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Abstract Recently, pandemic responsehas involved theuseof antivirals. These antivi-
rals are often allocated to households dynamically throughout the pandemic with the
aim being to retard the spread of infection. A drawback of this is that there is a delay
until infection is confirmed and antivirals are delivered. Here an alternative alloca-
tion scheme is considered, where antivirals are instead preallocated to households at
the start of a pandemic, thus reducing this delay. To compare these two schemes, a
deterministic approximation to a novel stochastic household model is derived, which
allows efficient computation of key quantities such as the expected epidemic final
size, expected early growth rate, expected peak size and expected peak time of the
epidemic. It is found that the theoretical best choice of allocation scheme depends on
strain transmissibility, the delay in delivering antivirals under a dynamic allocation
scheme and the stockpile size. A broad summary is that for realistic stockpile sizes, a
dynamic allocation scheme is superior with the important exception of the epidemic
final size under a severe pandemic scenario. Our results, viewed in conjunction with
the practical considerations of implementing a preallocation scheme, support a focus
on attempting to reduce the delay in delivering antivirals under a dynamic allocation
scheme during a future pandemic.
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1 Introduction

During the 2009 Swine influenza pandemic, many countries, including Australia, the
USA and the UK, utilised antivirals to help combat the spread of pandemic influenza
(Commonwealth of Australia 2011; Public Health England 2014; U.S. Department
of Health and Human Services 2005). Antivirals, unlike other potential pandemic
control measures, such as vaccination, are not strain specific, meaning that they can
be used to potentially retard the spread of a number of variants of influenza with
little to no development time. Antivirals are believed to achieve two things relevant to
infectious disease spread: an infectious individual is less likely to transmit infection
when contact occurswith a susceptible individual, and an individualwho is not infected
has a stronger resistance to infection, even when contact is made with an infectious
individual who is not currently taking antivirals (Hayden et al. 2004; Stiver 2003).

Antiviral use is already part of the Australian Health Management Plan for Pan-
demic Influenza (2009). The way in which these antivirals would be used, similar
to in many other countries (Public Health England 2014; U.S. Department of Health
and Human Services 2005), is as follows: after the first confirmed infectious individ-
ual inside a household, a course of antivirals is allocated to each individual inside
the household, regardless of their infectious status. We term this antiviral allocation
scheme dynamic allocation. The reason for the entire household taking antivirals,
regardless of whether each individual is infectious or not, is because a noticeable pro-
portion of transmission occurs inside a household—estimated to be approximately
30% of transmission (Black et al. 2013; Ferguson et al. 2006; Goldstein et al.
2010)—and treatment to susceptible individuals, known as prophylaxis, reduces their
susceptibility. Furthermore, the household also forms a convenient unit for distrib-
utional purposes (Kwok et al. 2013). The potential issue with a dynamic allocation
scheme is that there is a delay until antivirals arrive into the household. This delay
arises as the individuals in the household must wait until the infection is confirmed
(possibly requiring laboratory testing) and then antivirals are delivered, before com-
mencing their course of antivirals. If this delay is large, then the antivirals will have
little impact on the pandemic, as all transmission of infection will be complete before
the antivirals have started being taken (Ghani et al. 2009; Black et al. 2013).

This paper investigates an alternative allocation scheme, which we call prealloca-
tion, that effectively removes the delay present in the dynamic allocation scheme, but
introduces some potential drawbacks. Under a preallocation scheme, instead of wait-
ing for a doctor’s diagnosis, all antivirals are allocated as soon as the pandemic begins,
or potentially in the absence of an outbreak in preparation for a pandemic. When an
individual begins showing symptoms of influenza, they are diagnosed, potentially
in a less precise way (compared to laboratory testing) such as contacting a gov-
ernment help-line and talking to an expert (Public Health England 2014; Pandemic
Influenza Preparedness Team 2011). If it is decided that the individual is likely to
have influenza, then all members of the household begin taking antivirals just as they
would under a dynamic allocation scheme. Goldstein et al. (2010) have previously
investigated a similar scheme, but with preallocation to high-risk individuals only,
with the aim to minimise the probability of death over the course of the pandemic. In
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contrast, this is the first paper to directly compare more general household allocation
schemes.

Under a preallocation scheme, then, the delay between becoming infectious and
beginning a course of antivirals is reduced as there is no waiting for the delivery of
antivirals, and also potentially nowaiting for a doctor’s diagnosis or laboratory testing.
However, it is possible for individuals to take antivirals without being ill, as well as
the potential for antivirals to be ‘wasted’, as they could be preallocated to a household
that never becomes infected.

To compare pre- and dynamic allocation, a Markovian household model that can
incorporate both types of allocation is created and analysed (Ball 1996; House and
Keeling 2008; Ross et al. 2010; Black et al. 2013). The assessment of the different
allocations schemes is based upon four key quantities: (expected) epidemic final size,
the total number of individuals who become infectious throughout the entire pandemic
(Brauer 2001); the (expected) early growth rate, which represents the (exponential)
rate of growth early in a pandemic (Ball 1996); the (expected) peak size, which is
the maximum number of infectious individuals throughout the pandemic; and the
(expected) peak time, which is the time at which the peak size is achieved.

Modelling a pandemic in a structured population via the use of a continuous-time
Markov chain is a common technique, allowing for very detailed and intricate mod-
els (Colizza et al. 2007; Longini et al. 2004, 2005). Typically these Markov chain
models have very large state spaces, so simulation using the so-called Gillespie algo-
rithm (Gillespie 1977) is the only way to study the model. The Gillespie algorithm
scales poorly for models with complex dynamics in large populations, and so rigor-
ously examining a variety of pandemic scenarios is time-consuming. More efficient
approximations have been developed, at the cost of some detail. The branching process
approximation, introduced by Ball and Donnelly (1993) and utilised by Ross et al.
(2010) and Black et al. (2013) is fast to evaluate, but this only allows calculation of
early time quantities. In this paper we take a different approach and derive a deter-
ministic approximation of our stochastic household model, using the results of Kurtz
(1970). Deterministic models with household structure have been studied previously
(House andKeeling 2008; Black et al. 2014); however, this is the first to offer a detailed
investigation into the method of antiviral distribution and is certainly the most detailed
model to leverage this technique to date. This allows the efficient computation of all
four quantities detailed above as well as a full sensitivity analysis of our results.

