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Abstract Integrodifference (IDE)models can be used to determine the critical domain
size required for persistence of populations with distinct dispersal and growth phases.
Using this modelling framework, we develop a novel spatially implicit approximation
to the proportion of individuals lost to unfavourable habitat outside of a finite domain of
favourable habitat, which consistently outperforms themost common approximations.
We explore how results using this approximation compare to the existing IDE results
on the critical domain size for populations in a single patch of good habitat, in a
network of patches, in the presence of advection, and in structured populations. We
find that the approximation consistently provides results which are in close agreement
with those of an IDE model except in the face of strong advective forces, with the
advantage of requiring fewer numerical approximations while providing insights into
the significance of disperser retention in determining the critical domain size of an
IDE.
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1 Introduction

Integrodifference equations (IDEs) are an established way to model populations in
which growth does not occur simultaneously with dispersal. They are discrete in time,
continuous in space, and in the simplest instances, IDEs behave like reaction–diffusion
equations (Fisher 1937). In the event that the growth dynamics are overcompensatory,
IDEs can exhibit complicated behaviour such as periodic solutions or chaotic dynamics
(Kot 1992).

Initially used to model the propagation of alleles (Slatkin 1973, 1975), IDEs were
first applied to population biology by Kot and Schaffer (1986). Since then, they have
been analysed for travelling wave solutions (Hsu and Zhao 2008; Kot 1992; Kot et al.
1996; Neubert and Parker 2004; Weinberger et al. 2008) and dispersal-driven insta-
bility in predator–prey interactions (Neubert et al. 1995), and the effects of different
dispersal strategies have been considered in both spatially and temporally varying
habitats (Hardin et al. 1990). They have also been used to model shifting species
ranges under climate change (Zhou and Kot 2011). Much of this work has been done
in the context of plant growth and dispersal (Andersen 1991; Bullock et al. 2012) and
for marine populations (Botsford et al. 2001).

Here, we outline the conventional IDE framework in order to familiarize the reader
with the basic assumptions and notation. We first consider the growth of a non-spatial
population according to a function f (Nt )where Nt is the density of the female popula-
tion at time t ≥ 0. This will typically be a nonlinear function and can often be written
as f (Nt ) = Ntg(Nt ), where g(Nt ) is the per capita growth rate. For a population
modelled in discrete time with no movement,

Nt+1 = f (Nt ) = Nt g(Nt ), (1)

with a given initial condition Nt0 = N0 for some t0 ≥ 0 and N0 ≥ 0. A short list
of commonly used growth functions is included in Table 1. Note that our modelling
efforts will focus solely on females, which corresponds to the assumption that the
entire population reproduces according to the chosen growth function. IDEs incorpo-
rate a spatial component via a dispersal kernel, a probability density function (PDF)
here denoted k(x, y), which is the probability that an individual starting at point y will
settle at point x by the next time step. We here consider a one-dimensional domain
for simplicity, though we discuss the implications of this work for higher-dimensional
domains in Sect. 5. In many situations, this is not biologically unreasonable; for exam-
ple, many marine species live in the shallower waters near the coast, and the scale of
any successful dispersal will be much greater along the coast than out towards open
water. By integrating the dispersal kernel over the domain of interest, the number of
individuals which move to point x over the subsequent time step can be determined.
Since we are interested in populations on a finite domain, we will typically have∫

Ω

k(x, y)dy < 1, (2)

whereΩ is the spatial domain relevant to the question of interest. Our central question
is focused on the critical domain size. The idea of a critical domain size is a common
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notion in population ecology, first considered in Skellam (1951) and Kierstead and
Slobodkin (1953). It addresses the question of how large a domain needs to be in
order to sustain a population in the absence of immigration, given hostile conditions
outside the domain. Mathematically, we will define this to be the smallest domain size
for which there exists a stable non-zero steady state. We initially consider the critical
domain size of a single domain of length L , so thatΩ = [−L/2, L/2]. Combining the
original growth model (now allowing for spatial dependence of the growth function)
with the dispersal kernel results in

Nt+1(x) =
∫

Ω

k(x, y) f (Nt (y); y)dy, (3)

though for other formulations, see Lutscher (2008).

1.1 Dispersal Kernels

Empirical research on dispersal patterns has resulted in the realization that dispersal
events may take a range of probability distributions, and it is unrealistic to assume that
isotropic diffusion captures the wide range of observed dispersal behaviour. A possi-
ble simplification of dispersal processes can be made from first principles to describe
dispersal as a mechanistically derived PDF (Guichard et al. 2004; Mollison 1977).
Dispersal kernels can either be phenomenological (derived from statistical analysis
of data) or mechanistic (derived from underlying assumptions about the biological
process). Phenomenological models can be very useful in simulation, as algorithms
allow random numbers to be drawn from well-known distributions. If we are inter-
ested, however, in how environmental factors (e.g. seasonal winds or currents) may
affect dispersal distances, mechanistic models may better aid in gaining understanding
(Jongejans et al. 2008).

Several dispersal kernels have been derived based on various mechanistic assump-
tions (see Lutscher et al. 2005 for a clear explanation of the derivation procedure).
Models with synchronous settling lead to the Gaussian (or normal) and Cauchy dis-
tributions (Jongejans et al. 2008; Neubert et al. 1995). The Laplace and fat-tailed
distributions arise when organisms settle at a constant rate (Lutscher et al. 2005). If
the settling rate increases or decreases as a power of time, we obtain the doubleWeibull
distribution, and if the settling rate tends monotonically towards a constant, the double
Gamma distribution is obtained (see Neubert et al. 1995 for details). In order to isolate
the shapes of these distributions for comparison, we scale them using the mean of
the strictly positive distribution (i.e. the mean of k(x) for x ≥ 0). Table 1 provides a
convenient reference to the kernels used in this work.

2 Approximations to an IDE

Integrodifference equations are often not analytically tractable, and so have to be sim-
ulated numerically, which makes it difficult to compare the dependence on parameters
of the critical domain sizes of IDEs with different dispersal kernels (Slone 2011). It
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Table 1 Commonly used growth functions and dispersal kernels and their key properties

Discrete growth functions

Logistic Nt+1 =
{
r Nt (1 − Nt ) , Nt ∈ [0, 1]
0, Nt > 1

Overcompensatory (May 1976;
Maynard Smith 1968)

Ricker Nt+1 = Nt exp {r (1 − Nt )} Overcompensatory (Ricker 1954)

Beverton–Holt Nt+1 = r Nt
1+Nt (r−1) Compensatory (Beverton and Holt

1957)

Dispersal kernels

Gaussian k(x, y) = exp (−(x−y)2/2σ2)

σ
√
2π

Mean: σ
√
2/π (Lockwood et al.

2002)

Laplace k(x, y) =
√

α
4D exp

(
−|x − y|

√
α
D

)
Mean:

√
D
α (Kot 1992; Lockwood

et al. 2002)

Cauchy k(x, y) =
{
πb

(
1 +

[
(x−y)

b

]2)}−1
Mean: undefined, conventionally
b = 1 for scaling purposes
(Jongejans et al. 2008)

Fat-tailed k(x, y) =θ�{E1(ıθ |x − y|) exp (ıθ |x − y|)} /π Mean: undefined, θ = α/ρ and E1 is
the exponential integral (Lutscher
et al. 2005)

is desirable to determine a good approximation to this modelling framework in order
to exploit its structure of discrete time and continuous space without needing to find
exact solutions.

An IDE has the same bifurcation structure as its growth function f (Nt ), as deter-
mined by its linearized growth rate r (or er , Table 1), but the bifurcation value r∗ is
greater because of individuals lost to the unfavourable habitat outside the domain. As
the size of the domain tends to infinity, the bifurcation value of r tends to that of the
non-spatial growth function. If we are unconcernedwith the population’s spatial distri-
bution inside the domain, we can approximate the loss of individuals to unfavourable
areas by simply multiplying the growth function by some number, say A ≤ 1, so
that

N̄t+1 = A f (N̄t ), (4)

where N̄t denotes the total population inside the domain. Given that the growth func-
tions considered in this work are of the form f (Nt ) = r Nt g(Nt ), where r is the
intrinsic rate of growth, we can see that changing A results in the same behaviour as
changing r in the non-spatial growth function. Note that A need not change linearly
as the length of the domain changes.

2.1 Previous Approximations to an IDE

Van Kirk and Lewis (1997) developed an approximation for A using the dispersal
success function and the average dispersal success function. The dispersal success
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function s(y) describes the probability that an individual starting at point y settles
within the domain Ω over the next time step, as given by

s(y) =
∫

Ω

k(x, y)dx . (5)

The average dispersal success over the domain is then

S = 1

|Ω|
∫

Ω

s(y)dy. (6)

Note that S will depend on the parameters of Ω; in our case, S = S(L) where
L is the domain length. Van Kirk and Lewis (1997) used this as a spatially implicit
approximation to an IDE of the form

Nt+1 = S f (Nt ), (7)

where S now serves to approximate the proportion of individuals remaining inside the
domain after the dispersal phase. This spatially implicit model had the same qualitative
behaviour as the growth function f (Nt ), but was scaled by 0 ≤ S ≤ 1. The analysis
of the IDE can be reduced to the analysis of a simpler difference equation if this
average dispersal success rate is known, and the first-order approximate solution to
the equilibrium population size N∗ proposed in Van Kirk and Lewis (1997) is the
solution to the algebraic equation

N∗ = S f (N∗). (8)

If the growth function f (N∗) bifurcates away from the zero solution to a stable non-
zero solution as some parameter is varied, this behaviour is now scaled by S. For
example, the logistic map (Table 1) bifurcates away from zero at r = 1 and so (7)
bifurcates at Sr = 1. Since S = S(L), this can be used to approximate the critical
domain size L∗ at which this occurs.

