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Abstract Many pathways are dysregulated in cancer. Dysregulation of the regulatory
network results in less control of transcript levels in the cell. Hence, dysregulation is
reflected in the heterogeneity of the transcriptome: themore dysregulated the pathway,
the more the transcriptomic heterogeneity. We identify four scenarios for a transcrip-
tomic heterogeneity increase (i.e., pathway dysregulation) in cancer: (1) activation of
a molecular switch, (2) a structural change in a regulator, (3) a temporal change in a
regulator, and (4) weakening of gene–gene interactions. These mechanisms are statis-
tically motivated, explored in silico, and their plausibility to occur in vivo illustrated
by means of oncogenomics data of breast cancer studies.
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1 Introduction

Cancer is not one but a collection of many diseases (Insight section of Nature 501,
2013). It is different between and within patients. A severe consequence of this het-
erogeneity may be found in the many cancers that relapse after treatment [confer the
review papers (Hart and Fidler 1981; Dexter and Leith 1986; Heppner and Miller
1983; Stingl and Caldas 2007; Marusyk and Polyak 2010; Shackleton et al. 2009;
Pinto et al. 2013)]. In the face of extreme selection pressure due to treatment, some
cancer cells may survive, enabling the tumor to recover. Between-cell heterogeneity
can thus increase the probability of a cancer being resistant to treatment [mathemat-
ically, Goldie and Coldman (1978) and Demetrius et al. (2004) provide theoretical
underpinning of this phenomenon]. An ad hoc solution to tackle this heterogeneity
currently tested by medical researchers is to combine treatments. Better treatments
may arise from a more profound understanding of the mechanisms that contribute
to the heterogeneity of cancer, as they offer suggestions about the different ways by
which tumors overcome treatment.

Heterogeneity arises during the evolution of cancer (Nowell 1976). A progenitor
cell acquires a cancerous mutation which gives the cell a selective advantage within
the microenvironment of the tissue. The clones and subclones of the progenitor cell
accumulate further genetic abnormalities. This evolutionary process breeds a heteroge-
neous population of cells that form the tumor. This explanation of cancer heterogeneity
is centered around the DNA and ignores contributions from other parts of the cancer
cell. Here we investigate, from the perspective of the regulatory network, how the
transcriptome may contribute to the heterogeneity of cancer.

The cellular regulatory network consists of a set of connected pathways. A pathway
is a chain of chemical reactions occurring in the cell. The common conceptualization
of a pathway is that of a collection of genes that interact in order to fulfill a particular
cellular function. This conceptualization motivates the treatment of pathways as net-
works. In these networks, genes are represented by nodes and the interactions between
genes by edges. When (for instance) modeling the gene expression levels, denoted Y,
of a pathway in equilibrium by a p-variate normal distribution, i.e., Y ∼ N (μ,�),
the “gene–gene interaction” graph underlying this multivariate Gaussian process is
given by the network. Nonzero partial correlations (proportional to elements of �−1)
between the variates (genes) of Y coincide with the presence of edges (interactions)
in the network.

The expression levels of a pathway’s genes need to be well controlled for the
cell to function properly. Normal and cancer cells, however, exhibit many differen-
tially expressed genes. Abnormal expression levels in the cancer cell may dysregulate
pathways, by inhibiting or stimulating them (Vogelstein and Kinzler 2004). This dys-
regulation may affect the cell’s fitness (i.e., its ability to proliferate).

Entropy is a measure of heterogeneity. To appreciate this note that the (differential)
entropy of a p-variate normal random variable Y is given by the logarithm of the
determinant of its covariance matrix:

H(Y) = −
∫ ∞

−∞
· · ·

∫ ∞

−∞
fY(y) log[ fY(y)] dy = log(|�|).
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1770 W. N. van Wieringen, A. W. van der Vaart

The determinant of � is equal to the product of the eigenvalues of �. It thus equals
the volume of a p-dimensional ellipsoid spanned by the eigenvectors of � and with
lengths of its edges equal to the eigenvalues. As such, the determinant of the covariance
matrix is ameasure of the spread of the randomvariableY. Hence, there is a one-to-one
relation between entropy and heterogeneity (the convex logarithmic transformation
does not affect this).

Here we interpret entropy (and thus heterogeneity) as a measure of dysregulation.
This is motivated as follows. For a pathway to fulfill its function in the cell, its gene
expression levels cannot vary randomly. The transcript levels must be regulated, caus-
ing them to stay within certain boundaries. A “healthy” pathway’s gene expression
data must therefore be concentrated in a subspace of the space of all possible (in a
statistical sense) transcript levels. In contrast, gene expression levels of a dysregulated
pathway can be expected to be less orderly and more spread. Dysregulation of a path-
way in a cancer cell is likely to be reflected in the heterogeneity of its gene expression
levels and will then be larger than that of a healthy cell. Hence, entropy is positively
associated with dysregulation. Such an interpretation of entropy is long current in the
field of control theory, where the controllability of a system is negatively associated
with the entropy (Rajapakse et al. 2011).

