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                    Abstract
Many observational studies suggest that seasonal migratory birds play an important role in spreading Ixodes scapularis, a vector of Lyme disease, along their migratory flyways, and they are believed to be responsible for geographic range expansion of I. scapularis in Canada. However, the interplay between the dynamics of I. scapularis on land and migratory birds in the air is not well understood. In this study, we develop a periodic delay meta-population model which takes into consideration the local landscape for tick reproduction within patches and the times needed for ticks to be transported by birds between patches. Assuming that the tick population is endemic in the source region, we find that bird migration may boost an already established tick population at the subsequent region and thus increase the risk to humans, or bird migration may help ticks to establish in a region where the local landscape is not appropriate for ticks to survive in the absence of bird migration, imposing risks to public health. This theoretical study reveals that bird migration plays an important role in the geographic range expansion of I. scapularis, and therefore our findings may suggest some strategies for Lyme disease prevention and control.
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Appendices
Appendix 1: Derivation of Model (1)
In the model (1), the key terms are those accounting for the influxes of feeding ticks (larvae and nymphs) between patches, because the other terms are almost self-explanatory and easy to understand. These terms are results of bird migration and thus need to be carefully derived by the tracking the bird migration and feeding age of ticks on flying birds. We illustrate the procedure by considering the feeding nymphs; the influx of feeding larvae can be obtained in a similar way.
The change rates of feeding nymphs infesting on birds in a particular patch consist of five components: development from local patch coming from the questing stage, immigration from the previous patch carried by migratory birds, emigration out of the patch to the next by the aid of migratory birds, development into the next stage and mortality. In order to formulate the equation of feeding nymphs on birds, we let \(B_i(t)\) be the population of migratory birds at time t in patch i and \(m_{i,i+1}(t)\) be migration rate of birds leaving patch i and flying to patch \(i+1\). Let \(u_i(t,a)\) be density of feeding nymphs infesting on birds at time t with feeding age a in patch i. By the meaning of \(u_i(t,a)\), it is obvious that at a given time t within patch i, the total number of feeding nymphs on birds is given by
$$\begin{aligned} x_{i,8b}(t)=\int _0^{\infty } u_i(t,a)\,\mathrm{d}a. \end{aligned}$$

                    (22)
                

For \(0\le a< \tau _{i-1}\), there is no feeding nymphs entering patch i from the previous patch due to the time delay in flight. Following the first principle governing the growth of a population with age structure, the density \(u_i(t,a)\) (\(i\in \mathcal {A}\)) satisfies
$$\begin{aligned} \left\{ \begin{array}{r@{\quad }c@{\quad }l} \left( \frac{\partial }{\partial t}+\frac{\partial }{\partial a}\right) u_i(t,a)&{}=&{}-d_{i,8b}(t)u_i(t,a)\\ &{}&{}-m_{i,i+1}(t)u_i(t,a)-\mu _{i,8b}(t,x_{i,8b}(t))u_i(t,a),\\ u_i(t,0)&{}=&{}d_{i,7b}(t,B_i(t))x_{i,7}(t). \end{array} \right. \end{aligned}$$

                    (23)
                

For \(\tau _{i-1}\le a<\infty \), migratory birds are capable of dispersing I. scapularis into patch i from the previous patch \(i-1\). Then \(u_i(t,a)\) at the given time t in patch i (\(i\in \mathcal {A}\)) satisfies
$$\begin{aligned}&\left( \frac{\partial }{\partial t}+\frac{\partial }{\partial a}\right) u_i(t,a) \nonumber \\= & {} -d_{i,8b}(t)u_i(t,a)-m_{i,i+1}(t)u_i(t,a)-\mu _{i,8b}(t,x_{i,8b}(t))u_i(t,a) \nonumber \\&+\, [ \text {influx of feeding nymphs at time} \, t\, \mathrm{with }\, \mathrm{age }\, a ]. \end{aligned}$$

                    (24)
                