As discussed by Van Kirk and Lewis (1997), S most closely approximates the
steady state solution when the equilibrium solution is close to the spatially averaged
solution, i.e. when s(x) is similar to the steady state solution (Van Kirk and Lewis
1997). They also observed, using numerics, that the dispersal success function provides
a reasonable approximation to the population’s long-time distribution over its patch,
given a suitable domain size and growth function, and it is this idea that we use to
develop an improved approximation and thus gain a more accurate approximation of
the critical domain size.

3 The Modified Dispersal Success Approximation,̂S

While the average dispersal success function provides a rough estimate of the fraction
of individuals which stay within the domain from one time step to the next, it assumes
a uniform distribution of individuals throughout the patch. A better approximation to
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the true fraction of dispersing individuals which are retained could be obtained if we
could weight the dispersal success values by the proportion of the population at each
point, so that

Smod = 1

|Ω|
∫

Ω

(
Nt (y)

1
|Ω|

∫
Ω
Nt (z)dz

)
s(y)dy. (9)

This formulation requires us to know Nt (y), which negates the purpose of having
an approximation to the population in the first place. Instead, we will approximate
the shape of the population by the dispersal success function at each point to obtain
a novel approximation, which we will now refer to as the modified average dispersal
success function Ŝ. Substituting s(y) into (9) for Nt (y) results in

Ŝ = 1

|Ω|
∫

Ω

(
s(y)

1
|Ω|

∫
Ω
s(z)dz

)
s(y)dy = 1

|Ω|
∫

Ω

(
s(y)

S

)
s(y)dy. (10)

It can be shown (Appendix 1) that thismodified approximation Ŝ predicts equivalent
or larger average dispersal success than the approximation of Van Kirk and Lewis
(1997) for the kernels and domain considered. This is because the approximation
weights the (higher) dispersal success of individuals in areas expected to have more
individuals [i.e. for higher values of s(y)] more heavily than the dispersal success of
those with low s(y) values when calculating average dispersal success. The reasoning
for this relies on the symmetry of the kernels; locations with high dispersal success
will, in turn, have more individuals from other locations settle there.

3.1 Illustrative Example

We now look at a simple example using the Laplace dispersal kernel, which we have
chosen in order to enable direct comparison between the approximations and the
analytic expression for the critical domain length, since the Laplace kernel provides
one of the few examples in which we can find an analytic expression for both. For
an IDE with a Laplace dispersal kernel and logistic growth function (Table 1), we
followed the method of Kot and Schaffer (1986) and obtained an explicit solution for
the critical domain length L∗

L∗ = 2 b√
r − 1

tan−1
(

1√
r − 1

)
, (11)

where b =
√

D
α
. Details of this derivation can be found in Standard IDE Example

section of Appendix 2. Following (5) and (6), the dispersal success function at a given
point y is

s(y) = 1 − 2 e
−
(
L
2 +y

)
/b − 2 e

(
y− L

2

)
/b

(12)
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and the average dispersal success is

S = 1 + b
(
e−L/b − 1

)
L

. (13)

The logistic growth function experiences a bifurcation in the stable steady state at
r = 1 in the non-spatial model, so for this approximation, the bifurcation now occurs
at Sr = 1. Thus, the approximation to the critical domain length L∗

S is the solution to

S = 1 + b
(
e−L/b − 1

)
L

= 1

r
. (14)

The correspondingmodified dispersal success approximation for the Laplace kernel
from Eq. (10) is

Ŝ = 2 L e
L
b − b + 4 L e

2 L
b + 8 b e

L
b − 7 b e

2 L
b

4 e
L
b

(
b + L e

L
b − b e

L
b

) , (15)

and so the domain length L ∗̂
S
at which the solution bifurcates, using Ŝ as the approxi-

mation to A in (4), can be found by solving for L in

Ŝ = 2 L e
L
b − b + 4 L e

2 L
b + 8 b e

L
b − 7 b e

2 L
b

4 e
L
b

(
b + L e

L
b − b e

L
b

) = 1

r
. (16)

Simulations confirm that Ŝ consistently provides a closer approximation to the
critical domain size L∗ than S, and this holds for a variety of kernels and varying
values of r (Figs. 1, 2). The difference between the two approximations decreases for
increasing values of r , and this is most significant for values of r slightly larger than
1, which is also the parameter regime where the two approximations perform worst
(Fig. 2).

4 Extended Applications of̂S

4.1 Network of Domain Patches

Often, a single finite patch will not accurately represent the domain of interest. For
example, anthropogenic landscape fragmentation may require a population to exist on
multiple small patches instead of one larger one. In marine reserve design, it is com-
monly thought to be more beneficial to have multiple smaller reserves than one large
one (Gaines et al. 2012; Nowlis and Roberts 1999; Palumbi 2001; Roberts et al. 2003).
We will call a set of patches connected chiefly via the dispersal of mobile individuals a
network of patches. One way this has been modelled is through an idealized structure,
with an infinite network of patches of all the same size (having width w) and equally
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Approximating the Critical Domain Size of. . . 79

Fig. 1 Stable steady states for four mechanistic dispersal kernels and varying domain lengths. Each IDE
and approximation are subject to logistic growth with growth rate r = 1.5, and other parameters are as
follows: for the Cauchy distribution, b = 1, for the fat-tailed distribution, α = 1.2, ρ = 2, for the Gaussian
distribution, σ = √

π/2, and for the Laplace distribution, α = 1, D = 1. We can see here that in each case,
the stable steady state solution of the new approximation (Ŝ) is much nearer to that of the IDE than the
average dispersal success approximation (S)

Fig. 2 Difference between the critical domain lengths of an IDE with logistic growth and a Laplace kernel
(α = D = 1), and the two approximations S and Ŝ, scaled to value of L∗ as determined by the IDE.
Here, we can see that for r values close to 1, there is the greatest difference between the critical domain
size predicted by the IDE and the two approximations. It is also for r values close to 1 that the new Ŝ
approximation most significantly outperforms the S approximation
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spaced (with periodicity L). A simple mathematical interpretation allowing for some
analysis is to have “good” and “bad” habitat patches, as conceived of in Shigesada
et al. (1986). This spatially periodic growth function has been modelled in Lutscher
(2008) and Shigesada et al. (1986) as

f (N (x); x) =
{
f1(N (x); x), x ∈ [nL − w/2, nL + w/2], n ∈ Z

f2(N (x); x), x ∈ (nL + w/2, (n + 1)L − w/2), n ∈ Z
(17)

assuming that [nL − w/2, nL + w/2], n ∈ Z, are the patches of good habitat, and
that [nL + w/2, (n + 1)L − w/2], n ∈ Z, are the hostile areas. Under assumptions
of a very hostile environment between patches, we set f2 = 0. As before, we will
suppose f (N (x); x) is of the form f (N (x); x) = N (x)g(N (x); x) where g(·; x) is
now periodic in x with period L .

4.1.1 Approximation on a Network of Patches

Wewill now attempt to approximate the relationship between the width and spacing of
patches in order to determine which configurations have a stable non-zero steady state.
The first approximation to A in (4) that we will mention here for a network of patches
is perhaps the most intuitive (Dewhirst and Lutscher 2009). As found in Dewhirst and
Lutscher (2009), we could take A to be the fraction of favourable habitat out of all
available locations, i.e. A = w/L . We could also use the average dispersal success
function for A (Lutscher and Lewis 2004). For an infinite patch network, Lutscher and
Lewis (2004) have shown that the average dispersal success for a patch, and thus, by
symmetry, for every patch, is

S = 1

w

∫ w/2

−w/2
s(y)dy, (18)

where

s(y) =
∞∑

n=−∞

∫ nL+w/2

nL−w/2
k(x, y)dx . (19)

By the same reasoning as before, we consider a modified average dispersal success
function of the form

Ŝ = 1

w

∫ w/2

−w/2

s2(y)

S
dy. (20)

This is again based on the assumption that s(y), the dispersal success approximation
at each point, adequately approximates the population density.