From the definition, it is clear that the estimation of entropy may proceed through
the calculation of the sample covariance matrix and its determinant. When dealing
with high-dimensional data, the sample covariance matrix is replaced by a penalized
counterpart, as done previously for the estimation of entropy (VanWieringen and Van
derVaart 2011). The employed penalized covariance estimate is �̂(λ) = (1−λ)S+λT
as originally proposed in Ledoit and Wolf (2004) and popularized in Schäfer and
Strimmer (2005). In this estimator λ ∈ [0, 1] is the penalty parameter and T a user-
specified target matrix, taken to be diagonal with diag(T) = diag(S). The penalized
covariance estimate is thus a weighted average of sample covariance matrix and target
matrix. When λ increases, the penalized covariance estimate is shrunken toward the
target matrix T. The penalty parameter is chosen to minimize the sum of the mean
squared errors of the elements of �̂(λ). The moments involved in the mean squared
error are estimated from the data at hand. Naturally, larger sample sizes yield more
reliable estimates of these moments (and, consequently, of the choice of the penalty
parameter) than smaller ones. In the remainder of this work, we compare the entropy
between groups, which may be of different sample size. To minimize the influence of
the choice of the penalty parameter on entropy comparisons, equally sized subsamples
are used.

In previous work (Van Wieringen and Van der Vaart 2011), we observed that tran-
scriptomic heterogeneity (operationalized as entropy) in cancer tissue systematically
exceeds that of corresponding normal tissue. In particular, the cross-sectional oncoge-
nomics studies analyzed in Van Wieringen and Van der Vaart (2011) exhibited a
concordant increase with the progression of the disease. Independently and by dif-
ferent means, it was concluded in Schramm et al. (2010) that the “regulatory entropy”
of cancer cells exceeds that of normal cells. In Teschendorff and Severini (2010),
a higher transcriptomic heterogeneity (entropy) in metastasized cancer over healthy
controls was also noted. In follow-up work (West et al. 2012; Banerji et al. 2013;
Teschendorff et al. 2014; Banerji et al. 2015), the authors of Teschendorff and Sev-

123



Transcriptomic Heterogeneity in Cancer as a Consequence of… 1771

erini (2010) confirmed that “cancer is characterized by an increase in network entropy”
and observed the entropy increase in other types of cellular transformation. An abun-
dance of similar and related observations is quoted by the review papers (Berretta and
Moscato 2010; Tarabichi et al. 2013). Moreover, it has even been proposed (Berretta
and Moscato 2010) to add “entropy increase” to the hallmarks of cancer (Hanahan
and Weinberg (2000).

In this paper, we explore from the perspective of the cellular regulatory network,
using both mathematical modeling and publicly available experimental data, how a
transcriptomic heterogeneity surge may come about. We present several mechanisms
that may lead to an increase in the cancer cell’s transcriptomic heterogeneity. The
mechanisms are mathematically motivated by analytic results (with proofs given in
the Supplementary Material, henceforth SM). In simulation studies, it is assessed
how topological features of the regulatory network influence the mechanisms for
heterogeneity increase. Finally, oncogenomics data frombreast cancer studies are used
to illustrate that the discussed mechanisms for transcriptomic heterogeneity increase
indeed occur in the cancer cell.

2 Switches

The increase in transcriptomic heterogeneity with the progression of cancer may be
explained by the presence of switches in the regulatory network. A switch enables
the cell to change between regulatory modules (Fig. 1), leading to differential gene
expression patterns. Which module is activated by the switch depends on, e.g., an
environmental factor. An example of a switch may be found in the MAPK pathway,
where growth conditions determine which MAPK protein is produced (Zalatan et al.
2012). Downstream the proteins may activate different regulatory modules. The mod-
ules may result in different gene expression patterns. If some cancer cells switch to a
module that yields a different transcriptomic entropy, the heterogeneity of the whole
population changes.

Regulatory switches may give rise to the multiple distinct cancer subgroups of
one tissue and as such contribute to the increase in the transcriptomic entropy. To
demonstrate this, we assume that the cancer samples in a genomic study originate
from K ≥ 2 subgroups. The subgroup information is considered unknown. The gene
expressionprofile of a regulatorymodule in sample i , representedby the p-dimensional
random variable Yi with each element corresponding to a gene in the module, may
then be modeled by a finite mixture model:

Yi ∼
K∑

k=1

τk N (μk,�k), (1)

with mixing proportions τk ≥ 0 (which sum to one) and mixture components
N (μk,�k). Each mixture component describes how the expression data within a
subgroup are distributed. Furthermore, we assume that after normalization, we have:
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1772 W. N. van Wieringen, A. W. van der Vaart

Fig. 1 A molecular switch, influenced by a factor, between two regulatory modules

E(Yi ) =
K∑

k=1

τkμk = 0. (2)

This assumption simplifies the argument below, but does not affect its conclusion.
The following proposition (proof in SM A) relates the entropy of the mixed distri-

bution (1) to that of an unmixed distribution.