The rest of the paper is as follows: In Sect. 2, the stochastic household epidemic
model incorporating the two antiviral allocation schemes is presented. In Sect. 3, the
deterministic approximation is derived for this model. In Sect. 4, exploration into the
effects of the preallocation scheme compared to the dynamic allocation scheme in a
mild and a severe pandemic outbreak is performed. It is demonstrated that for a severe
outbreak, the preallocation scheme leads to less total infectious individuals over the
course of an outbreak. For a mild outbreak, however, it is shown that a dynamic allo-
cation scheme is generally the better scheme. In Sect. 5, the results of this work are
summarised, and some of the limitations and potential extensions of the model are
discussed.
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2 Model

Consider a population that is partitioned into a fixed number, N , of distinct households
and assume that each individual belongs to exactly one household. The distribution
of household sizes, h, is fixed, where hk is the proportion of houses of size k in the
population. For the disease dynamics, assume a basic SEIR model where individuals
in each household are categorised as susceptible, exposed (infected but not infectious),
infectious, or recovered. While a household is taking antivirals, the susceptibility and
the infectivity of all the individuals in the house is reduced (Black et al. 2013). Each
household can be in one of four states with respect to their antiviral status. A household
may not have received antivirals (a = 0), be currently taking antivirals (a = 1), have
completed their course of antivirals (a = 2), or have been preallocated antivirals but
not begun taking them (a = 3). Finally, it is assumed that a household only receives
one course of antivirals either from preallocation or dynamically.

The dynamics of the epidemic and antiviral allocation process are modelled as
a continuous-time Markov chain. We say a household of size k is in configuration
(s, e, i, k, a) if the household has s susceptible, e exposed and i infectious individu-
als, and currently has antiviral status a. Let H(s,e,i,k,a)(t) be the number of households
in configuration (s, e, i, k, a) at time t , and H(t) = {H(s,e,i,k,a)(t)}. All events cor-
respond to taking a household in a given configuration and replacing it with another;
thus, the total number of households remains fixed. For example, an infection event
has the transition

(
H(s,e,i,k,a), H(s−1,e+1,i,k,a)

) → (
H(s,e,i,k,a) − 1, H(s−1,e+1,i,k,a) + 1

)
.

The set of all configurations for a single household of size k is,

Ck = {(s, e, i, k, a)|s, e, i ∈ {0, . . . , k}, s + e + i ≤ k, a = 0, 1, 2, 3},

and the set of all household configurations

C =
⋃

k=1,...,kmax

Ck,

where kmax is the largest household size in the population. The dynamics of our model
are defined by specifying the events and the rates at which they occur. We split these
into two parts to simplify our exposition—the disease dynamics and the antiviral
allocation dynamics—although these are dependent on each other.
Disease dynamics There are two levels of mixing in this model: within a household
and between households (Ball et al. 1997; Ball 1996), so infection is either internal or
from an external source. The rate of infection inside a household of size k is governed
by the parameter βk , such that

βk =
{
0 k = 1

β
k−1 k > 1,

(1)
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as supported by empirical studies (Cauchemez et al. 2004, 2009; House et al. 2012),
while the rate of infection between households is governed by the parameter α. If a
household is taking antivirals (a = 1) then the susceptibility and infectiousness of all
those in the house is reduced by ρ and τ respectively. Thus, the overall rate of infection
in a house is

βksi + α

Nk̄
sΛ(t), a = 0, 2, 3

(1 − τ)(1 − ρ)βksi + (1 − ρ) α

Nk̄
sΛ(t), a = 1

where

Λ(t) =
∑

(s,e,i,k,a)∈C
(1 − τδa,1)i H(s,e,i,k,a)(t) (2)

is the total force of infection within the population and k̄ is the mean household
size: k̄ = ∑

k khk . The factor (1 − τδa,1) in Eq. (2) takes into account the reduced
infectivity of a house which is currently taking antivirals (a = 1). As in the standard
SEIR model, the per-individual rate of progression from exposed to infectious is σ ,
and the per-individual rate of recovery from infectious to recovered is γ .
Antiviral dynamics It is assumed that there is a limited stockpile of M antiviral doses
available at the beginning of the epidemic, and this stockpile is not replenished during
the outbreak. There is a large amount of flexibility in how these can be potentially
distributed, but for this investigation we assume that they can either be all preallo-
cated at the start, or only dynamically allocated during the epidemic. If antivirals are
preallocated at the start, only a proportion of households will receive them, so they
are allocated randomly to households according to some distribution. In general this
distribution is taken to be the household size distribution, h, so that all sized house-
holds are equally likely to be allocated antivirals, but in Sect. 5.5 different allocation
distributions are investigated.

A household which has been preallocated antivirals (a = 3) will start taking them
immediately (a = 1) upon the appearance of the first infectious individual in that
household. This behaviour is encoded by the transition

(
H(s,e,0,k,3), H(s,e−1,1,k,1)

) → (
H(s,e,0,k,3) − 1, H(s,e−1,1,k,1) + 1

)
.

There is also the possibility that a household takes its preallocated antivirals incorrectly
(i.e. there is no infection within the household, i = 0), encoded by the transition

(
H(s,e,0,k,3), H(s,e,0,k,1)

) → (
H(s,e,0,k,3) − 1, H(s,e,0,k,1) + 1

)
,

which is assumed to happen at rate ψ .
When considering dynamic allocation the number of antivirals used by the popula-

tion at time t is required. This can be calculated directly from the state of the system
by looking at the number of households not in state a = 0 at time t ,
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A(t) =
∑

(s,e,i,k,a)∈C
(1 − δa,0)kH(s,e,i,k,a)(t). (3)

Thus, a household which has not been given antivirals (a = 0) is allocated them at a
rate ζ after the first infection event within the household if they are available (i.e. if
A(t) < M).

Once a household is taking antivirals (a = 1), they last for a mean period of 1/κ
before they are consumed and the household enters state a = 2. A household is thus
only ever allocated, in either scheme, one course of antivirals, in line with current
allocation policies. All the transitions and rates of the stochastic households model
are summarised in Table 1.

The state space for the process, H(t), is,

S =
{
{H(s,e,i,k,a)(t)}

∣∣∣(s, e, i, k, a) ∈ C, H(s,e,i,k,a)(t) ∈ {0, . . . , Nk},
∑

(s,e,i,k,a)∈Ck

H(s,e,i,k,a)(t) = Nk

}
,

where Nk is the number of households of size k. It can be seen that the size of the state
space, |S|, will be too large to allow numerical solution of the forward equations when
{Nk} is anything other than trivial. The process may be simulated using the Gillespie
algorithm (Gillespie 1977), but such simulations are computationally intensive for the
population sizes of interest for comparing antiviral schemes, in particular when desir-
ing a reasonable level of accuracy on estimates and conclusions. These computational
considerations motivate the derivation of a deterministic approximation in the next
section.