4.1.2 Example of a Network of Patches

For an analytically tractable illustrative example, we choose the Laplace kernel and
logistic growth and follow the method outlined by Van Kirk and Lewis (1997) (see
Example on a Network of Patches section of Appendix 2 for details). The stable steady
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state solution to the IDE changes from the zero steady state to a non-zero steady state
when the following relationship (see Fig. 3) is satisfied:

4G − exp (L − LR) sin (GLR) + exp (LR − L) sin (GLR)

− G2 exp (LR − L) sin (GLR) − 2G exp (L − LR) cos (GLR)

− 2G exp (LR − L) cos (GLR) + G2 exp (L − LR) sin (GLR) = 0, (21)

where G = √
r − 1, R is the fraction of domain in a good patch, and L is the peri-

odicity. In order for this stable non-trivial solution to be real, r must be greater than
1 so that G is real and positive. Recall that r is the linearized growth rate of the non-
spatial growth model, so r > 1 also implies that the population is doing more than
just replenishing itself in the good patches. Van Kirk and Lewis (1997) highlighted
that as L tends to infinity, the relationship between R and L tends asymptotically to
the critical domain size for a single patch divided by the periodicity. Intuitively, for
small periodicities, connectivity between patches is important for population survival,
but once the patches get too far apart, each individual one must retain sufficient young
produced by its own population in order to persist.

We will now compare the bifurcation values of the approximations to those of the
IDE. In this example, the dispersal success function is

s(y) =
e

y
b

(
e

w
b − 1

)

2 e
w
2 b

(
e

L
b − 1

) − 1

2 e
w+2 y
2 b

− 1

2 e
w−2 y
2 b

+
(
e

w
b − 1

)

2 e
y
b e

w
2 b

(
e

L
b − 1

) + 1, (22)

and the average dispersal success S for a given patch is

S =
w + b

(
e

−w
b − 1

)
+ b

(
e

w
b −1

)2

e
w
b

(
e
L
b −1

)

w
. (23)

The modified average dispersal success Ŝ for a patch is

Ŝ=
⎡
⎣ 1(

(w−b)e
2L+2w

b −be
L+w
b +(b+w)e

2w
b −be

3w
b +be

2L+w
b +be

L+3w
b −2we

L+2w
b

)
⎤
⎦

×
[
(4w−7b)e

2L+2w
b −6be

L+w
b −be

2L
b +(7b+4w)e

2w
b +(2w − 8b)e

3w
b +be

4w
b

+ (8b + 2w)e
2L+w

b + 6be
L+3w

b − 12we
L+2w

b

](1

4

)
.

(24)

The stable steady state resulting from these approximations, as well as from the
IDE, are shown in Fig. 3. Taking the limit of (24) as L → ∞, the modified average
dispersal success for a single patch results as a special case.
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Fig. 3 Stable steady state of the IDE and three approximations of Sect. 4.1.2 for varying fractions of good
patches. The IDE has a Laplace kernel and logistic growth with r = 1.5 and an initial condition of 0.5
everywhere in the domain. We vary w, keeping L constant at 7 times the mean dispersal distance. A similar
figure is produced if we vary L and keep w constant. Zero is a steady state throughout, but loses stability
to the non-trivial steady state for large enough values of w/L

Fig. 4 The difference between the bifurcation value of w∗ predicted by the three approximations to an
IDE with a Laplace kernel and logistic growth, compared with the bifurcation value of the IDE. The growth
rate r in the good patches is 1.5, and both w and L are scaled to the mean dispersal distance of the Laplace
kernel

As the good patches become further apart (i.e. we increase L in Fig. 4), thewidthw∗
necessary to sustain a population becomes larger, with the eventual limit ofw∗ → L∗,
the critical domain size of a single patch with the same demographic parameters. In
Fig. 4, the new dispersal success approximation Ŝ again outperforms S exactly where
this matters most, i.e. where they both perform most poorly, which in this case is
for large values of L , where w∗ is close to L∗. If we instead vary w and fix L , the
corresponding trend is observed, i.e. as w tends to the critical domain size L∗ for a
single patch, the periodicity L tends towards infinity.

We now consider the effects of varying r on the closeness of the approximations
to the IDE value. In Fig. 5, for values of r greater than approximately 1.5, both S
and Ŝ provide a very close approximation to the IDE. As we decrease r from 1.5,
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Fig. 5 Difference between the IDE bifurcation value w∗ and those predicted by the three approximations
Ŝ, S, andw/L for varying values of r . L andw are scaled to the mean dispersal distance for L = 7. Observe
that for values of r between 1 and 2, the approximations do not perform as well as for other values of r , but
the modified approximation Ŝ still is a better approximation to the IDE than either w/L or S

Fig. 6 Difference between the IDE bifurcation value L∗ and the critical value for L predicted by the three
approximations Ŝ, S, and w/L . L and w are scaled to the mean dispersal distance with w = 1.5. Observe
that for increasing values of r , the approximations fail, but the modified approximation Ŝ is much closer to
the IDE here than either the w/L approximation or the S approximation

the approximations start to fail, but as we get very close to r = 1, the fact that the
population cannot persist on a domain of any size if there is any loss due to dispersal
dominates the other mechanisms at play.

Thus, all three of the approximations, as well as the IDE, have critical domain
lengths tending to infinity as r tends to 1. Ŝ remains a better approximation than S,
and this is again most evident where the two approximations are the furthest from the
true solution.

In Fig. 6, for a given width, Ŝ, S and w/L provide the best approximations for
smaller values of r and, as before, Ŝ most strongly outperforms S andw/L where they
are both the weakest, which here is for larger r values.
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4.2 Stage-Structured Models

While IDEs capture the fact thatmany species donot reproduce anddisperse simultane-
ously, it is often not biologically accurate to assume that first all individuals reproduce
and then all individuals, both old and young, disperse in the same way. We know that
for many marine species of interest, only the juveniles disperse and only those that
have been recruited to the population can reproduce. Similarly for plants, seeds are
subject to dispersal and plants which have reached reproductive maturity remain in
one location.

Matrix population models are a well-established tool in population biology, and
stage-structured models are especially appropriate for these populations, where fecun-
dity is often not dependent on age but rather on size or stage. Neubert and Caswell
(2000) first combined matrix population models with IDEs to create integrodifference
matrix population models (IMP models). IMP models are formulated by combining
population growth dynamics (now for a population with m stages) with the dispersal
behaviour of each stage. Here, Nt denotes an (m × 1) population density vector and
the growth dynamics are governed by

Nt+1(x) = R(Nt (x))Nt (x). (25)

R is an (m×m) transition matrix where entry Ri j denotes the rate at which individuals
in stage j at time t produce individuals of stage i by time t + 1 (Caswell 2006). If we
wish to account for varying conditions in the domain, we can also allow these entries
to depend on space, i.e. R(Nt (x); x) (for a comprehensive look at matrix population
models, see Caswell 2006). Dispersal is included by integrating an (m ×m) matrixK
of dispersal kernels over the domain. Each entry ki j (x, y) ofK denotes the probability
that an individual who makes the transition from stage j to stage i during the time
step also moves from location y to location x in that time step (Neubert and Caswell
2000). In order to maintain our assumption of sedentary adults, ki j will be the Dirac
delta function

δ(x, y) =
{

+∞, |x − y| = 0

0, |x − y| 
= 0
(26)

for adult stages. Combining these two components results in the IMP model

Nt+1(x) =
∫

Ω

[K(x, y) ◦ R(Nt (y); y)]Nt (y)dy (27)

where ◦ represents element-by-element multiplication rather than standard matrix
multiplication (Neubert and Caswell 2000). Just like an IDE, these models can exhibit
a wide range of behaviour, including periodic cycles and chaos if elements of the tran-
sition matrix include nonlinearities. IMP models require us to find the eigenvalues of
matrices, rather than of the IDE integral operator (Neubert and Parker 2004). Lutscher
and Lewis (2004) and, more recently, Robertson and Cushing (2012), have analysed
the critical domain size problem for these models. We will here use some of their
results and then adapt our approximation to fit this framework and compare it with
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other approximations currently available (Lutscher and Lewis 2004; Robertson and
Cushing 2012).

The critical domain size for IMP models is determined in a similar way as it was
in the case of IDEs without stage structure. This involves looking for where the stable
steady state solution bifurcates from the zero solution to a non-trivial solution. See
Stage-Structured Population Theory section of Appendix 2 for a brief overview of the
general theory for matrices.