Proposition 1 Let Y be a p-variate random variable in R
p, fz(Y) = f (Y|z) be a

density for every z in a domain D. Then, if G is a probability distribution on D and
fG(Y) = ∫

D f (·|z) dG(z):

−
∫
Rp

fG(Y) log[ fG(Y)] dY ≥ −
∫
D

∫
Rp

fz(Y) log[ fz(Y)] dY dG(z).

The proposition is formulated in terms of an unspecified mixing distribution G, which
may be chosen to be discrete as in mixture distribution (1).

Proposition 1 teaches us that transcription levels of a heterogeneous population
(as comprised by the individuals with cancer of a given type of tissue) are less con-
centrated than those of a homogeneous population (formed by the individuals with
healthy tissue). The heterogeneity may be due to activation of a different regulatory
modules by switches. Proposition 1 relates two features of these regulatory modules
to transcriptomic heterogeneity. To see this, apply Proposition 1 to p-variate random
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variables Y following the mixture distribution (1) with mean zero, assumption (2) and
X ∼ N (0,�). Then, H(Y) ≥ H(X), if either:

(1) there are k1, k2 ∈ {1, . . . , K } such that μk1 �= μk2 and �k = � for all k, or
(2) |�k | ≥ |�| for every k ∈ {1, . . . , K }.
The first scenario (1) boils down to differential expression (of one or more genes)
between any two regulatory modules controlled by the switch. The second scenario
(2) requires an heterogeneity increase in one of the regulatory modules (for which
later sections provide clues).

It needs empirical investigation whether the two scenarios that may cause the het-
erogeneity difference (Proposition 1) indeed occur in cancer. With respect to the first
scenario, it is beyond doubt that subpopulations (possibly induced by the switch)
exhibit differential expression. Any specialization of the cancer cell will be hard to
imagine without changing expression levels during the course of the disease. Hence,
we do not illustrate the first scenario with data. Instead, we point out a connection
between differentially expressed genes and their role in the pathway. Wachi et al.
(2005) observe that differentially expressed genes in lung cancer are more likely to
have a large number of edges in the regulatory network. Independently, Jonsson and
Bates (2006) point out that cancer genes tend to be more highly connected. Although
these claims need further substantiation from independent studies, they hint at a more
prominent role of central genes in the increase in transcriptomic heterogeneity.

We turn to the second delineated scenario for an heterogeneity surge as implicated
by Proposition 1: an heterogeneity increase in a subgroup (due to switching to a
different regulatory module). To our knowledge, no publicly available data from an
oncogenomics study are at hand to evaluate this properly.As a surrogate,we investigate
whether the heterogeneity differs between subgroups (a consequence of the cause).
This is done in five breast cancer studies (available via the Bioconductor repository,
SM B) that have been uniformly preprocessed with widely accepted methodology
[confer (Schröder et al. 2011) for details]. Each study profiled the transcriptome of
the samples included. In addition, information on the estrogen receptor (ER) status is
available. The ER status can be positive (or negative) referring to the involvement (or
not) of estrogen receptors, a group of proteins that may regulate the activity of many
genes (Björnström and Sjöberg 2005), in the breast tumor. Prognosis is poorer for ER-
negative tumors, which is (partially) due to the availability of reasonably successful
hormone treatment for the ER-positive tumors. Many pathways cross-talk with ER
status, in particular the Notch and TGFβ pathways (Band and Laiho 2011). This cross
talk leads to differential expression patterns between ER-positive and ER-negative
tumors.

A switch activating estrogen receptors seems a plausible underlying mechanism
causing these differences in expression. Hence, comparison of the transcriptomic het-
erogeneity of theER-positive andER-negative groupsmay indicatewhether the second
cause (as delineated in the interpretation of and directly following Proposition 1) is a
biologically plausible scenario.

The estrogen receptor refers to a group of proteins that, when active, regulate the
activity of many genes (Björnström and Sjöberg 2005). This group of proteins thus
forms a molecular switch.
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Fig. 2 Boxplot of entropy estimates versus ER status.Left panelNotch pathway; right panel TGFβ pathway
(Color figure online)