We need to derive the influx term on the right side in (24). The idea is to use the method of the characteristics, just as in Gourley et al. (2010). Let \(l_{i-1,i}\) be the distance along the flyway from patch \(i-1\) to patch i and \(v_{i-1,i}\) be the average flying velocity of the birds flying from patch \(i-1\) to patch i. Then the time for a I. scapularis to be carried from patch \(i-1\) to patch i is \(\tau _{i-1}=l_{i-1,i}/v_{i-1,i}\). Denote by \(\mu ^l_{i-1,i}(t)\), \(\mu ^n_{i-1,i}(t)\) and \(\mu ^b_{i-1,i}(t)\) the mortalities of per capita feeding larvae, feeding nymphs and migratory birds, respectively, and let \(d^l_{i-1,i}(t)\) and \(d^n_{i-1,i}(t)\) be the respective development rates of feeding larvae and feeding nymphs on birds.
Now, let
$$\begin{aligned}&\rho _{i-1,i}(t,a,y)\\= & {} \text {density of feeding nymphs on birds in the air along the route from patch}~i-1\\&\text {to patch}~i~\text {at time}~t~\text {with feeding age}~a~\text {at location} ~y \in (0, l_{i-1,i}). \end{aligned}$$

Then \(\rho _{i-1,i}(t,a,y)\) satisfies the reaction-advection equation
$$\begin{aligned} \left\{ \begin{array}{r@{\quad }c@{\quad }l} \left( \frac{\partial }{\partial t}+\frac{\partial }{\partial a}\right) \rho _{i-1,i}(t,a,y)&{}=&{}-v_{i-1,i}\frac{\partial \rho _{i-1,i}(t,a,y)}{\partial y}-\mu ^b_{i-1,i}(t)\rho _{i-1,i}(t,a,y)\\ &{} &{}-\mu ^n_{i-1,i}(t)\rho _{i-1,i}(t,a,y)-d^n_{i-1,i}(t)\rho _{i-1,i}(t,a,y),\\ v_{i-1,i}\rho _{i-1,i}(t,a,0)&{}=&{}m_{i-1,i}(t)u_{i-1}(t,a). \end{array} \right. \end{aligned}$$

                    (25)
                

with \(m_{i-1,i}(t)u_{i-1}(t,a)\) being the flux of feeding nymphs leaving patch \(i-1\) at time t. Then, the flux of feeding nymphs arriving at patch i at time t with age a is \(v_{i-1,i}\rho _{i-1,i}(t,a,l_{i-1, i})\), which needs to be determined. For simplicity of notations, we denote \(\gamma ^n_{i-1,i}(t):=\mu ^b_{i-1,i}(t)+\mu ^n_{i-1,i}(t)+d^n_{i-1,i}(t)\) (\(i=2,\ldots ,N\)), which exactly indicates the removal rate of feeding nymphs in the air along the route from patch \(i-1\) and patch i. Since time and age advance at the same rate, we let
$$\begin{aligned} S(t,y,r)=\rho _{i-1,i}(t,t+r,y) \end{aligned}$$

                    (26)
                

for any given real number r. By differentiating S(t, y, r) with respect to time t, we obtain
$$\begin{aligned} \frac{\partial S}{\partial t}(t,y,r)= & {} \left[ \frac{\partial \rho _{i-1,i}}{\partial t}(t,a,y)+\frac{\partial \rho _{i-1,i}}{\partial a}(t,a,y)\right] _{a=t+r}\\= & {} -v_{i-1,i}\frac{\partial \rho _{i-1,i}}{\partial y}(t,t+r,y)-\gamma ^n_{i-1,i}(t)\rho _{i-1,i}(t,t+r,y). \end{aligned}$$

So that
$$\begin{aligned} \frac{\partial S}{\partial t}(t,y,r)=-v_{i-1,i}\frac{\partial S}{\partial y}(t,y,r)-\gamma ^n_{i-1,i}(t)S(t,y,r). \end{aligned}$$

