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Abstract Many animals spend large parts of their lives in groups.Within such groups,
they need to find efficient ways of dividing available resources between them. This is
often achieved by means of a dominance hierarchy, which in its most extreme linear
form allocates a strict priority order to the individuals. Once a hierarchy is formed, it is
often stable over long periods, but the formation of hierarchies among individuals with
little or no knowledge of each other can involve aggressive contests. The outcome of
such contests can have significant effects on later contests, with previous winnersmore
likely to win (winner effects) and previous losers more likely to lose (loser effects).
This scenario has been modelled by a number of authors, in particular by Dugatkin. In
his model, individuals engage in aggressive contests if the assessment of their fighting
ability relative to their opponent is above a threshold θ . Here we present amodel where
each individual can choose its own value θ . This enables us to address questions such
as how aggressive should individuals be in order to take up one of the first places in the
hierarchy?We find that a unique strategy evolves, as opposed to amixture of strategies.
Thus, in any scenario there exists a unique best level of aggression, and individuals
should not switch between strategies. We find that for optimal strategy choice, the
hierarchy forms quickly, after which there are no mutually aggressive contests.
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1 Introduction

Very often, animals that share the same territory engage in pairwise aggressive inter-
actions leading to the formation of dominance hierarchies Hand (1986). Here we are
interested in groups of animals that are meeting for the first time and have to engage
in these aggressive interactions in order to divide their resources. In smaller groups
of animals, the hierarchy tends to be linear where one individuals dominates all of
the others, a second individual dominates all of the others in the group except the
top-ranked individual and so on (see Addison and Simmel 1970; Barkan and Strahl
1986; Goessmann et al. 2000; Wilson 1971). In larger groups of animals, the hierar-
chy is more complex, where the position of especially lower-ranked individuals may
be unclear, e.g. in chimpanzees, baboons, hyenas (Kummer 1984; Möller et al. 2006,
2001;Widdig et al. 2001). Some animals are more aggressive than others, and the level
of aggressiveness depends upon many factors such as experience, the value of win-
ning the contest and resource holding potential (RHP) (see e.g. Blanchard et al. 1988;
Blanchard and Blanchard 1977; Moss et al. 1994; Takahashi and Lore 1983; Taylor
1982).In our model, RHP is simply the ability of an individual to win an escalated con-
test (Parker 1974), abstracted away from any particular causal effect. In reality, there
are a large number of elements that determine the RHP. Very broadly, these elements
can be divided into physical attributes, such as size, age and physical strength (intrinsic
factors), and psychological attributes, such as prior experience (extrinsic factors).

In more detail, there are a lot of results demonstrating a strong correlation between
RHP and body size (Alexander 1961; Bridge et al. 2000; Lindström 1992). For exam-
ple, it has been observed that larger animals are more aggressive towards smaller ones
and that they have more chances of winning an encounter (Frey and Miller 1972;
Knights 1987). However, other results show that such physical attributes are not the
only important determinant of RHP. For example, Brown et al. (2006) showed that
37.5% of the group in house crickets won aggressive interactions, even though they
had smaller body size. In Hofmann and Schildberger (2001), bigger individuals lost
30% of the aggressive interactions.

Prior experience as well can have an important effect on the RHP of an individual.
For example, if an individual has won more fights than it has lost in the past, it may
increase its potential to win in the future.

The aim of this paper is to explore the relationship between extrinsic factors, in
particular prior experience, and hierarchy formation. Therefore, we assume in our
model that all individuals have identical physical abilities, so that the outcome of an
encounter is significantly determined by past experience (although our results depend
upon only a mechanical updating of RHP after a contest, so it would allow for real
physical as well as psychological changes, too). In particular, we consider so-called
winner and loser effects. The winner effect occurs when winning a previous contest
increases the chances that an animal wins a subsequent contest. The loser effect occurs
when a previous loss similarly increases the chances of defeat in the next contest.

A number of authors have analysed the influence of winner and loser effects on
dominance hierarchy formation (e.g. Bonabeau et al. 1999; Dugatkin 1997; Dugatkin
and Dugatkin 2007; Hemelrijk 2000). The first models were developed by Landau
(Landau 1951a, b). He demonstrated the importance of the winner and loser effects:
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only when extrinsic factors were considered in addition to intrinsic ones, did the
resulting hierarchies resemble those found in nature. Landau considered populations
where winner and loser effects were operating together, but there is evidence that some
groups of animals experience either winner or loser effects only (Bakker et al. 1989;
Bergman et al. 2003;Lindquist andChase 2009; Schuett 1997).Dugatkin andDugatkin
(Dugatkin 1997; Dugatkin and Dugatkin 2007) developed a model where these effects
were considered in isolation, or both to be present in a group of 4 individuals. In
Dugatkin (1997), each individual could only knew its own RHP after a win or loss,
but they did not have any information about their opponents strength, except at time
t = 1.He predicted thatwhen only thewinner effect is at play, the emerging dominance
hierarchies are linear and the strength of the winner effect is not important. Contrary,
when only the loser effect is present, hierarchies where only the top-ranked individual
is determined are found (the positions of the rest of the group stay unclear). When
both winner and loser effects are present, nonlinear hierarchies emerged where only
the first place, and sometimes the second place, was clear in the group. InDugatkin and
Dugatkin (2007), each individual was aware of their own RHP and they could make an
imperfect estimate about their opponent’s RHP at each point in time.He concluded that
overestimating or underestimating the opponent’s strength does not have any influence
on linearity: in both cases, linear dominance hierarchies were established.

In Kura et al. (2015), we analysed the temporal dynamic and the average behav-
iour of dominance hierarchy formation for different combinations of winner and loser
effects, using the model developed by Dugatkin (1997). We concluded that it is not
necessary for a group of individuals to have perfect knowledge of each other’s RHP
in order to establish a linear dominance hierarchy; only a little information about
the current RHP estimation of an individual’s opponent is enough to establish a lin-
ear dominance hierarchy. We used different statistical measures such as the overlap
between the distribution of the RHP of each individual over time to check for distin-
guishability between a pair of individuals. The index of linearity was used to measures
how far from linearity each hierarchy is. Furthermore, we considered the question of
howmany fights are needed for a dominance hierarchy to be established, and we found
that this number is relatively low.

In Dugatkin (1997) and Dugatkin and Dugatkin (2007) (as well as Kura et al.
2015), each individual had the same fixed level of aggression; they would retreat
for the same excess of the number of wins over the number of losses. In this paper,
we introduce game-theoretical elements in the form of aggressiveness level into this
model. We assume that each individual can choose its own strategy, independent of
their opponent’s strategy.We are particularly interested in determining the appropriate
level of the aggression threshold and exploring whether a unique strategy, or mixture
of strategies, emerges in the population considered. Our model set-up allows us to
answer questions such as under what circumstances should an individual fight more
in order to establish a higher rank in the hierarchy and when should it retreat? We
use a framework similar to the Hawk–Dove model Maynard Smith (1982), where an
individual can choose to either fight or concede, with each individual making its choice
simultaneously. When two individuals choose to fight, they engage in an aggressive
interaction; the winner will increase its RHP by a factor 1 + V1, and the loser will
reduce its RHP by a factor 1−C1. When one individual fights and the other concedes,
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the individual that chooses to fight increases its RHP by a factor 1 + V2 and the
retreating individual has its RHP reduced by a factor 1 − C2. In the case when both
individuals retreat, they have their RHPmultiplied by 1−C2. Individuals choose their
own strategies, meaning whether to fight and or to concede in an aggressive interaction
given their history of fights won and lost, from a range of possible strategies. For
each of these possible strategies, we will determine the resulting expected payoff and
conclude whether the chosen strategy is beneficial to the individual or not. We will
analyse two cases: when each individuals choose a strategy that enables them to fight
in all interactions, and when they choose strategies that enable them to fight until
a certain point in time (based upon how many contests they have won or lost) and
retreat afterwards. We will determine the evolutionarily stable strategies (ESSs) for
this fighting game, where an ESS is a strategy that when played by almost all members
of the population cannot be invaded by any other strategy. We will also calculate the
possible stopping times of the game for different strategies and analyse the relationship
between the stopping time and the difference of the number of wins and losses for an
individual.