We compare the transcriptomic entropy of the ER-positive and ER-negative groups
in both the Notch and TGFβ pathways using all breast cancer data sets, which have
been limited to the genes present on the corresponding microarray platform and that
map to these pathways as defined by the curated KEGG repository (Ogata et al. 1999)
using their Entrez IDs. To ensure that the difference in samples size between the ER
groups does not affect the comparison (a possibility pointed out in the introductory
section), the groups are subsampled with equal sample size, which is set at 90% of
the smallest group. We subsample 500 times to average out the random variation due
to the sampling. At each draw, the samples from the ER groups form a subsampled
version of the original data set. From the subsampled data set, the shrinkage parameter
for shrunken covariance matrix estimation is estimated (Schäfer and Strimmer 2005).
This estimated shrinkage parameter is then used to estimate the transcriptomic entropy
of the individual groups (Van Wieringen and Van der Vaart 2011). Figure 2 shows
the resulting 500 entropy estimates for the ER groups in the data sets for the Notch
and TGFβ pathways. Conditional on the full data set, these estimates indicate the
distribution of entropy in each ER group. In both pathways, the transcriptomic entropy
is (in each of the five data sets) lower in the ER-positive group. Hence, the ER-negative
group exhibits more heterogeneity than the ER-positive group. This is in line with the
observation that more cancer heterogeneity is associated with a poorer outcome. In
summary, there may be an alternative (to differential expression) route to increase
transcriptomic heterogeneity, namely via a heterogeneity surge in a subpopulation
delineated by the activation of a different regulatorymodule. The next sections provide
clues how the larger transcriptomic heterogeneity of this module may arise.

3 Increased Variation in an Expression Regulator

Variation in gene expression levels may surge with increased fluctuations in factors
like DNA copy number that influence transcription. Consequently, if during the pro-
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gression of the disease a cancer cell switches from a regulatory module without to one
with genomic aberrations, the transcriptomic heterogeneity may increase. Indeed, as
we have shown previously in Van Wieringen and Van der Vaart (2011), an increase in
genomic heterogeneity is propagated to the transcriptomic level. A plausible model
for the interaction of these two molecular levels is provided (among others) in Van
Wieringen and Van de Wiel (2014). The model is briefly recapitulated here to explain
concordant genomic and transcriptomic heterogeneity increase. In ongoing work, we
extend that model to describe themicroRNA–mRNA interactions. In themathematical
argumentation for the transcriptomic heterogeneity increase due to genomic aberra-
tions as provided below the role of latter may be replaced by that of microRNAs.

Let X and Y be p-dimensional vectors of DNA copy number and gene expression
information, respectively. The relation between the two may be described by the rate
equation:

∇tY = f(Y) − γ ◦ Y + β ◦ X,

where the ◦-operator denotes the Hadamard product, γ the decay rate of the mRNAs,
and β the effect of DNA copy number changes on the expression levels. This equation
links the change in gene expression with time to the p-dimensional vector-valued
transcription function f(·), the decay rate (the second summand on the right-hand
side), and the cis-effect of the genomic aberration (third summand). In order for the
rate equation to be applicable to data from integrative genomic studies, where the two
molecular levels of a random sample are measured in an observational experimental
setup, two simplifying assumptions aremade: (1) a steady state and (2) a linear form of
f(·) (although not strictly necessary). After regrouping of terms and the introduction
of an error term ε, with ε ∼ N (0,�), we arrive at:

�Y = β ◦ X + ε, (3)

where� contains the edges between the genes in the regulatory network. For example,
an element (�) j1, j2 represents the effect of gene j1 on gene j2. Model (3) is visually
portrayed in Fig. 3. For the identifiability and estimation of Model (3), refer to Van
Wieringen and Van de Wiel (2014).

To see howModel (3) may explain that an increase in genomic heterogeneity could
lead to an increase in the heterogeneity of gene expression levels, rewrite the model
to: Y | X ∼ N (

�−1[β ◦ X],�−1�[�−1]T )
. The unconditional variance of Y is then

given by:

Var(Y) =
[
�−1 ◦ (1p ⊗ βT )

]
Var(X)

[
�−1 ◦ (1p ⊗ βT )

]T + �−1�
[
�−1

]T
.

First and second summands on the right-hand side are (semi)-positive and pos-
itive definite, respectively. Corollary 18.1.7 of Harville (2008) then ensures that
det[Var(Y)] ≥ det

(
�−1�[�−1]T )

, with equality holding only if the covariance of
β ◦ X is zero. In particular, the transcriptomic entropy is unaffected by DNA copy
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Fig. 3 Schematic representation of Model (3), describing the interplay between DNA copy number aber-
rations and gene expression within a regulatory network. The solid arrows correspond to the cis-effect (β)
of the gene dosage, whereas the elements of � are displayed as dashed arrows (Color figure online)

number aberrations if the variation in X is nil (no aberrations), or if DNA copy number
aberrations do not affect gene expression levels.