3 Deterministic Approximation

As we are interested in the average behaviour of a pandemic in a large population, a
deterministic approximation to the stochastic household model which is fast to com-
pute is desired (Kurtz 1970; Ross et al. 2010). The first step in this derivation is to write
the transitions of our process in terms of stoichiometric matrices and corresponding
rate vectors. Each matrix here has dimension |S| × |S|, while the vectors are all of
length |S|.

The (m, n)th entry of a stoichiometric matrix corresponds to a transition from
a household in configuration n to m for each n = (s, e, i, k, a) ∈ C and m =
(s∗, e∗, i∗, k∗, a∗) ∈ C . The stoichiometric matrix, L1, corresponding to infection
has (m, n)th entry,

L(m,n)
1 = δa,a∗δk,k∗δi,i∗(−δs,s∗δe,e∗ + δs,s∗+1δe,e∗−1).

The matrix L1 can be used to represent infection both with antivirals, and without
antivirals. As such, set L2 = L1. The vectors which encapsulate the rates at which
these two transitions occur have nth component,
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y(n)
1 =

(
βksi + α

Nk̄
sΛ(t)

)
Hn,

y(n)
2 =

(
(1 − τ)(1 − ρ)βksi + (1 − ρ)

α

Nk̄
sΛ(t)

)
Hn,

representing infection into a household which contains individuals who are not cur-
rently taking antivirals, and are taking antivirals, respectively. For the progression of
infection in a household, the stoichiometric matrix, L3, has (m, n)th component,

L(m,n)
3 = δa,a∗δk,k∗δs,s∗(−δe,e∗δi,i∗ + δe,e∗+1δi,i∗−1)(1 − δa,3),

and the corresponding rate vector, y3, has nth component,

y(n)
3 = σeHn .

However, for preallocated households that have not commenced their course of
antivirals, the stoichiometric matrix corresponding to progression, L4, has (m, n)th
component,

L(m,n)
4 = δk,k∗δs,s∗δa,3δi,0(−δa∗,3δe,e∗δi∗,0 + δa∗,1δe,e∗+1δi∗,1),

while the corresponding rate vector, y4, is identical to y3. The stoichiometric matrix
corresponding to recovery inside a household, L5, has (m, n)th component,

L(m,n)
5 = δa,a∗δk,k∗δe,e∗δs,s∗(−δi,i∗ + δi,i∗+1),

and the corresponding rate vector, y5, has nth component,

y(n)
5 = γ i Hn .

For the introduction of antivirals into a household after the first infection event, the
stoichiometric matrix, L6, has (m, n)th component,

L(m,n)
6 = δk,k∗δi,i∗δe,e∗δs,s∗δa,0(−δa∗,0 + δa∗,1)(1 − δi,0),

and the corresponding rate vector, y6, has nth component,

y(n)
6 = ζHn .

The stoichiometric matrix, L7, for the completion of antivirals inside a household has
(m, n)th component,

L(m,n)
7 = δk,k∗δi,i∗δe,e∗δs,s∗δa,1(−δa∗,1 + δa∗,2),
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and the corresponding rate vector, y7, has nth component,

y(n)
7 = κHn .

Finally, the stoichiometric matrix for the incorrect taking of antivirals in households
preallocated antivirals has (m, n)th element,

L(m,n)
8 = δk,k∗δi,0δi∗,0δe,e∗δs,s∗δa,3(−δa∗,3 + δa∗,1),

and the rate vector for this event, y8, has nth component,

y(n)
8 = ψHn .

Consider now the proportion of households in each configuration at time t ,

X(s,e,i,k,a)(t) = N−1H(s,e,i,k,a)(t),

and let,

X(t) = {X(s,e,i,k,a)(t)} = N−1H(t).

The transition rates
{
y(n)
j

}
of the process H(t) are density dependent in the sense of

Kurtz (1970), so they can be written as

y(n)
j (t) = Nw(n)

j (X(t)), (4)

where the functions
{
w(n)

j (X(t))
}
depend only on the state of the process through the

density, X(t). Writing out the components of these fully gives,

w(n)
1 =

(
βksi + α Î (t)s

)
Xn(t),

w(n)
2 =

(
(1 − τ)(1 − ρ)βksi + (1 − ρ)α Î (t)s

)
Xn(t),

w(n)
3 = σeXn(t),

w(n)
4 = σeXn(t),

w(n)
5 = γ i Xn(t),

w(n)
6 = ζ Xn(t),

w(n)
7 = κXn(t),

w(n)
8 = ψXn(t),
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with

Î (t) = 1

k̄

∑

(s,e,i,k,a)∈C
(1 − τδa,1)i X(s,e,i,k,a)(t).

It is then possible to apply Theorem 3.1 of Kurtz (1970) to establish convergence,
uniformly in probability over finite time intervals, of the scaled stochastic households
model X(t) to the deterministic approximation,

dx(t)
dt

=
8∑

j=1

L jw j (x(t)),

as the number of households N → ∞; provided the initial density is close to the initial
proportion in the deterministic trajectory. This system of differential equations can
be solved using Runge–Kutta techniques, such as those implemented in MATLAB’s
ode45, as used herein.

For the dynamic allocation scheme the allocation of antivirals depends on there
being sufficient antivirals in the stockpile remaining at time t . Equation (3) can be
rewritten in terms of our deterministic variables as,

A(t) = N
∑

(s,e,i,k,a)∈C
(1 − δa,0)kx(s,e,i,k,a)(t). (5)

Then, the deterministic dynamics can be expressed as,

dx(t)
dt

=
{∑

j L jw j (x(t)) if A(t) < M,
∑

j �=6 L j w̄ j (x(t)) if A(t) ≥ M,
(6)

as w(n)
6 = 0 for all n = (s, e, i, k, a) ∈ C when no more antivirals can be introduced

into the population.

3.1 Initial Condition

In order to numerically solve the deterministic approximation, a suitable initial condi-
tion is required. The initial conditionmust be such that the proportion of the population
in each state is sufficiently large (Kurtz 1970). Further, the initial transient behaviour
should be eliminated so that the system starts in the early exponential growth phase
of the pandemic. This allows for a fairer comparison of the general behaviour of the
pandemic under a dynamic allocation and a preallocation scheme.

The suitable initial condition has the form,

x(0) = xs + i0
i · v1 v1, (7)
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where xs is the (unstable equilibrium) state in which all individuals are susceptible
to the disease, v1 is the eigenvector corresponding to the dominant eigenvalue of the
system and i0 is the initial proportion of infectious individuals in the population. Full
details of this initial condition are contained in “Appendix 1”. Note, the dominant
eigenvalue is also the early growth rate (Malthusian parameter) of the process.