As explained above, individuals fight for more access to resources and we will
investigate the effects of different payoff functions on the ESSs within our model. In
particular, we compare payoffs which depend upon the level of resource an individual
receives to those which depend upon the proportion of the overall resource that it
receives. The latter payoff function is particularly appropriate when resources are
scarce. Once the dominance hierarchy is established, it is easier for the group to divide
resources between them: the higher the position in the hierarchy, the higher the payoff.
The division of resources has been analysed by different authors (see e.g. Broom and
Ruxton 2001; Keller and Reeve 1994). We will use the concept of reproductive skew
(Broom et al. 2009; Keller and Reeve 1994; Reeve and Keller 2001; Shen and Reeve
2010; Vehrencamp 1983), which refers to the distribution of reproductive rights in
a group of animals. We will use the term more generally to refer to how limited
resources, and hence, payoffs (which are generally proportional to reproductive levels
in evolutionary games) are divided among our group. When the reproductive skew is
high, the division of resources is uneven with the high-ranking individuals obtaining
more resources than the lower-ranking ones (for example, seeDrews1993;Monnin and
Ratnieks 1999; Rood 1980). In contrast, if the reproductive skew is low, the division
of resources is even and all ranks of individuals have similar resource levels (see
Brown 2014; Mangold et al. 2015). Further, we will explore the interplay between all
three game-theoretical elements, Vi , Ci and strategies θx , and analyse whether there
is a general pattern for the ESS when the Vi and Ci are increased (or decreased).
Additionally, we develop a simulation framework to investigate the effect of the group
size on the level of aggression. We note that Andersen et al. (2004) developed an
alternative optimisation-based model to analyse the effect of group size on aggression
level and showed that the theoretical results obtained are supported by experimental
data observed in domesticated pigs; we discuss this in Sect. 6. Lastly, we compare our
theoretical results with experimental evidence which is rather different for different
groups of animals such as birds, farmed animals or fish (see e.g. Andersen et al. 2004;
Bilčık and Keeling 2000; Estévez et al. 1997; Estevez et al. 2007; Kotrschal et al.
1993; Nicol et al. 1999; Syarifuddin and Kramer 1996; Turner et al. 2001).
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2 The Model

We assume a large population of social individuals living together in groups. At the
beginning of the consideration, groups of size N are randomly formed, so that all
individuals are members of a group and we analyse a specific group of N individuals.
Each individual has an RHP value, which, as mentioned in the Introduction, is a
measure of its ability to win an aggressive interaction (cf. Dugatkin 1997; Dugatkin
and Dugatkin 2007) and which is altered by the outcome of each interaction. At the
beginning, all individuals are assigned the same initial RHP, denoted by RHPinitial.
We assume that all individuals know their own RHP and that of any opponent. In each
round t (t = 1, ..., T ), two individuals are randomly chosen to engage in an aggressive
interaction, while the rest of individuals do not engage in any aggressive interactions.
Through time, an individual’s RHP changes due to winning or losing (in reality, it
will be mainly the extrinsic factors than change, but our model could cope with other
eventualities equally well), while a win increases the RHP, a loss decreases it and each
individual keeps track of the changes in their own RHP and that of its opponents. More
precisely, suppose that at time t the two individuals pitted against each other are x and
y. We denote by RHPx,t individual x’s RHP at time t . Individual x can decide to be
aggressive or retreat once it has been chosen and this decision is based on the strategy
θx ≥ 0 which is its aggression threshold.

Individual x fights individual y at this time (plays Hawk) if

RHPx,t
RHPy,t

≥ θx (1)

holds, otherwise it will retreat (play Dove), where RHPy,t and θy are the individual’s
y RHP assessment score at time t and its aggression threshold, respectively. From the
pairwise interaction, we get one of the following outcomes:

1. Both individuals x and y decide to engage in an aggressive interaction and the
probability that x wins is given by

Px,y(t) = RHPx,t
RHPx,t + RHPy,t

, (2)

and consequently, individual y wins with a probability Py,x (t) = 1 − Px,y(t).
2. One individual engages in the aggressive interaction and the other retreats.
3. Both individuals decide not to fight (which is known as a double kowtow).

After a win, the RHP increases, and after a loss, it decreases. More precisely, if
individual x wins and individual y loses, then they increase and decrease, respectively,
their own RHP as follows:

RHPx,t+1 = (1 + V1)RHPx,t , (3)

RHPy,t+1 = (1 − C1)RHPy,t . (4)
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If individual x wins and individual y retreats, then they increase and decrease, respec-
tively, their own RHP as follows:

RHPx,t+1 = (1 + V2)RHPx,t , (5)

RHPy,t+1 = (1 − C2)RHPy,t . (6)

Equivalent changes to the RHPs apply if individual y wins.
If both individuals retreat (double kowtow), then they decrease their RHPs as fol-

lows:

RHPx,t+1 = (1 − C2)RHPx,t , (7)

RHPy,t+1 = (1 − C2)RHPy,t . (8)

In this model, V1, V2 are proportional increases in RHP and C1, C2 are proportional
decrease in RHP where V1, V2 ≥ 0 and C1,C2 ∈ [0, 1]

The aim of each member of the population is to maximise its payoff at time T . In
the following, we assume that the payoff function is defined as the natural logarithm
of the RHP (which corresponds to the situation of unlimited resources) but consider
in Sect. 3.5 the effects of an alternative payoff function (which corresponds to the
situation of limited resources). Now there are two main reasons for considering the
natural logarithm of the RHP. Firstly, while wewant to keep toDugatkin’s terminology
as much as possible, the multiplicative nature of how the RHP increases means that
RHP values can become large very quickly. If we would assume the expected RHP
as the payoff, then even a minuscule chance of winning enough contests to be the
top individual would be worth almost any risk. Considering the logarithm means that
winning (losing) any contest increases (decreases) the payoff by the same amount
irrespective of the current RHP, which seems reasonable. Secondly, taking the natural
logarithm of the RHP guarantees that the payoffs increase in precisely the same way
as in evolutionary matrix games, and in particular the Hawk–Dove game, which we
use as an analogy in this paper.

This model set-up allows us to track the changes in RHP of all N individuals at
the time points t = 1, . . . , T and therefore to evaluate which strategy θ results in
the highest payoff over time. In this context, the ESS introduced by Maynard (1974)
proves to be an important concept. AnESS is a strategy, that if adopted by a population,
cannot be invaded by any other rare strategy. In general, we can have more than one
ESS. In an N -player game, strategy θx is an ESS if either:

1. E[θx ; θN−1
x ] > E[θy; θN−1

x ] or
2. E[θx ; θN−1

x ] = E[θy; θN−1
x ] and E[θx , θN−2

x , θy] > E[θy, θN−2
x , θy],

∀θy �= θx , where E[θx ; θ ix , θ
N−1−i
y ] is the expected payoff of an individual playing

strategy θx against i individuals playing strategy θx and N − i − 1 individuals playing
strategy θy , respectively Broom et al. (1997).

For Sect. 3, where we consider two-player games only, the ESS definition reduces
to:

1. E[θx , θx ] > E[θy, θx ] or
2. E[θx , θx ] = E[θy, θx ] and E[θx , θy] > E[θy, θy],
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∀θy �= θx , where E[θx , θx ] is the expected payoff of individual x against individual y
with strategies θx and θy , respectively.

3 The Two-Individual Model

For simplicity, in this section we consider groups of two individuals only. This will
allow us to find some analytical results which will give us general insights into the
dynamic of our model. We will then generalise to larger groups in Sect. 4.

3.1 Expected Payoffs When Players Always Fight (θx = θ y = 0)

We assume that both individuals, denoted by x and y, possess the same RHPinitial
values. Further, individuals x and y play the strategies θx = θy = 0, meaning that
both individuals will fight until time T (cf. Eq. 1). In this section and throughout the
paper, we assume V1 = V2 = V , C1 = C , C2 = 0. This implies that winning a
fight and having your opponent retreat has the same effect on the RHP. But contrary
to Dugatkin (1997), we do not assume that losing a fight and retreating has the same
effect on the RHP. This seems plausible as it is similar to the Hawk–Dove model to
whichwe refer, in the sense that the loss of a fight is like an injury (whether a real injury
or a psychological one). Figure 1 illustrates the possible RHP values of individual x
at times t = 1 and t = 2. For example, the expected payoff of individual x at t = 1,
denoted by E[ln(RHPx,1)] is equal to

E[ln(RHPx,1)] = 1

2
ln(RHPinitial(1 + V )) + 1

2
ln(RHPinitial(1 − C)).

