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Abstract The SARS epidemic of 2002–2003 drew attention to nosocomial disease
transmission as many of the disease cases were transmitted through hospital staff
and visitors. Various types of model have been proposed to describe this, including
metapopulation models. We formulate and analyze a simple compartmental model
with heterogeneous mixing to describe nosocomial transmission and determine the
reproduction number and final size relation.
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1 Introduction

Nosocomial (in-hospital) disease transmission is an important problem. It has been
estimated by the Centers for Disease Control that in the USA, there are 1,700,000
cases of nosocomial transmission per year and 99,000 deaths attributable to nosoco-
mial infections. In many cases, these are infections acquired in the hospital, not the
disease that caused the hospital stay. Two examples are nosocomial diarrhea caused by
the bacteria C. difficile and MRSA (methycillin-resistant stapylococcus aureus). How-
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ever, there are also diseases such as pneumonia, tuberculosis and Bordetella pertussis
(whooping cough) that are often transmitted from patient to patient. The SARS epi-
demic of 2002–2003 drew attention to nosocomial transmission because in the Greater
Toronto Area and in Taiwan about 75 % of SARS cases were transmitted in-hospital
and nosocomial transmission was present in all other locations affected by SARS as
well, Chen et al. (2004), Hsieh et al. (2004), Lipsitch et al. (2003), Riley et al. (2003).

One of the beneficial contributions of the SARS epidemic of 2002–2003 was to draw
attention to nosocomial disease transmission, and this led to the first dynamic model,
a compartmental model formulated for the 2002–2003 SARS epidemic in the Greater
Toronto area, Webb et al. (2004). Another more recent model viewing nosocomial
transmission as a metapopulation model with travel to and from a hospital location is
Hsieh et al. (2014), with particular attention to pertussis.

Nosocomial transmission can be viewed as an instance of heterogeneity in dis-
ease transmission in which health care workers may have many contacts with hos-
pital patients. The most important measures to counteract nosocomial transmission
are hygienic practices, beginning with frequent and careful handwashing by hospi-
tal personnel. As these are often neglected routinely, implementation of stricter rou-
tines can often produce a rapid decrease in nosocomial transmission. If a disease
is infectious enough to spread without a large number of in-hospital case, then the
addition of nosocomial transmission can make a disease outbreak considerably more
serious.

The greater Toronto area saw about 350 SARS cases between February and June
2003, with 44 deaths. Almost all diagnosed cases were hospitalized, but it was not
realized initially how readily SARS could be transmitted. As a result, there were
many cases of in-hospital disease transmission. About 75 % of the cases in the Greater
Toronto Area were transmitted in hospital. About 60 % of these were health care
workers and 20 % were hospital visitors, while 20 % were hospital patients (with other
medical problems). The rate of nosocomial disease cases of SARS was similar in other
cities.

The response was to take more care with hospital procedures, and this produced
an immediate reduction in nosocomial transmission—until a perception that the epi-
demic had passed and less care in hygienic measures resulted in a second wave of
cases. Nosocomial transmission is very sensitive to care in hygienic procedures but
in the Greater Toronto Area, SARS was not sufficiently infectious to spread without
nosocomial transmission.

2 A First Model

In the simplest model for nosocomial infections, we include only people hospitalized
with an infectious disease (T ) and the population of health care workers and visitors
in frequent contact with such people, a population of initial total size N , subdivided
into susceptible (S), infectious (I ), and removed (R). For the moment, we ignore the
much larger general population in which this sub-population is embedded.
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The model is

S′ = −S

[
a

I

N
+ ρ

T

N

]

I ′ = S

[
a

I

N
+ ρ

T

N

]
− (α + γ )I

T ′ = γ I − ηT, (1)

with

S(0) + I (0) = N , T (0) ≥ 0.