Denote \(S_{\xi }(y,r)=S(\xi +\frac{y}{v_{i-1,i}},y,r)\). Then \(S_{\xi }(y,r)\) satisfies the following equation
$$\begin{aligned} \frac{\mathrm{d}S_{\xi }(y,r)}{\mathrm{d}y}= & {} \left( \frac{\partial S}{\partial t}\frac{\partial t}{\partial y}+\frac{\partial S}{\partial y}\right) \left| _{t=\xi +\frac{y}{v_{i-1,i}}}\right. \nonumber \\= & {} \frac{1}{v_{i-1,i}}\left( \frac{\partial S}{\partial t}+v_{i-1,i}\frac{\partial S}{\partial y}\right) \left| _{t=\xi +\frac{y}{v_{i-1,i}}}\right. \nonumber \\= & {} -\frac{1}{v_{i-1,i}} \gamma ^n_{i-1,i}\left( \xi +\frac{y}{v_{i-1,i}}\right) S_{\xi }(y,r). \end{aligned}$$

                    (27)
                

The above Eq. (27) is a linear first-order ordinary differential equation. Integrating equation (27) with respect to the variable y from 0 to \(l_{i-1, i}\) yields
$$\begin{aligned} S_{\xi }(l_{i-1,i},r)=S_{\xi }(0,r)\text {exp} \left( \frac{-1}{v_{i-1,i}}\int _{0}^{l_{i-1,i}}\gamma ^n_{i-1,i}(t)\,\mathrm{d}y\right) . \end{aligned}$$

Setting \(\xi =t-\frac{l_{i-1,i}}{v_{i-1,i}}\) and letting \(\eta =\xi +\frac{y}{v_{i-1,i}}\) along with the fact \(\tau _{i-1}=\frac{l_{i-1,i}}{v_{i-1,i}}\), we obtain
$$\begin{aligned} S(t,l_{i-1,i},r)= & {} S(t-\tau _{i-1},0,r)\text {exp}\left( -\frac{1}{v_{i-1,i}} \int _{0}^{l_{i-1,i}}\gamma ^n_{i-1,i}\left( \xi +\frac{y}{v_{i-1,i}}\right) \,\mathrm{d}y\right) \\= & {} S(t-\tau _{i-1},0,r)\text {exp}\left( -\frac{1}{v_{i-1,i}} \int _{0}^{l_{i-1,i}}\gamma ^n_{i-1,i}\left( t+\frac{y-y_i}{v_{i-1,i}}\right) \,\mathrm{d}y\right) \\= & {} S(t-\tau _{i-1},0,r)\text {exp}\left( -\int _{t-\tau _{i-1}}^{t}\gamma ^n_{i-1,i}(\eta )\,\mathrm{d}\eta \right) \\:= & {} S(t-\tau _{i-1},0,r)\alpha ^n_{i-1,i}(t), \end{aligned}$$

where
$$\begin{aligned} \alpha ^n_{i-1,i}(t):=\text {exp}\left( -\int _{t-\tau _{i-1}}^{t}(\mu ^n_{i-1,i}(\eta )+\mu _{i-1,i}^b(\eta )+d_{i-1,i}^n(\eta ))\,\mathrm{d}\eta \right) \end{aligned}$$

                    (28)
                

which accounts for the probability that a feeding nymph can survive the flight from patch \(i-1\) to patch i. Thus,
$$\begin{aligned} \rho _{i-1,i}(t,a,y_i)=\rho _{i-1,i}(t-\tau _{i-1},a-\tau _{i-1},y_{i-1})\alpha ^n_{i-1,i}(t). \end{aligned}$$

                    (29)
                

Then, the flux of feeding nymphs at time t with age a entering patch i is given by
$$\begin{aligned}&v_{i-1,i}\rho _{i-1,i}(t,a,y_i)=v_{i-1,i}\rho _{i-1,i}(t-\tau _{i-1},a-\tau _{i-1},y_{i-1})\alpha ^n_{i-1,i}(t)\\&\quad =[\text {outward flux in patch}~i-1~\text {at time}~t-\tau _{i-1}~\text {of age}~a-\tau _{i-1}] \times \alpha ^n_{i-1,i}(t)\\&\quad =\alpha ^n_{i-1,i}(t)m_{i-1,i}(t-\tau _{i-1})u_{i-1}(t-\tau _{i-1},a-\tau _{i-1}). \end{aligned}$$