(1-C) 

(1-C) 

Fig. 1 RHP of individual x and individual y at times t = 1 and t = 2 when they both start with the same
RHPinitial and always fight (θx = θy = 0)
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An individual either wins or loses a fight, and we denote a win (loss) in the kth contest
by jk = 1 ( jk = 0). Thus, at time t individual x has at wins and bt losses which are
given as follows:

at =
t∑

k=1

jk (9)

and

bt = t −
t∑

k=1

jk . (10)

The RHP for individual x , having won at contests and lost bt , will be denoted by
Rat ,bt and is given by [cf. equations (3) and (4)]

Rat ,bt=RHPinitial(1 + V )at (1 − C)bt = RHPinitial(1 + V )
∑t

k=1 jk (1 − C)t−
∑t

k=1 jk .

The probability of winning after at wins and bt losses at time t will be denoted by
Wat ,bt , whereas the probability of losing will be denoted by Lat ,bt = 1−Wat ,bt . From
equation (2), we obtain

Wat ,bt = (1 + V )at (1 − C)bt

(1 + V )at (1 − C)bt + (1 + V )bt (1 − C)at
.

If we consider all combinations of wins and losses and consider ln(RHP), then the
overall expected payoff is given by

E[ln(RHPx,T )] =
1∑

j1=0

1∑

j2=0

1∑

j3=0

....

1∑

jT =0

ln(RaT ,bT )

T∏

i=1

W ji
aT ,bT

L1− ji
aT ,bT

. (11)

where aT and bT are given by equations (9) and (10).

3.2 Individuals with General Strategies θx and θ y

In this section, we analyse the expected payoffs for individuals x and y when they
have potentially nonzero and different strategies θx and θy , respectively. We start by
deriving a general criterion for the number of losses necessary so that an individual
retreats. Suppose that at time t individual x has won at contests against individual y
and lost bt . Then, its RHP will be RHPx,t = Rat ,bt . In contrast, individual y has won
bt contests and lost at against individual x resulting in a RHP of RH Py,t = Rbt ,at .
Thus, from equations (3)–(6) we obtain:

Rat ,bt = RHPinitial(1 + V )at (1 − C)bt

and

Rbt ,at = RHPinitial(1 + V )bt (1 − C)at .
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The next interaction between the individuals x and y will result in a fight if equation
(1) holds for both individuals. In other words, the following two equations have to be
satisfied simultaneously

RHPx,t
RHPy,t

= Rat ,bt

Rbt ,at
= (1 + V )at−bt (1 − C)bt−at =

(
1 + V

1 − C

)at−bt
≥ θx (12)

and

RHPy,t

RHPx,t
= Rbt ,at

Rat ,bt
= (1 + V )bt−at (1 − C)at−bt =

(
1 + V

1 − C

)bt−at
≥ θy . (13)

Next, we take the logarithm of equations (12) and (13) on both sides and obtain

(at − bt ) ≥ ln(θx )

ln(1 + V ) − ln(1 − C)
(14)

and

(bt − at ) ≥ ln(θy)

ln(1 + V ) − ln(1 − C)
. (15)

We define

dx = − ln(θx )

ln(1 + V ) − ln(1 − C)
(16)

and

dy = − ln(θy)

ln(1 + V ) − ln(1 − C)
(17)

where dx and dy are both positive numbers for any pair of individuals which do not
concede immediately. As equations (14) and (15) have to be fullfilled simultaneously,
we obtain

− dx ≤ at − bt ≤ dy . (18)

This means that if the excess of the number of wins over the number of losses is
within [−dx , dy], individuals x and y will engage in a fight. If both individuals start
by fighting and the first condition to not hold is at − bt ≤ dy , then we have a case
where individual y decides to retreat and individual x to fight. After retreating for the
first time, an individual then retreats in every contest until time T . Consequently, after
y has retreated, individual x increases its RHP for every contest. By contrast, if the
first condition to not hold is −dx ≤ at − bt , then individual x decides to retreat and
individual y increases its RHP for every contest. The situation where both individuals
retreat only occurs if this happens at t = 1.

We define the time when individual x retreats by

Ts(x) = min{t ≥ 1 : at − bt < −dx }. (19)

Ts(x)will be called the x-stopping time.The y-stopping time Ts(y) is defined similarly.
Clearly, in any contest exactly one of these values will be finite; the time of the last
contest where both individuals fight is given by the stopping time Ts , where
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Ts = min{Ts(x), Ts(y)}. (20)

Then, the expected payoff E[ln(RHPx,T )] at time T is given by:

E[ln(RHPx,T )] =
1∑

j1=0

1∑

j2=0

....

1∑

jTs=0

ln
[
RaT ,bT (1 + V )(T−Ts )I1

] Ts∏

i=1

W ji
aT ,bT

L1− ji
at ,bt

(21)

where

I1 =
{
0 if at − bt < dx
1 if at − bt > dy

and (1 + V )(T−Ts )I1 is the multiplicative increase in RHP that individual x gets after
the stopping time Ts . It follows from inequality (18) and the fact that at − bt is an
integer that all θ values within a certain interval result in the same expected payoff
(for fixed V and C). We denote those intervals of strategy values by [θx,min, θx,sup)

where θx,sup is the value of θx that corresponds to �dx� and θx,min the value of θx
that corresponds to 	dx
. The intervals are closed at the lower bound and open at the
upper bound and θx,min < θx,sup. We set

k′
x = �dx� =

⌊ − ln(θx,sup)

ln(1 + V ) − ln(1 − C)

⌋
(22)

and obtain

θx,sup =
(
1 − C

1 + V

)k′
x

.

Further, we set kx = 	dx
. The corresponding strategy value θx for kx is θx,min and
we have

kx = 	dx
 =
⌈ − ln(θx,min)

ln(1 + V ) − ln(1 − C)

⌉
(23)

which results in

θx,min =
(
1 − C

1 + V

)kx
.

Similarly to the above, for given V and C there is a range of θ values that correspond
to a given k. Importantly, each strategy θ from that range results in the same payoff.
We note, however, that this range changes for different V and C . For simplicity, we
shall assume that individual x chooses themiddle value from [θx,min, θx,sup), and this
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strategy will be denoted by θx,rep as the representative strategy of the [θx,min, θx,sup)

range

θx,rep =
(
1 − C

1 + V

)kx (
2 + V − C

2(1 − C)

)
. (24)

3.3 Stopping Time Ts

The expected payoff E[ln(RHPx,T )] given by equation (21) depends on the stopping
time Ts . In this section, we explore the properties of Ts as defined by equation (20),
in particular its distribution.

To do so, we firstly determine the values of kx and ky for individuals x and y with
strategies θx and θy , respectively. The time when the random process at −bt is equal to
kx or ky represents the stopping time. For instance, individual x would not engage in
aggressive interactions when at −bt ≤ −kx and the stopping time defined in equation
19 can be written alternatively as

Ts(x) = min{t ≥ 1 : at − bt ≤ −kx }. (25)

Butwhich values can the stopping time Ts(x) assume?The earliest possible x-stopping
time is T = kx , i.e. individual has kx consecutive wins from the start of the interaction.
The next possible stopping time will be at kx + 2, where a single win by individual
x within the first kx interactions has to be met by a total of kx + 1 wins by y. In
general, the stopping times for individual x will be given by kx + (2n)n≥0. Conse-
quently, the stopping times for individual y will be given by ky + (2n)n≥0. Thus,
Ts = min{Ts(x), Ts(y)} can assume the following values

Ts =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 : kx = ky = 1
min{kx , ky} + (2n)n≥0 : kx + ky even
max{kx , ky} + n + even numbers in [min{kx , ky},max{kx , ky}] : kx + ky odd,

min{kx , ky} odd
max{kx , ky} + n + odd numbers in [min{kx , ky},max{kx , ky}] : kx + ky odd,

min{kx , ky} even
(26)

In summary, the stopping time defines the exact time when one individual starts to
retreat for different strategy combinations. It also gives the number of possible interac-
tions that need to be observed in order to distinguish between a pair of individuals, so
that in our model the second individual will always concede to the first (for a different
interpretation of this concept, see Kura et al. 2015).