In this model, a is the rate of contacts between workers, ρ is the rate of contacts
between workers and hospitalized patients, α is the recovery rate of infectious workers,
γ is the rate of hospitalization of infectious workers, and η is the recovery rate of
hospitalized patients.

It is reasonable to assume η ≥ α. In nosocomial infections, it is common to have
ρ � a. The basic reproduction number, calculated by the next generation matrix
method, van den Driessche and Watmough (2002) is

R0 = a

α + γ
+ ργ

η(α + γ )
.

The analysis of the model (1) is similar to the analysis of the simple SI R epidemic
model. From (S + I )′ = −(α + γ )I < 0, we deduce that I → 0 as t → ∞ and

N − S(∞) = (α + γ )

∫ ∞

0
I (t)dt.

From (S + I + T )′ = −α I − ηT < 0, we deduce that T → 0 as t → ∞ and

N − S(∞) + T (0) = α

∫ ∞

0
I (t)dt + η

∫ ∞

0
T (t)dt.

These two integral equalities yield

η

∫ ∞

0
T (t)dt = γ

α + γ
[N − S(∞)] + T (0).

Now, integration of the equation for S′ in (1) gives

N log
S(0)

S(∞)
= a

∫ ∞

0
I (t)dt + ρ

∫ ∞

0
T (t)dt

= aη + ργ

η(α + γ )
[N − S(∞)] + ρ

η
T (0),
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and this gives the final size relation

log
S(0)

S(∞)
= R0

[
1 − S(∞

N

]
+ ρ

ηN
T (0). (2)

In order to separate disease cases caused by contact with hospital patients from
other cases, we modify the model (1) by letting I = I1 + I2, where I1 is the number
of patients infected by hospitalized patients and I2 is the number of patients infected
by contact with hospital workers and visitors, so that

S′ = −S

[
a

I1 + I2

N
+ ρ

T

N

]

I ′
1 = Sρ

T

N
− (α + γ )I1 (3)

I ′
2 = S

[
a

I1 + I2

N

]
− (α + γ )I2

T ′ = γ I − ηT .

The models (1) and (3) have the same reproduction numbers and final size relations,
but simulations of the model (3) allow separation of disease cases caused by contact
with hospital patients from other cases.

It is possible to have a small enough and ρ large enough that the disease spreads
because of nosocomial infections caused by contacts with hospitalized cases but would
not spread if ρ were decreased enough.

If we think of R0 as a function of the treatment rate γ ,

∂R0

∂γ
= ρα − ηa

η(α + γ )2 ,

and this is negative if and only if

ρ <
aη

α
.

Thus, it is important to make ρ < aη/α because otherwise increasing the treatment
rate would increase the basic reproduction number and the number of disease cases.
However, this condition is likely not to be satisfied unless measures are taken to control
ρ.

3 A Second Model

In order to control a nosocomial disease outbreak, it may be possible to isolate some
infected members and treat them at home rather than hospitalizing all diagnosed infec-
tives. A model corresponding to (1) that includes such isolation in a basic SI R model
is
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S′ = −S

[
a

I

N
+ ρ

T

N

]

I ′ = S

[
a

I

N
+ ρ

T

N

]
− (α + γ )I (4)

Q′ = (γ − u)I − αQ

T ′ = uI − ηT,

with

S(0) + I (0) = N , T (0) ≥ 0.

Here, Q is the class of isolated members of the health care worker and visitor
population, γ is the rate of identifying infectives to be either hospitalized or isolated,
and u is the rate of treatment. It is assumed that isolated members have no contacts
and do not transmit infection.

The basic reproduction number, calculated by the next generation matrix method,
van den Driessche and Watmough (2002) is

R0 = a

α + γ
+ ρu

η(α + γ )
.

If we think of R0 as a function of the treatment rate u,

∂R0

∂u
= ρ

η(α + γ )
> 0,

and, viewing R0 as a function of of ρ,

∂R0

∂ρ
= u

η(α + γ )
> 0.