Summarizing the above, \(u_i(t,a)\) satisfies
[image: ]

                    (30)
                

with \(\alpha ^n_{i-1,i}(t)\) given by (28).
Taking derivative in Eq. (22) and making use of (30) yield
$$\begin{aligned} x'_{i,8b}(t)= & {} \int _0^{\tau _{i-1}} \frac{\partial }{\partial t} u_i(t,a)\,\mathrm{d}a+\int _{\tau _{i-1}}^{\infty } \frac{\partial }{\partial t} u_i(t,a)\,\mathrm{d}a\nonumber \\= & {} \int _0^{\tau _{i-1}} \left( \frac{\partial }{\partial t}+\frac{\partial }{\partial a}\right) u_i(t,a)\,\mathrm{d}a+u_i(t,0)-u_i(t,\tau _{i-1})\nonumber \\&+\int _{\tau _{i-1}}^{\infty } \left( \frac{\partial }{\partial t}+\frac{\partial }{\partial a}\right) u_i(t,a)\,\mathrm{d}a+u_i(t,\tau _{i-1})-u_i(t,\infty )\end{aligned}$$

                    (31)
                


                           $$\begin{aligned}= & {} u_i(t,0)+\alpha ^n_{i-1,i}(t)m_{i-1,i}(t-\tau _{i-1})x_{i-1,8b}(t-\tau _{i-1})\nonumber \\&-\,d_{i,8b}(t)x_{i,8b}(t)-m_{i,i+1}(t)x_{i,8b}(t)-\mu _{i,8b}(t,x_{i,8b}(t))x_{i,8b}(t)\nonumber \\= & {} \underbrace{d_{i,7b}(t,B_i(t))x_{i,7}(t)}_{\text {attachment from local patch}}+\underbrace{\alpha ^n_{i-1,i}(t)m_{i-1,i}(t-\tau _{i-1})x_{i-1,8b}(t-\tau _{i-1})}_{\text {immigration from previous patch}}\nonumber \\&-\underbrace{d_{i,8b}(t)x_{i,8b}(t)}_{\text {development to the next}}-\underbrace{m_{i,i+1}(t)x_{i,8b}(t)}_{\text {emigration out of the patch}}-\underbrace{\mu _{i,8b}(t,x_{i,8b}(t))x_{i,8b}(t)}_{\text {density-dependent death}},\nonumber \\ \end{aligned}$$

                    (32)
                

where we have made the biologically realistic assumption \(u_i(t,\infty )=0\).
In a similar way, we obtain the dynamics of feeding larvae on birds at patch i as below
$$\begin{aligned} x'_{i,5b}(t)= & {} \underbrace{d_{i,4b}(t,B_i(t))x_{i,4}(t)}_{\text {attachment from local patch}}+\underbrace{\alpha ^l_{i-1,i}(t)m_{i-1,i}(t-\tau _{i-1})x_{i-1,5b}(t-\tau _{i-1})}_{\text {immigration from previous patch}}\nonumber \\&-\underbrace{d_{i,5b}(t)x_{i,5b}(t)}_{\text {development to the next}}-\underbrace{m_{i,i+1}(t)x_{i,5b}(t)}_{\text {emigration out of the patch }}-\underbrace{\mu _{i,5b}(t,x_{i,5b}(t))x_{i,5b}(t)}_{\text {density-dependent death}},\nonumber \\ \end{aligned}$$