Note that it is possible for our model to generate one experience, a winner effect
or a loser effect, without the other. For example, for V > 0 and C = 0 we have a case
when only the winner effect is in place. Tables 5 and 6 show the expected payoffs for
different strategic values when V = 0.1 and C = 0. On the other hand, when C > 0
and V = 0, illustrated by Tables 7 and 8, we have a case when only the loser effect is
operating.
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In the next section, we derive the distribution of Ts for the parameter constellation
V = C = 0.1 (both winner and loser effect are influencing RHP).

3.4 Example: V = C = 0.1

To illustrate the findings of the last sections, we consider an example by assuming
the parameters V = 0.1, C = 0.1 and T = 20. In particular, we calculate the expected
payoffs E[ln(RHPx,20)] for different combinations of strategies θx and θy , determine
the unique ESS and derive the distribution of the stopping time Ts .In this section and
throughout the paper, we will assume that RHPinitial = 10.

Firstly, we determine the representative strategies to kx = 1, 2, 3, 4, 5, 6, 7, 8 by
using equation (24). Note that there is a range of strategies θx that correspond to the
same value of kx and we take the middle one as described in Sect. 3.2. We obtain the
following mappings (the same values apply for individual y as well).
kx = 1 ⇒ θx,rep = 0.91, kx = 2 ⇒ θx,rep = 0.74, kx = 3 ⇒ θx,rep = 0.61, kx = 4 ⇒
θx,rep = 0.50,
kx = 5 ⇒ θx,rep = 0.41, kx = 6 ⇒ θx,rep = 0.33, kx = 7 ⇒ θx,rep = 0.27, kx = 8 ⇒
θx,rep = 0.22.
For this set of strategies, we then calculate the expected payoffs E[ln(RHPx,20)] for
individual x and E[ln(RHPy,20)] for individual y by using equation (21). Table 1 rep-
resent the matrix of payoffs for different combinations of strategies θx and θy .

Now for each strategy, we can find the best response, i.e. for each column of Table
1 we find the highest payoff and use the “diagonal rule ”to find the ESS. The diagonal
rule states that if any value on the diagonal of the matrix of payoffs is larger than
all the values in the same column, then the corresponding pure strategy is an ESS.
We note that for a pure ESS, all our results satisfy ESS condition 1 ; condition 2 is
only achieved when mixtures are present, which we do not get in our example. In this
example, we obtain θ = 0.61, corresponding to k = 3, as the unique ESS. Note that
there is a range of strategies [θx,min, θx,sup) = [0.55, 0.67] that corresponds to k = 3.
Thus, any strategy from this range results in the same expected payoff and is therefore
equivalent to our ESS. Lastly, we derive the distribution of the stopping time Ts . For
example, when θx = 0.5 (corresponding to kx = 4) and θy = 0.7 (corresponding to
ky = 2), Ts can only assume the values (ky + 2n)n≥0 because kx + ky = 6 is an even
number [see equation (26)]. But how does this distribution change when kx and ky are
varied? To explore this, we assume that individual x has a strategy θx corresponding
to kx = 1, 2, 3 and his opponent has strategies θy corresponding to ky ∈ [1, 8]. We
choose the value 8 as an upper bound for ky as an arbitrary large cut-off value which
corresponds to small values of θ , but we could have chosen any other high value. Figure
2 shows the distribution functions of the stopping time for various combinations of kx
and ky for V = C = 0.1.

Figures 2 illustrates that a pair of individuals will fight longer for higher values
of kx and ky . The reason behind this is that larger values of k correspond to smaller
strategy values θ , and hence, equation (1) implies that the individuals will fight longer.
In this example, one of the individuals x and y has started retreating before time T , for
most of the possible cases. This means that observing 20 interaction would allow us
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Fig. 2 The distribution function of the stopping time for the case when V = C = 0.1, ky = 1, 2, . . . , 8
and a kx = 1, b kx = 2, c kx = 3. Note that parts of the distribution functions are overlaid by other
distribution functions, e.g. all lines in (a), include the segment with starting coordinate (1, 0) and ending

coordinate (1,
1

2
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to distinguish between the two individuals almost with certainty. As we increase the
values of kx and ky , the probability of retreating before T = 20 is decreased.

3.5 An Alternative Payoff Function

Table 1 shows the expected payoff of individuals x and y after Tmax = 20 possible
interactions using equation (21). In this section, we explore how limited resources
are divided between the two individuals based on an alternative payoff function. We
will use the concept of reproductive skew as discussed in Broom et al. (2009), Keller
and Reeve (1994), Reeve and Keller (2001), Shen and Reeve (2010), Vehrencamp
(1983). In this case, the expected payoff for individual x after 20 interactions is given
by function:

E[θx , θy] = E

[
ln(RHPx,20)

ln(RHPx,20) + ln(RHPy,20)

]
. (27)

Consequently, the expected payoff for individual y is given by function

E[θy, θx ] = E

[
ln(RHPy,20)

ln(RHPx,20) + ln(RHPy,20)

]
.

The results are given in Table 2.
From Table 2, we find that θ = 0.4 (corresponding to k = 5) is the ESS. Comparing

this result with the result obtained from Table 1, we notice that they differ; when using
this alternative payoff function, we obtain k = 5 as the ESS, while for the original
payoff function used in Sect. 3.4, the ESS is k = 3. This differences are related to the
amount of the available resources, in particular whether they are plentiful or limited.
We assume that for plentiful resources, the absolute RHP is more important, but for
scarce resources shared between group members, the relative RHP is the key element.
If an individual needs to maximise the RHP, then it should fight less compared to the
situation where it needs to maximise the division of limited resources. In this latter
case, the individual needs to be more aggressive so that it can win a greater share than
its opponent, since “hurting” its opponent leads directly to improving its proportion
in equation (27).

3.6 How the Expected Payoffs and the Division of Resources Change When
Varying V and C

In this section, we will vary the values of V and fix the value ofC (C = 0.1), noting that
different combinations of V and C correspond to different values of k for any given
value of θ . For each of these combinations, we find the ESS (θ and the corresponding
k ) when ln(RHP) is considered as the payoff function and when the alternative payoff
function is used. The results are summarised in Figs. 3 and 4 where we plot the ratio
V
C with C = 0.1 on the x-axis and the best strategy on the y-axis (optimal k in Fig. 3
and best θ in Fig. 4).

For the case when V = 0 and C > 0, we expect the ESS to be the strategy where an
individual retreats immediately. This is true when ln(RHP) is considered as the payoff
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Fig. 3 The evolutionarily stable strategy k for variable V and fixedC (C = 0.1) for ln(RHP) and alternative
payoff function. When C = 0, the ESS will be the highest possible value of k (C → 0 �⇒ k → ∞)
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Fig. 4 The evolutionarily stable strategy θ for variable V and fixedC (C = 0.1) for ln(RHP) and alternative
payoff function. When C = 0, the ESS will be the highest possible value of k (C → 0 �⇒ k → ∞)

function. When the alternative payoff function is used, we obtain k = 1(θ = 1) as the
ESS (for C = 0.1). Thus, in this case it is best to fight initially to potentially reduce the
RHP of the opponent, as this increases the individual’s payoff function. On the other
hand for C = 0 and V > 0, we obtain k → ∞ as the ESS. This is the expected result as
since there is no cost for losing, it is best to fight until the end of the competition.When
V
C ≤ 4, we obtain lower values of θ as an ESS for the alternative payoff function than
for the payoff function given by ln(RH P). This means that when resources are scarce,
individuals need to be more aggressive in order to get a high payoff. For sufficiently

high
V

C
ratio, (e.g. for V

C > 4), we obtain the same value of θ as an ESS for both

payoff functions. The corresponding tables showing the expected payoffs for different
combinations of kx and ky when V and C vary are given in Appendix.