Thus, control of nosocomial infections requires a decrease in the contact rate with
treated patients ρ or an increase in the quarantine rate and a corresponding decrease
in the hospitalization rate u, or a combination of both measures.

If a is large enough that the disease would spread even without nosocomial infec-
tions, then a model needs to include the general population as well as the subpopulation
of health care workers and hospital visitors.

4 A Full Population Model

We now consider a population consisting of hospitalized people and the subpopulation
of health care workers and hospital visitors who may have contact with hospitalized
people, and in addition a general population. This general population, initially of size
NG , is subdivided into SG susceptible, IG infectious, and RG removed members. We
assume that the general population members make a contacts in unit time with the
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general population and the health care population, but do not have contact with the
hospitalized population.

It is necessary to make some assumptions about the mixing between the general
population and the health care worker and hospital visitor subpopulation. We assume
the mixing between general and health care population members is given by the mixing
matrix

[
p11 p12
p21 p22

]
.

Perhaps proportionate mixing for the general population and preferred mixing in
the health care worker population is a reasonable assumption.

Our assumptions lead to the model

S′
G = −aSG

[
p11

IG

NG
+ p12

I

N

]

I ′
G = aSG

[
p11

IG

NG
+ p12

I

N

]
− (α + γ )IG

S′ = −aS

[
p21

IG

NG
+ p22

I

N

]
− Sρ

T

N

I ′ = aS

[
p21

IG

NG
+ p22

I

N

]
+ Sρ

T

N
− (α + γ )I

T ′ = γ (IG + I ) − ηT . (5)

We can show, in much the same way as for the simpler model (1), that as t → ∞,

I → 0, IG → 0, T → 0.

In addition,

NG − SG(∞) = (α + γ )

∫ ∞

0
IG(t)dt

N − S(∞) = (α + γ )

∫ ∞

0
I (t)dt

η

∫ ∞

0
T (t)dt = γ

(∫ ∞

0
IG(t)dt +

∫ ∞

0
I (t)dt

)
+ T (0)

Integration of the equations for S′
G and S′ in (5) gives

log
SG(0)

SG(∞)
= ap11

NG

∫ ∞

0
IG(t)dt + ap12

N

∫ ∞

0
I (t)dt

log
S(0)

S(∞)
= ap21

NG

∫ ∞

0
IG(t)dt + ap22

N

∫ ∞

0
I (t)dt + ρ

N

∫ ∞

0
T (t)dt.
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Table 1 γ = 0.3
ρ R0 Disease cases

0 0.36 8

0.1 0.58 13

0.2 0.80 27

0.3 1.02 125

0.4 1.24 376

0.5 1.45 561

Substitution of the expressions for
∫ ∞

0 IG(t)dt,
∫ ∞

0 I (t)dt,
∫ ∞

0 T (t)dt gives the final
size relations

log
SG(0)

SG(∞)
= ap11

α + γ

[
1 − SG(∞)
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]
+ ap12

α + γ

[
1 − S(∞)

N

]

log
S(0)

S(∞)
=

[
ap21

α + γ
+ ργ NG

η(α + γ )N

] [
1 − SG(∞)

NG

]

+
[

ap22

α + γ
+ ργ

η(α + γ )

] [
1 − S(∞)

N

]
+ ρ

ηN
T (0). (6)

5 Dependence on Parameters

To illustrate how much the rate of nosocomial transmission can affect the severity of
a disease outbreak, here are some simulations for the simple model (1), not based on
any particular disease, using the parameter values

a = 0.2, α = η = 0.25

in a population of 1,000 members with an initial state

S(0) = 995, I (0) = 4, T (0) = 1,

for a range of values of ρ, first with γ = 0.3 and then with γ = 0.4. The values suggest
that decreasing ρ is essential to control the spread of disease. Decreasing ρ enough
to make R0 < 1 is particularly beneficial. Increasing the rate γ at which infectious
members of the population are identified for hospitalization may also be useful, but
only if nosocomial transmission can be controlled (Tables 1, 2).