4 Quantities of Interest

In order to compare antiviral allocation schemes, four key quantities are utilised. The
first of these is the expected epidemic final size; this is the total number of individuals
who were infected over the course of the pandemic (Brauer 2001). As there is no
waning immunity in this model, the total number of infected individuals is equivalent
to the total number of recovered individuals once the pandemic is complete. A lower
expected epidemic final size means that the pandemic outbreak was less severe. Also
calculated are the expected peak size and expected peak time of the pandemic: let I (t)
be the number of infectious individuals in the population at time t , then the peak size
is,

max{I (t)|t > 0},

and the peak time is,

argmax{I (t)|t > 0}.

Generally, a smaller peak size is desired as this means that there is less peak demand
on the health system, and a longer peak time is desired in order to give more time
for control measures and management plans to be implemented. The final quantity of
interest is the expected early growth rate (Keeling and Rohani 2008). This is given
by the dominant eigenvalue of the system, which is calculated when determining the
initial condition in Eq. (7) (see “Appendix 1”). A lower early growth rate means that
less individuals are being infected per unit time early in the pandemic, and so the
pandemic outbreak is not as severe during this time.

4.1 Parameters

Two pandemic scenarios are investigated: amild outbreak which is similar to the 2009
H1N1 Swine influenza pandemic, and also a severe outbreak which is similar to the
1918 Spanish pandemic (Mills et al. 2004). The parameters are matched to estimates
of the latent and infectious periods, and to previous estimates of R∗, where calculation
of the latter for our stochastic households model is effected using the method of Ross
et al. (2010) and Black et al. (2013).

Unlike more traditional pandemic analyses, the basic reproductive number, R0, is
not used as a measure of pandemic severity. The basic reproductive number, R0, is
defined to be the expected number of secondary infections caused by one infected indi-
vidual in an otherwise fully susceptible population (Anderson and May 1991; Pellis
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et al. 2012). In a population with household structure, the basic reproductive number
cannot reliably be used to predict the severity of an outbreak (Ball et al. 1997; Ross
et al. 2010). For example, if the rate of infection between households α = 0, then a
high R0 valuewould not result in a pandemic outbreak; R0 no longer acts as a threshold
parameter determining whether invasion is possible in structured models. Instead, we
choose to utilise the household reproductive number, R∗, as a measure of pandemic
severity (Ball et al. 1997). The household reproductive number, R∗, is the number of
infections introduced into susceptible households by a single household, in an other-
wise fully susceptible (and infinite) population. It is known that R∗ acts as a threshold
parameter in a model with this population structure (Ball 1996; Ball et al. 1997).

The 2009 H1N1 Swine influenza pandemic had an estimated R∗ of approximately
1.3 (Ghani et al. 2009), while the Spanish influenza pandemic had an estimated R∗
of approximately 1.8 (Mills et al. 2004). The rate of recovery is fixed at γ = 1 for
both sets of parameters, scaling time to units of an average infectious period. The
purpose of this scaling is to reduce the number of free parameters in the model, and to
avoid issues with varying estimates between the different strains of influenza (Ghani
et al. 2009; Carrat et al. 2002). For both sets of parameters, we let σ = 1, so the
latent (exposed) period is on average the same duration as the infectious period, as
approximately true for influenza, but also assess sensitivity to this parameter. The esti-
mates on the effectiveness of antivirals is varied, with some estimates claiming a 60%
reduction in susceptibility (Ferguson et al. 2006; Longini et al. 2005). However, these
figures have been disputed (Jefferson et al. 2012). In this work, a more conservative
estimate of antiviral effectiveness is chosen, setting the reduction in susceptibility, ρ,
and infectiousness, τ , to 0.3 in line with some experimental estimates (Stiver 2003;
Hayden et al. 2004); we also set the mean effective duration of antivirals, κ = 1, so
they last one infectious period on average. However, sensitivity to these parameters is
also assessed.

The mean delay until antivirals arrive into a household, ζ , has not been explored
previously in detail. One estimate for this delay in the UK during the 2009 Swine
influenza pandemic was approximately one infectious period, implying ζ = 1 (Ghani
et al. 2009). This is clearly long—half of the index individuals would be recovered
before they receive antivirals. Considered here is a smaller mean delay, relative to this
UK estimate, effectively representing what would happen if significant effort were
made to reduce the delay compared to the 2009 Swine influenza pandemic; we set
the rate at which antivirals arrive into a household, ζ = 2, which is a mean antiviral
delivery time of approximately half an infectious period. Also investigated is the
effect of this delay, ranging from ζ = 2, through to ζ = 0.66, in order to assess the
importance of rapid antiviral delivery. This is in addition to a comprehensive sensitivity
analysis on all parameters (see Sect. 5.3).

The household size distribution, h, is taken to be that of Australia according to the
2011 national census (Australian Bureau of Statistics 2011). That is,

h = [0.2434, 0.3397, 0.1598, 0.1569, 0.0675, 0.0231, 0.0058, 0.0039],

giving ameanhousehold size of approximately k̄ = 2.577.Note that the household size
distributions of the UK and USA are similar to that of Australia. The mild parameter
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Table 2 Definition of the mild
and severe parameter sets

Mild Severe

β 0.9669 1.1259

α 0.8 1

Both

σ 1

ρ 0.3

τ 0.3

ζ 2

κ 1

γ 1

h Australian Census, 2011

set is defined to have β = 0.9669 and α = 0.8; this gives (Ross et al. 2010; Black
et al. 2013) a household reproductive ratio, R∗, of 1.3. Similarly, the severe parameter
set is defined to have β = 1.1259 and α = 1; this gives a household reproductive
ratio, R∗, of 1.8. All parameters are presented in Table 2. Finally, the population
size is fixed at 105 individuals, and so the number of households in the population
is,

N =
⌊
105

k̄

⌋

= 38804.

5 Results

First, a numerical verification of the deterministic approximation is provided. Then,
exploration into the key quantities associated with a pandemic for both a mild and
severe outbreak under both a dynamic and preallocation scheme is performed. Next, a
full sensitivity analysis is undertaken for the eight parameters that govern the dynamics,
and finally an assessment is made of the impact of the rate of antiviral intervention,
ζ .

