidemic, there is a sharp drop in
the effectiveness of the epidemic management; the final epidemic size is much larger.
Some examples are shown in Supplementary Information, Figure S3. The HM–MC
ratio has little impact on the effectiveness of this epidemic management strategy.
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Fig. 5 The epidemiological impact of applying mosquito control whenever the weekly incidence in the
human population exceeds the trigger incidence. The top row shows the final epidemic size, in all patches
and groups, relative to the final size of the corresponding uncontrolled epidemic. The bottom row shows the
number of times the control is applied. The first column shows the result of applying the control to all five
patches, the second column to patches H1 and H2 only, the third column to patches S1 and S2 only and the
fourth column to patch W only. The shade indicates the proportion q of the total highly mobile (HM) and
mixing commuter (MC) population that is in the HM group. Light grey: q = 0.05, dark grey: q = 0.5,
black: q = 0.95. Parameters as in Table 1. Initial condition as in Fig. 3

If the control is applied only to the S patches, it is triggered approximately twice as
often, and is less effective, than when the control is applied to all patches. However,
there is still a pattern of increased trigger incidences improving the effectiveness of
management until the number of controls changes and the effectiveness suddenly drops
again. If the control is applied only to the H orW patches, the pattern is different. Each
control application is less effective at stalling the epidemic, largely because extensive
transmission continues in the S patches. So these local controls are triggered frequently
over the course of the epidemic. If the trigger incidence is increased, the number
of controls and the management effectiveness decreases approximately linearly, at
least until the number of controls becomes small. When the control is applied to the
W patch only, the potential reduction in the final epidemic size is relatively modest
because all the population groups that visit theW patch can also be infected elsewhere.
However, when the control is applied to the H patches only, the impact on the final
epidemic size can be commensurate with applying the control to all patches. The
frequent controls virtually halt transmission in the H patches throughout the epidemic,
effectively protecting the non-mobile population that is permanently resident in those
patches. Simulations with the agent-based model show broadly consistent behaviour
(Supplementary Information Figure S4) although the average of the stochastic trials
does not show the sharp drops in the effectiveness of epidemic management observed
in the deterministicmodel; this effect is smoothed away because the randomvariability
in the epidemic trajectories leads to considerable variability in the number of controls
that are applied.
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5 Discussion

A number of recent models have studied the role of human mobility in dengue virus
transmission. These models often describe human movement as a commuting pattern
between two places. However, field findings (Vazquez-Prokopec et al. 2009), and our
group’s ongoing field observations using individual GPS tracking, have shown that
day-to-day human movement in dengue endemic communities can involve multiple
fixed destinations or random movement. In this paper, we have explored some of
the epidemiological implications of a more complex commuting structure, and the
basic mechanisms behind them. We modelled spatial structure as patches, each with a
local mosquito population. These patches represent the broad locations in a city where
people carry out their normal daily activities.Wemodelled population structure as sub-
populations with mobility profiles broadly based on demographic characterisations.
Some of these subpopulations have well-defined commuting patterns, others do not
stray from their residential areas, others are highly mobile and spend short periods of
time in each area of the city.

Our objective was to develop a model that has meaningful structure but remains
simple enough for transparent analysis and interpretation. Of course, all mathematical
models aim to capture the important features of the real-world systemwithout unneces-
sary complexity, but the assessment of necessity is subjective and context dependent.
Some modelling studies of dengue management strategies have employed detailed
individual-based simulations developed, calibrated and validated using extensive field
data. These simulation models have typically been used to assess the impact of a spe-
cific intervention, e.g. vaccination or mosquito control, in a specific population (Chao
et al. 2012; Karl et al. 2014). The attention to detail in these models makes the broad
correlations they reveal between different aspects of the system compelling. But the
intricate complex of interactions between large numbers of components can render
the mechanisms behind those correlations opaque and so limit the potential for gener-
alisation. Consequently we did not attempt to simulate every aspect of the real world
such as detailed individual movement patterns, temporal variation in behaviour driven
by weekends or holidays (Danon et al. 2009; Martínez-Vega et al. 2012), variation
in rainfall, temperature or breeding site availability (Otero and Solari 2010). The key
drivers of the epidemiological dynamics in this study are dilution and connectivity.
The relative simplicity of the model allows us to observe the complex mechanisms at
work.