If genomic aberrations occur and affect the pathway’s transcription levels (i.e., β ◦
X �= 0p×1), does it matter which gene is aberrated? Indeed, as genomic aberrations are
inherited by daughter cells and their prevalences vary over genes, different prevalences
(roughly, evolutionary selection frequencies) ofDNAcopynumber aberrations suggest
different fitness contributions. Should genomic aberrations have an effect on the cancer
cell, their prevalence differences have to manifest themselves at the transcriptomic
level of the pathway. To investigate this, we study in silico the relation between the
effect of a gene’s genomic entropy and its node degree. The motivation behind the
choice of this topological feature stems from the observation that an oncogene may
be a transcription factor (Look 1997). Transcription factors often contribute to the
regulation of many other genes and tend to be highly connected. For instance, the
oncogene MYC is a transcription factor. MYC is known to be often amplified in many
cancers (Futreal et al. 2004). This often leads to the deregulation of the cell cycle,
among others stimulating cellular proliferation (Dang et al. 1999). In the simulation
(more details in SM C), the genomic heterogeneity (present in X) of the genes—
one at a time—is increased and its effect on the transcriptomic entropy of Y studied
by means of Model (3). Relating the node degree of the gene with increased genomic
heterogeneity to the resulting increase in transcriptomic entropy then indicateswhether
a gene’s connectivity modulates the latter. The simulation starts by setting the network
size (i.e., the number of nodes) p = 50, 100 or 250, β = 1p×1 and � = 0.3 Ip×p,
and sampling a hypothetical regulatory network topology (either small world or scale
free). For each node in the sampled hypothetical networks, its degree d j is determined.
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Then, the genomic entropy of node j , i.e., [Var(X)] j j , is increased (from zero to one,
keeping that of the other nodes fixed at zero). The resulting entropy of Y, denoted
Hj , is calculated. The Hj are plotted against the node degree d j (see Fig. 1 of the
SMC). The plots indicate an increase in transcriptomic entropy, an increase, however,
independent of the affected node’s connectivity. The latter may be counter-intuitive,
but can be explained analytically (see SMC). It can also be understood when realizing
that Model (3) is a description of the relation between DNA copy numbers and gene
expression levels within a pathway in a closed system at equilibrium. The system
itself is kept constant in the simulation, only the genomic variance of a single gene is
increased. The inserted additional variation introduced into the system cannot escape,
due to it being in equilibrium and having no sink. Hence, the inserted variation must
stay within the system, irrespective of where it had been inserted.

In the previous subsection (Switch), it has been observed that ER− breast tumors
exhibited more heterogeneity than their ER+ counterparts. Model (3) suggests that
this may be due to the DNA copy number aberrations. Or, more specifically, due to
an increase in the covariance of β ◦ X. Whether this increase occurs is investigated
in three breast cancer data sets (details, including that of all the preprocessing steps
that use well-accepted methodology, can be found in SM B). The data sets comprise
genomic and transcriptomic profiles and the ER status of all its samples. As in the
previous subsection, we restrict ourselves to the Notch and TGFβ pathway. To this
end, the three data sets have been limited to the genes present on the corresponding
microarray platforms and that map to these pathways as defined by the curated KEGG
repository (Ogata et al. 1999) using their Entrez IDs.

We first concentrate on the variance of the DNA copy number, which is compared
between the ER groups in two ways. The first approach assesses whether there is a
genomic entropy difference. This is done exactly as in the previous subsection (Switch)
for the transcriptomic entropy, but now the gene expression data are replaced by DNA
copy number data. This shows a genomic entropy difference between the ER groups
concordant with that observed in the transcriptome (plots not shown). Secondly, the
variance in DNA copy number between ER− and ER+ is compared gene-wise. For the
Notch pathway (confer SM E for the TGFβ pathway), these estimated variances are
compared between the twoERstatuses bymeans of boxplots (Fig. 4, left panel).Hence,
both the univariate and multivariate perspectives reveal a genomic variance in the ER-
negative group that is (somewhat) greater thanor comparable to that in theERpositives.

The increase in the covariance of β ◦ X may also be due to a difference in the gene
dosage effect β between the groups, which is now investigated. Hereto Model (3) is
fitted for both ER groups to their DNA copy number and gene expression data. The
model is fitted using the method of Van Wieringen and Van de Wiel (2014) which
uses an equation-by-equation L1-penalized least squares approach (only penalizing
� and leaving β unpenalized). For a given penalty λ1, fitting Model (3) yields among
others a topology (the selected incoming and outgoing edges as reflected in the nonzero
elements of�) and biased estimates of the cis-effectβ. To obtain “unbiased” estimates
of the cis-effect β, the model is refitted incorporating the found topology. Hereto the
same method of Van Wieringen and Van de Wiel (2014) is used with λ1 = 0 or
λ1 = ∞ for each selected or nonselected edge, respectively. The latter (λ1 = ∞)
results in estimates equal to zero, while the former (λ1 = 0) does not constrain the
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Fig. 4 Left panel boxplots (per data set and ER status) of the variances of DNA copy number of the genes
comprising the Notch pathway. Right panel boxplots (per data set and ER status) of the estimated DNA
copy number effect on gene expression (parameters β j of Model 3) of the genes comprising the Notch
pathway (Color figure online)

parameter estimate at all.We repeat the above for a grid of λ1’s. The grid is constrained
to those λ1 that result in a sparse network (i.e., having between 1 and 10% of the total
number of possible network edges). The thus estimated β’s (with a specific λ1 from
the aforementioned domain) are compared between the groups by means of boxplots
(Fig. 4, right panel, Notch pathway only; see SM E for the results of the TGFβ

pathway). Over the data sets and in both pathways, the ER- group shows slightly
larger DNA copy number effects (β). This conclusion is unaffected by the choice of
the penalty parameter as the estimated β changes little over the grid of λ1’s, due to the
fact that (a) β itself is not penalized and (b) the preferred sparse models include only
few covariates in each regression equation of Model (3) with shrunken (i.e., small)
estimates of their regression coefficients.