5.1 Numerical Verification

In Sect. 3, it was reported that the scaled Markov chain, N−1H(t), converges uni-
formly in probability over finite time intervals to the deterministic approximation,
x(t), as the number of households, N → ∞. This result is illustrated numerically
in Fig. 1. The figure shows the mean and variance of the difference in the propor-
tion of infectious individuals between one hundred realisations (Gillespie 1977) of
the stochastic household model (Table 1), scaled by the number of households, and
the deterministic approximation. It can be seen that as the number of households
increases, the scaledMarkov chain is increasingly well approximated by the determin-
istic approximation.We adopt the deterministic approximation for the remainder of the
results.
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(a)

(b)

Fig. 1 Difference in the proportion of infectious individuals between 100 realisations of the stochastic
household model and its deterministic approximation versus time, using the severe parameter set and for
varying the numbers of households. aMean difference. b Variance of the difference (Color figure online)

5.2 Comparison of Antiviral Allocation Schemes

The Australian Health Management Plan for Pandemic Influenza (2009) currently
specifies that antivirals would be utilised according to a dynamic allocation scheme
in the event of an influenza outbreak. Investigated here is the differences between the
dynamic allocation schemeand thepreallocation scheme in termsof expected epidemic
final size, expected peak size, expected peak time and expected early growth rate. These
are compared as a function of the proportion of the population with antivirals available
(M/Nk̄), at a resolution of 0.02.
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Fig. 2 Comparison of the expected epidemic final size as a function of the proportion of the population
with antivirals available (M/Nk̄) under both a dynamic allocation scheme (blue) and a preallocation scheme
(red). The solid lines are using the severe parameter set, and the dashed lines are using the mild parameter
set (Color figure online)

Figure 2 shows the expected epidemic final size as a function of the number of
antivirals available in the population. It can be seen that for a severe pandemic out-
break, the preallocation scheme leads to a smaller expected epidemic final size than the
dynamic allocation scheme, regardless of the amount of available antivirals, although
the differences are generally small. However, for a mild outbreak the dynamic allo-
cation scheme leads to a smaller expected epidemic final size than the preallocation
scheme for antiviral availabilities up to approximately 70% of the population. The rea-
son that dynamic allocation performs better in a mild outbreak, compared to a severe
outbreak, is that there is less infection per unit time, and so the delay until antivirals
arrive into a household has less of an impact compared to in a severe outbreak.

Figure 3 compares the (a) expected early growth rate, (b) expected peak time and
(c) expected peak size, under both a dynamic and a preallocation scheme. It can seen
that the dynamic allocation scheme leads to superior values for all these quantities
for antiviral availabilities up to approximately 70% of the population, regardless of
the pandemic severity parameter set. In contrast to the final size of an epidemic, the
growth rate, expected peak size and expected peak time are all quantities associated
with the earlier stages of the pandemic. Dynamic allocation ensures that all members
of a household that have experienced infection receive antivirals (with some delay),
at least early in the pandemic. However, preallocation utilises the supply of antivirals
more uniformly throughout the pandemic. Therefore it is not unexpected that dynamic
allocation yields superior results for these early time quantities compared to prealloca-
tion. However, for a severe outbreak, preallocation yields a smaller expected epidemic
final size compared to dynamic allocation.

It can also be seen in both Figs. 2 and 3 that for a dynamic allocation scheme,
there exists a maximum effective amount of antivirals, indicated by the flattening of
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Fig. 3 Comparisons of the a expected early growth rate, b expected peak size, and c expected peak time
as a function of the proportion of the population with antivirals available (M/Nk̄) for an epidemic under a
dynamic allocation scheme and a preallocation scheme. The solid lines are using the severe parameter set,
and the dashed lines are using the mild parameter set (Color figure online)

curves past a particular threshold of proportion of antivirals available. Having more
antivirals available than this threshold gives no benefit in terms of the key quantities
of a pandemic. This effective amount exists as the pandemic ends before any more
antivirals can be given out. It is this maximum effective amount of antivirals that leads
to the preallocation scheme having a smaller expected epidemic final size when there
is a large amount of antivirals available for the population.

5.2.1 Incorrect Taking of Antivirals

One important consideration in the practical implementation of the preallocation
scheme is the potential for incorrect taking of antivirals. Unfortunately, there is no
data for inferring the value of the parameter ψ , which controls this aspect of the
model, as the preallocation scheme is not currently used for antiviral distribution. For
this reason, the proportion of households required to use antivirals incorrectly in order
for a dynamic allocation scheme to lead to a smaller expected epidemic final size than
a preallocation scheme is calculated, and presented in Fig. 4. It can be seen that for
a severe pandemic outbreak, if between 30 and 70% of households have antivirals
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Fig. 4 Required proportion of households who use antivirals incorrectly for a dynamic scheme to be
preferable to a preallocation scheme in terms of epidemic final size as a function of the proportion of the
population with antivirals available (M/Nk̄), for a severe outbreak (solid line) and amild outbreak (dashed
line)

available, then between 10 and 15% of households can use their supply of antivirals
incorrectly before a dynamic allocation scheme gives the same expected epidemic
final size as the preallocation scheme. For a mild outbreak, there is more evidence that
a dynamic allocation scheme would be preferable. In particular, until approximately
80% of households have antivirals available, no more than 10% of households can
use antivirals incorrectly in order for a preallocation scheme to give a lower expected
epidemic final size. However, when a large amount of the population have antivirals
available, the required proportion of households who can use antivirals incorrectly
increases rapidly.

5.3 Sensitivity Analysis

As the deterministic approximation is fast to compute, a full sensitivity analysis of
our model can be performed. The sensitivity to the within-household infection rate,
β, between-household infection rate, α, recovery rate, γ , progression rate, σ , the
reduction in susceptibility, τ , and infectivity, ρ, the rate governing the duration of
antivirals, κ , and, for the dynamic allocation scheme, the rate at which antivirals arrive
in a household, ζ is assessed.All parameters are variedby10%,with the exceptionofβ,
which is varied by−5% in the severe parameter case, and+4% in the mild parameter
case, in order to avoid overlapping parameters. The proportion of antivirals available
is fixed at 35%, in line with probable stockpile sizes (Merler et al. 2009; Carrasco
et al. 2011). The full sensitivity analysis results in,

∑8
i=1 2

i
(8
i

) = 6560 different
combinations of parameters. The results of a one parameter sensitivity analysis are
contained in Tables 3, 4, 5 and 6 in the “Appendix”.
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While some of the parameters cause large increases or decreases in key quantities—
in particular the rate of recovery, γ , and also the between-household infection rate,
α—the conclusions that are drawn comparing the two allocation schemes are relatively
robust. For the mild parameter case, preallocation led to a smaller expected epidemic
final size in 35% of cases, a longer expected peak time in 14% of cases, but never
yielded a smaller expected peak size or a smaller expected early growth rate when
compared to the dynamic allocation scheme. For the severe parameter case, prealloca-
tion gave a smaller expected epidemic final size in 99% of cases, a smaller expected
peak size in 0.3% of cases, but never a longer expected peak time or smaller expected
early growth rate when compared to the dynamic allocation scheme.