Our main parameter was the population size ratio between the highly mobile and
mixing commuter groups. The highly mobile population moves frequently and is
dispersed evenly over all patches. The mixing commuter populations are distributed
between their residential patches and a common destination patch. Increasing the ratio
transforms mixing commuters into highly mobile individuals, who disperse widely.
This change intensifies transmission in the common destination patch, and to a small
extent in the residential patch, because there are fewer people there at any given time.
Conversely, it dilutes transmission in the other destination patches, those visited by
the non-mixing commuter population, because there are more people there at any
given time. Highly mobile individuals also disperse the infection risk, synchronising
the epidemic trajectories in different population groups. The mosquito populations in
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patches in which transmission is intense because the vector–host ratio is high act as
reservoirs and hubs of infection maintained and disseminated by the highly mobile
group. In our model, the size of the mosquito population is the same in all patches.
Consequently, the residential patches do not function as infection reservoirs because
there are many people there at any given time and dilution is strong. Clearly the
vector–host ratios could be adjusted non-uniformly to make the transmission intensity
highest in the residential patches, or any other patch. A comprehensive analysis of
the resultant plethora of combinations of host, mosquito and spatial heterogeneities
would be laborious. However, we anticipate that non-uniform mosquito populations
would change theway inwhich the epidemics in different population groups or patches
are related, but not produce any fundamental new insights with regards the relation
between dilution, connectivity and epidemic control.

In our model set-up, the transformation of individuals that commute to a common,
centralised, destination to individuals that are highly mobile reduces the epidemic risk
as quantified by the basic reproduction number. This reduction is primarily due to the
dispersal of highly mobile individuals diluting transmission in the patches where it
was previously most intense. The reduction in the epidemic risk saturates when the
reduction in the mixing commuter population intensifies transmission in the common
destination patch to the point where it compensates for the dilution in other patches.
This suggests that, as a rule of thumb, in a moderately well-connected population the
epidemic risk may be determined by the areas with the highest transmission inten-
sity, i.e. the highest vector–host ratio. When an epidemic does occur, connectivity and
dilution are also key factors governing its trajectory and composition. As a general
rule, the epidemic grows more quickly in populations associated with patches where
the vector–host ratio, and the transmission intensity, is highest. If the highly mobile
population is small, and the connectivity between patches is rigidly structured, the
sequence of epidemics in different population groups is governed by the extent of
dilution in the patches they frequent. The spread of infection between populations
associated with two patches may also be slowed by an intermediate patch in which
dilution is more extensive. Conversely, a large highly mobile population synchronises
the local epidemics associated with each patch. The size of the highly mobile popula-
tion does not, however, have much impact on the final epidemic size as the infection
reaches all patches and populations eventually.

Dengue epidemics may be stalled if transmission is controlled by insecticide fumi-
gation. If the mosquito population quickly recovers to its former level, this type of
control will not end the epidemic, but stalling can reduce the final epidemic size and
limit health service saturation. For diseases such as dengue, this type of epidemic
management may be a more realistic and immediate public health goal than eradi-
cation. The efficiency and effectiveness of the strategy depend on which mosquito
populations are targeted, and the precise points in the epidemic at which the control
is applied. Infrequent control is required if the targets include mosquito populations
in patches visited by a considerable proportion of the population, but where dilution
is not too extensive. In our case, these are the destination patches where commuters
do not mix. Temporarily eradicating these mosquito populations reduces the epidemic
momentum sharply and it may be some time before incidence increases sufficiently
to trigger another control. The efficiency of these controls, in terms of reducing the
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final epidemic size, may be improved by waiting longer for the epidemic to growmore
before applying them. However, this strategy is risky because waiting too long can
result in sudden increase in final epidemic size. Frequent control is required if the
targets do not include the mosquito populations in patches visited by a considerable
proportion of the population, or where there is extensive dilution. In our case, these are
the residential patches and the destination patch where commuters mix. Temporarily
eradicating these mosquito populations once an epidemic is well underway has a lim-
ited impact on infection prevalence in any population group that comes into contact
with the mosquito population elsewhere. If the groups involved are relatively large,
transmission in these patches maintains overall epidemic momentum. Nevertheless,
if there is a large population group that does not come into contact with the mosquito
population elsewhere, eradicating the mosquito population in their local patch can
have a significant impact on the final epidemic size. In our case, repeated controls
to maintain very small mosquito populations in the residential patches proved to be
an effective, although possibly not efficient, approach to managing the final epidemic
size.