In summary, more heterogeneity in a regulator (like DNA copy number) may, if
Model (3) is a reasonable approximation, lead to more heterogeneity downstream in
the transcriptome. The breast cancer example above suggests that (part of) the entropy
difference between the ER+ and ER− groups may be attributed to DNA copy number.
Changes in the regulator need not be the only source responsible for the entropy
difference. In particular, when using the fitted Model (3) to correct for DNA copy
number and obtain the “residual” gene expression, the ER- group still exhibits a larger
entropy than the ER+ group. This suggests that there may be additional mechanisms
contributing to heterogeneity.

4 Disturbances

The previous section attributes the surge in transcriptomic heterogeneity to switching
to a regulatory module with changes in its DNA copy number. If such changes may
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Fig. 5 Illustration of the effect of a disturbance. Artificial time series data of the expression levels of a
three-gene pathway are generated in accordance withModel (4) (full parametric details given in SM F). The
(unperturbed) data, representing gene expression levels of the first gene of the pathway, are shown in the
top panel. The lower panel contains the perturbed data of this gene, generated in accordance with Model
(5) with the same innovations as the unperturbed data except for the disturbance. The disturbance occurs at
time point t = 25. The dashed line connects the observation. The solid line is a moving average smoothing
of the data (Color figure online)

cause this heterogeneity surge, one expects temporary changes to have a similar effect.
Indeed, disturbances of the cellular regulatory network may also cause the transcrip-
tomic entropy increase. This can be witnessed in perturbation experiments, in which
the consequences (e.g., at the transcriptomic level) of an internal or external alteration
to the cellular regulatory network are studied. An artificial illustration of this is given
in Fig. 5. The figure portrays the expression levels of a gene over time, in the situa-
tion without and with a disturbance. It is obvious that the disturbed sequence exhibits
more variation. A well-known example of such a disturbance is radiation. Exposure
to radiation, even at low dose, may cause thyroid cancer (e.g., Ron et al. 1995). Below
we provide a statistical underpinning of the effect of a disturbance on the increase in
transcriptomic heterogeneity.

To provide a statistical motivation for the heterogeneity increase caused by distur-
bances, consider an oncogenomics study with a time-course setup. In such a study,
a sample (cell line) is followed over time for a certain period and, at multiple time
points during this period, is interrogated molecularly. The resulting expression profile
at time point t is denoted by Yt . Assume Yt can be modeled by a VAR(1) (first-order
vector autoregressive) process:

Yt = ν + AYt−1 + εt , (4)

where ν the p×1 intercept vector, A a p× p coefficient matrix, and εt a p×1 vector
with the errors. It is assumed that εt ∼ N (0p×1,�ε), Cov(εt1 , εt2) = 0 if t1 �= t2,
and Y0 = 0p×1. Introduction of a disturbance at time point τ modifies Model (4) to:
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Y(τ )
t = ν + AYt−1 + εt + δτ I{t=τ }, (5)

where δτ ∼ N (0p×1,�δ) a p × 1 vector with the disturbances.
We can now formulate the following proposition (with proof in SM G):

Proposition 2 Let Yt and Y(τ )
t be p-variate random variables distributed in accor-

dance with Models (4) and (5). Then, H [Y(τ )
t ] > H(Yt ) and H [Y(τ1)

t ] > H [Y(τ2)
t ] if

τ2 > τ1.

The proposition tells us that (a) the heterogeneity (which is one-to-one related to
entropy) of the undisturbed expression data is smaller (in a positive-definite sense) to
that of its disturbed counterpart and (b) that a disturbance that occurs more upstream
(in time) leads to larger heterogeneity than a more recent disturbance.

5 Weakened Conditional Dependencies

Changes in the architecture of a regulatory network may also affect the cell’s entropy.
In particular, as we show here, the weakening of an edge may lead to a surge in the
network’s entropy. An extreme case of this phenomenon is the removal of an edge,
which indeed may further increase the entropy. Figure 6 illustrates the three cases: the
original network (representing the normal, healthy state), the same network with some
edges weakened (an early disease state), and, finally, a disconnected network (the late
disease state).

We now prove (a similar result does not hold for marginal dependencies, see SM I)
that, under normality, decreasing the conditional dependencies in the network between
(groups of) nodes conditional of other (groups of) nodes increases the entropy of its
associated multivariate distribution. To see this, we study the concentration matrix.