4.2.1 Approximations for Structured Populations

A stage-structured modification to the average dispersal success function was car-
ried out by Lutscher and Lewis (2004), and here we show that our modified average
dispersal success function outperforms this approximation. They define a matrix of
dispersal success K(x, y), where for each ki j (x, y), they determined si j (y) which is
the probability that an individual of stage i whowas produced by an individual in stage
j at location y settles in the domain of interest Ω . The matrix of dispersal success
functions for a given point y is

s(y) =
∫

Ω

K(x, y)dx
︸ ︷︷ ︸

(a)

=
(∫

Ω

ki j (x, y)dx

)
︸ ︷︷ ︸

(b)

= (
si j (y)

)
︸ ︷︷ ︸

(c)

(28)

where (a) is integration over amatrix, each entry is integrated irrespective of the others,
and the brackets around (b) and (c) denote matrices. An average over s(y) for all of
the y values in Ω yields the matrix form of the average dispersal success function,

S = 1

|Ω|
∫

Ω

s(y)dy = 1

|Ω|
∫

Ω

∫
Ω

K(x, y)dxdy, (29)

where again the integration is over each entry in the matrix. Ŝ follows naturally from
this,

Ŝ = 1

|Ω|
∫

Ω

s2(y)
S

dy, (30)

where s2(y)/S should be interpreted element by element. Now, (4) extends to a spa-
tially implicit matrix model,

N̄t+1 = [A ◦ R(N̄t )]N̄t , (31)

where A = S or Ŝ. Note that for any sedentary stages whose entry in K(x, y) is the
Dirac delta function, the corresponding entry in eitherS or Ŝwill be 1, as all individuals
who start in the domain will stay in the domain, since they do not disperse at all.
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4.2.2 Structured Population Example

We have chosen a stage-structured population with two stages for an illustrative exam-
ple,

N(x) =
[
N1(x)
N2(x)

]
. (32)

N1 represents the dispersing population of juveniles and N2 any individuals which
have been recruited after settling. Only the second stage reproduces, and reproduction
is density dependent, with the growth rate monotonically decreasing as a function
of N2 density, such as r(1 − N2(x)). We assume that individuals in stage N1 either
grow from stage N1 to stage N2 at rate α or they die. Individuals in stage N2 have
survivorship β. This results in the transition matrix

R(N(x)) =
[
0 r(1 − N2(x))
α β

]
. (33)

The resulting non-spatial model is the matrix population model of the form

Nt+1 = R(Nt )Nt , (34)

for which the zero steady state is linearly unstable provided r > (1 − β)/α. If this
were not the case, it would be futile to consider the critical domain size of the spatial
model, as the population could not persist on a domain of any size. We assume that
the population disperses only during reproduction (for our purposes, we will assume
a Laplace dispersal kernel in k12 and δ(x, y) elsewhere) and so

Nt+1(x) =
∫ L/2

−L/2

([
δ(x, y) k12
δ(x, y) δ(x, y)

]
◦ R(N(y))

)
Nt (y)dy. (35)

From this, we obtain the critical domain size L∗,

L∗ = (A + 2nπ)
b

2a
(36)

where A = arctan
(

4a(a2−1)
1−6a2+a4

)
+ π , a =

√
rα
1−β

− 1 and b = √
D/α (see Stage-

Structured Population Theory section of Appendix 2 for details). As in the scalar case,
for certain parameter regimes a bifurcation from the trivial steady state to a positive
non-zero one is possible and dependent on both the demographic parameters and the
domain size. Calculating S and Ŝ as above for this example (35), we see again that Ŝ
outperforms S (Figs. 7, 8).

4.3 Incorporating Alongshore Currents

An important component of our systems of interest may be advective forces. Many
coastal or reef populations experience unidirectional drift either due to alongshore
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Fig. 7 Comparison of the stable steady state of example (35) and the two approximations, S and Ŝ. Black
represents those in class N2 and grey represents those in the juvenile stage, N1. Parameters are r = 0.6,
α = 0.8, β = 0.7, and L is scaled to the mean dispersal distance. Initial conditions are population density
of 0.5 of both stages everywhere in the domain

Fig. 8 Comparison of the critical domain length as determined by the integrodifference matrix population
model (IMP) and two approximations to (35) where α = 0.8 and β = 0.7. Once again the modified
dispersal success approximation remains closer to the IMP solution than the standard dispersal success
function, especially for values of r close to the critical value, past which the population cannot persist on a
domain of any size

currents created by wind and waves, or larger ocean currents. Prevailing winds may
cause seed dispersal to tend heavily in one direction. Unidirectional currents can
create sink-source dynamics and extinction of upstream populations if insufficient
recruitment occurs (Speirs and Gurney 2001).

Some have attempted to incorporate advection into the dispersal kernel by simply
shifting the mode of the kernel downstream by some advective factor (Lockwood et al.
2002; Lutscher et al. 2010; Neubert et al. 1995). This is not biologically appropriate
for many kernels, which are derived from the important assumption that not all larvae
settle at the same time. We here direct the reader to the work of Lutscher et al. (2005)
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Table 2 Dispersal kernels from Table 1 subject to advection with effective drift rate v, stopping time t0 or
stopping rate α, as derived in Lutscher et al. (2005)

Dispersal kernels subject to advection

Shifted Gaussian k(x, y) =
exp

(
−(x−vt0−y)2

4Dt0

)
√
4πDt0

Asymmetric Laplace k(x, y) =
{
A exp (a1(x − y)), (x − y) ≤ 0

A exp (a2(x − y)), (x − y) > 0

Shifted Cauchy k(x, y) = t0
ρπ

[(
x−vt0−y

ρ

)2 + t20

]−1

Asymmetric fat-tailed k(x, y) = α

(μ2+v2)π
�
(
(μ + vi)E1

(
α(v−μi)(y−x)

μ2+v2

)
exp

(
− α(v−μi)(x−y)

μ2+v2

))

A = a1a2/(a2 − a1) = α/
√

v2 + 4αD, a1,2 = v/2D ±
√

v2/4D2 + α/D. Note that σ = √
Dt0 in

Table 1

who derived modified dispersal kernels to be used in an integrodifferential equation
approach to modelling organisms in river systems.

The resulting dispersal kernels can be found in Table 2, and we refer to Lutscher
et al. (2005) for an overview of the derivation procedure. When the assumption is
that the dispersers all settle at the same time t0, advection simply shifts the kernel by
vt0, where v is the strength of advection. If the population settles at a constant rate
α, then the shape of the kernel changes to become asymmetrical. We here consider
our modified average dispersal success function as well as that of Van Kirk and Lewis
(1997) in the presence of advection.

4.3.1 Example with Advection

We again turn to the Laplace dispersal kernel and logistic growth for an illustrative
example. Using the standard method, we find the critical domain size L∗ by differen-
tiating the IDE twice with respect to x and applying the relevant boundary conditions
(see Example in an Advective Environment section of Appendix 2 for details; Kot and
Schaffer 1986; Lutscher et al. 2010, 2005; Pachepsky et al. 2005). The critical domain
size for this example is

L∗ =
4 arctan

(√
4ra1|a2|
(a1−a2)2

− 1
)−1

(a1 − a2)
√

4ra1|a2|
(a1−a2)2

− 1
, (37)

where a1 and a2 are as in Table 2. Note that this is a decreasing function in r , which
we would expect, since the more fecund a species is, the smaller the proportion of
individuals which need to be retained inside the domain for persistence. The critical
domain size L∗ → ∞ as

r → (a1 − a2)2

4a1|a2| ,
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so the persistence threshold is

r∗ = (a1 − a2)2

4a1|a2| .

For any r > r∗, the population will persist on a domain of length L > L∗ (Lutscher
et al. 2010). Lutscher et al. (2005) found that at low advective speeds, as in the case
without advection, the critical domain size is most influenced by the mean dispersal
distance rather than rare long-distance events. In the presence of increased advection,
however, the critical domain size depends heavily on rare long-distance events, as
it is the few rare individuals who disperse upstream which are able to prevent the
population from being washed out of the patch entirely (Lutscher et al. 2005).

Intuitively, the critical domain size increases with advection as more individuals are
lost from the downstream edge and a larger domain is required to retain enough indi-
viduals for each generation to persist. This continues until, for some critical advective
speed, vp, there is nofinite domain large enough to allow for persistence (Lutscher et al.
2010). We investigate whether our approximations are still useful if we incorporate
advection. For the asymmetric Laplace kernel, s(y) and S are

s(y) =
A
(
e
a2 (L−2 y)

2 − 1
)

a2
−

A
(
e

−a1 (L+2 y)
2 − 1

)

a1
, (38)

and

S = A
(
e−a1L + a1L − 1

)
La12

− A
(
a2L − ea2L + 1

)
La22

(39)

where A, a1, and a2 are as in Table 2 and L is scaled to the mean dispersal distance.
When we start to look at the modified average dispersal success, though, we encounter
a problem in our assumptions. The motivation behind the modified average dispersal
success function comes from the idea that we can estimate the long-term behaviour
of a population by the dispersal success function, s(y). It does not, however, make
sense to assume this to be the shape of the population as we previously did, since now
most of the dispersers which settle inside the domain will settle near the downstream
edge while dispersal success will be highest for individuals near the upstream edge.
To reconcile this with our approximation, we employ the redistribution function r(x)
introduced in Lutscher and Lewis (2004) and defined as

r(y) =
∫

Ω

k(y, x)dx . (40)

For the asymmetric Laplace kernel, this is

r(y) =
A

(
e
a2
(
L
2 +y

)
− 1

)

a2
−

A

(
e
a1
(
y− L

2

)
− 1

)

a1
. (41)
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The difference between r(y) and s(y) lies in the switch between k(x, y) and k(y, x).
For symmetric kernels on an isotropic domain, k(x, y) = k(y, x) and there is no need
for a different measure of a population’s successful redistribution. However, in the
event that dispersal depends explicitly on the starting location or when the kernel is not
symmetric, r(y) provides a better estimate for the shape of the population distribution
than s(y). We can think of s(y) as the probability that a dispersing individual which
begins at y settles anywhere inside the domain by the end of a time step, while r(y) is
the probability that a propagule which begins anywhere in the domain ends up at point
y by the end of a time step. This captures the downstream tendencies of populations
subject to advection better than s(y). If the kernel does not depend explicitly on space,
the two curves aremirror images of each other reflected across the centre of the domain
and so the average dispersal success is defined as