4 The N-Individual Model

In Sect. 3, we demonstrated how the expected payoff can be derived analytically for the
situation of two interacting individuals. Generalisations of these results to situations
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with more than two individuals, however, have proven to be analytically intractable.
To nevertheless gain insights into the behaviour of larger groups, we develop a simu-
lation approach which determines the ESS for N interacting individuals. We imagine
a population of 10,000N individuals, which at the start of the game is divided into
10,000 groups of size N at random. Members within each group interact as previously
described, for a total of 200 contests, and record their payoff (this correspond to steps
S1–S2.3 ). The individuals then produce offspring proportional to their payoff to form
a new generation of 10, 000N individuals. This process is repeated for 10, 000 gener-
ations (this corresponds to step S3). The algorithm which generates our approach is
defined as follows.

S1 Initially, the N individuals can choose their strategies from the range

� = [θ1, θ2, . . . , θ10] = [0.1, 0.2, . . . , 1]

with probability p(θ = θk) = 1
10 , k = 1, . . . , 10.

Set i = 0.
S2.0 Set H = [0, 0, . . . , 0] (H has dimension 10) and j = 0.
S2.1 Each of the N individuals chooses a strategy θxi , i = 1, . . . , N according to
the probability function p(θ = θk).
S2.2 Repeat the following for Tmax = 200 times steps.
Randomly choose two individuals with their strategies θxi and θx j out of the N
individuals and update their RHP according to Equations (3)–(6).
S2.3 Update the vector H as follows

H(10θxi ) = H(10θxi ) + ln(RHPxi ,200), i = 1, . . . , N .

Set j = j + 1. If j <10,000 go to S2.0 otherwise to S3.
S3 Update probability function p(θ = θk) as follows

p(θ = θk) = H(10θk)
10∑
k=1

H(10θk)

.

Set i = i + 1. If i <10,000 go to S2.0 otherwise the simulation is finished.

The outcome of this algorithm is the probability vector p(θ = θk), and in most cases,
the probability mass will be concentrated in a single strategy θk which represents the
ESS. When this is not the case, the mean value of the strategies at the end of the
simulation (i.e. after 10,000 generations) will be considered as the ESS. In order to
analyse the accuracy of the simulation algorithm, we consider the same parameter
constellation as in Sect. 3.4, namely N = 2 and V = C = 0.1, and determine the ESS.
We obtain p(θ = 0.6) = 1 and conclude that θ = 0.6 is the ESS, which falls within
the [0.55, 0.67] range; the result that we obtained from equation (21). We considered
other values of V and C as well, and in all situations, analytical and simulation results
coincided.
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Table 3 The ESS value of θ for different combinations of V and C

C = 0.025 C = 0.05 C = 0.075 C = 0.1 C = 0.125 C = 0.15

V = 0.01 0.9400 0.9900 1.0000 1.0000 1.0000 1.0000

V = 0.02 0.8800 0.9000 0.9200 0.9500 0.9700 0.9900

V = 0.03 0.7000 0.8100 0.9000 0.9000 0.9200 0.9400

V = 0.04 0.6000 0.8000 0.8000 0.8700 0.9000 0.9100

V = 0.05 0.4900 0.7000 0.7900 0.8000 0.8000 0.9000

V = 0.06 0.4000 0.6200 0.7000 0.7700 0.8000 0.8000

V = 0.07 0.3700 0.6000 0.6900 0.7000 0.7600 0.8000

V = 0.08 0.3000 0.5000 0.6000 0.6900 0.7000 0.7000

V = 0.09 0.2900 0.5000 0.6000 0.6000 0.6500 0.6500

V = 0.1 0.2600 0.4400 0.5100 0.6000 0.6000 0.6900

V = 0.11 0.2100 0.4000 0.5000 0.5300 0.6000 0.6100

V = 0.12 0.2000 0.4000 0.5000 0.5100 0.6000 0.6000

V = 0.15 0.2000 0.3000 0.4000 0.5000 0.5000 0.5100

V = 0.18 0.1400 0.2900 0.3000 0.4000 0.4300 0.4400
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Fig. 5 The ESS theta for different combinations of V and C

4.1 Example: Population Size N = 4

Now we consider a group of N = 4 individuals and use the simulation algorithm
described above to determine the ESSs. We do this for different combinations of V
and C , and the results are shown in Table 3 and Fig. 5.
The ESS values show that when the value of C is increased for a fixed value of V , the
value of θ is also increased. This means that the individuals fight less as the cost of
injury, for example, is increased. On the other hand, when V is increased for a fixed C ,
we notice that the value of θ is decreased, and thus, individuals are fighting longer. If
V = C , then the value of the ESS decreaseswhen V andC are simultaneously increased
by the same factor. This is supported by the results of V = C = 0.05, V = C = 0.1 and
V = C = 0.15 which have respective ESSs 0.6, 0.49 and 0.45.
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Table 4 The ESS values for different combinations of V and C for N = 2 and N = 4

N = 2 N = 4

V = 0.1,C = 0.2 [0.53, 0.73] 0.9

V = 0, 1,C = 0.1 [0.55, 0.67] 0.6

V = 0.2,C = 0.1 [0.32, 0.42] 0.5

V = 0.3,C = 0.1 [0.23, 0.33] 0.35

For N = 2, there is a range of strategies θ that correspond to the same critical value of the excess number
of defeats k leading to concession. This range is determined by (23)

Next we compare the ESSs when we increase the group size from 2 to 4 individ-
uals. In Table 4, we show the values of the ESS for these two group sizes for some
combinations of V and C . We conclude that as the group size is increased the values
of strategies θ are also increased. This implies less aggressiveness in larger groups.
Hence, in larger group sizes it is best to fight less than it is in smaller populations,
because an individualwill suffer a larger loss inRHP for fighting longer and potentially
losing against three individuals.

5 Comparison of Strategies

In the above sections, we have derived how the ESS for different values of C and V
can be calculated. Now we explore whether the knowledge about the ESS in a specific
situation characterised by V and C allows us to infer the ESS for a related situation
with αV and αC (for sufficiently small α). Similarly to the Hawk–Dove game, the
ratio V

C might be the most important aspect regarding the expected payoffs (if V < C
the ESS of the Hawk–Dove game is simply play Hawk with probability p = V

C ), as
opposed to specific values of V and C . This means that if we know the ESS for small
values of V and C , we can also calculate the ESS for αV and αC . The following holds

dx = − ln(θx )

ln(1 + V ) − ln(1 − C)
≈ − ln(θx )

V − (−C)
= − ln(θx )

V + C
⇒ (28)

dx (V + C) = − ln(θx )

where θx is the strategy for individual x . If we multiply V and C by α, we obtain:

dx = − ln(θ ′
x )

ln(1 + αV ) − ln(1 − αC)
≈ − ln(θ ′

x )

αV + αC
= − ln(θ ′

x )

α(V + C)
⇒ (29)

αdx (V + C) = − ln(θ ′
x )

where θ ′
x is the strategy of individual x when V andC become αV and αC , respectively.

Now from equations (28) and (29) we obtain

ln(θ ′
x ) = α ln(θx ) ⇒

θ ′
x = θα

x . (30)
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This means that if for a sequence of wins and losses individual x retreats following
strategy θx , it will retreat for the same sequence following strategy θ ′

x = θα
x when V

and C are exchanged for αV and αC , respectively (assuming that changing the value
of V using α in this way does not affect the choice of kx ). Thus, if only the ratio V

C
matters for finding the ESS and θx is the ESS for V and C, then θ ′

x will be the ESS
for αV and αC . We illustrate this point with an example. We assume the parameter
constellation N = 2, V = 0.02, C = 0.04 and α = 3

2 and use the simulation algorithm
given in Sect. 4 to determine the ESS.We obtain θx = 0.91 (corresponding to kx = 2) as
the ESS for V = 0.02, C = 0.04 and θx = 0.87 (corresponding to kx = 2) for αV = 0.03
and αC = 0.06. When we use formula (30) and take θx = 0.91 as the ESS baseline
(V = 0.02, C = 0.04), we obtain θ ′

x = 0.91
3
2 = 0.868 as the new ESS which is close to

the 0.87 value thatwe get from the simulations. Thus, the results from these simulations
support formula (30). We have also analysed different values of α = 2, 1

2 , 1
5 , 5 and we

obtain ESS corresponding to kx = 2 for all the cases. We can conclude that equation
(30) gives a good approximation for the ESS. This is always true when we have small
values of V and C; however, there are some cases when it works less well, principally
where V,C (or α which will lead to large V or C in the comparative model) is large.
We note that the larger V and C , and the bigger T , the more unrealistic multiplying the
RHP by a constant after every contest is. On the other hand the smaller T , there are
more timeswhenwe cannot distinguish between a pair of individuals as neither of them
has retreated. Thus, a realistic model should only contain relatively small V and C .