Proposition 3 LetX ∼ N (0,�X ) andY ∼ N (0,�Y )with equalmarginal variances
diag(�X ) = diag(�Y ). Further, assume that the p × p partial correlation matrices

Fig. 6 Network changes over time. The fully connected graph on the left is a caricature of a regulatory
network. The width of the edges is proportional to their hypothesized strengths. Over time, as the disease
progresses, interactions between nodes weaken, which is reflected by the decreased width of some of the
edges. Eventually, some of these interactions get lost (symbolized by edges that have disappeared), and the
graph may even become disconnected
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(i.e., concentration matrices standardized to have a unit diagonal) associated with X
and Y, denoted 	γ (x) and �γ (y) can be both partitioned as r × r block matrices:

	γ =

⎛
⎜⎜⎜⎜⎝

	11 γ12	12 . . . γ1r	1r

γ12	
T
12 	22

...
...

. . .
...

γ1r	
T
1r . . . . . . 	rr

⎞
⎟⎟⎟⎟⎠ ,

with γ = (γ12, . . . , γ1r , γ23, . . . , γ2r , . . . , γr−1,r ) ∈ [0, 1] 12 r(r−1). Then, γ (x) ≤ γ (y)

(element-wise) implies H(Y) ≤ H(X).

Proposition 3 may be interpreted as follows. In a fully connected graph (no element
ofγ is equal to zero), eachnode is regulated by all other nodes.Hence, theyhave limited
freedom to vary as they please. In a fully disconnected network (all elements of γ are
equal to zero), each node behaves independently, unconstrained—in any manner—
by any of the other nodes. A similar observation is made by Kauffman (1993) when
studying random binary networks. Thus, nodes exhibit less variance (entropy) in a
fully connected graph than in an unconnected one. In fact, Proposition 3 shows that a
decrease in partial correlation already has the same effect: the weaker the conditional
dependency between the nodes, the more room to manoeuver freely, the larger the
entropy.

Further insight into Proposition 3 is provided by linking the entropy increase to the
nodes (rather than the edges) of the network. Hereto, we consider the situation of a
gene knockout. Tumor-suppressor genes, recessive in nature, are often knocked out
in cancer (Weinberg 2006). A knockout is equivalent to the removal of all edges of
a gene (but this is not fully equivalent as the variance of the expression levels of a
knocked out gene will vanish, which need not be the case when only its dependencies
are removed). An alternative scenario could be a mutation that inhibits the interaction
of the gene with others. The mutation does not prohibit the transcription of the gene.
Proposition 3 implies that these scenarios lead to an increase in entropy.

We now ask ourselves, from an entropy perspective, whether it matters which
gene is silenced. In particular, we investigate—by simulation—the relation between
entropy and a gene’s connectivity. This is motivated by the observation of Jonsson
and Bates (2006) that cancer genes tend to be more highly connected in the regulatory
network. TP53, a well-known tumor-suppressor gene and lost (i.e., silenced) in many
cancers, is indeed highly connected (Vogelstein et al. 2000). In the simulation study,
the effect of connectivity on the entropy is assessed by eliminating dependencies.
Starting point of the simulation is a graph (either small world or scale free) and an
associated covariance matrix �. For node j , we calculate its degree d j , eliminate its

edges (conditional dependencies) with the other nodes, and calculate log
(∣∣∣�̃( j)

∣∣∣
)
(the

entropy), where �̃
( j)

is obtained from � by setting all conditional dependencies of

node j to zero. This is done for each node. Finally, d j is plotted against log
(∣∣∣�̃( j)

∣∣∣
)
,

where the range of d j is restricted to the degrees present in the network. Figure 7
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Fig. 7 The cubic spline smoothed relationship between the node degree of the node with eliminated
conditional dependencies versus the entropy of the resulting 50 × 50 dimensional covariance matrix with
an underlying scale-free topology. Each spline represents the results for an independently drawn covariance
matrix. In total, a hundred splines are displayed (Color figure online)

shows the results of conditional dependency removal for pathways of p = 50 genes
with a scale-free regulatory network. It reveals a clear monotonously increasing trend:
the higher the edge degree of a node, the larger the entropy increase as its conditional
dependencies are removed. This holds also for pathways with a small-world topology
(refer to the SM J). The plots even suggest a dependence of this relation on the size of
the network, but this needs further exploration. In all, the simulation suggests a cancer
cell gains most by silencing a highly connected gene, as a it explores different paths
of random variation in its evolution and naturally selects the path that leads to a faster
entropy increase (Kaila and Annila 2008).