S = 1

|Ω|
∫

Ω

s(y)dy = 1

|Ω|
∫

Ω

r(y)dy. (42)

When attempting to approximate the population via the newly introduced modified
average dispersal success function, we will multiply the average dispersal success
function’s integrand by r(y)/S rather than s(y)/S as we previously did, in order to
capture both the population distribution shifting downstream and the dispersal success
of the individuals in that distribution, so that the modified dispersal success function
subject to advection is

Ŝ =
∫

Ω

r(y)

S
s(y)dy. (43)

For the asymmetric Laplace kernel, this is

Ŝ =
[

1

a1a2 (a1 − a2)
(
eLa1

(
a12eLa2 − a12 − a22 + La1a22 − La12a2

)+ a22
)
]

×
[
−A

((
2a1

4 + 2a1
2a2

2 − 4a1
3a2 + La1

3a2
2 − La1

4a2
)
eL(a1+a2)

+
(
−4a1a2 + 2a2

2 + 2a1
2 − La1

2a2 − 2a1
2eLa2 + La1a2

2
)
a2

2

+
(
−2a1

4 − 2a2
4 − 2a1

2a2
2 + 4a1a2

3 + 4a1
3a2 + La1a2

4 − La1
4a2

−3La1
2a2

3 + 3La1
3a2

2
)
eLa1

)]
. (44)

However, in spite of these changes to Ŝ, the IDE is still far more sensitive to advec-
tion than either the S or Ŝ approximations. As advection strength increases (Fig. 9),
the dispersal success and redistribution functions are no longer a close approximation
to the shape of the equilibrium solution, and this is only worsened with increasing
advection. In Fig. 9, for small values of advection, the approximations predict critical
domain sizes close to that of the IDE, but as advection increases, the approximations
grow increasingly further away from the IDE value until the advection value reaches
Vp, where the population cannot persist on a domain of any size as all individuals are
swept downstream.
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Fig. 9 Critical domain size of an IDE with an asymmetric Laplace dispersal kernel and logistic growth
with r = 1.5, as compared with the two approximations. As v increases towards its critical value, where
the population cannot persist on a domain of any size, the approximations diverge from the IDE

This discrepancy is due to the inability of the spatially implicit approximation to
capture the effects of washout. In the spatially implicit approximation, the population
is swept downstream but so long as the domain is large enough, it can remain within
the patch (note that there is no critical advection value for the approximations for
this reason). The IDE, however, captures the fact that the population will tend to zero
upstream, as the population is washed downstream.

5 Discussion

While IDEs provide us with a way to model a variety of dispersal patterns and growth
functions, they are seldom analytically tractable and the critical domain size can often
only be obtained via methods involving numerical integration. This makes it difficult
to gain insights into the effects of various parameters or the properties of the growth
functions or dispersal kernels. Approximations to an IDE framework are thus useful for
those wishing to compare the effects of different dispersal patterns and demographic
rates.

The standard approximation of dispersal success has typically been that of Van
Kirk and Lewis (1997). Their approximation assumes that the population is evenly
distributed through the domain, but this is not generally the case. For typical popu-
lations with unimodal symmetric dispersal kernels, areas near the hostile boundaries
have a smaller domain from which they may recruit individuals. Thus, there will tend
to be more individuals in the centre of a patch, away from the boundaries. One way to
approximate the distribution of individuals inside the domain is by using the dispersal
success function at each point in the domain (Van Kirk and Lewis 1997). Recall that
for symmetric kernels, the dispersal success function s(y) is the same as the redistri-
bution function r(y), the probability that an individual who begins anywhere in the
domain settles at location y. Thus, locations with higher dispersal success also have
more individuals settling there from elsewhere in the domain and can sustain larger
population sizes. By accounting for this non-homogeneous population distribution,
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the new approximation is able to outperform the standard one which assumes that
the population is evenly distributed. Using this to provide a weighted average of the
dispersal success across the domain leads to a better approximation to the proportion
of individuals lost due to dispersal outside the domain and thus a better approximation
of population growth.

The two approximations vary most, both from each other and from the value of the
IDE, for parameter regimes close to critical demographic values.Whether a population
of interest has parameters in these regionswill be species and environment specific, but
since the new approximation provides a closer approximation to the critical domain
size even in these regions, it should be used in place of the average dispersal success
function.

Ourmodified dispersal success function results in a spatially implicit approximation
to an IDEwith a domain of a single large patch, an idealized network of infinitelymany
evenly sized and spaced patches, and stage- or size-structured populations. We also
considered populations in areas subject to advection, but here our approximation did
not respond to changes in advection speed in the sameway that the IDEdid, resulting in
inaccurate predictions of the critical domain size. Looking at where both the Van Kirk
and Lewis (1997) approximation and our new approximation fail sheds some light on
the dynamics of populations subject to advection. The explicit spatial dependence of
an IDE allows it to capture the effects of “wash-out,” where the population is swept
to the downstream edge of the domain before being swept into hostile habitat. Our
spatially implicit averaging techniques cannot account for the compounding effects
of advection. In this case, the new approximation outperforms that of Van Kirk and
Lewis (1997) for certain parameter regimes when advection is not very strong, but
these approximations should only be used very cautiously if considering populations
subject to strong advection.

By examining these approximations, we gain general insight about IDEs. Since
being able to approximate the proportion of individuals which successfully settle
within the domain results in a critical domain size close to that of the original IDE,
we can infer that this is a significant aspect of dispersal which drives the bifurca-
tion behaviour of an IDE. Even if a suitable mechanistic kernel is not available, if
the proportion A of individuals locally retained can be determined empirically, the
resulting necessary domain size can be established using (4). Furthermore, if we can
predict the proportion of larvae lost outside a given domain in more dimensions, (4)
incorporates this easily, as opposed to an IDE framework, which would then require
multidimensional integration.

We have found that the modified dispersal success approximation provides close
estimates to the behaviour of a population modelled using an IDE framework. This
new approximation allows us to approximate the domain size necessary for population
persistence, based on, and closely mimicking, more complicated IDEs. This frame-
work is suitable for many species of interest (e.g. many marine species and nearly
all plant species), and the approximation we have presented allows for insights into
population persistence in a variety of environments and for populations with different
dispersal or reproductive behaviour.
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Appendix 1: Proof that ̂S ≥ S

Assume s(y) is piecewise continuous (this holds for the dispersal kernels considered
in this paper). WLOG, let the domain of interest be Ω = [0, 1] so |Ω| = 1. For
notational ease, we suppose s(y) < S on Ω1 ⊂ Ω and s(y) ≥ S on Ω2 ⊆ Ω .
On Ω1, we write s(y) = α(y)S with α(y) ∈ [0, 1), ∀y ∈ Ω1 and on Ω2, we write
s(y) = β(y)S for β(y) ≥ 1, ∀y ∈ Ω2. Then,

S =
∫

Ω

s(y)dy

=
∫

Ω1

s(y)dy +
∫

Ω2

s(y)dy

=
∫

Ω1

α(y)Sdy +
∫

Ω2

β(y)Sdy

= S

(∫
Ω1

α(y)dy +
∫

Ω2

β(y)dy

)
.

(45)

Dividing through by S and letting α(y) = 1 − α̂(y) and β(y) = 1 + β̂(y) for α̂ > 0,
β̂ ≥ 0 yields

1 =
∫

Ω1

1 − α̂(y)dy +
∫

Ω2

1 + β̂(y)dy

=
∫

Ω

1 −
∫

Ω1

α̂(y)dy +
∫

Ω2

β̂(y)dy

⇒ 0 = −
∫

Ω1

α̂(y)dy +
∫

Ω2

β̂(y)dy.

(46)

In a similar fashion,

Ŝ =
∫

Ω

s(y)

S
s(y)dy

=
∫

Ω1

s(y)

S
s(y)dy +

∫
Ω2

s(y)

S
s(y)dy

=
∫

Ω1

α(y)S

S
α(y)Sdy +

∫
Ω2

β(y)S

S
β(y)Sdy

= S

(∫
Ω1

α2(y)dy +
∫

Ω2

β2(y)dy

)
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= S

(∫
Ω1

(1 − α̂(y))2dy +
∫

Ω2

(1 + β̂(y))2dy

)

= S

(∫
Ω

1dy +
∫

Ω1

α̂2(y)dy +
∫

Ω2

β̂2(y)dy − 2
∫

Ω1

α̂(y)dy + 2
∫

Ω2

β̂(y)dy

)

= S

(
1 +

∫
Ω1

α̂2(y)dy +
∫

Ω2

β̂2(y)dy

)
by (46)

≥ S. (47)

��

Appendix 2: Theory and Details from the Examples

Standard IDE Theory

Here, we remind the reader of the key results and methods of Kot and Schaffer (1986)
and provide a simple example which we use in comparison with our approximations.
Assuming that the growth function is the same everywhere, independent of location,
i.e. f (Nt (y); y) = f (Nt (y)), Kot and Schaffer examined the fixed points of a scalar,
nonlinear IDE on a closed domainΩ = [−L/2, L/2]. Following the standard method
for discrete models (see Kot and Schaffer 1986), they attempted to find N∗(x) satis-
fying