6 Discussion

In this paper, we have introduced game-theoretical elements to thewinner–losermodel
developed in Dugatkin (Dugatkin 1997; Dugatkin and Dugatkin 2007).We considered
a group of individuals that are characterised by their fighting ability score (their RHP)
and a strategy θ that indicates whether an individual would engage in an aggressive
interaction or retreat. All individuals were assumed to possess the same RHP initially.
We have developed a model that determines the expected payoff and ESS for different
group sizes and payoffs, involving V and C , in such a population.

In the first part of this paper, we derived analytical results for a group of two
individuals for the expected payoff and find the ESS, using ln(RH P) as the payoff
function, which correspond to situationswith unlimited resources. In order to calculate
the expected payoff for individual x with strategy θx , we first found the condition when
this individual would retreat, represented by k. The variable k describes the critical
difference between the number of wins and losses, below which individual x retreats.
Given that awin increases the value ofRHP, the value of k corresponds to the difference
in RHP and thus only the individuals with a high RHP relative to its opponent risk
engaging in an agonistic interaction to obtain more access to the available resources.
We showed that there is a range of strategies θx that correspond to the same value of
k, meaning that they will give the same payoff. Furthermore different combinations
of V and C yield different ranges of θx for any given value of k.

We illustrated this analytical part with an example where we assumed V = C = 0.1.
We found the expected payoff for different strategies θ ≥ 0. In this case, we obtained a
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pure ESS which was achieved for k = 3, corresponding to the θ range [0.55, 0.67]. Any
strategy from this range gives the same payoff and is an ESS. We next varied V and C
and saw the effect of this variations on the expected payoff and the ESS. As expected,
if V is increased for a fixed C , the individuals will fight more, corresponding to lower
values of θ . On the other hand, if C is increased for a fixed V , we get bigger values of
θ as an ESS. This means that individuals will fight less as C is increased.

We also used the idea of the reproductive skew (Broom et al. 2009; Keller and
Reeve 1994; Reeve and Keller 2001; Shen and Reeve 2010; Vehrencamp 1983) to
study how scarce resources are divided between a pair of individuals by using an
alternative payoff function given in equation (27). When comparing the results with
the ones obtained for the original payoff function, we observe smaller values of θ as
an ESS. This means that in this case individuals need to be more aggressive in order
to obtain a larger share of the available resources.

While in our model, and in those of Dugatkin (1997) and Dugatkin and Dugatkin
(2007), linear hierarchies are generally formed efficiently when (i) winner and loser
effects are both present, (ii) only the winner effect or (iii) only the loser effect is
present, the three models give clearly distinct predictions. With only the winner effect
present, individuals in our model (for optimal strategy choice) and that of Dugatkin
(1997) will continue fighting indefinitely, whereas in Dugatkin and Dugatkin (2007)
individuals start fighting, but eventually contests cease. With only the loser effect
present, individuals would give up immediately in our model (at least for the plentiful
resources case defined by payoff function (11)), would give up after the first loss in
the model of Dugatkin (1997), and would fight for some longer period in the model
of Dugatkin and Dugatkin (2007). These differences in the results of the three models
are rooted in the modelling assumptions. In Dugatkin (1997), there is no strategic
choice and individuals do not know their opponent’s RHP; in Dugatkin and Dugatkin
(2007), there is no strategic choice, but they do know their opponent’s RHP, and in our
model, there is strategic choice and their opponent’s RHP is known. Thus, Dugatkin
and Dugatkin (2007) can be thought of as an intermediate model between the other
two. However, the predictions of our model are closer to that of Dugatkin (1997) than
Dugatkin and Dugatkin (2007) and we would argue that these are more realistic.

Other authors have considered alternative game-theoretical models of dominance
hierarchy formation. A good recent survey which raises some interesting questions
and suggestions for further modelling is Mesterton-Gibbons et al. (2016). We shall
discuss two such models. Van Doorn and co-workers Doorn et al. (2003) analysed
the evolution of dominance hierarchies by assuming that individuals are identical in
ability throughout the time of their interaction, and so while their strategic choices
depend upon past results, the actual probability of winning a contest depends upon the
strategic choices of individuals, rather than their actual abilities. This is an example
of what Maynard Smith Maynard Smith (1982) called an uncorrelated asymmetry (as
opposed to a correlated asymmetry, as in our model). They found several evolutionary
equilibria, one of them was the “dominance” equilibrium with the winner and loser
effect where previous winners were more likely to take part in aggressive interactions
and previous losers less likely to be aggressive. He also found a paradoxical equilibria
where the higher position was occupied by the loser of an aggressive interaction than
the winner. These results are very similar to the owner–intruder game Maynard Smith
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(1982) where paradoxical convention-based outcomes can occur. They then extended
this model to larger group sizes Doorn et al. (2003), where the individuals still had
limited information about previous fights. Similar as in the two-player model, several
evolutionary equilibria were found, one being with the winner and loser effect. The
assumptions and outcomes are thus rather different to our model.

Fawcett and Johnstone (2010) developed a model to analyse the level of aggression
where each individual differed in strength, but where they had no information about
this difference. They predicted that the level of aggression is related to the amount of
information that an individual has about prior contests. While the young individuals
should be more aggressive as they are not sure about their fighting ability, the older
one are not. They have knowledge of prior experience, and they retreat after a series of
losses. Although the mechanisms differ, the actual way that the populations evolve is
quite similar to ours. In their model, there are real differences between individuals, but
the individuals start with no knowledge and learn over time; in our model, individuals
have varying probabilities of being able to win a contest, which change (perhaps
due to psychological factors) over time. In each case, after a time it is clear which
individuals are the better ones, and the level of aggressive interactions declines, as
more individuals play the more passive strategy. We note that in their model, the
eventual division into mainly aggressive strong individuals and mainly passive weak
individuals is dependent upon an intermediate number of strong/ weak individuals and
that this divide would not happen for all population divisions.

In each of the strategicmodels discussed above (Fawcett and Johnstone 2010;Doorn
et al. 2003 andDoorn et al. 2003, in addition to ours), individuals face a potentially long
sequence of contests where they have two options at each step. Thus, in the same way
as in games such as the classical iterated prisoner’s dilemma Axelrod (1984), there is
a vast array of potential strategies. Each model reduces the dimensions of this strategy
space in different ways . In the models of Doorn et al. (2003), Doorn et al. (2003),
individuals were constrained to have a memory only of the latest interaction with an
individual and so could base their play only on the results of this latest interaction
(from the iterated prisoner’s dilemma “tit for tat” is such a strategy). Fawcett and
Johnstone (2010) allow individuals to know their performance from all past contests,
but allow them only to condition play on the total number of contests encountered,
together with the number of wins in these contests. Our model behaves in a similar
way to that of Fawcett and Johnstone (2010), basing strategy on the RHP, which in
turn depends directly upon the number of won and lost contests of the participating
individuals.