It is left to assert whether gene–gene interactions may indeed weaken or vanish in
cancer. Hereto we revisit the Notch and TGFβ pathway data of the previous sections.
In Sect. 2, these data revealed a higher transcriptomic entropy in the ER− group
than in the ER+ group. Proposition 3 suggests that the entropy difference may be
due to the weakening of gene–gene interactions. To investigate this, we compare
between the two estrogen groups their number of conditional dependencies among
the genes comprising the pathway. This is done in both the “transcriptome only”
(as introduced in Sect. 2) and the integrative oncogenomics data (as introduced in
Sect. 3). In the former setting, a standard Gaussian graphical model (as implied by
the multivariate normal) describing the relations between the genes is fitted. From
the thus fitted model, the nonzero partial correlations (reflecting the relations between
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Fig. 8 Number of edges present versus penalty parameter, for ER− (solid lines) and ER+ (dashed lines)
groups for three breast cancer studies (distinguished by color). Left panelNotch pathway; right panel TGFβ

pathway (Color figure online)

the genes) are determined. For the integrative oncogenomics studies, comprising both
DNA copy number and gene expression data, Model (3) relating the two molecular
levels is fitted. The nonzero elements of the estimate of the matrix � with gene-to-
gene effects are then studied. For each pathway data set of the previous sections, we
subsample repetitively (500 times) an equal number of samples from each estrogen
group. This number of samples is set at 90% of the sample size of the group with the
smallest prevalence in the data set. For the “transcriptome only” data of Sect. 2, the
number of edges (number of nonzero partial correlations) in each estrogen group is
determined for a given penalty parameter λ1 using the method of Peng et al. (2009).
Similarly, for the integrative oncogenomics studies, comprising both genomic and
transcriptomic data, the number of edges (nonzero elements of �) in both groups is
determined for a given penalty parameter λ1 using the method of Van Wieringen and
Van de Wiel (2014) which fits a sparse version of Model (3). The number of edges
found is averaged over the 500 subsamples. The above (for both the “transcriptome
only” and the integrative oncogenomics data) is repeated for a grid of λ1. In both
cases, the penalty parameter grid is chosen such that the resulting number of edges
(i.e., the number of nonzero partial correlations, or the number of nonzero off-diagonal
elements in �̂) is between 1 and 10% of the total number of possible edges. This range
intends to capture only sparse networks, which are believed to be representative of
realistic gene–gene interaction networks. The averaged number of selected edges is
plotted against the penalty parameter λ1 in Fig. 8 for the integrative oncogenomics
studies, whereas the plots for the “transcriptome only” data sets are in SM K. The
latter suggests that there is no weakening of the gene–gene interaction pattern from
one estrogen group to the other in either pathway. However, when taking into account
DNA copy number aberrations, it becomes apparent that in both pathways, the number
of selected edges in the ER− samples is lower (over the selected range of λ1) than
in the ER+ samples (confer the right panel of Fig. 8). This suggests a weaker gene–
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gene interaction pattern in the ER− group, which may in turn contribute to the higher
transcriptomic entropy/heterogeneity. Hence, it suggests that delineated mechanisms
of transcriptomic entropy increase need not always act alone. For instance, in the
illustration above only after correction for the effect of genomic abberations did the
mechanism of weakened gene–gene interactions become apparent. Two (or more)
transcriptomic entropy increasing mechanisms may thus be active simultaneously.

6 Conclusion

Transcriptomic heterogeneity increases as cancer progresses. Here we presented sev-
eral statistically motivated and biologically plausible mechanisms that may explain
this surge:

– Activation of molecular switches. Two tangible manifestations of heterogeneity
are (a) differential expression between the regulatory modules controlled by the
switch, and (b) an increase in the transcriptomic heterogeneity in one of these reg-
ulatory modules. The latter may be caused by each of the remaining mechanisms.

– Structural change in a regulator of gene expression levels. DNA copy number
alterations are a key example of such changes.

– Temporary change in a regulator of gene expression levels. In particular, the more
upstream in apathway the temporary changeoccurs, the stronger the transcriptomic
entropy increase. For instance, stress induced by exposure to radiation may cause
a short-term change in the regulatory system.

– Weakened conditional dependencies between the genes in a pathway. Pathway
inactivation serves as an illustration.

In the above mechanisms, hub genes of the regulatory systems play an important role.
For example, their inactivation is likely to cause a higher transcriptomic heterogeneity
increase than that of more peripheral genes.

Cancer is a complex disease, which exploits many routes to derail the regulatory
system and may lead to a transcriptomic heterogeneity increase. The few explanations
of dysregulation in the cancer cell via entropy surge offered here are unlikely to
be exhaustive. Other mechanisms may exist and need to be identified in order to
understand the ways of the cancer cell. Furthermore, all mechanisms need evaluation
in the face of nonnormality and nonlinearity. Future research should also concentrate
on possible attenuations of the identifiedmechanisms. For instance, several DNA copy
number aberration types, e.g., loss and gain, are often distinguished, and theymay have
a different effect on the transcriptomic heterogeneity. Finally, it should be noted that
the models employed here assume the regulatory system to be isolated, while in fact
it operates within the larger environment of the cell, the tissue, and the organism.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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