N∗(x) =
∫ L/2

−L/2
k(x, y) f (N∗(y))dy. (48)

The similarities between difference equations with no spatial component and the
IDEs considered can be seen by introducing a nonlinear operator F so that

Nt+1(x) = FNt (x) =
∫ L/2

−L/2
k(x, y) f (Nt (y))dy (49)

and Eq. (48) can be rewritten as N∗(x) = FN∗(x) (Kot and Schaffer 1986). For our
purposes, f (N (x)) can typically be expressed as f (N (x)) = N (x)g(N (x)) [see (1)],
where g(N (x)) is a well-behaved function describing the per capita growth rate. We
thus assume N∗(x) = 0 is always a trivial solution. Obtaining analytic expressions for
any non-trivial equilibria will depend on the kernel and growth function employed. To
determine the linear stability of an equilibrium, Kot and Schaffer (1986) considered a
small perturbation ξt (x) away from the equilibrium, so that Nt (x) = N∗(x) + ξt (x).
For sufficiently small ξt (x), this is equivalent to studying the linearization of the
IDE around the steady state. Considering the nonlinear operator F , this is its Fréchet
differential, where

ξt+1(x) = (F ′N∗(x))(ξt (x)) =
∫ L/2

−L/2
k(x, y)

[
∂ f (N (y))

∂N (y)

∣∣∣∣
N∗

]
ξt (y)dy. (50)
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The asymptotic stability of the equilibrium N∗(x) is thus determined by the Fréchet
derivative F ′N∗(x). For finite limits of integration and continuous kernels (which are
likely, given the question of critical domain size and realistic dispersal behaviour
within the population), this Fréchet derivative is a compact operator (Kot and Schaffer
1986). As such, its spectrum consists of, atmost, the point zero and a countable number
of non-zero eigenvalues (Conway 1990; Kot and Schaffer 1986). The stability of the
equilibrium is determined by examining the magnitude of these eigenvalues. Kot and
Schaffer (1986) assumed that ξt (x) is of the form

ξt (x) = λtμ(x),

where λ represents the eigenvalues and μ(x) the non-zero eigenvectors. They arrived
at this form by analogy with the separation of variables method commonly used with
linear partial differential equations. Assuming this form for ξt (x) leads, along with
Eq. (50), to

λμ(x) = (F ′N∗)μ(x) =
∫ L/2

−L/2
k(x, y)

[
∂ f (N (y))

∂N (y)

∣∣∣∣
N∗

]
μ(y)dy. (51)

If all eigenvalues λ lie within the unit circle of the complex plane (i.e. |λ| < 1),
then N∗(x) is locally asymptotically stable. Kot and Schaffer (1986) have shown that,
given certain conditions of non-negativity and symmetry in the kernel, as well as non-
negativity of d f (N∗(x))/dN , there exists a positive non-zero dominant eigenvalue, so
stability of the trivial steady state will be lost when λ = 1. Furthermore, Hardin et al.
(1990) have shown that for monotonically increasing and bounded growth functions
(e.g.Beverton–Holt, Table 1), the trivial equilibrium solution is globally stablewhen its
dominant eigenvalue is less than 1 and the non-trivial equilibrium solution is globally
stable otherwise (Hardin et al. 1990).

Standard IDE Example

We consider our carefully chosen example of Sect. 3.1, following the methods of Kot
and Schaffer (1986). We chose the Laplace dispersal kernel (Table 1) as it displays
convenient properties allowing for analytic tractability, as pointed out in Kot and
Schaffer (1986). Assuming logistic growth (Table 1), this results in the following IDE

Nt+1(x) =
√

α

4D

∫ L/2

−L/2
exp

(
−|x − y|

√
α

D

)
f (Nt (y))dy, (52)

where f (Nt (y)) = r Nt (y) (1 − Nt (y)). Any fixed points are the solutions to

N∗(x) =
√

α

4D

∫ L/2

−L/2
exp

(
−|x − y|

√
α

D

)
f (N∗(y))dy. (53)

Omitting the ∗ for notational convenience, we continue to follow Kot and Schaffer
(1986) and differentiate the above with respect to x , which yields
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N ′(x) = α

2D

[
−
∫ x

−L/2
exp

(
(y − x)

√
α

D

)
f (N (y))dy

+
∫ L/2

x
exp

(
(x − y)

√
α

D

)
f (N (y))dy

]
.

(54)

Differentiating once more yields

N ′′(x) = −
( α

D

)
f (N (x)) +

( α

D

)√ α

4D
e(−x

√
α
D )

∫ x

−L/2
ey

√
α
D f (N (y))dy

+
( α

D

)√ α

4D
e(x

√
α
D )

∫ L/2

x
e−y

√
α
D f (N (y))dy,

(55)

and simplifying results in

N ′′(x) + α

D
[ f (N (x)) − N (x)] = 0. (56a)

Following Kot and Schaffer (1986), we look at x = ±L/2 in (54) to obtain the
relevant boundary conditions

N ′(x) =
√

α

D
N (x) at x = −L/2,

N ′(x) = −
√

α

D
N (x) at x = L/2. (56b)

We can clearly see that N∗(x) = 0 is a solution for any growth functions of the
form f (N (x)) = N (x)g(N (x)). Substituting the logistic growth equation f (N (x)) =
r N (x) (1 − N (x)), we obtain

N ′′(x) + N (x)
( α

D

)
[r (1 − N (x)) − 1] = 0, (57)

with the same boundary conditions as above. N∗(x) = 0 is clearly a solution of (57),
and we now look for any non-trivial equilibrium solutions. Following the method set
out by Kot and Schaffer (1986), the most illuminating way to proceed is to turn (57)
into a system of two ODEs by setting u(x) = N (x) and v(x) = N ′(x). This results in

u′(x) = v(x), (58a)

v′(x) = −u(x)
( α

D

)
[r (1 − u(x)) − 1], (58b)

with boundary conditions

v(x) =
√

α
Du(x) at x = −L/2,

v(x) = −
√

α
Du(x) at x = L/2.

(58c)
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There are two equilibrium solutions (u∗, v∗) at (0, 0) and (1, 0) to the non-spatial
system,

u′ = v, (59)

v′ = −u
( α

D

)
[r (1 − u) − 1]. (60)

Solutions corresponding to our boundary conditions are orbits in the phase space
beginning at v = u

√
α/D at x = −L/2 and ending on v = −u

√
α/D at x = L/2

(Kot and Schaffer 1986).
There is a domain threshold size, which we will denote as L∗, at which reproduc-

tion is exactly sufficient to balance the cost of individuals dispersing to the hostile
environment outside the domain. The critical domain size L∗ is the bifurcation value
for L at which stability switches from the trivial steady state N∗ = 0 to a non-trivial
steady state. To find L∗, we look at where the trivial solution loses stability and recall
that the trivial solution is locally asymptotically stable if all of the eigenvalues λ of
(51) lie within the unit circle of the complex plane. For the chosen kernel, which is
continuous, symmetric, and non-negative, all eigenvalues are real and positive, and
stability will be lost through λ = 1 (Kot and Schaffer 1986). For the Laplace kernel
and logistic growth function chosen in this example, (51) becomes

λμ(x) = r

√
α

4D

∫ L/2

−L/2
exp (−|x − y|√α/D)μ(y)dy. (61)

Differentiating twice, we find

μ′′(x) +
( α

D

) r − λ

λ
μ(x) = 0, (62a)

with boundary conditions

μ′(x) = μ(x)
√

α
D at x = −L/2,

μ′(x) = −μ(x)
√

α
D at x = L/2.

(62b)

Following Kot and Schaffer (1986), we let

γ 2 = r − λ

λ
, (63)

so we have

μ′′(x) +
(

γ

√
α

D

)2

μ(x) = 0, (64)

and we can assume a solution of the form

μ(x) = A cos

(
γ

√
α

D
x

)
+ B sin

(
γ

√
α

D
x

)
,
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for some constants A and B. In order to satisfy the boundary conditions,

μ′(−L/2) = −Aγ

√
α

D
sin

(
−γ

√
α

D

L

2

)
+ Bγ

√
α

D
cos

(
−γ

√
αD

L

2

)

= A

√
α

D
cos

(
−γ

√
αD

L

2

)
+ B

√
α

D
sin

(
−γ

√
α

D

L

2

)

=
√

α

D
μ(−L/2)

(65)

and

μ′(L/2) = −Aγ

√
α

D
sin

(
γ

√
α

D

L

2

)
+ Bγ

√
α

D
cos

(
γ

√
α

D

L

2

)

= −A

√
α

D
cos

(
γ

√
α

D

L

2

)
− B

√
α

D
sin

(
γ

√
α

D

L

2

)

= −
√

α

D
μ(L/2).