Similar results to those from our model concerning aggression levels have been
found in experimental settings. Kotrschal et al. Kotrschal et al. (1993) performed a
feeding experiment with greylag geese. Grained food was given in high, medium and
low density. The geese were fed twice daily, and the level of aggression was recorded.
They found a low number of agonistic interactions in the high food density setting and
an increase in those aggressive interactions when the food density was decreased. Nie
et al. Nie et al. (2013) conducted feeding experiments with varying levels of predation
with root voles. They considered four treatments by combining different levels of
predation and food supply (i.e. (no predation, food), (predation, food), (predation, no
food), (no predation, no food)). They observed higher levels of aggressiveness in the
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groups treated with unfavourable conditions such as (predation, no food) compared to
groups treatedwith (nopredation, food).When the groupswere treatedwith (predation,
food) and (no predation, no food), the level of aggression observed was intermediate.
These findings support our results that if resources are scarce, then an individual needs
to be more aggressive.

An important concept related to the expected payoff is that of the stopping time.
The stopping time is defined as the first time when one of the two individuals hits its
stopping value of k. It gives a guideline for how many agonistic interactions we need
to observe in a pair of individuals before one retreats. After hitting the stopping time,
an individual would then always retreat afterwards. We showed in our example that
twenty possible interactions is enough for an individual to retreat in almost all cases.
Note that if Tmax is relatively larger than the stopping time, the continued increase in
the winner’s RHP after the stopping time is unrealistic. If, however, Tmax is smaller
than the stopping time, it is more difficult to distinguish between a pair of individuals
in terms of their ranks in the hierarchy.

Analytical results can be derived for a group of two individuals, but for larger
group sizes those derivations become effectively intractable. To explore the behaviour
of larger group sizes, in particular to find the ESS, we developed in the second part of
the paper a simulation approach. Analysing a group of four individuals, we found that
the value of the ESS is increased when V is increased (for a fixed C), and by contrast,
the value of the ESS is decreased when C is increased (for a fixed V ). Comparing the
values of ESS for a group of two individuals with the ones obtained for a group of
four individuals leads to the conclusion that individuals should be less aggressive (i.e.
fight less) in larger groups.

While this result is commonly observed in behavioural experiments, there are exper-
imental settings leading to contradictory conclusions. For example, Nicol et al. Nicol
et al. (1999) conducted a feeding experiment with Isa brown birds. They analysed the
behaviour of the birds in groups of four different sizes (72, 168, 264 and 368). The
birds were fed twice a day, and the number of aggressive pecking interactions were
recorded. The results suggested a higher level of aggression in the smallest group (72)
compared to the larger groups (168, 264, 368). Further, Anderson et al. Andersen et al.
(2004) compared their model predictions (larger group sizes result in lower aggression
levels) with results from an experiment with crossbred pigs. They considered three
groups of 6, 12 and 24 pigs (which had not interactedwith each other previously)which
were put into pens and the space per individual was kept the same. There was one
feeder per six pigs, and they were fed on ‘Format Start’ every morning. The aggres-
sive interactions in each group were then recorded. It was observed that the level
of aggression decreased with increasing group size. This result was also supported
by further experiments Estevez et al. (2007), Estévez et al. (1997), Syarifuddin and
Kramer (1996) Turner et al. (2001). However, Bilvci et al. Bilčık and Keeling (2000)
observed the aggressive behaviour in a feeding experiment with groups of 15, 30, 60
and 120 Hisex white hens and noticed higher level of aggression in larger groups of
birds than in the smaller ones.

Summarising, we presented a game-theoretical model which determines the evolu-
tionarily stable aggression level in a populations of N individuals and different payoff
functions, involving V and C , within a winner–loser framework. Within a group, we
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found that the population evolves to a unique aggression threshold, indicating that
relative to their strength, all individuals adopt the same decision rule against whom to
fight. Typically, the hierarchy is established quickly, with aggressive fights happening
only in the early contests. Applied to real-world situations, this points to the crucial
importance of the first few fights for hierarchy formation. Later fights only deter-
mine the position of lower-ranked individuals. While higher values of C for losing
an aggressive interaction (keeping the value of V constant) lead to lower aggression
levels in the population, the reverse is true for increasing the value V for winning an
aggressive interaction (keeping C constant): the higher the value of V , the higher is the
aggression level in the population. Further, we predict lower aggression levels in larger
populations. Our results are largely supported by experimental evidence so that we
conclude that the introduction of game-theoretical elements to winner–loser models
provides a further step towards a realistic description of aggressive interactions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Expected Payoffs for Different V and C

In this section we show the expected payoffs for different combinations of kx and ky
where both the ln(RH P) and alternative payoff function are considered as payoffs.
See Tables (5, 6, 7, 8, 9, 10, 11, 12, 13, and 14).

Table 5 Expected payoffs for different values of k when V = 0.1,C = 0

ky = 1
(θy = 1)

ky = 2
(θy = 0.9)

ky = 3
(θy = 0.8)

ky = 4
(θy = 0.7)

ky = 5
(θy = 0.65)

ky = 6
(θy = 0.6)

ky = 25
(θy = 0.1)

kx = 1
(θx = 1)

3.2560 2.8414 2.8414 2.7754 2.7392 2.7131 2.6645

kx = 2
(θx = 0.9)

3.5456 3.2550 3.1092 3.0271 2.9705 2.9417 2.8767

kx = 3
(θx = 0.8)

3.6699 3.4022 3.2517 3.1682 3.1168 3.0786 3.0138

kx = 4
(θx = 0.7)

3.7360 3.4843 3.3432 3.2572 3.1991 3.1643 3.0995

kx = 5
(θx = 0.65)

3.7721 3.5409 3.3946 3.3123 3.2588 3.2175 3.1514

kx = 6
(θx = 0.6)

3.7983 3.5697 3.4328 3.3471 3.2939 3.2570 3.1855

kx = 25
(θx = 0.1)

3.8469 3.6347 3.4976 3.4119 3.3600 3.3259 3.2551
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Table 6 Division of resources for different values of k when V = 0.1,C = 0

ky = 1
(θy = 1)

ky = 2
(θy = 0.9)

ky = 3
(θy = 0.8)

ky = 4
(θy = 0.7)

ky = 5
(θy = 0.65)

ky = 6
(θy = 0.6)

ky = 25
(θy = 0.1)

kx = 1
(θx = 1)

0.500 0.4555 0.4364 0.4262 0.4207 0.4167 0.4092

kx = 2
(θx = 0.9)

0.5445 0.500 0.4775 0.4649 0.4562 0.4518 0.4418

kx = 3
(θx = 0.8)

0.5636 0.5225 0.4994 0.4866 0.4787 0.4728 0.4629

kx = 4
(θx = 0.7)

0.5738 0.5351 0.5134 0.500 0.4913 0.4860 0.4760

kx = 5
(θx = 0.65)

0.5793 0.5438 0.5213 0.5087 0.500 0.4941 0.4840

kx = 6
(θx = 0.6)

0.5833 0.5482 0.5272 0.5140 0.5059 0.500 0.4892

kx = 25
(θx = 0.1)

0.5908 0.5582 0.5371 0.5240 0.5160 0.5108 0.5000

Table 7 Expected payoffs for different values of k when V = 0,C = 0.1

ky = 0
(θy = 1.2)

ky = 1
(θy = 1)

ky = 2
(θy = 0.9)

ky = 3
(θy = 0.8)

ky = 4
(θy = 0.7)

ky = 5
(θy = 0.6)

ky = 22
(θy = 0.1)

kx = 0
(θx = 1.2)

2.3026 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026

kx = 1
(θx = 1)

2.3026 2.2500 2.2122 2.1559 2.1156 2.0843 2.0052

kx = 2
(θx = 0.9)

2.3026 2.2099 2.1723 2.0648 2.0038 1.9601 1.8634

kx = 3
(θx = 0.8)

2.3026 2.1452 2.0539 1.9020 1.8218 1.7661 1.6553

kx = 4
(θx = 0.7)

2.3026 2.0961 1.9798 1.8064 1.7194 1.6621 1.5486

kx = 5
(θx = 0.6)

2.3026 2.0508 1.9208 1.7315 1.6421 1.5854 1.4706

kx = 22
(θx = 0.1)

2.3026 1.8927 1.7268 1.5113 1.4190 1.3606 1.2500
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Table 8 Division of resources for different values of k when V = 0,C = 0.1

ky = 0
(θy = 1.2)

ky = 1
(θy = 1)

ky = 2
(θy = 0.9)

ky = 3
(θy = 0.8)

ky = 4
(θy = 0.7)

ky = 5
(θy = 0.6)

ky = 22
(θy = 0.1)

kx = 0
(θx=1.2)