6 SARS in the Greater Toronto Area

It is difficult to estimate parameter values for a model from data because the amount of
nosocomial transmission is very sensitive to changes in procedures. One would have to
break a nosocomial outbreak into stages, re-estimating parameter values to correspond
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Table 2 γ = 0.4
ρ R0 Disease cases

0 0.31 7

0.1 0.55 12

0.2 0.80 27

0.3 1.02 125

0.4 1.29 430

0.5 1.54 613

to each change in procedures. The simple model covering only the hospital worker and
visitor population may be easier to use than the full population model, because of the
lack of knowledge of the mixing pattern and the difficulty in estimating contact rates.
An extension which may be more useful would be to separate the hospital population
into workers and visitors, as workers are likely to have more contact with more patients
and a correspondingly higher value of the associated ρ than visitors.

In Webb et al. (2004) nosocomial data for SARS in Toronto in 2003 was used to
parametrize a model to fit the data for the period March 18–31 until an emergency
was declared and protective measures were taken and to fit data for the next phase of
the outbreak by including quarantine and decreasing the nosocomial contact rate.

We use an SE I R analog of the model (3) with a rate κ of transfer from exposed to
infective classes

S′ = −S

[
a

I1 + I2

N
+ ρ

T

N

]

E ′
1 = Sρ

T

N
− κ E1

E ′
2 = Sa

I1 + I2

N
− κ E2

I ′
1 = κ E1 − (α + γ )I1

I ′
2 = κ E2 − (α + γ )I2

T ′ = γ I − ηT, (7)

with

N = 3000, a = 0.18, α = η = 0.05, γ = 1/3, κ = 1/6, ρ = 0.32

and initial conditions

S(0) = 2985, E1(0) = 0, E2(0) = 12, I1(0) = 0, I2(0) = 1, T (0) = 1

for the first two weeks of the outbreak, we obtain

S(13) = 2931, E1(13) = 5, E2(13) = 18, I1(13) = 2, I2(13) = 6, T (13) = 6.
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At this point, much stricter hygienic measures were imposed, and if we use these as
initial values for the next 40 days with ρ = 0.024, we obtain

S(40) = 2886, E1(40) = 4, E2(40) = 3, I1(40) = 2, I2(40) = 2, T (40) = 24.

This choice of ρ gives 114 cases by day 53, similar to observations. Continuation with
these parameter values leads to a final epidemic size of 352, close to observations. The
choice of parameter values is dictated by the ultimate final size of the epidemic, which
is very sensitive to the values of the contact rates a and ρ. The model is more useful
for explaining observations than for predicting outcomes because of this sensitivity.

7 Conclusions

We have formulated a simple model for nosocomial transmission and suggested various
ways in which it could be generalized, for example, by distinguishing between hospital
workers and hospital visitors. If there is a danger that the infection will extend to the
general public, it is necessary to include the general public in the model, but otherwise
we suggest confining the model to that portion of the general population that has
contact with the hospital. Because the size of an epidemic depends strongly on the
rate of nosocomial transmission and because this rate may vary in time as control
measures are changed, it is very difficult to make useful quantitative predictions.
We should view the model more as a qualitative conceptual model than as a useful
predictive model. The formulation of a predictive model depending on parameters that
can be measured or estimated is an important challenge for the future.

The model (3) can be made more realistic by introducing separate compartments
for hospital workers and visitors. The size of the hospital visitor compartment should
depend on the number of hospitalized patients. Moreover, flows between compartments
can be considered more realistically, although making the model more complex. The
model (3) is especially meaningful for a disease in which many infected persons have
mild symptoms but are contagious; treatment at home rather than in a hospital may
decrease the number of nosocomial infections and thus soften the impact of the disease
outbreak.
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