(66)

Rearranging yields two equations in two variables,

A

[
1 − γ tan

(
γ

√
α

D

L

2

)]
− B

[
tan

(
γ

√
α

D

L

2

)
+ γ

]
= 0

A

[
1 − γ tan

(
γ

√
α

D

L

2

)]
+ B

[
tan

(
γ

√
α

D

L

2

)
+ γ

]
= 0, (67)

and so the eigenvalues λ (recall γ = γ (λ)) will satisfy either transcendental equation

tan

(
γ L

2

√
α

D

)
= ± 1

γ
. (68)

There are an infinite number of roots to these equations, hence an infinite number
of eigenvalues. When the eigenvalues associated with γ reach the unit circle at λ = 1
(i.e. when the stability of the trivial solution is lost), γ = √

er − 1 and the critical
threshold L∗ must satisfy

tan

(√
r − 1 L∗

2

√
α

D

)
= ± 1√

r − 1
. (69)

Since the equation with the negative sign results in a negative value of L∗, which
is not relevant to our present problem, the critical domain size for this example is

L∗ = 2√
r − 1

√
D

α
tan−1

(
1√
r − 1

)
, (70)

as in (11).
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Example on a Network of Patches

We here work through the example of Sect. 4.1.1 on a network of patches for a
population with a Laplace dispersal kernel and growth function f (N (x); x) of the
form f (N (x); x) = N (x)g(N (x); x) where g(·; x) is periodic in x with period L
and as described in the text, f2 = 0 represents a completely hostile landscape. We
here follow the method outlined in Van Kirk and Lewis (1997) (see their work for a
more thorough description of the framework). They begin by non-dimensionalizing
the problem, dividing the spatial variables by the period L ,

x̃ = x

L
and ỹ = y

L
. (71)

This results in the following IDE

Nt+1(Lx̃) =
∫ ∞

−∞
L

2b
exp

(
− L

b
|x̃ − ỹ|

)
f (Nt (L ỹ); L ỹ) d ỹ, (72)

where b = √
D/α. If we then let L̂ = L/b (i.e. it is the measure of the effective

spatial scale of habitat fragmentation, the period length divided by the mean dispersal
distance), and Ñt (y) = Nt (L ỹ) we obtain the dimensionless IDE (dropping the tildes
and hats for convenience)

Nt+1(x) =
∫ ∞

−∞
L

2
exp (−L|x − y|) f (Nt (y); y) dy, (73)

with equilibrium solutions satisfying

N∗(x) =
∫ ∞

−∞
L

2
exp (−L|x − y|) f (N∗(y); y) dy. (74)

Differentiating this twice with respect to x (and dropping the ∗ for convenience)
yields the second-order differential equation

− 1

L2 N
′′(x) + N (x) − N (x)g(N (x); x) = 0. (75)

Van Kirk and Lewis (1997) observed that g(·; x) and its first derivative now have
period 1, so the boundary conditions are N (0) = N (1) and N ′(0) = N ′(1). If we
make a small perturbation around the zero steady state and assume that perturbation
to be of the form ξt (x) = λtμ(x), where λ represents the eigenvalues and μ(x) the
non-zero eigenvectors, we obtain the eigenvalue problem

− 1

L2μxx (x) + μ(x) = 1

λ
g(0; x)μ(x), (76)

again with boundary conditions μ(0) = μ(1) and μ′(0) = μ′(1). Van Kirk and
Lewis (1997) have shown that for operators like the one employed here, a single
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positive dominant eigenvalue λ1 exists and corresponds to a positive eigenfunction
μ1(x). Now we take the periodic growth function g(0; x) found in Sect. 4.1.1, with
alternating patches of “bad” and “good” habitat, where g(0; x) = 0 in the bad patches
(the most extreme, conservative case) and g(0; x) = r in the good patches. We let R
be the fraction of domain in a good patch, and this results in a growth function of the
form

g(0; x) =
{
0, 0 < x < 1 − R

r, 1 − R ≤ x ≤ 1.
(77)

The eigenvalue problem (76) is now given by

μxx =
{
L2μ, bad patches,

−L2( 1
λ1
r − 1)μ, good patches,

(78)

with the same boundary conditions as before. Because the IDE and its first derivative
are continuous with respect to x , the eigenfunction μ(x) and its first derivative must
be continuous at the discontinuity x = 1 − R of g(0; x) (Van Kirk and Lewis 1997).
We search for a relationship between the length of the period (now a single variable L
scaled to the mean dispersal distance) and the width of the good patches as a fraction
R of L . We are interested in this relationship exactly at the bifurcation value λ1 = 1,
where the zero steady state loses stability. Setting λ1 = 1 and substitutingG2 = r −1,
we have eigenfunctions of the form

μ(x) =
{
c1 exp (Lx) + c2 exp (−Lx), x ∈ (0, 1 − R)

c3 sin (GLx) + c4 cos (GLx), x ∈ [1 − R, 1]. (79)

Taking (79), we apply both the boundary conditions and the continuity of the eigen-
function and its first derivative at x = 1 − R to obtain

μ(0) = μ(1)

μ′(0) = μ′(1)
μ(1 − R)− = μ(1 − R)+
μ′(1 − R)− = μ′(1 − R)+

where − denotes the limit from below and + the limit from above. From this, we
obtain four equations in four variables,

c1+c2=c3 sin (LG)+c4 cos(LG)

c1L − c2L = c3LG cos(LG) − c4LG sin (LG)

c1 exp (L(1 − R))+c2 exp (−L(1 − R))=c3 sin (LG(1−R))+c4 cos (LG(1−R))

c1L exp (L(1 − R))−c2L exp (−L(1 − R))=c3LG cos (LG(1 − R))

− c4LG sin (LG(1 − R)).

(80)
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This can be written as the matrix equation

Ac = 0 (81)

where A is the augmented matrix

A=

⎡
⎢⎢⎣

1 1 − sin (LG) − cos (LG)

1 −1 −G cos (LG) G sin (LG)

exp (L(1 − R)) exp (−L(1 − R)) − sin (LG(1 − R)) − cos (LG(1 − R))

exp (L(1 − R)) − exp (−L(1 − R)) −G cos (LG(1 − R)) G sin (LG(1 − R))

⎤
⎥⎥⎦ ,

(82)
c is the column vector [c1, . . . , c4]T and 0 is the zero column vector. In order for there
to exist a non-trivial solution to this system of equations, the relationship between the
scaled periodicity L and the fraction of good habitat R must satisfy det (A) = 0,

det (A) = 4G − exp (L − LR) sin (GLR) + exp (LR − L) sin (GLR)

− G2 exp (LR − L) sin (GLR) − 2G exp (L − LR) cos (GLR)

− 2G exp (LR − L) cos (GLR) + G2 exp (L − LR) sin (GLR) = 0,

(83)

as in (21).

Stage-Structured Population Theory

As with the basic IDE, we rewrite Eq. (27) as

Nt+1(x) = F(Nt (x)) =
∫

Ω

[K(x, y) ◦ R(Nt (y); y)]Nt (y)dy (84)

where ◦ represents element-by-element matrix multiplication. We look for parameter
values where the stable steady state solution bifurcates from the zero solution, which
will be determined by looking at the leading eigenvalue of the nonlinear integral oper-
ator F in (84). We will here draw from the results on the existence and uniqueness of
solutions of Lutscher and Lewis (2004). They have shown that under certain assump-
tions of compactness and differentiability, the nonlinear integral operator is positive,
completely continuous, and strongly Fréchet differentiable at N = 0 as given by

F ′(0)φφφ(x) =
∫

Ω

[K(x, y) ◦ R(0, y)]φφφ(y)dy. (85)

Given certain conditions on the primitivity of R(0, y), they have established the
existence of a unique positive eigenvalue of the linear operator F ′(0) with a cor-
responding positive eigenfunction. They obtain the superpositivity of F ′(0) under
further assumptions and so the dominant positive eigenvalue will determine the linear
stability of the zero steady state. The stability of zero will be lost as the dominant
eigenvalue, dependent on both the growth parameters and the domain length, passes
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through λ = 1. In the event that only juvenile individuals disperse, the dispersal matrix
takes the form

K(x, y) =

⎡
⎢⎢⎢⎣

k1(x, y) k2(x, y) . . . km(x, y)
δ(x, y) δ(x, y) . . . δ(x, y)

...
...

. . .
...

δ(x, y) δ(x, y) . . . δ(x, y)

⎤
⎥⎥⎥⎦ , (86)

and the resulting IMP model no longer has the compactness properties needed to use
much of the theory of Lutscher and Lewis (2004). We could either approximate the
delta function by a different dispersal kernel with very small variance, as was done
by Hardin et al. (1990), or we could use further results of Lutscher and Lewis (2004).
Biologically, their general idea is that every individual disperses at some time in its
life cycle, and they consider, for some n, Fn .

They split the nonlinear operatorF up into the two operatorsF1 andF2, so thatF1
contains all entries where, for every non-zero ri j we have that ki j (x, y) ∈ (L2(Ω))2

and is zero everywhere else, and F2 contains the function ri j where ki j = δ(x, y) and
is zero otherwise. NowF1 is compact andF2 is bounded and by Lemma 8 in Lutscher
and Lewis (2004), if F2 is nilpotent of order n, ∀y ∈ Ω , then Fn is completely
continuous and this allows us to study the existence of fixed points of Fn . Note that
a fixed point of Fn corresponds to a periodic solution, but if there exists a solution
which is both a fixed point of Fn and Fn+1, then it is the unique fixed point of F
(Lutscher and Lewis 2004).