0.500 0.500 0.500 0.500 0.500 0.500 0.500

kx = 1
(θx = 1)

0.500 0.500 0.5004 0.5019 0.5038 0.5068 0.5293

kx = 2
(θx = 0.9)

0.500 0.4996 0.500 0.5020 0.5049 0.5084 0.5362

k = 3
(θx = 0.8)

0.500 0.4981 0.4980 0.500 0.5035 0.5081 0.5395

kx = 4
(θx = 0.7)

0.500 0.4962 0.4951 0.4965 0.500 0.5048 0.5364

kx = 5
(θx = 0.6)

0.500 0.4932 0.4916 0.4919 0.4952 0.500 0.5317

kx = 22
(θx = 0.1)

0.500 0.4707 0.4638 0.4605 0.4636 0.4683 0.5000

Table 9 Expected payoffs for different values of k when V = 0.2,C = 0.1

ky = 0
(θy = 1.2)

ky = 1
(θy = 0.9)

ky = 2
(θy = 0.7)

ky = 3
(θy = 0.5)

ky = 4
(θy = 0.4)

ky = 5
(θy = 0.3)

ky = 9
(θy = 0.1)

kx = 0
(θx = 1.2)

2.3026 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026

kx = 1
(θx = 0.9)

5.9490 4.0724 3.5544 3.3444 3.2392 3.2011 3.1203

kx = 2
(θx = 0.7)

5.9490 4.4956 3.9443 3.6854 3.5594 3.4934 3.4014

kx = 3
(θx = 0.5)

5.9490 4.6207 4.0597 3.7925 3.6494 3.5800 3.4715

kx = 4
(θx = 0.4)

5.9490 4.6521 4.0743 3.8035 3.6629 3.5895 3.4778

kx = 5
(θx = 0.3)

5.9490 4.6299 4.0573 3.7795 3.6393 3.5616 3.4574

kx = 9
(θx = 0.1)

5.9490 4.5454 3.9244 3.6488 3.5102 3.4255 3.3109

123



1286 K. Kura et al.

Table 10 Division of resources for different values of k when V = 0.2,C = 0.1

ky = 0
(θy = 1.2)

ky = 1
(θy = 0.94)

ky = 2
(θy = 0.7)

ky = 3
(θy = 0.5)

ky = 4
(θy = 0.4)

ky = 5
(θy = 0.3)

ky = 9
(θy = 0.1)

kx = 0
(θx = 1.2)

0.500 0.2790 0.2790 0.2790 0.2790 0.2790 0.2790

kx = 1
(θx = 0.9)

0.7210 0.500 0.4430 0.4233 0.4161 0.4161 0.4227

kx = 2
(θx = 0.7)

0.7210 0.5570 0.500 0.4781 0.4712 0.4701 0.4805

kx = 3
(θx = 0.5)

0.7210 0.5767 0.5219 0.500 0.4923 0.4916 0.5012

kx = 4
(θx = 0.4)

0.7210 0.5839 0.5288 0.5077 0.500 0.4991 0.5084

kx = 5
(θx = 0.3)

0.7210 0.5834 0.5299 0.5084 0.5009 0.500 0.5104

kx = 9
(θx = 0.1)

0.7210 0.5773 0.5195 0.4988 0.4916 0.4896 0.5000

Table 11 Expected payoffs for different values of k when V = 0.1,C = 0.2

ky = 0
(θy = 1.2)

ky = 1
(θy = 1)

ky = 2
(θy = 0.70)

ky = 3
(θy = 0.50)

ky = 4
(θy = 0.30)

ky = 5
(θy = 0.25)

ky = 8
(θy = 0.10)

kx = 0
(θx = 1.2)

2.3026 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026

kx = 1
(θx = 1)

4.2088 3.1454 2.8027 2.6514 2.5755 2.5237 2.4678

kx = 2
(θx = 0.70)

4.2088 3.2896 2.8714 2.6631 2.5416 2.4852 2.4037

kx = 3
(θx = 0.50)

4.2088 3.2705 2.8019 2.565 2.4378 2.3715 2.2812

kx = 4
(θx = 0.30)

4.2088 3.2019 2.7000 2.4429 2.3217 2.2399 2.1442

kx = 5
(θx = 0.25)

4.2088 3.1383 2.5824 2.3190 2.1796 2.1203 2.0265

kx = 8
(θx = 0.10)

4.2088 2.9289 2.2914 2.0099 1.8699 1.8030 1.7182
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Table 12 Division of resources for different values of k when V = 0.1,C = 0.2

ky = 0
(θy = 1.2)

ky = 1
(θy = 1)

ky = 2
(θy = 0.70)

ky = 3
(θy = 0.50)

ky = 4
(θy = 0.30)

ky = 5
(θy = 0.25)

ky = 8
(θy = 0.10)

kx = 0
(θx = 1.2)

0.5000 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536

kx = 1
(θx = 1)

0.6464 0.5000 0.4630 0.4554 0.4600 0.4679 0.5091

kx = 2
(θx = 0.70)

0.6464 0.5370 0.5000 0.4938 0.5006 0.5171 0.5786

kx = 3
(θx = 0.50)

0.6464 0.5446 0.5062 0.5000 0.5092 0.5268 0.5936

kx = 4
(θx = 0.30)

0.6464 0.5400 0.4994 0.4905 0.5000 0.5177 0.5860

kx = 5
(θx = 0.25)

0.6464 0.5321 0.4829 0.4732 0.4823 0.5000 0.5684

kx = 8
(θx = 0.10)

0.6464 0.4909 0.4214 0.4064 0.4140 0.4316 0.5000

Table 13 Expected payoffs for different values of k when V = 0.3,C = 0.1

ky = 0
(θy = 1.2)

ky = 1
(θy = 0.85)

ky = 2
(θy = 0.59)

ky = 3
(θy = 0.41)

ky = 4
(θy = 0.28)

ky = 5
(θy = 0.19)

ky = 6
(θy = 0.13)

kx = 0
(θx = 1.2)

2.3026 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026

kx = 1
(θx = 0.85)

7.5500 4.8750 4.1779 3.9227 3.8359 3.7927 3.7710

kx = 2
(θx = 0.59)

7.5500 5.4765 4.7500 4.4620 4.3284 4.2858 4.2275

kx = 3
(θx = 0.41)

7.5500 5.6512 4.9101 4.9000 4.4783 4.4089 4.3710

kx = 4
(θx = 0.28)

7.5500 5.6705 4.9720 4.6375 4.5023 4.4298 4.4038

kx = 5
(θx = 0.19)

7.5500 5.6573 4.9114 4.6229 4.4937 4.4200 4.3725

kx = 6
(θx = 0.13)

7.5500 5.6304 4.9107 4.5955 4.4477 4.3944 4.3500
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Table 14 Division of resources for different values of k when V = 0.3,C = 0.1

ky = 0
(θy = 1.2)

ky = 1
(θy = 0.85)

ky = 2
(θy = 0.59)

ky = 3
(θy = 0.41)

ky = 4
(θy = 0.28)

ky = 5
(θy = 0.19)

ky = 6
(θy = 0.13)

kx = 0
(θx = 1.2)

0.5000 0.2337 0.2337 0.2337 0.2337 0.2337 0.2337

kx = 1
(θx = 0.85)

0.7663 0.5000 0.4342 0.4131 0.4089 0.4088 0.4104

kx = 2
(θx = 0.59)

0.7663 0.5658 0.5000 0.4783 0.4711 0.4727 0.4714

kx = 3
(θx = 0.41)

0.7663 0.5869 0.5217 0.5000 0.4936 0.4926 0.4940

kx = 4
(θx = 0.28)

0.7663 0.5911 0.5289 0.5064 0.5000 0.4986 0.5016

kx = 5
(θx = 0.19)

0.7663 0.5912 0.5273 0.5074 0.5014 0.5000 0.5007

kx = 6
(θx = 0.13)

0.7663 0.5896 0.5286 0.5060 0.4984 0.4993 0.5000
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