                    (33)
                

where
$$\begin{aligned} \alpha ^l_{i-1,i}(t)= & {} \text {exp}\left( -\int _{t-\tau _{i-1}}^t\left( \mu ^b_{i-1,i}(\eta )+\mu ^l_{i-1,i}(\eta )+d^l_{i-1,i}(\eta )\,\mathrm{d}\eta \right) \right) \nonumber \\:= & {} \text {exp}\left( -\int _{t-\tau _{i-1}}^t\gamma ^l_{i-1,i}(\eta )\,\mathrm{d}\eta \right) . \end{aligned}$$

                    (34)
                

Therefore, for \(t>\max \{\tau _1,\tau _2,\ldots ,\tau _{N-1}\}\), we have derived the closed system (1) for tick dynamics over N patches with migration birds. For \( t \in [0, \tau _{i-1}]\), the dynamics of I. scapularis tick population is governed by an ODE system obtained by simply deleting the two delayed terms in (1). Since we are concerned with the long-term dynamics of ticks, we only need to analyze the model system (1), as is done in the main text.
Appendix 2: Proof of Lemma 6.1
                        
Let \(A(t)=F(t)-V(t)\). It is obvious that all off-diagonal entries are nonnegative and hence the linear system (11) is cooperative. But it may not be irreducible since some parameters may vanish in some nonempty subinterval due to seasonal activities of ticks and birds. This means that the semiflow \(\Phi _{A}(t)\) generated by system (11) may not be strongly monotone for all \(t>0\). However, next lemma shows that \(\Phi _{A}(t)\) is eventually strongly monotone.

                  
                    Lemma 6.1
                  

                  The solution semiflow \(X(t)=\Phi _{A}(t)\) of (11) is nonnegative for all \(t \ge 0\) and is positive for \(t\ge 12\omega \).

                
                  
                    Proof
                  

                  Since (11) is a cooperative system, Corollary B.2 on page 262 of Smith and Waltman (1995) implies that \(X(t)=[x_{i,j}(t)]_{14\times 14}\ge 0\) for all \(t\ge 0\).

                  Note that X(t) is the fundamental matrix solution of (11) satisfying
$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l@{\quad }l} X'(t)=A(t)X(t)=(a_{i,j}(t))_{14\times 14}X(t)\\ X(0)=I\quad \text {(the identity matrix)} \end{array} \right. \end{aligned}$$

                    (35)
                

Since all off-diagonal entries of A(t) are nonnegative, a comparison theorem implies that once an entry of X(t) becomes strictly positive at some time, it will remain strictly positive after that time. Next, we show that each component of X(t) will actually be turned on at some \(t\ge 0\). We start by considering \(x_{21}\). According to the first equation of (35), we have
$$\begin{aligned} x'_{2,1}(t)=\sum _{k=1}^{14}a_{2,k}(t)x_{k,1}(t)=p(t)f(0)x_{1,1}(t)-\mu _{2,1}(t)x_{2,1}(t) \end{aligned}$$

                    (36)
                

and \(x_{1,1}(0)=1>0\). Since \(x_{2,1}(0)=0\) and \(x'_{2,1}(0)= p(t)f(0)x_{1,1}(0)=p(t)f(0)>0\), we know that there is a \(t^* \in [0, \omega ]\) such that \(x_{1,1}(t)=1>0\) for \(t \in (0, t^*]\), and by the above argument, we conclude that \(x_{1,1}(t)=1>0\) for all \(t \ge t^*\), particularly for \(t \ge w\). Next, we look at \(x_{3,1}(t)\) which satisfies
$$\begin{aligned} x'_{3,1}(t)=\sum _{k=1}^{14}a_{3,k}(t)x_{k,1}(t)=d_{1,2}(t)x_{2,1}(t)-(d_{1,3}(t)+\mu _{1,3}(t))x_{3,1}(t). \end{aligned}$$

                    (37)
                