Lutscher and Lewis (2004) have also shown the existence of a positive fixed point
stemming from a transcritical bifurcation at a critical domain length or growth rate
and under the assumptions that the spectral radius of F ′(∞) is less than 1 and that the
dominant eigenvalue of F ′(0) is greater than 1. The positive fixed point is unique
if R(N(y)) is monotonic increasing (i.e. for Beverton–Holt type functions, but not
Ricker or logistic) and is density dependent with diminishing returns for all values of
N (i.e. no Allee effects). In the event that the concavity condition above is not met, we
may see periodic solutions or even chaotic ones (Lutscher and Lewis 2004).

Stage-Structured Population Example

We illustrate the bifurcation structure of the example outlined in Sect. 4.2.2 by looking
at the linearization around the trivial zero steady state. This results in the eigenvalue
problem

λφφφ(x) =
∫ L/2

−L/2

([
δ(x, y) 1

2b e
− 1

b |x−y|
δ(x, y) δ(x, y)

]
◦
[
0 r
α β

])[
φ1(y)
φ2(y)

]
dy, (87)

where b = √
D/α andφφφ = [φ1, φ2]T. Continuing to follow the ideas of Lutscher and

Lewis (2004) and building on the scalar case presented by Kot and Schaffer (1986), we
differentiate twice and examine the relationship between the demographic parameters

123



Approximating the Critical Domain Size of. . . 103

and the domain length. Differentiating (87) with respect to x yields

φ′
1(x) = −

( r

2λb2

)
e−x/b

∫ x

−L/2
ey/bφ2(y)dy

+
( r

2λb2

)
ex/b

∫ L/2

x
e−y/bφ2(y)dy (88a)

φ′
2(x) =

(
α

λ − β

)
φ′
1(x), (88b)

and differentiating again results in

φ′′
1 (x) = −r

λb2
φ2(x) + 1

b2
φ1(x), (89a)

φ′′
2 (x) = α

λ − β
φ′′
1 (x), (89b)

with boundary conditions

φφφ′(x) = 1

b
φφφ(x), x = −L/2, (89c)

φφφ′(x) = −1

b
φφφ(x), x = L/2. (89d)

To begin to find a solution to this boundary value problem, Lutscher and Lewis
(2004) assume solutions of the form φ1(x) = A1eσ x and φ2(x) = A2eσ x for some
A1,2 and σ , resulting in the system of equations

A1σ
2 = −r

λb2
A2 + 1

b2
A1 (90a)

A2σ
2 = α

λ − β
A1σ

2. (90b)

In the event that σ 2 = 0, we have the relationship

A2 =
(

λ

r

)
A1, (91)

and so our first set of solutions is

φ1 = A1 (92a)

φ2 =
(

λ

r

)
A1. (92b)
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If σ 2 
= 0, we obtain another relationship between the constants, namely

A2 =
(

α

λ − β

)
A1. (93)

Using this (and the assumption that A1 
= 0), we find

σ± = ±
√(

1

b2

)(
1 − rα

λ(λ − β)

)
(94)

and obtain two more solutions

φ1 = A+eσ+x + A−eσ−x , (95a)

φ2 =
(

α

λ − β

)
A+eσ+x +

(
α

λ − β

)
A−eσ−x . (95b)

We look now for a fourth solution by assuming a different solution form, φ1(x) = B1x
and φ2(x) = B2x . Since φ′′

1 = φ′′
2 = 0, we obtain the relationship

B2 =
(

λb2

r

)
B1, (96)

which results in our fourth set of solutions,

φ1 = B1x (97a)

φ2 =
(

λb2

r

)
B1x . (97b)

Any linear combination of these is also a solution, and putting them together results
in a general set of solutions of the form

φ1 = A1 + B1x + A+eσ+x + A−eσ−x (98a)

φ2 =
(

λ

r

)
A1 +

(
λb2

r

)
B1x +

(
α

λ − β

)
A+eσ+x +

(
α

λ − β

)
A−eσ−x , (98b)

and we can now solve for the four unknowns, A1, B1, A+, and A−, by using the four
boundary conditions on φ′

1(x) and φ′
2(x) at x = ±L/2. In order for there to exist

a non-trivial solution to this system of equations, the following condition must be
satisfied:

(
2

b

)(
1 + L

2b

)[(
1

b
− s

)2

e−sL − esL
(
1

b
+ s

)2
]

×
(

λb2

r
− α

λ − β

)(
α

λ − β
− λ

r

)
= 0 (99)
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where

s =
√(

1

b2

)(
1 − rα

λ(λ − β)

)
. (100)

We lose the linear stability of the zero steady state as the dominant eigenvalue λ

passes through λ = 1, and this leaves us with either

[(
1

b
− s

)2

e−sL − esL
(
1

b
+ s

)2
]

= 0, (101)

(
b2

r
− α

1 − β

)
= 0, (102)

or (
α

1 − β
− 1

r

)
= 0, (103)

where s is now given by

s =
√(

1

b2

)(
1 − rα

1 − β

)
. (104)

If (101) holds, then we consider two different cases pertaining to the value of s. If

1 − rα

1 − β
> 0, (105)

then s is real and 0 < s < 1/b in which case

esL =
( 1
b − s

)
( 1
b + s

) < 1, (106)

and so L must be negative, which is not possible. The other possibility is that s is
complex (we will address the case when s = 0 later), i.e. that

1 − rα

1 − β
< 0. (107)

In this case, s is of the form s = ai/b, where

a =
√

rα

1 − β
− 1, (108)
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and

e
2ai L
b =

( 1
b − ai

b

)2
( 1
b + ai

b

)2 (109a)

= 1 − 6a2 + a4

(1 + a2)2
+ 4a(a2 − 1)

(1 + a2)2
i (109b)

= cos A + i sin A, (109c)

where

A = arctan

(
4a(a2 − 1)

1 − 6a2 + a4

)
. (110)

It is important to note that in the event that either cos A < 0 or sin A < 0, we need
to add π on to the calculation of arctan in order to ensure that we obtain a value for A
in the correct quadrant, i.e.

A = arctan

(
4a(a2 − 1)

1 − 6a2 + a4

)
+ π. (111)

Now we have that
e
2ai L
b = eAi = e(A+2nπ)i , (112)

and so the critical domain size L∗ is

L∗ = (A + 2nπ)
b

2a
(113)

as in (36). In the special case where s = 0 when λ = 1, (103) is satisfied, and in this
way we have infinitely many solutions for the critical domain length. In order to avoid
this, we assume a different form for our solutions φ1 and φ2, namely

φ1 = A1 + B1x + C1x
2 + D1x

3, (114a)

φ2 = A2 + B2x + C2x
2 + D2x

3. (114b)

By putting the above two equations into the system of second-order ODEs, we
obtain

A2 =
(
1

r

)
A1 −

(
2b2

r

)
C1, (115a)

B2 =
(
1

r

)
B1 −

(
3b2

r

)
D1, (115b)

C2 = α

1 − β
C1, (115c)

D2 = α

1 − β
D1, (115d)
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so that the solutions in this special case are of the form

φ1 = A1 + B1x + C1x
2 + D1x

3, (116a)

φ2 =
(
1

r

)
A1 −

(
2b2

r

)
C1 +

[(
1

r

)
B1 −

(
3b2

r

)
D1

]
x

+
[

α

1 − β
C1

]
x2 +

[
α

1 − β
D1

]
x3. (116b)

Applying the four boundary conditions, we obtain four equations in four variables,
A1, B1, C1, and D1, and in order for there to exist a unique solution, either

(
L2

4b
+ L

)(
α

1 − β
− 1

r

)
− 2b

r
= 0 (117)

which requires −2b/r = 0 (since when s = 0, α/(1 − β) = 1/r ), which means the
population must have a mean dispersal distance of b = 0, which is not relevant, or

3b

r

(
b + L

2

)
+
(
1

r
− α

1 − β

)(
L3

8b
+ 3L2

4

)
= 0 (118)

which requires L to be negative and so this solution is also not biologically relevant.

Example in an Advective Environment

We again attempt to find the dominant eigenvalue of the nonlinear integral operator
and use its bifurcation behaviour to determine the critical domain size for the example
found in Sect. 4.3.1. Following the same method as in the previous sections, we
look at the linearization around the trivial steady state, which results in the following
eigenvalue problem

λμ(x) =
∫ L/2

−L/2
k(x, y)

[
∂ f (N (y))

∂N (y)

∣∣∣∣
N≡0

]
μ(y)dy. (119)

Looking at the linearized IDE, we have

λμ(x) = r
∫ L/2

−L/2
k(x, y)μ(y)dy. (120)

Recall that the population can persist if the dominant eigenvalueλ of (120) is greater
than 1. For a given r , the critical domain size is then the value of L for which λ = 1. In
this carefully chosen examplewith the asymmetric Laplace kernel (Table 2), we follow
Lutscher et al. (2010) and differentiate (120) twice to obtain a second-order ordinary
differential equation with boundary conditions. Using the characteristic equation and
letting λ = 1, we calculate the critical domain size L∗ as
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L∗ =
4 arctan

(√
4ra1|a2|
(a1−a2)2

− 1
)−1

(a1 − a2)
√

4ra1|a2|
(a1−a2)2

− 1
, (121)

as in (37).
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