There are a number of interesting features that are observed in the sensitivity analy-
sis, at least in the single parameter case. The effectiveness of antivirals appears to
have relatively little impact on the four assessed quantities, regardless of the antiviral
allocation scheme or severity of the outbreak. It is important to note here that a 10%
variation in these quantities is not large, but it demonstrates that the effectiveness
of antivirals need not be overly precise in this model. It also appears as though the
effective antiviral duration, as controlled by κ , has minimal impact on the four key
quantities.

Also of interest is the 35% of times in which preallocation gives a smaller expected
epidemic final size in a mild outbreak, when compared to dynamic allocation. In
general, this happens when both β and α are increased. The 4% increase in β and the
10% increase in α bring the infection parameters very close to the severe parameter
set, so it is not surprising that a preallocation scheme gives a better expected epidemic
final size.

Finally, the progression rate, σ , has no impact on expected epidemic final size, as
expected, but also has only a small impact on the expected peak size, expected peak
time and expected growth rate, regardless of the severity of the outbreak.

5.4 Impact of Delay of Antiviral Delivery

Thus far, the rate at which antivirals arrive to a household has been assumed to be fixed
at ζ = 2, which corresponds to a mean delay of half an infectious period. One estimate
of this delay from the 2009 Swine influenza pandemic is one infectious period, that
is, ζ = 1 (Ghani et al. 2009). Hence, we were reasonably optimistic with regards
to this aspect of the model. Due to the speed of the deterministic approximation and
the importance of this parameter, we explore the impact of the delay on the expected
epidemic final size, as shown in Fig. 5. When two thirds of the population has access
to antivirals, it can be seen that an average delay higher than 0.6 infectious periods
(corresponding to ζ < 1.66) leads to preallocation giving a smaller expected epidemic
final size than a dynamic allocation scheme. When one third of the population have
access to antivirals, it can seen that an average delay higher than 0.95 infectious periods
(corresponding to ζ < 1.05) leads to preallocation giving a smaller expected epidemic
final size. This demonstrates that significant effort should be made to ensure that the
delay until antivirals arrive into a household is small, or else preallocation is better
than dynamic allocation.
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Fig. 5 Comparison of expected epidemic final size for various average delays until antivirals arrive in a
household. The number of antivirals is fixed at one third (solid lines) or two thirds (dashed lines) of the
population. All other parameters are taken from the mild parameter set (Color figure online)

5.5 Preallocation Schemes

Thus far, all antivirals under a preallocation scheme have been allocated according
to the household size distribution, h. Implementing such a distribution scheme is
relatively straightforward—a household is chosen uniformly at random from the pop-
ulation, and all members of that household are preallocated antivirals. There are other
potential methods of preallocation. One alternative preallocation scheme is to utilise
the size-biased distribution, π . When considering a population with heterogeneous
household sizes, the j th component of the size-biased distribution,

π j = jh j∑
k khk

,

is the probability of contact of an infectious individual with a susceptible individual
who belongs to a household of size j (Ball et al. 1997; Black et al. 2013). Other
potential preallocation schemes include allocating to the smallest households first, or
to the largest households first.

In Fig. 6, comparisons of these different preallocation schemes in terms of the
expected epidemic final size are shown, as a function of the maximum proportion of
the population who have antivirals available. For the severe parameter set, allocating
to the largest household first, smallest household first, or according to the household
size distribution or size-biased distribution, produce very similar impacts on epidemic
final size. All preallocation schemes are better than dynamic allocation in this case. For
the mild parameter set, the differences between the various preallocation schemes are
more pronounced. Allocating according to the largest household size first yields the
smallest expected epidemic final size, amongst the preallocation schemes. From the
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Fig. 6 Comparison of different preallocation methods compared to a dynamic allocation scheme as a
function of the proportion of the population with antivirals available (M/Nk̄) on the expected epidemic
final size using the a severe parameter set and the b mild parameter set (Color figure online)

results, allocating to the largest household size first appears to be a robust preallocation
choice.

6 Discussion

In this paper, an alternative scheme for allocating antivirals during an influenza pan-
demic, which we have called preallocation, has been investigated. A deterministic
approximation, to a new stochastic households model, which is fast to compute has
been derived. The deterministic approximation allows exploration of pandemic sce-
narios efficiently, unlike Monte Carlo simulation methods (Cross et al. 2007; Colizza
et al. 2007; Matrajt et al. 2013). However, the deterministic approximation is unable to
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assess the effects of stochasticity, unlike some other methods (Ross et al. 2010; Black
et al. 2013).

The effectiveness of antivirals during a pandemic has been questioned previously as
a consequence of the delays in distributing antivirals to households under the dynamic
allocation scheme (Black et al. 2013). This work is one of the first studies which
assesses a different antiviral allocation scheme, preallocation, which seeks to remove
this delay. A comparison has been performed using the epidemic final size, peak size,
peak time and the early growth rate. It has been shown that the theoretical best choice
between these allocation scheme depends on the severity of the pandemic outbreak,
the antiviral stockpile size, the delay in antiviral delivery under the dynamic allocation
scheme, and also on the quantity used to perform the assessment.

For a severe pandemic outbreak, the preallocation scheme generally gave a smaller
epidemic final size, but a larger peak size and early growth rate. If only one of these
quantities were considered, then the benefits of the allocation schemes may not be
seen. Intuitively, the dynamic allocation scheme ensures that all individuals early in
the pandemic receive antivirals. However, preallocation has antivirals actively being
used more uniformly throughout a pandemic, and so the benefits of preallocation may
not be seenwhen looking at quantities associatedwith the early stages of the pandemic.
It is worth noting that, particularly for a severe outbreak, a preallocation scheme can
yield a smaller epidemic final size.

Also considered was households taking antivirals incorrectly under the prealloca-
tion scheme. Itwas shown that, for a severe outbreak, if the proportion of the population
which has antivirals available is greater than 20%, then more than 10% of those who
have been preallocated antivirals would have to use antivirals incorrectly for a dynamic
allocation scheme to give a lower epidemic final size than a preallocation scheme. For
a mild outbreak though, a dynamic allocation scheme already gives a lower expected
epidemic final size until approximately 70% of the population has antivirals avail-
able. After this point, however, the proportion of households that can use antivirals
incorrectly increases steeply.