By the positivity of \(x_{2,1}(t)\) for \(t \ge w\) and using the constant-variation formula, we know that \(x_{3,1}(t)\) becomes positive at some time for \([\omega ,2\omega ]\) and hence \(x_{2,1}(t)\) is strictly positive for \(t \ge 2 \omega \). Going over the rest of the components in a similar way, we can conclude that \(x_{i,j}>0\) for \(t \ge k \omega \) where \(k\omega \) is the number in the (i, j) position of the following matrix:
$$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0 &{} 11\omega &{} 10\omega &{} 9\omega &{} 8\omega &{} 8\omega &{} 7\omega &{} 6\omega &{} 5\omega &{} 5\omega &{} 4\omega &{} 3\omega &{} 2\omega &{} \omega \\ \omega &{} 0 &{} 11\omega &{} 10\omega &{} 9\omega &{} 9\omega &{} 8\omega &{} 7\omega &{} 6\omega &{} 6\omega &{} 5\omega &{} 4\omega &{} 3\omega &{} 2\omega \\ 2\omega &{} \omega &{} 0 &{} 11\omega &{} 10\omega &{} 10\omega &{} 9\omega &{} 8\omega &{} 7\omega &{} 7\omega &{} 6\omega &{} 5\omega &{} 4\omega &{} 3\omega \\ 3\omega &{} 2\omega &{} \omega &{} 0 &{} 11\omega &{} 11\omega &{} 10\omega &{} 9\omega &{} 8\omega &{} 8\omega &{} 7\omega &{} 6\omega &{} 5\omega &{} 4\omega \\ 4\omega &{} 3\omega &{} 2\omega &{} \omega &{} 0 &{} 12\omega &{} 11\omega &{} 10\omega &{} 9\omega &{} 9\omega &{} 8\omega &{} 7\omega &{} 6\omega &{} 5\omega \\ 4\omega &{} 3\omega &{} 2\omega &{} \omega &{} 12\omega &{} 0 &{} 11\omega &{} 10\omega &{} 9\omega &{} 9\omega &{} 8\omega &{} 7\omega &{} 6\omega &{} 5\omega \\ 5\omega &{} 4\omega &{} 3\omega &{} 2\omega &{} \omega &{} \omega &{} 0 &{} 11\omega &{} 10\omega &{} 10\omega &{} 9\omega &{} 8\omega &{} 7\omega &{} 6\omega \\ 6\omega &{} 5\omega &{} 4\omega &{} 3\omega &{} 2\omega &{} 2\omega &{} \omega &{} 0 &{} 11\omega &{} 11\omega &{} 10\omega &{} 9\omega &{} 8\omega &{} 7\omega \\ 7\omega &{} 6\omega &{} 5\omega &{} 4\omega &{} 3\omega &{} 3\omega &{} 2\omega &{} \omega &{} 0 &{} 12\omega &{} 11\omega &{} 10\omega &{} 9\omega &{} 8\omega \\ 7\omega &{} 6\omega &{} 5\omega &{} 4\omega &{} 3\omega &{} 3\omega &{} 2\omega &{} \omega &{}12\omega &{} 0 &{} 11\omega &{} 10\omega &{} 9\omega &{} 8\omega \\ 8\omega &{} 7\omega &{} 6\omega &{} 5\omega &{} 4\omega &{} 4\omega &{} 3\omega &{} 2\omega &{}1\omega &{} 1\omega &{} 0 &{} 11\omega &{} 10\omega &{} 9\omega \\ 9\omega &{} 8\omega &{} 7\omega &{} 6\omega &{} 5\omega &{} 5\omega &{} 4\omega &{} 3\omega &{}2\omega &{} 2\omega &{} \omega &{} 0 &{} 11\omega &{} 10\omega \\ 10\omega &{} 9\omega &{} 8\omega &{} 7\omega &{} 6\omega &{} 6\omega &{} 5\omega &{} 4\omega &{}3\omega &{} 3\omega &{} 2\omega &{} \omega &{} 0 &{} 11\omega \\ 11\omega &{} 10\omega &{} 9\omega &{} 8\omega &{} 7\omega &{} 7\omega &{} 6\omega &{} 5\omega &{}4\omega &{} 4\omega &{} 3\omega &{} 2\omega &{} \omega &{} 0 \\ \end{array} \right) . \end{aligned}$$

The proof is completed. \(\square \)
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