An obvious question to ask is, can movement restrictions prevent or control an epi-
demic? The insights gained from our model suggest that only the complete cessation
of movement to a patch, or collection of patches, would be effective. A limited reduc-
tion of movement is worse than doing nothing. As before, the mechanism driving this
observation is dilution. To see this, consider movement reduction modelled by con-
verting a proportion of a commuter group to non-mobile individuals. The remainder
of the commuter group continues to travel to and from their destination patch as usual.
However, the reduction in commuter numbers increases the vector–host ratio in the
destination patch, increasing the transmission intensity in the remaining commuter
group, and any other group that visits that patch. Even if the entire commuter group is
prevented from visiting their usual destination, if highly mobile individuals continue
to visit that patch, it will be a transmission hotspot. These insights are derived from the
deterministic model and will break down when population sizes become very small,
but the general inference is instructive—locations should be quarantined, not people.

Intervention strategies to control dengue epidemics should, ideally, be informed by
simulation models supported with high-quality field data. The simpler model we have
presented here supports the development of those models by identifying key dynami-
cal processes that influence how epidemic control is affected by human mobility, and
providing quite general insights that may be helpful in the absence of detailed models.
In particular, this modelling study helps to explain why the control of dengue out-
breaks seems to be more difficult in some cities than in others. It is not just the number
of mosquitoes that is important, but the fluctuating transmission landscape associated
with spatial heterogeneity in the vector–host ratio and people’s daily movement pat-
terns. In public health, one of the main parameters used for stratifying transmission
risk areas is the estimated vector density, obtained by entomological indicators such
as the Breteau index, house index, pupal index or positive ovitraps (Sanchez et al.
2006, 2010; Garelli et al. 2009; Pepin et al. 2013). The main objective of preventive
measures is to keep these indicator values low. The importance of the dilution effect in
our model suggests that these indicators should be extended to factor in the number of
people spending at least part of their day in the area. It is clear that well-coordinated
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eradication of the mosquito population across the widest possible spatial area is the
best way to reduce the risk of a dengue epidemic occurring, and to manage transmis-
sion if it does. However, logistic limitations can make this level of coverage difficult to
achieve in the field. In this case, control targeted at specific areas can be a reasonably
effective alternative.
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Appendix: Complete System Equations
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Mixing commuter groups (MCi )
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dSYHM

dt
= −β I YV

SYHM

NY
Σ

− ρHM SYHM + ρHM

4
SΣ\Y
HM (32)

dEY
HM

dt
= β I YV

SYHM

NY
Σ

− εEY
HM − ρHM EY

HM + ρHM

4
EΣ\Y
HM (33)

dI YHM

dt
= εEY

HM − γ I YHM − ρHM IYHM + ρHM

4
IΣ\Y
HM (34)
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dRY
HM

dt
= γ I YHM − ρHM RY

HM + ρHM

4
RΣ\Y
HM (35)

where Y = H1, H2, S1, S2 or W, NY
Σ = NY

NM1
+ NY

NM2
+ NY

NC1
+ NY

NC2
+ NY

MC1
+

NY
MC2

+ NY
HM and ZΣ\Y

HM = ZH1
HM + ZH2

HM + Z S1
HM + Z S2

HM + ZW
HM − ZY

HM for all
infection states Z .
Mosquitoes

dSYV
dt

= κN

5
μ − βSYV

I YΣ
NY

Σ

− μSYV (36)

dEY
V

dt
= βSYV

I YΣ
NY

Σ

− εV E
Y
V − μEY

V (37)

dI YV
dt

= εV E
Y
V − μI YV (38)

where Y = H1, H2, S1, S2 or W, NY
Σ = NY

NM1
+ NY

NM2
+ NY

NC1
+ NY

NC2
+ NY

MC1
+

NY
MC2

+ NY
HM .
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