One important consideration for pandemic response is the amount of antivirals that
are available for distribution. In this work, all possibilities of stockpile size have been
considered. In reality, it is unlikely that a country would stockpile a very large amount
of antivirals, due to the cost of maintaining this stockpile. The realistic supply of
antivirals is likely to be less than 50% of the population (Merler et al. 2009; Carrasco
et al. 2011). It is worth noting that in the unrealistically high ranges of antivirals, the
preallocation scheme consistently yields better results than the dynamic allocation
scheme. However, when between 25 and 50% of the population have antivirals avail-
able, the dynamic scheme is superior with the exception of the epidemic final size for
a severe outbreak.

Also investigated was different methods of preallocation, based upon how antivi-
rals are distributed to households of different sizes. For a severe outbreak, the tested
preallocation methods differed in expected epidemic final size by less than 1%. From
results for both parameter sets, allocating to the largest household size first appears
to be a robust preallocation choice. Allocating to the largest household first is similar
to the equalisation principle in the optimal vaccination problem (Ball and Lyne 2002;
Keeling and Ross 2015). The main difference in this case is that we are allocating to
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entire households, not individuals, as is the case in the optimal vaccination problem.
Allocating to largest households first may still not be optimal, and a potential extension
of this work would be to determine the optimal preallocation method.

A benefit of the deterministic approximation we derived is its computational effi-
ciency, hence allowing us to perform a full sensitivity analysis, consisting of 6560
combinations of parameters. This full set of analyses was completed in approximately
five and a half hours on an Intel i5 processor. This type of sensitivity analysis is not
practical using Monte Carlo methods. The sensitivity analysis showed that, although
key quantities associated with the pandemic can change significantly, the choice of
optimal scheme is relatively robust. That is, for a severe outbreak, a preallocation
scheme yields a smaller expected epidemic final size, while for a mild outbreak, a
dynamic allocation scheme tends to yield a smaller expected epidemic final size.

Themodelwehave described can incorporatemuchmoreflexibility in the allocation
schemes than we have investigated in this paper. Hybrid schemes can be investigated
by preallocating some proportion of antivirals at the beginning and then dynamically
distributing the rest. The number of antivirals available, M , could also be made a
function of time, representing production during the pandemic.

This work demonstrates the impact of the delay of antiviral distribution under a
dynamic allocation scheme. If the delay can be made noticeably smaller than during
the 2009 Swine influenza pandemic, then a dynamic allocation scheme often gives
a smaller epidemic impact and is more robust than a preallocation scheme. Given
the practical considerations of implementing a preallocation scheme in conjunction
with our analysis, it motivates a focus on attempting to reduce the delay in delivering
antivirals under a dynamic allocation scheme during a future pandemic.

The scenarios we have considered here do have some limitations. One limitation is
that we have assumed that there are negligible deaths throughout the pandemic. While
death is somewhat similar to recovery as a modelling assumption, the minimisation of
death in a population has been a focus of other studies (Glass et al. 2011; Goldstein
et al. 2010). We expect that minimisation of epidemic final size would also contribute
to a lower number of deaths; however, this concept has not been verified here. Another
limitation is that our models do not account explicitly for asymptomatic infections,
which are likely to be of significant number, in particular under a mild scenario. How-
ever, we anticipate that this feature would impact both allocation schemes in a similar
manner, and hence not lead to significant changes when comparing between schemes.
Finally, this work does not account for the possibility of vaccine development during
the outbreak. Current estimates of the time to produce and commence distribution of
such a vaccine is approximately 6 months, but could be potentially longer (Fedson
2003; Webby and Webster 2003; Webby et al. 2004). As such, a vaccine is almost
certain to become available post-peak in all scenarios considered here, but potentially
at a stage to have some impact upon our assessment with respect to the epidemic
final size, in particular under a mild scenario, depending upon the vaccine efficacy
and supply levels. The effect would likely be to provide some advantage to dynamic
allocation in such a scenario, and hence further supports our overall conclusions.

New strains of influenza have caused pandemics approximately every 30 years.
Events of the past would indicate that control of future pandemics is of great impor-
tance. With antiviral developments in progress (Bekerman and Einav 2015), research
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is needed to fully understand the best use of such antivirals. The extensions and ideas
presented throughout this work will hopefully lead to a more efficient use of antivirals,
and hence to a smaller impact of future pandemics.

Acknowledgments We gratefully acknowledge the support of the ARC (FT130100254 and ACEMS) and
NHMRC (PRISM2) .

Appendix 1: Derivation of the Initial Condition

Consider the population state xs, the state in which all individuals are susceptible to
the disease. It is ideal to start the system near the point xs. As such, an initial condition
of the form,

x(0) = xs + ω,

is sought. To determine ω, a linear stability analysis to the system (Jordan and Smith
1987) is applied. Let F(x(t)) = ∑

j L jw j (t). The deterministic approximation can
then be expressed as,

dx(t)
dt

= F(x(t)).

Let the Jacobian of this system be J . That is,

Ji, j = ∂Fi
∂x j

.

Let Jx be this Jacobian evaluated at the point x. Linearising this system about the fixed
point, xs, yields,

dx(t)
dt

= F(xs) + Jxs(x(t) − xs)

= Jxs(x(t) − xs),

as F(xs) = 0. Let x(t) − xs = Δ(t). Then, dx(t)
dt = dΔ(t)

dt and,

dΔ(t)

dt
= JxsΔ(t). (8)

As Eq. (8) is a system of constant coefficient linear differential equations, the system
can be decomposed in terms of its eigenvalues and eigenvectors. Let Jxs have eigen-
values λ1, . . . , λn , where Re(λ1) > · · · > Re(λn), with corresponding eigenvectors
v1, . . . , vn. It follows that, Δ(t) = ∑n

j=1 ε j etλ j vj, where ε j are coefficients that are
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yet to be determined. Hence,

x(t) = xs +
n∑

j=1

ε j e
tλ j v j .

In the expansion, only the dominant eigenvalue, λ1, with corresponding eigenvector
v1 is considered. As such,

x(t) = xs + ε1e
tλ1v1. (9)

Consider now the system at time t = 0;

x(0) = xs + ε1v1. (10)

Fixing the initial proportion of infection, i0 ∈ (0, 1) gives,

i0 =
∑

(s,e,i,k,a)∈C
x(s,e,i,k,a)(0)i = x(0) · i,

where i is the vector of infectious individuals, i , in each state (s, e, i, k, a) ∈ C . Using
Eq. (10) yields,

x(0) · i = xs · i + ε1(i · v1),

but, xs · i = 0, as there is no infectious individuals when the population is in state xs,
and so

x(0) · i = i0 = ε1(i · v1).

Rearranging for ε1 gives,

ε1 = i0
i · v1 .

Substituting this expression into Eq. (10) gives the equation for the initial condition,

x(0) = xs + i0
i · v1 v1.

Consider the Jacobian of the system. As each stoichiometric matrix, Li , is constant,
the only terms that need to be differentiated are the rate vectors, wi (x(t)). The first
rate vector,w1, is nonlinear in xn(t) as Î (t) is also a function of xn(t). To differentiate
this vector, consider the nth component,

w(n)
1 =

(
βksnin + α Î (t)sn

)
xn(t),

123



Choice of Antiviral Allocation Scheme for Pandemic… 317

with,

Î (t) = 1

k̄

∑

(s,e,i,k,a)∈C
(1 − τδa,1)i x(s,e,i,k,a)(t)

= 1

k̄

(
(1 − τδan ,1)inxn(t) +

∑

j �=n
j∈C

(1 − τδa j ,1)i j x j (t)

)
.

Then, differentiating term by term gives,

∂w(n)
1

∂xm
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

βksnin + 1
k̄
sn

(
2α(1 − τδan ,1)inxn(t)

+α
∑

j �=n
j∈C

(1 − τδa j ,1)i j x j (t)
)
, if n = m,

1
k̄
αsn(1 − τδam ,1)imxn(t) if n �= m.

Similarly for w2,

∂w(n)
2

∂xm
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − τ)(1 − ρ)βksnin + (1 − ρ) 1
k̄
sn

(
2α(1 − τδan ,1)inxn(t)

+α
∑

j �=n
j∈C

(1 − τδa j ,1)i j x j (t)
)
, if n = m,

(1 − ρ) 1
k̄
αsn(1 − τδam ,1)imxn(t), if n �= m.

Rate vectors w3 through to w8 are linear in xn(t), and so are straightforward to differ-
entiate, with nth component,

∂w(n)
3

∂xm
=

{
σen if n = m,

0 if n �= m,

∂w(n)
4

∂xm
=

{
σen if n = m,

0 if n �= m,

∂w(n)
5

∂xm
=

{
γ in if n = m,

0 if n �= m,

∂w(n)
6

∂xm
=

{
ζ if n = m,

0 if n �= m,

∂w(n)
7

∂xm
=

{
κ if n = m,

0 if n �= m,

∂w(n)
8

∂xm
=

{
ψ if n = m,

0 if n �= m.

The Jacobian of the system is then,

J =
8∑

j=1

L j
∂w j

∂x
.

123



318 M. Lydeamore et al.

Appendix 2: Sensitivity Analysis Tables

Tables 3, 4, 5 and 6 contain the results of the sensitivity analysis for varying a single
parameter. The number in each cell is the percentage change in the quantity of interest
compared to the baseline (no variation). A positive number implies an increase, while
a negative number implies a decrease.

Table 3 Sensitivity analysis for
dynamic allocation scheme
using the severe parameter set

+/− Final size Peak size Peak time Growth

β + 0.03 0.09 −0.04 0.07

− −0.02 −0.05 0.02 −0.04

α + 0.09 0.30 −0.13 0.23

− −0.12 −0.31 0.21 −0.24

γ + −0.15 −0.39 0.19 −0.26

− 0.13 0.52 −0.13 0.27

σ + 0.0 0.05 −0.04 0.05

− 0.0 −0.05 0.04 −0.05

τ + 0.0 0.0 0.02 −0.03

− 0.0 0.0 −0.02 0.03

ρ + 0.0 0.0 0.0 0.0

− 0.0 0.0 0.0 0.0

κ + 0.0 0.0 0.0 −0.02

− 0.0 0.0 −0.01 0.02

ζ + 0.0 0.0 0.0 0.01

− 0.0 0.0 0.0 −0.01

Table 4 Sensitivity analysis for
dynamic allocation scheme
using the mild parameter set

+/− Final size Peak size Peak time Growth

β + 0.04 0.09 −0.04 0.07

− −0.11 −0.22 0.11 −0.18

α + 0.25 0.75 −0.23 0.52

− −0.48 −0.65 0.58 −0.55

γ + −0.54 −0.75 0.57 −0.66

− 0.34 1.25 −0.26 0.69

σ + 0.0 0.05 −0.03 0.04

− 0.0 −0.05 0.03 −0.05

τ + 0.0 −0.02 0.04 −0.06

− 0.0 0.02 −0.04 0.06

ρ + 0.0 0.0 0.0 −0.01

− 0.0 0.0 0.0 0.01
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Table 4 continued +/− Final size Peak size Peak time Growth

κ + 0.0 −0.02 0.03 −0.04

− 0.0 0.02 −0.03 0.05

ζ + 0.0 0.0 −0.01 0.02

− 0.0 0.0 0.0 −0.02

Table 5 Sensitivity analysis for
preallocation scheme using the
severe parameter set

+/− Final size Peak size Peak time Growth

β + 0.03 0.09 −0.04 0.05

− −0.02 −0.04 0.02 −0.03

α + 0.10 0.29 −0.11 0.19

− −0.12 −0.29 −0.16 −0.20

γ + −0.15 −0.38 0.13 −0.20

− 0.14 0.51 −0.10 0.21

σ + 0.0 0.05 −0.04 0.05

− 0.0 −0.05 0.05 −0.05

τ + 0.0 0.0 0.0 0.0

− 0.0 0.0 0.0 0.0

ρ + 0.0 0.0 0.0 0.0

− 0.0 0.0 0.0 0.0

κ + 0.0 0.0 0.0 0.0

− 0.0 0.0 0.0 0.0

Table 6 Sensitivity analysis for
preallocation scheme using the
mild parameter set

+/− Final size Peak size Peak time Growth

β + 0.03 0.07 −0.02 0.04

− −0.09 −0.18 0.06 −0.11

α + 0.23 0.62 −0.16 0.33

− −0.30 −0.53 −0.23 −0.35

γ + −0.37 −0.64 0.20 −0.39

− 0.32 1.06 −0.16 0.41

σ + 0.0 0.05 −0.04 0.05

− 0.0 −0.05 0.04 −0.05

τ + 0.0 −0.01 0.0 0.0

− 0.0 0.01 0.0 0.0

ρ + 0.0 0.0 0.0 0.0

− 0.0 0.0 0.0 0.0

κ + 0.0 0.0 0.0 0.0

− 0.0 0.0 0.0 0.0
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